Joint Meeting of Unione Matematica Italiana and American Mathematical Society

Session 25 – ARITHMETIC ALGEBRAIC GEOMETRY

June 13 2002, Pisa

ORGANIZERS: Alan Adolphson (University of Stillwater) Francesco Baldassarri (Università di Padova) Massimo Bertolini (Università di Padova) Steven Sperber (University of Minneapolis) Douglas Ulmer (University of Arizona at Tucson)

Hui June Zhu (University of California at Berkeley) *p*-adic variation of *L* functions of exponential sums

ABSTRACT: Let d > 2 and let A^d be the space of degree-d monic polynomials over \mathbb{Q} parametrizerd by their coefficients. For any polynomial f over \mathbb{Z}_p and \mathbb{Q} of degree d, let L(f;T) be the L function of the exponential sum of $f(\mod p)$. Let NP(f,p) denote the Newton polygon of L(f;T); and let $HP(A^d,p)$ be the Hodge polygon, which is the lower convex hull in the real plane \mathbb{R}^2 of the points (n, n(n+1)/2d) for $n = 0 \dots d - 1$. We prove that for p large enough there exists a "generic Newton polygon" $GNP(A^d,p)$ and there is a Zariski dense open subset U defined over the rationals \mathbb{Q} in A^d such that for all f in $U(\mathbb{Q})$ and for p large enough we have $NP(f,p) = GNP(A^d,p)$. Furthermore, as p goes to infinity their limit exists and is equal to $HP(A^d,p)$. The last statement was a conjecture of Daqing Wan.

1