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Introduction

In this Ph.D. thesis we want to collect some results on different topics which
share as a main feature the search of critical points of the so-called generat-
ing functions1, and the allied subject of the reduction from infinite to finite
parameters.

We give an overview of the main topics.

Asymptotic optics

The global vanishing trend

Generating functions are found as phase functions in oscillatory integrals, in
the study of asymptotics in optics. Finding the critical points it is possible
to reduce the integral to a finite sum, according to the well known stationary
phase method (SPM). We set ourselves in the Gevrey class of functions, in
order to obtain sharper estimates of the asymptotical behavior. We proved
that if the amplitude a(x) and the phase ϕ(x) belong to the Gevrey class of
functions Gs, s > 1, if a(x) is compactly supported and ϕ(x) has no critical
points in supp a, then the oscillatory integral satisfy the estimate:

I(k) :=

∫
a(x)eikϕ(x)dx = A

√
ke−σk

1
s

[
1 + O

(
1

k

)]
, as k → +∞

(see chapter 1 and also [CL04]).

Loss of Gevrey regularity

Actually, the above result can be improved, including in the analysis Morse
critical points, and even degenerate critical points.

In fact, when one has Morse critical points and one takes a Gs symbol
for amplitude, the oscillatory integral gives, thorough SPM, a new Gevrey

1often referred to as generating families, or as phases, e.g. in wave phenomena.
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symbol with a loss of Gevrey regularity from s > 1 to 2s − 1 > s. This
situation is analyzed in chapter 2 (see also a forthcoming paper [CGL04]).
For sake of completeness, a proof for the Morse lemma in Gevrey classes is
reported in section 2.3.

Reduction in field theory

General theory

A finite parameters reduction appears in the study of semilinear Dirichlet
boundary value problems outlined in chapter 3. Providing some appropriate
conditions which we will illustrate below, these equations, which are posed
in fit functional spaces, e.g. in H1

0 , find a globally equivalent formulation in
finite dimensional spaces, i.e. in Rm. When these problems admit a varia-
tional principle dJ = 0, the reduction applies as well to the functional J , so
the search for solutions is brought back to the determination of critical points
of an m–variables function. A first illustration of this reduction technique
in partial differential equations was performed in [Car03], as we essentially
report in chapter 3). The exact finite parameters reduction stands on the
fundamental works of Amann, Conley and Zehnder (see [AZ80, CZ86]).

Variational and topological techniques for existence

The most part of the results we met in literature is centered on existence ques-
tions (see for instance [Nir81, Ben95]). The most widely employed techniques
are of topological type, e.g. degree theory and local inversion theorems, while
finer variational techniques, as Morse theory or Lusternik-Schnirelmann the-
ory, take place usually whenever some restrictions in the statement are pro-
vided.

Very sharp investigations can be done near bifurcation points, by means
of the Liapunov-Schmidt reduction, see for instance [AP93]. The reduction
techniques presented in this thesis, have, at least in principle, several affinities
with the Liapunov-Schmidt procedure.

On the other hand, the Liapunov-Schmidt reduction can be applied only
in a neighborhood of a bifurcation point, while the present techniques, though
providing more restrictive assumptions, rewards by giving a global generating
function, which critical points are all and exactly the solutions of the Dirichlet
problem.
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In chapter 4 we expose in detail a simple2 existence result, stated in sec-
tion 4.1.1, which has been carried over by means of Lusternik-Schnirelmann
theory acting on the theory of Generating Functions Quadratic at Infin-
ity (FGQI3). This result seems the first application of the FGQI to PDE
problems. FGQI were developed, in a finite dimensional setting, mainly by
Chaperon, Sikorav and Viterbo in a context of symplectic topology. See sec-
tions 4.3 and 4.4 and the original papers [Vit90, Cha84, Cha91, Sik86, Sik87,
Thé99].

Numerical applications

Besides the above existence applications, this particular constructive finite
dimensional reduction theory suggests us further more useful applications to
algorithms of numerical approximation to solutions.

Following this indication we developed a very simple model in R em-
ploying finite elements in order to test the applicability of the theory on a
physical problem (see chapter 5 and a forthcoming paper [CPL04]). Sample
tests performed on this model agree with the theoretical estimates, though
we haven’t still evaluated the competitiveness with other more standard al-
gorithms. Nevertheless, applying Peano-Picard and Newton-Raphson proce-
dures, we found two nontrivial solutions for the nonlinear Dirichlet problem
taken as a model.

Interdependence and redundancy

Chapters 1 and 2 are completely independent from the rest of this thesis.
Chapters 4 and 5 employ the techniques exposed in detail in chapter 3.
However, chapter 5 can be read alone, because in its introductive part the
core results of the reduction technique of chapter 3 are repeated in short.

Chapter 1 Chapter 2

Chapter 3 Chapter 4

Chapter 5

2Indeed this fact may also be reached straightforwardly by means of a standard Leray-
Schauder’s topological degree argument. We wish to thank a referee for this remark.

3Fonctions Génératrices Quadratiques à l’Infini
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Chapter 1

Lack of critical phase points
and exponentially faint
illumination

The stationary phase method (S.P.M.) states that in the
computation of oscillatory integrals, the contributions of non
stationary points of the phase are smaller than any power
n of 1/k, for k → ∞. Unfortunately, S.P.M. says noth-
ing about the possible growth in the constants in the es-
timates with respect to the powers n. A quantitative esti-
mate of oscillatory integrals with amplitude and phase in the
Gevrey classes of functions shows that these contributions
are asymptotically negligible, like exp(−akb), a, b > 0. An
example in Optics is given.

1.1 Introduction

An oscillatory integral is an integral of the form

I(k) :=

∫

u∈Ω

a(u)e−ikϕ(u)du, Ω ⊆ Rd, (1.1)

where a and ϕ are C∞ real functions, called respectively amplitude and
phase, and k is a (large) parameter. They are typically employed to rep-
resent solutions for linear PDE’s depending on a real parameter, e.g. the
Schrödinger equation or the Helmholtz equation.

A well known feature is the tight dependence on the values of a near the
critical points of ϕ. More precisely, if in the domain of integration Ω there

1
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are no degenerate critical points for ϕ, the stationary phase method 1 applies,
i.e.

I(k) '
(

2π

k

) d
2 ∑

u0:∇ϕ(u0)=0

a(u0) exp {ikϕ(u0)}
ei π

4
sgn(∇2ϕ(u0))

√
det∇2ϕ(u0)

. (1.2)

In particular, a very standard argument, states that the contributions to
I coming from a compact subset K ⊂ Ω where there are no stationary points,
tends to zero faster than every positive power of 1

k
, as k →∞.

This “superpolynomial estimate” can be written as

|I(k)| 6 Ank
−n, ∀n ∈ N, (1.3)

(and will be revisited in Theorem 1). The coefficients An are comparable
to the size of the n-th order derivatives of the amplitude function a. Unfor-
tunately, for C∞ compactly supported functions there is no a priori upper
bound to the growth of these derivatives .

If the amplitude were analytic, it would be possible to estimate An by n!.
In that case, choosing an optimal value of n depending on k and applying
Stirling’s formula, as shown in detail in the next section, one would find the
expected exponential estimate for I:

|I(k)| 6 n!k−n,∀n ∈ N, ⇒ |I(k)| 6 Ae−k. (1.4)

Unfortunately, analyticity is a requirement which cannot be satisfied by
a non trivial compactly supported function. On the other hand, in order
to have simpler integrals to manage, we choose to consider compactly sup-
ported amplitudes, as done, e.g., in [AGZV88], although it would be possible
to discuss the Stationary Phase Principle for non compactly supported am-
plitudes.

A reasonable way out can be found by turning to an intermediate class
of functions placed between the spaces of the C∞ functions and the analytic
functions: the Gevrey spaces.

Functions in the Gevrey space Gs(Ω), s > 1 satisfy the inequality:

|∂αf(u)| 6 C |α|+1(α!)s (1.5)

for every α = (α1, . . . , αd) ∈ Nd, for every u in a compact subset K b Ω, and
a suitable constant C, depending only on K.

1This short-wave approximation is usually referred in physics as the WKB method,
and it seems that it was first worked out by F. Carlini [Car17] –we learned it in [Arn00]–,
and later used by Kelvin, Stokes and many others in the 19th century.



1. Lack of critical phase points and exponentially faint
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Obviously, G1(Ω) is the class of the analytic functions A(Ω). It is also
clear that there exist C∞ functions which are not Gevrey for any s. To
summarize, one has

A(Ω) $ Gs(Ω) $ C∞(Ω), s ∈ R, s > 1. (1.6)

Let Gs
0(Ω) denote the space of complactly supported “s-Gevrey” functions

in Ω. Gevrey spaces Gs
0(Ω), with s > 1, are dense in C∞

0 (Ω), in Lp
0(Ω), etc.,

essentially because partitions of unity can be constructed. See [Rod93] for
an exhaustive treatise.

When a belongs to Gs
0(Ω), and ϕ to Gs(Ω), we obtain the exponential

estimate:

|I(k)| 6 A
√

k e−σk
1
s , k > 1. (1.7)

This result, allowing ϕ to belong to a Gevrey class of functions, improves
a previous one by Todor Gramchev for analytical phases ϕ, see [Gra87].

1.2 A Gevrey exponentially decreasing esti-

mate

The first theorem is standard; the second is the core of the main result, which
we state as the third theorem. From now on we will assume Ω bounded.

Theorem 1. Let a ∈ C∞
0 (Ω), ϕ ∈ C∞(Ω), ∂ϕ

∂u
6= 0, ∀u ∈ supp a. Then

|I(k)| 6 Ank
−n, ∀n ∈ N, k > 1. (1.8)

Theorem 2. Let a ∈ Gs
0(Ω), ϕ = u1, then, for suitable constants A and σ,

|I(k)| 6 A
√

k e−σk
1
s , k > 1. (1.9)

This assertion is also true when ϕ is an arbitrary Gevrey function, in
particular analytic, i.e. when ϕ ∈ Gs(Ω), s > 1.

Theorem 3. Let a ∈ Gs
0(Ω) and ϕ be analytic or belonging to Gs(Ω), with

∂ϕ
∂u
6= 0, ∀u ∈ supp a. Then, for suitable constants A and σ,

|I(k)| 6 A
√

k e−σk
1
s , k > 1. (1.10)

Remark 1. In theorems (2) and (3) occurs a
√

k, coming from the Stirling for-
mula, which could be absorbed by the exponential decay, by little increment
of the constant σ. We keep on writing it since A and σ depend explicitly, as
shown below, on the Gevrey constants C and s in (1.5), for the amplitude a
and the phase ϕ.
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Proof. Proof of Theorem 1 Following [AGZV88], we claim that there is no
loss of generality if we assume ϕ(u1, . . . , ud) = u1.

First consider an open covering {Ul} of supp a, such that in each Ul there
is at least one non vanishing partial derivative of ϕ. Then, by means of a
subordinate partition of unity (

∑
ι∈Υ θι = 1, supp θι ⊆ Ul, for some l), we

can decompose the original integral as follows:
∫

supp a

aeikϕ =
∑

ι∈Υ

∫
aθιe

ikϕ =
∑

ι∈Υ

∫

supp aι

aιe
ikϕ. (1.11)

Since supp a is compact by hypothesis, Υ can be chosen finite. We now show
that each of these integrals can be transformed into an integral of the desired
form by means of a suitable change of variables.

By reordering variables and changing the orientation if needed, one can
obtain ∂ϕ

∂u1
> 0. The map

u = (u1, . . . , ud)
η7−→ v = (ϕ(u), u2, . . . , ud), (1.12)

is clearly a globally invertible diffeomorphism in every open convex subset of
U . Then the inverse map ξ := η−1 fits our purpose. Indeed:

I(k) =

∫

Ω

a(u)eikϕ(u)du =

∫

Ω̃

a(ξ(v))eikϕ(ξ(v)) |Jξ(v)| dv =

=

∫

Ω̃

a(ξ(v))

∣∣∣∣
∂ϕ

∂u1

(ξ(v))

∣∣∣∣
−1

eikv1dv =

∫

Ω̃

ã(v)eikv1dv. (1.13)

Now we prove the main fact. For every fixed (d − 1)-tuple (u2, . . . , ud),
let

u1m (resp. u1M) := inf (resp. sup)
{

u1

∣∣∣ (u1, u2, . . . , ud) ∈ Ω
}

. (1.14)

Hence,

I(k) =

∫
a(u)eiku1du =

∫ ∫ u1M

u1m

a(u)
1

ik

∂

∂u1

(
eiku1

)
du1du2 . . . dud =

=

∫ {[
a(u)

1

ik
eiku1

]u1M

u1m

− 1

ik

∫ u1M

u1m

∂a(u)

∂u1

eiku1du1

}
du2 . . . dud =

= − 1

ik

∫

Ω

∂a(u)

∂u1

eiku1du.

Performing n times this procedure and taking absolute values gives:

|I(k)| =
(

1

k

)n ∣∣∣∣
∫

Ω

(
∂na

∂un
1

)
eiku1du

∣∣∣∣ 6

6

(
1

k

)n ∫

Ω

∣∣∣∣
(

∂na

∂un
1

)∣∣∣∣ du =: Ank
−n, (1.15)
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as desired.

Proof. Proof of Theorem 2 The hypotheses of this statement are exactly
the hypotheses of the reduced case of the preceding theorem, apart from
the stronger hypotheses on the amplitude. A straightforward substitution of
(1.5) in the inequality of (1.15) gives

An 6 meas(Ω)cn+1(n!)s, (1.16)

with c = C(Ω), so for the integral we can write, setting B = meas(Ω)c,

|I(k)| 6 Bk−ncn(n!)s = B

(
c

k

n
s

n!

)s

, ∀n ∈ N (1.17)

which, by Stirling’s formula:

n! = nne−n
√

2πne
θ(n)
12n , where 0 < θ(n) < 1, (1.18)

becomes

= B
((

c
k

)n
s nne−n

√
2πn e

θ(n)
12n

)s

,

= B
(((

c
k

) 1
s n
)n

e−n
√

2πn e
θ(n)
12n

)s

.

Note that e
θ(n)
12n is surely smaller than 2 for all n > 1, and choose n in order

to bound the quantity in the inner parentheses by 1, i.e. set n? := n?(k) =

(integer part of)
[(

k
c

) 1
s

]
. Hence

|I| 6 2Be−s( k
c )

1
s

√
(2π)s

k

c
= A

√
ke−σk

1
s , (1.19)

where

A = 2B
√

(2π)s

c
,

σ = sc−
1
s .

Proof. Proof of Theorem 3 In order to reduce this statement to Theorem
2, we need to prove that the amplitude obtained performing a change of
variables as in (1.13):

ã(v) = a(ξ(v))

∣∣∣∣
∂ϕ

∂u1

(ξ(v))

∣∣∣∣
−1

, (1.20)

is a Gevrey function as long as a(u) and ϕ(u) are. Hence we need to recall
the following facts: if ϕ ∈ Gs(Ω),
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(i) ξ := η−1, where η(u) = (ϕ(u), u2, . . . , ud) as in (1.12), is a Gs diffeo-
morphism.

(ii) 1/
(

∂ϕ
∂u1

(u)
)
∈ Gs(Ω).

(iii) The composition of a Gevrey function with a Gevrey diffeomorphism is
still a Gevrey function of the same order s.

These are all known facts, a proof of which can be found in [LM70], where
these results are proved in more general spaces of functions. Alternatively,
one can find a proof which is specifically suitable for our purpose in [Gra02].

1.3 An application to optics

Consider the propagation of the light in the plane R2 due to a compact and
regular emitting surface Σ (i.e. a closed simple curve), or, equivalently, con-
sider a light emission for which such a Σ is a surface of constant phase. For
monochromatic propagation of wave number k, the evolution is governed by
the ‘Helmholtz equation’, which entails for the phase function to satisfy an
Hamilton-Jacobi type equation: the eikonal equation. For isotropic homo-
geneous media (constant refractive index), the eikonal equation takes the
form:

|∇ϕ(x)|2 = 1. (1.21)

A complete integral for this equation is given by

ϕ(x, θ) := x · n(θ), (1.22)

where n : S1 → R2, θ 7→ (cos(θ), sin(θ)). Suppose the initial datum be σ
given on Σ, which we think as parametrized by S1 3 χ 7→ x(χ) ∈ R2. It is
well known that in the general case no global classical solution exists. How-
ever, the modern geometric Hamilton-Jacobi theory always admits globally
defined solutions.2 The solution of the Geometrical Cauchy Problem is a
Lagrangian submanifold Λ ⊂ T ?R2, globally generated by the Morse Family,
(i.e. generating function) ϕ̃:

ϕ̃(x; θ, χ) := (x− x(χ)) · n(θ) + σ(χ),

Λ =

{
(x, p) : p =

∂ϕ̃

∂x
, duϕ̃ = 0, i .e.

{
∂ϕ̃
∂θ

= 0,
∂ϕ̃
∂χ

= 0.

}

2See e.g. [Arn00, Car02] and the bibliography quoted therein.
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In such a case, the auxiliary variables u = (θ, χ) belong to S1 × S1 = T2.
The amplitude of light observed in a point x of the plane is then given by an
oscillatory integral, extended over the parameter space T2:

I(x; k) =

(
2π

k

)2 ∫

T2

a(x; χ, θ)eikϕ̃(x;θ,χ)dθdχ. (1.23)

Here the amplitude function a(x; θ, χ) satisfies the ‘transport equations’ be-
cause I(x; k) is a solution of the Helmholtz equation.

x(χ) n(θ)

∂x
∂χ x

Σ χ2

θ2

χ1

θ1

x

Figure 1.1: Light emission from a surface Σ

Stationary Phase states that the only relevant contributions in the asymp-
totic expression of I(x; k) come from arbitrarily small neighbourhoods of the
u-critical points of ϕ̃. They are given by

duϕ̃ = 0 :

{
∂ϕ̃
∂θ

= 0,
∂ϕ̃
∂χ

= 0.
⇔

{ −n(θ) · ∂x
∂χ

(χ) = 0, (a)
∂n
∂θ

(θ) · (x− x(χ)) = 0. (b)
(1.24)

From (a) one obtains that n must be ⊥ to the emitting surface Σ, from (b)
one obtains that x−x(χ) must be parallel to n. In other words, u0 = (θ0, χ0)
is a critical point for ϕ̃ if and only if χ0 is a critical point for the distance
function between x and Σ and n(θ) is parallel to the connecting vector (see
Figure 1.1).

It is self-explanatory that this is a wave translation of the Fermat Prin-
ciple of geometrical optics.

In order to exhibit an application of our result, fix an observation point
x in the plane, and consider a Gevrey amplitude function a(x; θ, χ), possibly
obtained by means of a Gevrey partition of unity, which vanishes in a neigh-
bourhood V of the critical points uι = (θι, χι) of the phase. (See V = V1∪V2

in Figure 1.2.)
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θ
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(θ1, χ1)

V2

(θ2, χ2)

T2

Figure 1.2: The domain of integration of the “reduced integral” of the ex-
ample.

Thus, our result asserts that the oscillatory integral so obtained, is expo-
nentially vanishing as k tends to infinity, as is the illumination at x, which
is represented by this reduced integral.



Chapter 2

Loss of Gevrey regularity for
asymptotic optics

In this chapter we will investigate the asymptotic behav-
ior of oscillatory integrals from the Gevrey point of view.
We will give formal asymptotic expansions and study the
Gevrey character of oscillatory integrals, in comparison with
the Gevrey character of their amplitudes. We will deduce
a formula for the loss of Gevrey regularity when the phase
functions are in the Morse class.

2.1 Oscillatory integrals and Gevrey charac-

ter

Our aim is to give an asymptotic analysis from the Gevrey point of view of
oscillatory integrals of the type

Iϕ
a (ω, λ) :=

∫

Rn

eiλϕ(x,ω)a(x, ω, λ) dx (2.1)

for λ → +∞, where ω ∈ R`, the phase function ϕ is a real–valued smooth
function in Ω ⊂ Rn×R`, while the amplitude a is a complex–valued smooth
function in Rn × [1, +∞), and also a symbol of order m (see the definitions
below).

We will concentrate on the simpler case

Iϕ
p (λ) :=

∫

Rn

eiλϕ(x)p(x, λ) dx (2.2)

where no external parameters ω appear, and consider Morse non degeneracy
for ϕ, i.e. we require that every critical point x0, dϕ(x0) = 0, to be non
degenerate, i.e. det d2ϕ(x0) 6= 0.

9
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The first motivation for this investigation is to extend the results of chap-
ter 1 to a first situation where critical points occur. In fact, the problems
in optics require a rather precise analysis of integrals of the type of (2.2).
Indeed, the Huygens principle in wave optics, states that the illumination in
a point ω ∈ R3 suscitated by a light wave which is completely determined,
say, on a surface Σ, can be computed as a superposition of elementary con-
tributions coming from every infinitesimal portion of Σ. This superposition
of infinitesimal waves can be expressed precisely by means of an oscillatory
integral.

Moreover, for ω ∈ R3 fairly distant from the caustic and λ sufficiently
large, the short wave approximation holds, i.e. the oscillatory integral can be
substituted by a finite sum of contributions which can be plainly interpreted
as rays. This fact is proved by means of the stationary phase method, and in
a single time makes descend geometrical optics from wave optics and offers
a support for the Fermat principle.

We set ourselves in the Gevrey class of functions in order to obtain finer
estimates than which obtainable in the C∞ class and also to allow ourselves
to employ compactly supported amplitudes, which cannot be done in the
analytical class, as explained in chapter 1.

We will also make use of refined scales of anisotropic Gevrey spaces split-
ting (separating) the Gevrey regularity with respect to the variables x and
ω, and the large parameter λ.

Given ρ, σ, θ > 1 we define the following spaces of formal symbols:

1. Let F θ
m[1, +∞) be the set of all formal series

∞∑

j=0

κm−jλ
m−j ∈ Fm[1, +∞) (2.3)

such that there exists a constant C such that

|κm−j| 6 Cj+1 (j!)θ , ∀j ∈ N (2.4)

2. Let F σ,θ
m (Rn × [1, +∞)) be the set of all

∞∑

j=0

pm−j(x)λm−j ∈ Fm(Rn × [1, +∞)), (2.5)

such that, for every compact subset K ⊂ Rn, there exists a constant
CK , such that

|∂αpm−j(x)| 6 C
|α|+j+1
K (α!)σ (j!)θ , ∀α ∈ Nn,∀x ∈ K. (2.6)
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3. Let F ρ,σ,θ
m (Rn × [1, +∞)) be the set of all

∞∑

j=0

pm−j(x, ω)λm−j ∈ Fm(Rn × [1, +∞)), (2.7)

such that, for every compact subset K ⊂ Rn, there exists a constant
CK , such that
∣∣∂α

x ∂β
ωpm−j(x, ω)

∣∣ 6 C
|α|+β|+j+1
K (α!)σ (β!)ρ (j!)θ , ∀α ∈ Nn,∀x ∈ K.

(2.8)

We observe that setting ε = λ−1 we obtain that θ coincides with the Gevrey
index for the formal Gevrey power series as in [Ram85] and in [Miy93].

We emphasize that there are essentially two major issues related to the
study of the asymptotics of oscillatory integrals I(λ), λ � 1 as above. The
first goal is to derive a formal asymptotic expansion

I(λ) ∼
∞∑

j=0

Ijλ
µ−jν , Ij ∈ C, λ� 1 (2.9)

for some µ ∈ R, ν > 0, and secondly, to study the Gevrey character of the
formal series above.

Secondly, one deals with the remainder, namely we investigate, roughly
speaking, the rate of decay for λ→ +∞ of

RN(λ) := I(λ)−
N∑

j=0

Ijλ
µ−jν , N ∈ N, λ� 1 (2.10)

Again the Gevrey classes are a natural framework for estimating the type
of decay of RN(λ).

2.2 Morse critical points for the phase

The main result of this chapter is on the loss

p ∈ F σ,θ ⇒ I ∈ Fmax{2σ−1,θ}

of formal Gevrey regularity for the stationary phase method (cf. [Gra87], see
also [GP95]) when the phase function is nonanalytic.

Note that when p is non analytic, i.e. σ > 1, then 2σ − 1 > σ, so
the Gevrey character of I is strictly greater (worse). Otherwise, when p is
analytic, there is no degeneracy, because 2σ − 1 = 2 · 1− 1 = 1 = σ.

We decouple the influence of the formal Gevrey character on the well
known formal series appearing in SPM.
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Theorem 4. Let ϕ(x) ∈ Gσ(Rn, R) and p(x, λ) ∼∑ pj(x)λ−j ∈ F σ,θ
m (Rn, R).

Suppose there is a unique critical point x0 for ϕ and suppose Morse non de-
generacy, i.e. ∃!x0,∇ϕ(x0) = 0, and ∇2ϕ(x0) 6= 0. Then

I(λ) =

∫
eiλϕ(x)p(x, λ)dx = eiλϕ(x0)q(λ), (2.11)

where q(λ) ∼
∞∑

k=0

q−n
2
+m−kλ

−n
2
+m−k ∈ F

max{2σ−1,θ}
m−n/2 ([1, +∞)) (2.12)

where, as it is well known from the complete asymptotic expansion for the
stationary phase method

q−n
2
+m−k =

ei(π
4
) sgn Q

det Q

∑

j+s=k

(2i)−s

s!

〈
Q−1 ∂

∂y
,

∂

∂y

〉s

×

× (pm−j(κ(y), λ) |det κ′(y)|)
∣∣∣
y=0

(2.13)

with x = κ(y) being the change of the variables transforming the phase func-
tion ϕ(x) into 〈Qy, y〉

Proof. By a generalization of the Morse lemma in Gσ classes (see Appendix
2.3 for the proof) there exists an appropriate Gσ change of variables x =
κ(y) ∈ Gσ, with respect to which the phase function κ∗ϕ(y) = ϕ(κ(y))
becomes a quadratic form 〈Qy, y〉.

The new amplitude p̃(y, λ) is defined by

p̃(y, λ) = p(κ(y), λ) |det κ′(y)| .

Thus we can write,

q(λ) =

∫
eiλ

〈Qy,y〉
2 p̃(y, λ)dx,

where p̃ is still a formal Gσ,θ symbol.

According to the well known formula,

q−n
2
+m−k =

ei(π
4
) sgn Q

det Q

∑

j+s=k

(2i)−s

s!

〈
Q−1 ∂

∂y
,

∂

∂y

〉s

p̃m−j(y)
∣∣∣
y=0

.

The degree of derivation to which p̃m−j(y) is subject is 2s, thus, by the



2. Loss of Gevrey regularity for asymptotic optics 13

inequality (2.4),

∣∣qm−n
2
−k

∣∣ 6 A
∑

j+s=k

1

2s

1

s!

∣∣∂2sp̃m−j(0)
∣∣ 6

6 A
∑

j+s=k

1

2s

1

s!
C2s+j+1 ((2s)!)σ (j!)θ ≈

≈ Ak max
j+s=k

1

2s

1

s!
C2s+j+1(s)!2σ(j!)θ ≈

≈
(
C̃
)2k+1

(k!)max{2σ−1,θ}, (2.14)

and the expression above yields the end of the proof.

Remark 2. One can introduce Banach spaces of formal Gσ,θ symbols with
norms of the type

‖p‖σ,θ;T :=
∑

α∈Zn
+,j∈Z+

T |α|+j

(α!)σ (j!)θ
sup
x∈K
|∂αpm−j(x)| (2.15)

and, after precise combinatorial estimates via the Stirling formula, consider
SPM with fixed phase as a linear operator acting between two Banach spaces
with formal symbols. Such results, a part of the theoretical value in itself
might be useful in future investigations. Motivations for such approach are
based on results for singular PDE in Gevrey spaces, divergent Gevrey formal
power series in Dynamical Systems.

We point out that if σ = θ we recover the loss of σ− 1 Gevrey regularity
studied in [Gra87, Cap03].

2.3 Gevrey anisotropy for the amplitude

Let Q be a symmetric non–degenerate real matrix in R2n with signature
type (n, n). The next theorem shows that we may reduce the loss of Gevrey
smoothness if we impose additional regularity in anisotropic Gevrey spaces
Gσ,ρ. Let σ, ρ > 1. We define Gσ,ρ;Q(R2n) as the set of all g ∈ C∞(R2n) such
that there exist S ∈ GL(2n; R) satisfying

S ◦Q ◦ S−1 =

(
0 In

In 0

)
(2.16)
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and the function S∗g(z) = g(Sz) satisfies the following σ, ρ anisotropic
Gevrey estimates: for every K ⊂⊂ R2n there exists C > 0 such that

sup
(x,y)∈K

|∂α
x ∂β

y S∗g(x, y)| 6 C |α|+|β|+1(α!)σ(β!)ρ, α, β ∈ Zn
+ (2.17)

We note that Gσ,ρ;Q(R2n) ⊂ Gmax{σ,ρ}(R2n).
Setting f(x, y) := S∗g(x, y), let us estimate its multi–derivative with

respect to γ = (α, β) ∈ Nn × Nn,

∣∣∣∣
(

∂

∂(x, y)

)γ

f

∣∣∣∣ =

∣∣∣∣∣

(
∂

∂x

)α(
∂

∂y

)β

f

∣∣∣∣∣ 6 C |α|+|β|+1(α!)σ(β!)ρ 6

6 C |α|+|β|+1(α!β!)max{σ,ρ} = C |γ|+1(γ!)max{σ,ρ},

because, plainly, γ! = α!β! and |γ| = |α|+ |β|. So f is in Gmax{ρ,σ}, and as a
result also g is, being S an analytical (linear!) diffeomorphism.

The next result shows that the Gσ,ρ;Q(R2n) anisotropic regularity of the
amplitude leads to an improvement of the Gevrey index of the asymptotic
expansion.

Theorem 5. Let Q be a 2n×2n non–degenerate real symmetric matrix with
signature type (n, n). Let

a ∈ Gσ,ρ;Q
0 (R2n). (2.18)

Then

I(λ) =

∫
eiλ〈Qz,z〉a(z)dz ∼

∞∑

k=0

a−n−kλ
−n−k ∈ F σ+ρ−1

−n (R2n). (2.19)

Proof. The proof follows from the fact that

〈Qz, z〉 = xy, z = (x, y) ∈ R2n,

the explicit formulas for the asymptotic expansion and the assumption a ∈
Gσ,ρ;Q

0 (R2n). Indeed, the form of Q implies that

〈
Q−1 ∂

∂z
,

∂

∂z

〉
=

n∑

j=1

∂2

∂xj∂yj

. (2.20)

Next, in view of (2.18), we get

a−n−k =
ei(π

4
)n

(−1)n

(2i)−k

k!

(
n∑

j=1

∂2

∂xj∂yj

)k

S∗a(x, y)
∣∣∣
(x,y)=(0,0)

.
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which allows us to estimate in the following way

|a−n−k| 6 C0
1

2k

1

k!

∣∣∂k
x∂k

yS∗a(x, y)
∣∣
∣∣∣
(x,y)=(0,0)

6

6 C0
1

2k

1

k!
C2k+1 (k!)σ (k!)ρ ≈

≈ C0C̃
k+1(k)!σ+ρ−1, (2.21)

as desired.

Appendix: The Morse lemma for Gevrey func-

tions

Lemma 1 (Morse lemma). Let f(x) : Rn −→ R be a C∞ function such
that 




f(0) = 0,

∇f(0) = 0,

∇2f(0) ≡ A ∈M(n× n, R), det A 6= 0.

(2.22)

Then there exists local coordinates y = y(x) in a neighborhood of 0 with
respect to which

f(x(y)) =
1

2
〈Ay, y〉 .

Proof. We can rewrite f as a quadratic form with non constant coefficients
applying twice the Hadamard’s lemma:

ϕ(x) =
1

2
〈B(x)x, x〉 =

∑

j,k=1,...,n

1

2
bjk(x)xjxk, (2.23)

where

bjk = 2

∫ 1

0

(1− t)
∂2f

∂xj∂xk

(tx)dt. (2.24)

Let us consider the function

B : Rn −→M(n× n, R),

x 7−→ (bjk)(x),

for which

B(0) = A =

(
∂2f

∂xj∂xk

)
.
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We are looking for a change of coordinates y = y(x) = R(x)x with respect to
which the matrix 〈B(x(y))x(y), x(y)〉 ≡ 〈Ay, y〉 for all y in a neighborhood
of 0, i.e.

y = R(x)x, R(x)T AR(x) = B(x),

R(0) = I, R(x) ∈M(n× n, R).

Indeed, with respect such coordinates,

f(x) = f(x) = 〈B(x)x, x〉 =
〈
R(x)T AR(x)x, x

〉
=

= 〈AR(x)x,R(x)x〉 = 〈Ay, y〉 .

Now, the existence of such an R(x) is assured if the map

Sym(n× n, R) −→ Sym(n× n, R), (2.25)

R 7−→ RT AR, (2.26)

is an isomorphism, and we will prove its invertibility by the surjectivity of
its differential in x = 0, R = I. Differentiating (2.25) then, we obtain

d[RT AR](S)
∣∣∣
x=0
R=I

=

=
d

dλ

(
(R + λS)T A(R + λS)

) ∣∣∣λ=0
x=0
R=I

= ST A + AS, (2.27)

which clearly is surjective, for every symmetric matrix C is image of S =
A−1C

2
.

Remark 3. Moreover, the invertible map (2.25) is polynomial in the entries
of R, thus its inverse, say F (B(x)) = F (RT (x)AR(x)) = R(x) is analytic in
the entries of B. We obtain then y(x) = R(x)x is a Gσ change of coordinates
whenever the Morse function f(x), and by consequence B(x), as apparent
from (2.24), is Gσ.



Chapter 3

Reduction for PDE’s

In Section 1 we introduce the main problem and the re-
duction technique. The main requirement on the nonlinear
function F is the Lipschitz property. Employing spectral
decomposition, we reduce a boundary value problem in a
function space to an “algebraic” equation in Rm. In Section
2, the reduction is successively applied to the eventual varia-
tional principle, bringing back the search for solutions to the
determination of critical points on a n-variables function.

3.1 Semilinear Dirichlet problem

Let Ω ⊆ Rn be a Stokes’ domain, and consider the following space,

H := H1
0 (Ω, Rk),

i.e. the Sobolev space obtained from C∞
0 (Ω, Rk) by completion with respect

to one of the following equivalent norms ‖u‖L2 + ‖∇u‖L2 , ‖∇u‖L2 or also
(−Lu, u)L2 , where L is an arbitrary elliptic operator.

Indeed, as scalar product we will consider

〈·, ·〉 : H ×H −→ R,

(u, v) 7−→ 〈u, v〉 :=

∫

Ω

−Lu · vdx,
(3.1)

thus the norm here considered will be ‖u‖ := 〈u, u〉.
Note that when L = ∆, 〈u, v〉 :=

∫
Ω
∇u · ∇vdx.

Consider now the following semilinear Dirichlet problem:

{
N(u) := −Lu− λu− εF (u) = 0, in Ω,

u
∣∣∣
∂Ω

= 0, on ∂Ω,
(3.2)

17
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where,

(i) L is a linear elliptic operator,

(ii) λ is a (positive) real number,

(iii) F : H → H is a nonlinear operator,

(iv) ε ∈ R is a (small) perturbative parameter.

3.1.1 Green operator of −L

The eigenfunctions associated to the eigenvalues of the elliptic operator L
form a basis for the space H,

−Lûj = λjûj,

0 = λ0 < λ1 6 λ2 6 . . . ,

‖ûj‖ = 1.

Note that passing to different norms only requires a rescaling of the ûj.
For every v ∈ H we can write

v =
∞∑

j=1

〈v, ûj〉 ûj =
∞∑

j=1

vjûj.

Sometimes it would be useful to identify v ∈ H with the sequence {vj}∞j=1 of
its coefficients in the eigenvectors representation.

We are able now to define the Green operator of L, g : H → H, g =
(−L)−1,

gv = g

(
∞∑

j=1

vjûj

)
=

∞∑

j=1

vj

λj

ûj.

It is clear that
−Lgv = g(−L)v = v, ∀v ∈ H.

3.1.2 Cut-off decomposition

For every fixed m ∈ N, we can consider the following decomposition of H:

H = PmH ⊕QmH,

v = Pmv + Qmv =
m∑

j=1

vjûj +
∞∑

j=m+1

vjûj.
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We will briefly write

v = µ + η =
m∑

j=1

µjûj +
∞∑

j=m+1

ηjûj

we will refer to µ ∈ PmH as to the finite head of v, whereas to η ∈ QmH as
to the infinite tail of v.

3.1.3 Splitting and reduction of the problem

If we substitute the relation u = gv the Dirichlet problem 3.2, we obtain

v − λgv = εF (gv),

v = (I− λg)−1εF (gv),

which solutions, in other words, are just the fixed points of the map:

H −→ H,

v 7−→ (I− λg)−1F (gv).

Note that we can write easily the map (I− λg)−1 as

(I− λg)−1v = (I− λg)−1
(
{vj}∞j=1

)
=

{
λj

λj − λ
vj

}∞

j=1

,

which of course is well defined when λ is different from every λj.
The application of the cut-off decomposition splits the original problem

into a finite and an infinite part:

v = Pmv + Qmv = µ + η, (3.3)

µ = Pm(I− λg)−1εF (g(µ + η)), “finite” (3.4)

η = Qm(I− λg)−1εF (g(µ + η)). “infinite” (3.5)

These equations can also be equivalently rewritten as follows,

PmN(g(µ + η)) = 0, “finite” (3.6)

QmN(g(µ + η)) = 0. “infinite” (3.7)

Maybe, providing some appropriate hypotheses on F , it would be possible
to uniquely solve for η with respect to µ in the infinite part of the equation.
In fact, we can prove that
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Proposition 1. If F : H → H is Lipschitz, for every fixed ε > 0, there
exists m ∈ N, such that

η 7−→ (I− λg)−1εQmF (g(µ + η)), (3.8)

is a contraction, for every fixed µ ∈ PmH.

Proof. We can divide the proof into several steps,

1st step Trivially, η 7→ g(µ + η) is a Lipschitz map with constant 1
λm+1

.

2nd step (I− λg)−1 is bounded, indeed

∥∥(I− λg)−1v
∥∥ =

∥∥∥∥
(

λj

λj − λ
vj

)∥∥∥∥ 6 sup
j∈N

∣∣∣∣
λj

λj − λ

∣∣∣∣ ‖v‖ ,

and clearly sup
∣∣∣ λj

λj−λ

∣∣∣ := C1 < +∞, because the sequence
λj

λj−λ
→ 1.

3rd step by assumption, F is Lipschitz, so let us denote by C2 the constant
such that

‖F (u1)− F (u2)‖ 6 C2 ‖u1 − u2‖ .

Finally the map (3.8) is Lipschitz:
∥∥(I− λg)−1εQmF (g(µ + η1))− (I− λg)−1εQmF (g(µ + η2))

∥∥ 6

6
εC1C2

λm+1

‖η1 − η2‖ .

For every ε > 0 there exists a sufficiently large m, such that the Lipschitz
constant εC1C2

λm+1
results in something smaller than 1, i.e. the map (3.8) is

contractive as claimed.

Let us denote by η̃(m,µ), or simply η̃(µ) if there is no ambiguity, the
unique fixed point of the map (3.8). Substituting it into equation (3.4), we
obtain

µ = (I− λg)−1εPmF (g(µ + η̃(m,µ))), (3.9)

which indeterminate is merely µ = (µ1, . . . , µm) ∈ Rm. The problem has
reached a completely finite (say, algebraic) formulation, though passing through
a contraction in the infinite dimensional space QmH.

To every solution µ̃ of this last equation corresponds a solution of the
original Dirichlet Problem (3.2) by means of the formula:

ũ = g(µ̃ + η̃(m, µ̃)),

and clearly viceversa,
µ̃ = Pm(−L)ũ,

to every solution of (3.2) corresponds a solution of (3.9).
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3.2 Qualitative analysis of the solution set

3.2.1 Increasing the number of the parameters

Fix ε > 0 and let mε ∈ N be the smallest integer such that εC1C2

λmε+1
< 1.

We want to put in evidence that every m > mε produces a reduced
problem (3.9)m which possesses a smaller contractive constant, but the cor-
responding generated solutions are precisely whose of (3.9)mε

.
In some more detail, we want to show that the following problems are

equivalent

(a) Find µ̂ ∈ Rmε , µ̂ solves (3.9)mε

(b) Find µ̌ ∈ Rm, µ̌ solves (3.9)m

(c) Find u ∈ H, u solves (3.2)

We will prove (a) ⇒ (c) ⇒ (b). Indeed, if µ̂ solves (a), then u := g(µ̂ +
η̃(mε, µ̂)) solves (c), and as a result we get µ̌ = Pm(−L)u and η̌ = Qm(−L)u.
It is clear that η̌ = η̃(m, µ̌), because η̌ is a fixed point for (3.8)m, with
µ = µ̌, being u a fixed point (a solution) for the functional equation (c). The
actual role of the contractiveness of (3.8)m is to guarantee the uniqueness
of the fixed point, and as a consequence the good definition of the head-
to-tail map µ 7→ η̃(m,µ). The same argument works also for the converse
(b)⇒ (c)⇒ (a), and finally we get

µ̂1 . . . µ̂mε
η̃1(mε, µ̂) η̃2(mε, µ̂) . . . η̃m−mε

(mε, µ̂) η̃m−mε+1(mε, µ̂) . . .
|| . . . || || || . . . || || . . .
µ̌1 . . . µ̌mε

µ̌mε+1 µ̌mε+2 . . . µ̌m η̃1(m, µ̌) . . .

The entry-to-entry equality of the preceding sequences may seem not com-
pletely clear at first sight. In particular, the interdependence between mε–head
and m–tail, and between m–head and mε–tail, are not immediate. However,
the entry–to–entry equality becomes apparent thinking to the functional so-
lution u generated separately by each one of the reductions. In this way, the
sequences can be considered simply as the projections on the eigenspectrum,
and the difference between m and mε becomes only a matter of labelling.

(
µ̂

η̃(mε, µ̂)

)
=

(
µ̂
η̂

)
← u →

(
µ̌
η̌

)
=

(
µ̌

η̃(m, µ̌)

)

µ̂1 . . . µ̂mε
η̃1(mε, µ̂) . . . η̃m−mε

(mε, µ̂) η̃m−mε+1(mε, µ̂) . . .
↑ . . . ↑ ↑ . . . ↑ ↑ . . .

〈u, û1〉 . . . 〈u, ûmε
〉 〈u, ûmε+1〉 . . . 〈u, ûm〉 〈u, ûm+1〉 . . .

↓ . . . ↓ ↓ . . . ↓ ↓ . . .
µ̌1 . . . µ̌mε

µ̌mε+1 . . . µ̌m η̃1(m, µ̌) . . .
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In spite of the equivalence of the solution sets of successive finite parameters
reductions, it could be convenient to speed up the convergence of η̃(m,µ)
increasing m. On the other hand, the cost of this advantage is larger number
of variables to manage with, so an optimal choice of the dimension of the
reduction must take into account these questions.

3.2.2 Hierarchically nested structure of the set of so-
lutions

Because of the nonlinearity of F , the questions about existence, uniqueness
and multiplicity of the solutions of (3.2) are far from trivial.

One could however naturally think that the complexity of the solution set
could be somewhat simplified after the reductions described in this chapter.
In fact, all the complexity of the solution set of (3.2) is preserved, but some-
how pressed into a suitable finite dimensional space. The dimension of this
space depends on the Lipschitz constant of F , i.e. on the magnitude of ε|F ′|.
More precisely, for every fixed m ∈ N, there is a complete interval [0, εm[, for
which the problem (3.2) can be generated by m eigenfunctions. If ε exceeds
this threshold εm, it is necessary to increase the number of eigenfunctions to
m + 1, which keeps working until the next threshold εm+1 > εm, and so on.
This way, the solution set of the family of Dirichlet problems (3.2)ε can be
seen as a hierarchically nested system of discrete problems, spanned by the
growing parameter ε.

u

ε

m-dimensional problem

(m + 1)-dimensional problem

εm εm+1

3.2.3 Looking for bifurcations

We do know very little about the global structure of the set of the solutions,
we can only study the local structure of the reduced equation (3.9) for ε ' 0
and µ ' 0. Let us rewrite equation (3.9) as

G(µ, ε) = 0. (3.10)
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Clearly, G(0, 0) = 0 for certainly µ = 0 is a solution if ε = 0. Moreover,

∂G
∂µ

(0, 0) = Iµ, (3.11)

so, by the Implicit Function Theorem (IFT), there exists a (possibly short)
unique branch of solutions

]− ε̄, ε̄[3 ε 7−→ µ(ε) ∈ Rm, G(µ(ε), ε) ≡ 0, (3.12)

passing thorough the origin (0, 0).

This branch keeps growing as long as det
(

∂G
∂µ

)
6= 0, otherwise, as soon

as det
(

∂G
∂µ

) ∣∣∣
µ̄,ε̄

= 0, application of IFT fails, and everything could happen:

1. the branch keeps growing, even if the equation degenerates,

2. the branch turns back, towards smaller values of ε, or interrupts,

3. a new branch of solutions bifurcates from (µ(ε̄), ε̄).

These situations are, only suggestively, represented here:

•

•

•

3

2

1

ε

µ

Existence questions like these will be treated more in detail in next chapter.
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3.3 Infinite dimensional and reduced finite di-

mensional variational formulation.

If we assume the Gateaux derivative N ′(u) of the non linear operator con-
sidered (3.2) to be symmetric with respect to the L2-scalar product, i.e. ,

(u, v) :=

∫

Ω

uvdx,

(N ′(u)h, k) = (N ′(u)k, h) , ∀h, k ∈ H,

the Volterra-Vainberg theorem admits us to write a variational principle,

J : H −→ R,

u 7−→ J(u) :=

∫ t=1

t=0

(N(tu), u) dt,
(3.13)

which is equivalent to the original Dirichlet Problem, More precisely,

Theorem 6. Every critical point of J is a solution of (3.2), and viceversa,
i.e. ,

dJ(u)h = 0 ∀h ∈ H ⇔
{

N(u) = 0,

u
∣∣∣
∂Ω

= 0.
(3.14)

Proof.

dJ [u] · h =
d

dλ
J [u + λh]

∣∣∣
λ=0

=

∫ 1

0

(N ′(tu)th, u) + (N(tu), h) dt =

=

∫ 1

0

(N ′(tu)u, th) + (N(tu), h) dt =

∫ 1

0

d

dt
(N(tu), th) dt = (N(u), h) .

So dJ [u] = 0 if and only if N(u) = 0 as claimed.

3.3.1 Reduced variational principle

The finite parameters reduction of the preceeding section can be applied to
the functional J(u) to obtain a finite parameters variational principle, which
is equivalent to the infinite dimensional one, i.e. every critical point of J is
also a critical point for

W : Rm −→ R,

W (µ) := J(g(µ + η̃(m,µ))).
(3.15)

We will show how this works proving the equivalence between the finite
parameters variational principle W (µ) and the original Dirichlet problem
(3.2).
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Theorem 7. To every critical point µ̃ of W (µ) corresponds a solution ũ =
g(µ + η̃(µ)) of the problem (3.2) and viceversa to every solution ũ of (3.2)
corresponds a critical point µ̃ = Pm(−Lu) of the variational principle W (µ).

Proof. Almost directly,

dW (µ) = dJ [u] · d

dµ
(g(µ + η̃(µ))) dµ =

=

(
N(u)

∣∣∣
u=g(µ+η̃(µ))

, g(dµ) + g(η̃′(µ)dµ)

)
=

=


PmN(u) + QmN(u)︸ ︷︷ ︸

=0 by (3.7)

∣∣∣
u=g(µ+η̃(µ))

, g(dµ)︸ ︷︷ ︸
∈PmH

+ g(η̃′(µ)dµ)︸ ︷︷ ︸
∈QmH


 =

= (PmN(g(µ + η̃(µ))), g(dµ)) .

Being g acting as a diagonal isomorphism of Rm into itself, we can conclude
that,

dW (µ) = 0 ⇔ PmN(g(µ + η̃(µ))) = 0,

i.e. the variational principle is equivalent to the Dirichlet problem.

We used in the last proof the fact that PmH and QmH are still orthogonal
also with respect to the L2 scalar product, indeed:

Lemma 2. (ûi, ûj) = 0 whenever i 6= j.

Proof. Clearly,

(ûi, ûj) =
1

λi

(−Lûi, ûj) =
1

λi

〈ûi, ûj〉 = 0.

This is the reason of the choices of the scalar product 〈·, ·〉 to perform
the spectral decomposition and the L2 scalar product (·, ·) for the variational
principle.

3.4 The fixed point map regularity

Because of the regularity of F required in order to consider the variational
principle J(u), the Lipschitz property can also be rewritten as

‖F ′‖ := sup
u∈H

sup
‖h‖=1

‖F ′(u)h‖ = C < +∞.
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From the regularity of F and by implicit function theorem we will prove the
following:

Proposition 2. The fixed point map η̃(µ) is continuously differentiable.

Proof. The contractive map

η 7→ M(µ, η) := QmF (g(µ + η)), (3.16)

is continuously differentiable with respect to η, and moreover, by the growing
to infinity sequence of eigenvalues,

∣∣∣∣
∂M(µ, η)

∂η

∣∣∣∣ 6 |F ′| 1

λm+1

=
C

λm+1

< 1. (3.17)

The differentiability of η̃(µ) can now be deduced by the implicit function
theorem. Indeed, being η̃ the (unique) solution of

G(µ, η) :=M(µ, η)− η = 0,

it suffices to show invertibility of the η-derivative of G: DηM− Iη.
Considering the identity,

(DηM− Iη)
(
Iη + DηM+ · · ·+ (DηM)k

)
= (DηM)k+1 − Iη,

and noting that

lim
k→+∞

∥∥∥(DηM)k
∥∥∥ = lim

k→+∞
‖DηM‖k = 0,

we (formally) get

(DηM− Iη)
−1 = −

+∞∑

k=0

(DηM)k .

The summation converges because of (3.17), indeed,

∥∥∥∥∥

+∞∑

k=0

(DηM)k

∥∥∥∥∥ 6

+∞∑

k=0

‖DηM‖k 6

+∞∑

k=0

(
C

λm+1

)k

=
1

1− C
λm+1

< +∞.



Chapter 4

Existence and multiplicity
results. An overview

In this chapter we give an application of the techniques de-
veloped in the preceding chapter to existence problems. In
Section 2, we put a brief survey on Lusternik-Schnirelmann
theory, which will be employed in our existence theorem. In
Section 3, we will explore quasi-quadratic functions, with
particular care on their cohomological features, in relation
with existence of critical points. In Section 4, we will prove
that if F is C1 and compactly supported, the reduced varia-
tional principle is a quasi quadratic function, so it possesses
at least one critical point.

4.1 Introduction

In this section we will present a brief collection of results of existence and
multiplicity of solutions for semilinear Dirichlet boundary value problems.
We have mainly followed [Amb92] . We added also a result found by means
of our reduction techniques.1

Let us consider the Dirichlet boundary value problem:
{
−Lu = p(u), in Ω ⊆ RN ,

u = 0, on ∂Ω,
(4.1)

where p : R→ R. The associated non linear operator on function spaces:

p̃ : H −→ H,

u 7−→ p ◦ u,

1See remarks in the introduction.

27
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is a so-called Nemitski operator (i.e. a composition operator).
The first condition to be asked on p is requiring regularity

(p0). p ∈ C(R) is locally Hölder continuous.

A second condition concerns the behavior at infinity,

(p1). |p(s)| 6 a |s|+ b, a, b > 0.

1st Existence Result. If p0 and p1 hold, with a < λ1, then there must be
at least one solution for (4.1).

This result is obtained exploiting the coercivity of the variational princi-
ple, which yields a global minimum. One can improve this result employing
finer variational techniques, providing a finer knowledge about the behavior
of p at 0 and at ∞.

(p2). lim sup|s|→+∞
p(s)

s
6 a < λ1, and p(s) = λs− sh(s), with h(0) = 0.

2nd Existence Result. p0 + p2 ⇒

a) λ > λ1 ⇒ ∃ 2 nontrivial solutions,

b) λ > λ2 ⇒ ∃ 3 nontrivial solutions,

c) λ > λk + p odd ⇒ ∃2k nontrivial solutions.

Lots of other results about asymptotical linearity at infinity (e.g. different
asymptotes for ±∞, resonance λ = λk, additional dependence on x ∈ Ω,
etc...) can be found in [Amb92, AP93, Ben95, LMZ03, GMM01]

One can also consider polynomial growth at infinity,

(p3). 1. p ∈ C(R) Hölder continuous and differentiable at 0.

2.
∫ u

0
p(t)dt 6 θup(u), ∃r > 0,∃θ ∈ (0, 1

2
),∀u > r.

3. |p(u)| 6 a1 + a2 |u|l , 1 < l < 2? − 1 := N+2
N−2

.

3rd Existence Result. p3+p(0) = 0⇒ (4.1) admits a nontrivial solution.

This result is obtained via Mountain Pass Theorem or Linking Theorems.
When p is odd, this last result can be greatly improved. In fact it can be

proved that

4th Existence Result. If p satisfy p3 and is odd, then (4.1) has infinitely
many pairs of solutions.
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It is also possible to prove the existence of an arbitrarily large number of
solutions when p is a (suitably small) perturbation of an odd function.

There are constitutive reasons imposing great care in the case when the
growth at infinity reaches the Sobolev critical exponent 2? = 2N

N−2
. In fact,

Non Existence Result. If Ω is starshaped with respect to the origin, and
q > N+2

N−2
, then the boundary value problem,

{
−∆u = |u|q−1 u,

u = 0,

possesses only the trivial solution.

When p is non homogeneous, or Ω is not starshaped, there can be non-
trivial solutions also with q > 2? − 1. Some difficulties must be overcome
anyway, in particular the lacking of compactness of the immersion of H1

0 into
L2?

.
For a more complete discussion on these existence topics, the reader is

referred to [Amb92, AP93, Ben95, LMZ03] and to the bibliography therein.

4.1.1 An existence result

As a byproduct of our reduction techniques we obtain the following simple
existence result. It could be seen as an improvement of the first existence
result of this section. We still do not know if there could be physically
meaningful applications.

Theorem 8. Let p(s) = λs + h(s), where h : R → R. If h, its derivative
h′ and one of its primitives h̄ are bounded, and λ 6= λk,∀k ∈ N, then (4.1)
admits at least one solution.

Example. An example of such an h could be sin(x) for instance, or an
arbitrary h ∈ C∞

0 (R), or h ∈ C1(R) ∩ L1(R) such that sup |h′| < +∞.

Here follows the idea of the proof. We gain the existence of a solution
finding a critical point for the energy functional,

E(u) =

∫ 1

0

〈N(tu), u〉 dt,

In fact we employed the finite parameters functional Ẽ : Rm → R, obtained
via the techniques of chapter 3.
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The main part of the work (see section 4.4) was to prove that Ẽ is quasi-
quadratic, i.e. it differs finitely from a non-degenerate quadratic form 〈Qx, x〉
in C1 norm. (for a discussion on quasi-quadratic functions see section 4.3)

Proving then that the sublevel sets

Qc =
{

x
∣∣∣ 〈Qx, x〉 6 c

}
, Ẽc =

{
x
∣∣∣ Ẽ(x) 6 c

}
,

are diffeomorphic provided c � 0 is suitably large, we could apply the
Lusternik-Schnirelmann theory (see section 4.2) and make correspond a crit-
ical point of Ẽ to the critical point (0, of course) of Q. Note that this critical
point is not a minimum in general.

Let us remark that this seems the first application in PDE of the theory of
generating functions quadratic at infinity, originally developed by Chaperon,
Sikorav and Viterbo studying Hamiltonian dynamics. (See [Cha84, Cha91,
Sik86, Sik87, Vit90, Thé99])
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4.2 Lusternik-Schnirelmann theory

We give an introduction to the Lusternik-Schnirelmann theory as we learned
mainly by Claude Viterbo. The theorem proved here is the main tool em-
ployed in the construction of our existence result.

4.2.1 Motivation

Problem. Let
f : M −→ R, f ∈ C2.

Assume M compact. What can we say about the number of critical points of
f?

# {x ∈M : df(x) = 0}?

Idea: Clearly there could not be an upper bound, because the local structure
of f can be arbitrarily complicated. Maybe there are topological reasons from
which we could argue a lower bound.

4.2.2 Construction of critical levels

Let us recall some notions on homology and cohomology. Cohomology on a
differentiable manifold M can be defined as follows

Hk(M) :=
{closed k − forms on M}
{exact k − forms on M} ,

while, if N ⊆ M is a submanifold (also with boundary), the relative coho-
mology of M on N is defined as,

Hk(M,N) := {α closed k − form on M, exact on N} .

Idea: It is possible to associate a critical level γ(α, f) to every cohomology
class, α 6= 0, i.e. ,

∃x, f(x) = γ, df(x) = 0.

(There could be more than one critical point on a critical level.)
Thorough Poincaré duality, this claim can be rephrased in terms of ho-

mology classes. If [α] ∈ Hk(M), [α] 6= 0, with representatives

jα : α −→M,

ξ 7→ jα(ξ),
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the critical values are determined as:

λ[α] := min
α∈[α]

max
ξ∈α

f ◦ jα(ξ).

As an application, consider the situation represented in Figure 4.2.2, i.e.
M ∼= T2 ⊂ R3, while f : M → R be a suitable “height” function. Consider
then the singular k-cicles N k −→M .

Figure 4.1: k-cycles on the torus

Starting from the 0-cycles on M , (i.e. the points), and letting them fall
on the surface (in order to find the minimum of the height), one clearly finds
the global minimum of f on M .

Looking at 1-cycles, i.e. S1 j
↪→ M , and taking the minimum height

reached in each homotopy class, one finds the two saddles.
Lastly, considering 2-cycles, one finds the unique non degenerate class is

the embedding of M into itself. Plainly, the minimum in the homotopy class
of M of the maximum of f on M , keeps to be the maximum of f on M .

Let us now consider the problem from the cohomology viewpoint.

Definition 4.2.1. Let

Mλ := {x ∈M : f(x) 6 λ} .
denote the sublevel set.



4. About existence of solutions 33

Given any class α ∈ H?(M), α 6= 0, it remains defined a critical level,

γ(α, f) := inf
{

λ : α
∣∣∣
Mλ
6= 0 in H?(Mλ)

}
. (4.2)

c = γ(α, f) is a critical level because for every ε > 0, H?(M c+ε,M c−ε) 6= 0.
Indeed, if c did not contain any critical point, then, by compactness, the
same would be in f−1([c− ε, c + ε]). It would be possible to deform M c+ε in
M c−ε, by means of the flow of the vector field

X(x) := − ∇f(x)

|∇f(x)|2
, per x ∈M c+ε \M c−ε,

which could be regularly extended to all M to the zero vector field outside of
a neighborhood of M c+ε \M c−ε. One can easily check that if ϕt is the flow
of X(x), then

f(ϕt(x)) = f(x) + t.

By means of this deformation, α and (ϕ2ε)
?α are homotopically equivalent,

i.e. are in the same class, thus it cannot be α
∣∣∣
Mc+ε

6= 0 and α
∣∣∣
Mc−ε

= 0.

Note that different cohomology classes could correspond to the same crit-
ical level.

The core result of this section is the following.

Theorem 9 (Lusternik-Schnirelmann). Let β ∈ H?(X) \ H0(X).
Then,

1.

γ(α ∧ β, f) > γ(α, f) (?)

2. If (?) is an equality, then the common critical level contains infinite
many critical points.

2’. If (?) is an equality, and if we denote by

Kc = {x : df(x) = 0, f(x) = c} , (4.3)

where c = γ(α ∧ β, f) = γ(α, f), then

β 6= 0 in H?(Kc).

Proof. 1. Trivial, because every time α = 0 in H?(Mλ), surely α ∧ β = 0
in H?(Mλ).
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2. Plainly 2’ implies 2, because the unique nontrivial cohomology on a
finite set of points is which of 0 degree. But β is at least a 1-forma.
Then let us prove

2’. In our hypotheses we have α = 0 in H?(M c−ε) and α ∧ β 6= 0 in
H?(M c+ε). In the situation represented in Figure 2, clearly M c−ε ed
M c+ε cannot be diffeomorphic, moreover, Kc cannot be constituted by
a unique point. Nevertheless, for a clearer visualization of the situation,
we consider a section of M transversal to Kc.

Figure 4.2: Sub-level sets

Let us assume by absurd the existence of a neighborhood U of Kc where
β = 0.

We will then show the existence of a neighborhood W of Kc contained
in U , and a retraction

M c+ε ϕ
↪→M c−ε ∪W.

In such a case, the forms α ∧ β on M c+ε and on M c−ε ∪W are coho-
mologous, thus, being α = 0 on M c−ε and β = 0 on W , we could argue
α ∧ β = 0 on M c+ε, which is a contradiction.

Construction of W and of ϕ. The diffeomorphism ϕ will be given by
the flow ϕs of the vector field Y (x) := −∇f(x),2 applied for a suitable

2In this case we clearly cannot employ − ∇f
|∇f |2 , because we have to traverse a critical

level, but we already suspected this, because such a diffeomorphism cannot exist, being
different the cohomology groups between the two sublevel sets.
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time. We also cannot keep U as it is, because we need something stable
under ϕ, or something entering M c−ε.

For this purpose we will take a subset of U and we will saturate it with
the trajectories of the flow until we reach the boundaries of M c+ε and
M c−ε.

Let V open such that

Kc $ V $ V $ U.

We can assume without loss of generality V compact, being Kc com-
pact.3 Thus there exists δ := dist(V , {U) > 0. Moreover, by com-
pactness of M ,4 if ε is sufficiently small, there exists a η > 0 such
that

|df(x)| > η, ∀x ∈M c+ε \M c−ε, x /∈ V.

As already observed, the distance between V and the boundary of U
is non zero. Let us show that the trajectories connecting V to the
boundary of M c−ε, are shorter. Indeed,

∫ s1

s0

|Y (ϕs(x))|ds = −
∫ s1

s0

df(ϕs(x)) · (−∇f(ϕs(x)))

|df(ϕs(x))| ds 6

6
1

η

∫ s0

s1

df(ϕs(x)) · d

ds
ϕs(x)ds =

1

η
[f(ϕs0(x))− f(ϕs1(x))] 6

6
c + ε− (c− ε)

η
=

2ε

η
.

Taking ε < η
2
δ, this length is less than δ. Thus W := V ∪{trajectories} ⊂

U , as wanted. (See Figure 2.)

3When M is non compact, one easily verifies that Palais-Smale condition implies com-
pactness of Kc.

4or again by Palais-Smale
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Figure 4.3: V “saturated”

Applying the retraction ϕ to M c+ε. Let us give a look more in
detail to what happens to M c+ε when applied the flow ϕs for a suitable
time.

(a) x ∈ W . Two cases can occur: f(ϕs(x)) → c, otherwise f(ϕs(x))
keeps on decreasing. In the first case the trajectory of x remains
forever confined in W , because is moving towards a critical point.
In the second case soon or later it has to become f(ϕs(x)) < c−ε.
Thus ϕs(x) ∈M c−ε ∪W , for all s > 0.

(b) x /∈ W . The trajectory of x will never meet V , so, as long as it
remains in M c+ε \M c−ε, it has to be |df(ϕs(x))| > η. If we take
then s0 = 2ε

η2 ,

f(ϕs0(x))− f(x) =

∫ s0

0

d

ds
(f(ϕs(x))) ds =

= −
∫ s0

0

df(ϕs(x)) · ∇f(ϕs(x))ds = −
∫ s0

0

|df ||∇f |ds 6

6 −
∫ s0

0

η · ηds = −η2s0 = −2ε,

and by consequence,

f(ϕs0(x)) 6 f(x)− 2ε 6 c+ ε− 2ε = c− ε ⇒ ϕs0(x) ∈M c−ε,

as desired.
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We have proved that

ϕs0(M
c+ε) ⊆M c−ε ∪W.

Figure 4.4: Applying the flow ϕ to M c+ε

Corollary 1. If we set

cl(M) := max
{
k : ∃α1, . . . , αk ∈ H?(M) \H0(M)

}
,

then f possesses at least cl(M) + 1 critical points.

Proof. Plainly, if 1 is the identity on H?(M, ∅) = H?(M),

γ(1, f) 6 γ(α1, f) 6 γ(α1 ∧ α2, f) 6 . . . 6 γ(α1 ∧ · · · ∧ αk, f).

If the level sets are not all distinguished, there have to be infinite critical
points. Otherwise, if the critical levels never coincide, there will be at least
one critical point at each level, so they are at least k + 1, as claimed.

Example. Let us consider the k-dimensional torus Tk. Every f on the torus
has always at least k + 1 critical points. Indeed, if we consider the k angle
functions on Tk, they generate k distinguished forms dθ1, . . . , dθk, with

dθ1 ∧ · · · ∧ dθk 6= 0.
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Note. The theorem works also in the non compact case, provided a suitable
condition guaranteeing the existence of the flow of the gradient of f , in order
to obtain the existence of a neighborhood of Kc, outside which |df | > η > 0.

Thus it is requested that f satisfy the Palais-Smale condition, i.e.

∀ {n 7→ xn} , such that df(xn)→ 0, f(xn) bounded, (P-S)

then ∃ {k 7→ xnk
} converging.

In such condition, Kc results compact, and the existence of a suitable η is
guaranteed. In next section, we will have to manage S,Q : Rn → R, and to
look for their critical points. Clearly, we will not be in the compact case, but
it will be simple to check P-S condition when Q is a quadratic form and S is
C1 near to Q.
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4.2.3 Comparison between cup-length and category

Current techniques employed to find solutions in PDE are either topological,
as local inversion theorems and degree theory, or variational, as Morse and
Lusternik-Schnirelmann (L-S) theories.

Very often, L-S theory is introduced and developed around the topolog-
ical notion of category. Here, we prefer to introduce this theory from the
cohomological point of view, as we learned it by Claude Viterbo.

We thought it could be useful to show the equivalence between these two
viewpoints.

Definition 4.2.2. Let M be a orientable n-manifold. The category (cat(M))
of M is the minimum number p such that there exist A1, . . . , Ap ⊆ M , Ai

closed and cotractible in M ,

p⋃

i=1

Ai = M.

It is usually non difficult to give upper bounds to the category. It seems
harder to give lower bounds. We will expose a lower bound derived from
cohomology.

Definition 4.2.3. Let M be a orientable n-manifold. The cohomological
length (cup-length)(cl(M)) of M is the maximum number k for which there
exist α1, . . . , αk ∈ H?(M ; Z) \H0(M ; Z) such that

α1 ∧ · · · ∧ αk 6= 0.

Theorem 10.
cat(M) > cl(M) + 1.

Proof. Let D : Hk(M ; Z) −→ Hn−k(M ; Z) the Poincaré duality. If α, β ∈
H?(M ; Z) are cocycles, and α ∧ β is the product in H?(M ; Z), holds

D(α ∧ β) = D(α) ∩D(β).

In other words, if γ1, γ2 are cycles corresponding respectively to α, β, the
cycle γ1 ∩ γ2 is the intersection of the manifolds, considered as generic.

Let k be the cup-length of M , i.e. there exist α1, . . . , αk, α1∧· · ·∧αk 6= 0.
Denote by γi := D(αi), i = 1, . . . , k. So, by Poincaré, D(α1 ∧ · · · ∧ αk) =
γ1 ∩ · · · ∩ γk = γ is a non zero cycle.

If it were cat(M) 6 k, there would be A1, . . . , As closed contractible such
that M = ∪s

i=1Ai.
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We can assume without loss of generality s = k. Let correspond γi to Ai

(simply formally). Being Ai contractible, there is an immersion Hl(M ; Z) ↪→
Hl(M,Ai; Z), ∀l > 0. So there must be γ̃i homologous to γi with γ̃i ⊆M \Ai.
(γi can be pulled away from Ai.)

Now,

k⋂

i=1

γ̃i
∼=

k⋂

i=1

γi = γ 6= 0,

γ ∼=
k⋂

i=1

γ̃i ⊆
k⋂

i=1

(M \ Ai) = M \
(

k⋃

i=1

Ai

)
= ∅.

So we found γ = 0, which is a contradiction.

Note. For a complete overview on the modern applications of Lusternik-
Schnirelmann theory see [CLOT03].
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4.3 Quasi-quadratic functions and their prop-

erties

At first, there were the Generating Functions Quadratic at Infinity or FGQI 5,
which has been defined and developed by Marc Chaperon, Jean-Claude Siko-
rav and Claude Viterbo, in their works on hamiltonian dynamical systems.
([Cha84, Cha91, Sik86, Sik87, Thé99, Vit90]).

In particular, FGQI are differentiable functions, F : Rn −→ R, such
that F (x) = 〈Qx, x〉, for all x ∈ {K, for a prescribed K b Rn and a non
degenerate quadratic form Q.

For our purposes, the main features of FGQI are the Palais-Smale prop-
erty and, a consequence, the equivalence at infinity of the cohomological
groups of F and Q, i.e.

H?(F−c, F c) ∼= H?(Q−c, Qc),

for a sufficiently large c > 0.
On the other hand, Claude Viterbo and David Théret defined also Gen-

erating Functions Quasi-Quadratic at Infinity, FGQQI or FGQ2I, which
will be extensively treated and exploited in this section and in the follow-
ing one. For this class of functions still hold the Palais-Smale property and
the cohomological groups equivalence. In fact, as proven in [Thé99], there
is a complete equivalence between FGQI and FGQ2I, i.e. everything that
could be done in a class can be done also in the other, because the sub-level
sets Sc := {x : S(x) < c} of a FGQQI function S are diffeomorphic to the
sub-level sets of a suitable FGQI function F .

We will exploit the topological properties of these functions in our exis-
tence theorem. It seems the first time FGQQI are applied in PDE theory.

Firstly we give the basic definition.

Definition 4.3.1. We say that a function S : Rn → R is quasi-quadratic if
there exists a non-degenerate quadratic form 〈Au, u〉 and a constant K > 0
such that

‖S(u)− 〈Au, u〉‖C1 = ‖S(u)− 〈Au, u〉‖+ ‖S ′(u)− 2Au‖ 6 K

We recall the Palais-Smale Condition for a function f : X → R
Palais-Smale Condition: Every sequence {xi} such that |f(xi)|
being bounded and |f ′(xi)| → 0, admits a converging subsequence.

5in french, fonctions génératrices quadratiques à l’infińı
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This condition is used when the domain of f is not compact, and for some
reasons is needed the compactness of the critical levels. FGQI and FGQ2I
will be proved to fulfill P-S, while the following elementary examples are not

Example. 1. e−
x2

2 is not P-S. Consider the sequence n 7→ xn = n.

2. sinx is not P-S. Consider n 7→ xn = π
2

+ 2nπ.

Let us turn back to our quasi-quadratic functions.

Proposition 3. All the critical points of S are in a compact neighborhood
of the origin.

∂S

∂µ
(µ̄) = 0 ⇒ |Aµ̄| 6 K ⇒ µ̄ ∈ B

(
0,

K

min Spec A

)
.

A direct consequence is

Proposition 4. A quasi-quadratic function is Palais-Smale.

Proof. Consider a P-S sequence {i 7→ xi}, i.e. S(xi) bounded, S ′(xi) → 0.
For i sufficiently large we have |S ′(xi)| < K, and by quasi-quadraticity,

|2Axi| < 2K, then xi ∈ B
(
0, K

min Spec A

)
. From a certain i onwards, the

sequence is confined in a compact set, then there exists a converging subse-
quence.

The main result of this section is the topological equivalence at infinity of
the sublevel sets of the quasi-quadratic function and the ones of the quadratic
form.

Theorem 11. For c sufficiently large,

Sc
diffeo∼= Qc.

Proof. Indeed,

· · · $ Sc $ Qc+K $ Sc+2K $ Qc+3K $ . . .

and certainly if c is large enough to overtake every critical value of S,

Sc ∼= Sc+K ∼= · · · ∼= Sc+M and Qc ∼= Qc+K ∼= · · · ∼= Qc+M .

So we need only to prove

Sc ∼= Qc+M
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for some M > 0.

It would be sufficient to find a differentiable function f such that f c = Sc

e f c+M = Qc+M . For this purpose we need a differentiable Urysohn function
0 6 ϕ 6 1 such that

ϕ(x) =

{
0 se S(x) 6 c,

1 se c + M 6 Q(x).

In that case we could set

f = (1− ϕ)S + ϕQ,

nevertheless we must exclude f to have intermediate critical points between
c and c + M .

If we try to set up an estimate we find

|f ′| =
∣∣[(1− ϕ)S ′ + ϕQ′]− [ϕ′(Q− S)]

∣∣ >
> |(1− ϕ)S ′ + ϕQ′|︸ ︷︷ ︸

∼=|Q′|±K

+ |ϕ′|︸︷︷︸
?

|Q− S|︸ ︷︷ ︸
±K

.

This derivative is certainly non vanishing if |ϕ′| � |Q′|
K

.

In what follows we will exibit a suitable Urysohn function ϕ and give also
a lower bound for |Q′| growing with c.

Being Sc $ Qc+K , it is sufficient that ϕ be 0 on Qc+K and 1 on the
complement of Qc+M . Supposing M a lot larger than K, we will limit us to
prove the existence of ϕ for Qc and Qc+M .

We will consider first a continuous version of ϕ, and then deform it to a
differentiable one.

Lemma 3. There exists a continuous Urysohn function ϕ which is 0 on Sc

and 1 on the complement of Qc+M .

Proof. If we look at Q itself we see that it grows from c to c + M in the
desired sets, then it suffices to subtract c and divide by M to obtain the
continuous ϕ:

ϕ(x) =





0 if Q(x) 6 c,
Q(x)−c

M
if c 6 Q(x) 6 c + M,

1 if c + M 6 Q(x).
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Q(x)6c c6Q(x)6c+M Q(x)>c+M

ϕ(x) = 0

ϕ(x) = Q(x)−c
M

ϕ(x) = 1

ϕ

x

x

Clearly, where the derivative exists, if we set M � K, we have |ϕ′| = |Q′(x)|
M
�

|Q′(x)|
K

.

In the next lemma we build up the regularization of this ϕ, maintaining
the desired properties.

Lemma 4. Let Q(x) a differentiable function without critical values between c
and c+M . Then for every ε > 0 there always exists a differentiable function
ϕ such that

ϕ(x) =

{
0 if Q(x) 6 c,

1 if c + M 6 Q(x),

and furthermore that |ϕ′(x)| 6 |Q′(x)|
M−ε

for every x.

Proof. The idea consists in growing from 0 to 1 moving trough the integral
paths of the vector field ∇Q(x). Taking thus a function ϕ(x) = g(Q(x)) does
not alter the trajectories of the vector field: ∇(g ◦Q) = g ′ · ∇Q.

We only need to modulate the behavior of g near the angular points of
the continuous version of ϕ seen before. We proceed as follows:

g(t) =





g1 ≡ 0 if t 6 c,

g3 ≡ t−c−ε
M−2ε

if c + 2ε < t < c + M − 2ε,

g5 ≡ 1 if c + M 6 t.
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•
g1 g2

g3

g4 g5

t

g(t)

c c + 2ε c + M − 2ε c + M

1

It remains to define g2 and g4 in order to glue smootly the branches of g
above. The conditions to be imposed to g2 are the following

•





g2(c) = 0,

g2(c + 2ε) = ε
M−2ε

,

g′
2(c) = 0,

g′
2(c + 2ε) = 1

M−2ε
.

•

• •

α

β

m = β
α

m = 2β
α

ḡ(t) =
β

α2
t2

α = 2ε, β = ε
M−2ε

Trying to impose these conditions to a polynomial of degree two, we find

g2(t) :=
1

4ε(M − 2ε)
(t− c)2

Analogously it is easy to find

g4 := c + M − 1

4ε(M − 2ε)
(t− c−M)2

and then, collecting all the pieces,

ϕ(x) = g(Q(x)) ⇒ ϕ′(x) = g′(Q(x)) ·Q′(x)
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for which holds

ϕ′(x) =





g′
1 ·Q′ ≡ 0 se Q(x) 6 c,

g′
2 ·Q′ = Q−c

2ε(M−2ε)
·Q′ se c < Q(x) < c + 2ε,

g′
3 ·Q′ = Q′

M−2ε
se c + 2ε < Q(x) < c + M − 2ε,

g′
4 ·Q′ = c+M−Q

2ε(M−2ε)
·Q′ se c + M − 2ε < Q(x) < c + M,

g′
5 ·Q′ ≡ 0 se c + M 6 Q(x).

thus

|ϕ′(x)| = |g′(Q(x))| · |Q′(x)| 6 1

(M − 2ε)
· |Q′(x)|

as wanted.

For sake of completeness, we show that |Q′(x)| becomes arbitrarily large,
for sufficiently large c.

In fact, if the quadratic form is undefined, |Q′| is not bounded from
above in a level set Q = c. (e.g. if Q(x1, x2) = −x2

1 + x2
2 = c, then ∀M >

0, Q(M,
√

c + M 2) = c and |Q′| > M).
On the other hand, |Q′| assumes its minimum in a compact subset of the

level set (if |x| > M , then |Q′(x)| > mini |λi| ·M). It is easy to verify that the
critical values are assumed on the eigenvectors of Q, thus the minimum of
|Q′| is reached by an eigenvector of the smallest in magnitude eigenvalue, say
min |Q′| = |Q′(wk)| = |λkwk|. But if Q(wk) = λk |vk|2 = c, then min |Q′| =√

c · λk, i.e. the minimum value of the gradient of Q is proportional to the
square root of c.

If we have a polynomial of degree two instead of the quadratic form, it is
easy to reduce the problem to the one considered before by means of a shift
of coordinates. Indeed, if

P (x) = 〈Ax, x〉+ ax + b,

setting x = y + v obtains

P̃ (y) = P (y + v) = 〈A(y + v), y + v〉+ ay + av + b =

= 〈Ay, y〉+ 2 〈Av, y〉+ ay + 〈Av, v〉+ av + b = 〈Ay, y〉+ cost.

if 2 〈Av, y〉+ ay = 0, for all y. Thus it suffices that

v = −1

2
A−1a.

Clearly the geometry and the topology of the sub level sets is not affected
by adding constants.
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4.3.1 Existence of a critical point for S

For our purposes it is important to show the existence of at least one critical
point for S.

(i) Trivially, Q has a Morse critical point (0!) with Morse index equal to
q = sgn Q.

(ii) It is not difficult to prove that

Hk(Qc, Q−c) =

{
R, if k = q,

0, if k 6= q.
(4.4)

(see, e.g. , [God69], page 188.)

(iii) Plainly, for c� 0 suitably large,

H?(Sc, S−c) ∼= H?(Qc, Q−c) 6= 0.

(iv) There must be at least a critical level for S between −c and c, because,

if not, it must be Sc
diffeo∼= S−c, (by Moser’s paths technique, see section

4.2). In such a case, H?(Sc, S−c) = 0: a contradiction.
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4.4 Quasi-quadratic reduced variational prin-

ciple for an elliptic Dirichlet problem.

Consider the nonlinearly perturbed elliptic operator

N(u) = −Lu− λu− εF (u).

Consider u ∈ H = H1
0 (Ω) and the following scalar products

(u, v) :=

∫

Ω

uvdx, 〈u, v〉 := (−Lu, v) =

∫

Ω

(−Lu) · vdx.

We recall the variational formulation (Volterra-Vainberg) associated to our
problem (see section 3.3):

J(u) =

∫ 1

0

(N(tu), u) dt =

= −
(∫ 1

0

(Ltu, u) dt + λ

∫ 1

0

(tu, u) dt

)
−
∫ 1

0

(εF (tu), u) dt =

=: JL+λ(u) + JF (u).

We have seen that u can be represented by means of the eigenfunctions of
the elliptic operator L:

u =
∞∑

j=1

ûj 〈u, uj〉 = g(v) =
∞∑

j=1

1

λj

vjûj =
m∑

j=1

1

λj

µjûj +
∞∑

j=m+1

1

λj

ηjûj.

When the Dirichlet problem collapses to a finite dimensional problem by
means of the fixed point technique, η (and by consequence u) become a
function of the first m parameters µj:

u(m,µ) = g(v) = g(µ + η̃(m,µ))

A reduced functional can readily be obtained,

W (µ) := J(u(m,µ)),

and W is equivalent to J in the sense explained in section 3.3. The reduced
functional splits analogously to J ,

W (µ) = J(u(m,µ)) = JL+λ(u(µ)) + JF (u(µ)) = W L+λ(µ) + W F (µ),
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and, furthermore, a quadratic form in the µj’s can be isolated:

JL+λ(u) = JL+λ(gv) =
∞∑

j=1

1

λj

v2
j − λ

(
∞∑

j=1

1

λ2
j

v2
j

)
=

=
m∑

j=1

µ2
j

λj

+
∞∑

j=m+1

η̃2
j (µ)

λj

− λ

(
m∑

j=1

µ2
j

λ2
j

+
∞∑

j=m+1

η̃2
j (µ)

λ2
j

)
=

=
m∑

j=1

λj − λ

λ2
j

µ2
j +

∞∑

j=m+1

λj − λ

λ2
j

η̃2
j (µ) =: W L+λ

q (µ) + W L+λ
nq (µ).

In the general case, there is no reason for W L+λ
nq (µ) and W F (µ) to be quadratic.

In what follows, we will put in evidence that W L+λ
q (µ) is a non degenerate

quadratic form and, under some hypothesis on F we are going to discuss, we
will obtain W L+λ

nq (µ) and W F (µ) to be bounded together with their first
derivatives. In such a case, the reduced functional will result in a quasi
quadratic function, and we will obtain the existence of at least one critical
point, on the basis of the topological considerations exposed in section 4.3.1.

Hypothesis . Assume that the nonlinear functional F : H → H is a Ne-
mitski operator, F (u) = f ◦ u, associated to f : R −→ R. We will assume f ,
its derivative f ′ and one of its primitives f̄ being bounded, i.e.

∃K,C > 0,∀s ∈ R, |f(s)| ,
∣∣f̄(s)

∣∣ 6 K, |f ′| 6 C.

See example 4.1.1 for nontrivial functions in this class.

4.4.1 WL+λ
nq (µ) and W F (µ) are bounded

Lemma 5.
∣∣W F (µ)

∣∣ 6 εK meas(Ω).

Proof. Whenever u(x) 6= 0,

∫ 1

0

f(tu(x))dt =
1

u(x)

∫ u(x)

0

f (τ) dτ,
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thus, denoting by Ω′ =
{

x ∈ Ω
∣∣∣ u(x) 6= 0

}
,

∣∣W F
∣∣ =

∣∣∣∣
(∫ 1

0

εF (tu)dt, u

)∣∣∣∣ =

∣∣∣∣∣

∫

Ω′

ε

(
1

u(x)

∫ u(x)

0

f(τ)dτ · u
)

dx

∣∣∣∣∣ =

= ε

∣∣∣∣∣

∫

Ω′

(∫ u(x)

0

f(τ)dτ

)
dx

∣∣∣∣∣ = ε

∣∣∣∣
∫

Ω′

f̄(u(x))dx

∣∣∣∣ 6

6 εK meas(Ω).

Lemma 6.
∣∣WL+λ

nq (µ)
∣∣ 6 ε2K2 λm+1

(λm+1 − λ)2
.

Proof.

WL+λ
nq (µ) =

∞∑

j=m+1

λj − λ

λ2
j

η̃j(m,µ)2

Being λ fixed, while m can be chosen arbitrarily large, it is non restrictive to
suppose λ� λj, ∀j > m.

∣∣WL+λ
nq (µ)

∣∣ 6 1

λm+1

∞∑

j=m+1

∣∣∣∣
λj − λ

λj

∣∣∣∣
<1

|η̃j(m,µ)|2 6
1

λm+1

‖η̃‖2 .

On the other hand, being η̃ obtained by means of the fixed point tech-
nique, it satisfies

η̃ = (I− λg)−1εQmFg(µ + η̃).

We prove that ‖(I− λg)−1‖ < λm+1

λm+1−λ
. Indeed,

(I− λg)x =

{(
I− λ

λj

xj

)}∞

j=m+1

, ∀x ∈ QmH.,

(I− λg)−1x =

{(
1− λ

λj

)−1

xj

}∞

j=m+1

=

{
λj

λj − λ
xj

}∞

j=m+1

,

and if we suppose λ� λm 6 λj,

λm+1

λm+1 − λ
>

λj

λj − λ
−→
j→∞

1.
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Thus,

‖η̃‖ 6
λm+1

λm+1 − λ
ε ‖F (g(µ + η̃))‖ 6

λm+1

λm+1 − λ
εK,

as claimed.

4.4.2 The first derivatives of W L+λ
nq (µ) and W F (µ) are

bounded

Now it is necessary to check if also the difference between the first derivatives
of W and the ones of the quadratic form W L+λ

q is bounded by a constant.
First we look for an estimate for η̃′(µ) and u′(µ). From the fixed point

equation defining η̃ we have:

∂η̃

∂µh

= (I− λg)−1εQmF ′(u(µ)) ·
(

g

(
∂µ

∂µh

+
∂η̃

∂µh

))
, h = 1, . . . ,m.

∥∥∥∥
∂η̃

∂µh

∥∥∥∥ =

∥∥∥∥(I− λg)−1εQmF ′(u(µ)) ·
(

g

(
∂µ

∂µh

+
∂η̃

∂µh

))∥∥∥∥ 6

6
∥∥(I− λg)−1

∥∥ ε ‖F ′‖ ·
(

1

λh

+
1

λm+1

∥∥∥∥
∂η̃

∂µh

∥∥∥∥
)

6

6 εC
λm+1

λm+1 − λ

(
1

λ1

+
1

λm+1

∥∥∥∥
∂η̃

∂µh

∥∥∥∥
)

,

thus, ∥∥∥∥
∂η̃

∂µh

∥∥∥∥
(

1− εC

λm+1 − λ

)
6

εC

λ1

λm+1

λm+1 − λ
,

‖η̃′‖ 6
εC

λ1

· λm+1

λm+1 − λ
· 1

1− εC 1
λm+1−λ

=
εC

λ1

· λm+1

λm+1 − λ− εC
.

Note that the rightmost fraction is well defined and positive if m is sufficiently
large.

On the other hand, we have by consequence an estimate for u′,

u(µ) = g(µ + η̃(µ))⇒ u′ = g(µ′ + η̃′),

‖u′‖ = ‖g(µ′ + η̃′)‖ 6 ‖g‖ (1 + ‖η̃′‖),

‖u′‖ 6
1

λ1

(1 + ‖η̃′‖)
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Estimates for ∂
∂µ

WL+λ
nq (µ) and ∂

∂µ
W F (µ)

Lemma 7.
∣∣∣ ∂
∂µ

WL+λ
nq (µ)

∣∣∣ 6 constant.

Proof. By definition we have

∂WL+λ
nq

∂µ
=

∂

∂µ

(
∞∑

j=m+1

λj − λ

λ2
j

η̃2
j (µ)

)
= 2

∞∑

j=m+1

(
λj − λ

λj

∂η̃j(µ)

∂µ

)
·
(

η̃j(µ)

λj

)
,

then
∥∥∥∥

∂

∂µ
WL+λ

nq (µ)

∥∥∥∥ 6 2

∥∥∥∥
{

λj − λ

λj

∂η̃j

∂µ

}∞

m+1

∥∥∥∥ ·
‖η̃‖
λm+1

6

6 2
1

λm+1

sup
j>m

∣∣∣∣
λj − λ

λj

∣∣∣∣ ‖η̃′‖ · ‖η̃‖ 6
2

λm+1

‖η̃′‖ · ‖η̃‖ .

Lemma 8.
∣∣∣ ∂
∂µ

W F (µ)
∣∣∣ 6 constant.

Proof. First let us recall that
(∫ 1

0

F (tu)dt, u

)
=

∫

Ω

f̄(u(x))dx.

Next, it is easy to check,

∣∣∣∣
∂

∂µ
W F (µ)

∣∣∣∣ =

∣∣∣∣
∂

∂µ

(∫ 1

0

F (tu(µ))dt, u

)∣∣∣∣ =

=

∣∣∣∣
∂

∂µ

∫

Ω

f̄(u(x))dx

∣∣∣∣ =

∣∣∣∣
∫

Ω

f(u(x))
∂u

∂µ
(x)dx

∣∣∣∣ 6

6

∫

Ω

|f | ‖u′‖ dx 6 ‖u′‖K meas(Ω).

4.4.3 Existence theorem

The reduced functional W (µ) is quasi -quadratic in µ, i.e.

‖W (µ)− 〈Qµ, µ〉‖C1 =
∥∥W (µ)−W L+λ

q (µ)
∥∥

C1 =

=
∥∥WL+λ

nq (µ) + W F (µ)
∥∥

C1 6
(

Something
depending
only on

)
(ε, C,m,K, meas(Ω), λ1, λm+1),
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where

Q :=




λ−λ1

λ2
1

λ−λ2

λ2
2

O

O
. . .

λ−λm

λ2
m




.
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Chapter 5

Numerical application of the
finite parameters reduction

In this chapter we present and discuss an algorithm for con-
structing solutions for a class of nonlinear PDEs, devised
implementing the techniques exposed in chapter 3.
We will generate two nontrivial solutions for a nonlinear
Dirichlet Problem, and check the finite difference machinery
to match with the theoretical forecasts, either in the speed
of convergence and in approaching to the solutions of the
original problem.
The result seems satisfactory, as we will try to put in evi-
dence.

5.1 Analytical setting

Our investigation takes place in H := H1
0 (Ω, Rk), where we consider a non

linear perturbation F of an elliptic operator L. For sake of brevity we will
limit ourselves to the following simple Dirichlet boundary value problems of
the form {

−Lu = F (u), in Ω,

u = 0, on ∂Ω.
(5.1)

The crucial hypothesis we ought to adopt is an uniform Lipschitz estimate
of the nonlinear operator F . More precisely, we will assume F : H → H to
be a Nemitski operator, i.e. F (u) := f ◦ u, where f : R→ R is Lipschitz,

|f(s1)− f(s2)| 6 C |s1 − s2| .

The core of the algorithm consists in the spectral decomposition of H w.r.t.
the eigenspaces of −L, and in the exploitation of the Green operator g =

55
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(−L)−1, i.e. g : H → H, g◦(−L) = −L◦g = idH . The problem is translated
through g and successively decomposed into a finite and an infinite part by
means of a suitable cut-off.

Here is an outline of these steps, first the spectral decomposition and the
Green operator,

−Lûj = λjûj, 〈ûi, ûj〉 = δij, 0 = λ0 < λ1 6 λ2 6 . . . . (5.2)

g(v) = g

(
+∞∑

j=1

vjûj

)
=

+∞∑

j=1

vj
1

λj

ûj, (5.3)

thus the cut-off of the space H,

v =
+∞∑

j=1

vjûj =
m∑

j=1

vjûj +
+∞∑

j=m+1

vjûj ∈ H, (5.4)

v = Pmv + Qmv = µ + η, H = PmH ⊕QmH. (5.5)

Here the crucial starting point: we are going to search solutions of (5.1)
represented by the form: u = g(v), for suitable v ∈ H,

−Lu = F (u),
−L (g (v)) = F (g (v)) , v = µ + η,
µ + η = F (g(µ + η)),

(5.6)

so the problem is splitted into

η = QmF (g(µ + η)) (infinite part)

µ = PmF (g(µ + η)) (finite part)
(5.7)

Next, we will show that the infinite part of the equation, for suitable fixed
cut-off m, is uniquely solved, for every fixed finite part µ ∈ PmH. Indeed the
map

QmH −→ QmH
η 7−→ QmF (g(µ + η)),

(CTR)

is contractive, provided m being suitably large; by involving the Lipschitz
constant C of F and recalling the monotone character of the spectral sequence
{λj}:

‖QmF (g(µ + η1))−QmF (g(µ + η2))‖ 6

6 C ‖g(µ + η1)− g(µ + η2)‖ 6 C
1

λm+1

‖η1 − η2‖ ,
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so we can choose m ∈ N large enough to have C
λm+1

< 1, and the unique fixed

point η̃(µ) of this contraction solves the (infinite part) of the equation (5.2).
It can be easily proved that the fixed point η̃(µ) inherits the regularity of F ,
being expressible as the implicit function of an equation involving F :

F(µ, η) = 0, F(µ, η) := µ−QmF (g(µ + η)).

By substituting η̃(µ) into the finite equation (finite part), we get a finite
dimensional problem:

µ = PmF (g (µ + η̃ (µ))) , µ ∈ Rm. (5.8)

Although it is finite, in general we have not an a priori control about existence
and uniqueness; more precisely, we could find no solutions, or many solutions,
and possible bifurcation phenomena could happen for increasing (Lipschitz
constant C of) F .

Finally, in correspondence to every solution µ∗ of (5.8) we obtain a solu-
tion of the original nonlinear Dirichlet problem:

u = g (µ∗ + η̃ (µ∗)) .

In the following sections we will exhibit a finite difference implementation
of these ideas.

5.2 Numerical implementation

The previously outlined procedure can be implemented in a numerical frame-
work by substituting the differential operator of the PDE with its discretized
version. Using a finite elements approach, denoting by Th a generic discretiza-
tion of Ω, formed by n nodes and N subdivisions with characteristic length h,
the discrete elliptic operator reduces to a symmetric positive-definite matrix
−Lh. The numerical solution vector uh ∈ Hh := Rn, is given by the solution
of the system of the nonlinear algebraic equations:

−Lh(uh) = Fh(uh), (5.9)

where Fh is the discretization of the nonlinear function operator F .
The corresponding symmetric eigenproblem can be written as:

−Lhu = λu, (5.10)

where

0 < λ1 6 λ2 6 . . . 6 λn,

u1, u2, . . . , un,
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are the real positive eigenvalues and the corresponding eigenvectors. Note
that the eigenvalues and eigenvectors thus defined converge to the eigenvalues
and eigenfunctions of the continuous problem (5.1) in the limit when h→ 0
and n→ +∞ (see [GPP95]).

From (5.22), (5.23) and (5.24) we can observe what follows:

Remark 4. The first eigenvalues of the finite element problem (5.10) converge
to fixed values when the nodal spacing of the discretization is made arbitrarily
small, i.e. , when the dimension of −Lh goes to infinity. Hence the leftmost
eigenpairs of the eigenproblems converge to the same leftmost eigenspectrum;

Remark 5. The largest eigenvalues cannot converge and grow as n2 when
h → 0, consistently with theory. This suggests that the highest frequencies
are in essence inversely related to the magnitude of the discretization error,
while the lowest frequencies represent the fundamental natural modes of the
physical system described by the PDE (5.1).

In analogy to the continuous case (5.2), the discrete Green operator gh of
−Lh can be easily written, w.r.t. the basis of H given by the eigenvectors of
−Lh, as

gh(uk) =
(
−L−1

h

)
(uk) :=

1

λk

uk k = 1, . . . , n.

Since −Lh is s.p.d., any vector v ∈ H can be expressed as:

v = a1u1 + · · ·+ anun = Ua,

where U denotes the matrix whose columns are the eigenvectors uk:

U := [u1, . . . , un] .

The Green operator applied to v gives:

gh(v) =
a1

λ1

u1 + · · ·+ an

λn

un = UΛ−1a,

where Λ is the diagonal matrix of the eigenvalues (ordered accordingly to the
corresponding eigenvectors).

The algorithm described in the previous section applies directly to the
discretized problem, and proceeds as follows. For a given m, the vector
space H is split into two subspaces PmH and QmH, where PmH ⊆ H is
generated by the first m eigenvectors u1, . . . , um, while QmH ⊆ H is gener-
ated by um+1, . . . , un. Consequently, the projectors Pm and Qm, which are
the discrete counterparts of Pm and Qm in (5.5), can be explicitly written by
means of the two matrices:

V1 := [u1, . . . , um] , V2 := [um+1, . . . , un] , [V1, V2] = U.



5. Numerical application of the finite parameters reduction 59

For every v = µ̂ + η̂ ∈ H, we have:

µ̂ :=Pmv = V1V
T
1 v = V1a

′, a′ ∈ Rm, (5.11)

η̂ :=Qmv = V2V
T
2 v = V2a

′′, a′′ ∈ Rn−m. (5.12)

In summary, the discrete version of (5.6) becomes:

−Lhu = Fh(u), (5.13)

−Lh (gh(v)) = Fh (gh(v)) , (5.14)

µ̂⊕ η̂ = Fh (gh(µ̂ + η̂)) . (5.15)

The numerical algorithm is thus formed by two finite dimensional fixed point
iterations:

η̂ = QmFh (gh(µ̂ + η̂)) , ∈ Rn−m, (5.16)

µ̂ = PmFh (gh(µ̂ + η̂)) , ∈ Rm, (5.17)

with (5.16) satisfying:

‖QmFh (gh(µ̂ + η̂1))−QmFh (gh(µ̂ + η̂2))‖ 6
C

λm+1

‖η̂1 − η̂2‖ .

To prove the last assertion, we first note that Fh is Lipschitz whenever f is,
i.e. , for every u, ū ∈ Hh,

‖Fh(u)− Fh(ū)‖ =

∥∥∥∥∥∥∥




f(u1)− f(ū1)
...

f(un)− f(ūn)




∥∥∥∥∥∥∥
=

=

∥∥∥∥∥∥∥




c1(u1 − ū1)
...

cn(un − ūn)




∥∥∥∥∥∥∥
6 C ‖u− ū‖ ,

where C is the Lipschitz constant of f , while c1, . . . , cn are suitable positive
numbers such that cj < C,∀j. The proof is completed by:

‖gh(µ̂ + η̂1)− gh(µ̂ + η̂2)‖ = ‖gh(η̂1 − η̂2)‖ 6
1

λm+1

‖η̂1 − η̂2‖ .

The value of m is chosen so that the Lipschitz constant C
λm+1

becomes suffi-
ciently smaller than 1 and guarantees a fast convergence of the fixed point



60 Alberto Lovison

iteration (5.16). The fixed point problem (5.17) can be solved either by
Peano-Picard iterations or by a Newton-Raphson technique, but we do not
have estimates on contractiveness.

Numerical performance does not allow for the full solution of the eigen-
problem (5.10), which has been assumed so far. However, the ellipticity of
−Lh suggests that the discrete Green function tends to zero rapidly, accord-
ing to the continuous case,but we are not aware of any useful theoretical
estimate of this behavior. Thus in the following section we will try to evalu-
ate experimentally, applying the proposed scheme to a sample problem, the
minimum size of the eigensolution of (5.10) that gives a predefined accuracy.

5.2.1 Sample tests for the Peano-Picard procedure

Consider the one-dimensional Laplacian operator on the unit interval;

L := ∆ =
∂2

∂x2
Ω := [0, 1] ⊆ R, H := H1

0 ([0, 1], R) , (5.18)

which, after the discretization with characteristic length h = 1
n+1

, and elim-
ination from −Lh of the two Dirichlet boundary conditions, will be repre-
sented by the well known tridiagonal matrix:

−Lh =
1

h2




2 −1
−1 2 −1

−1
. . . . . .
. . . 2 −1
−1 2




. (5.19)

which operates on the finite dimensional space H := Rn. By very classical
computations,the eigenpairs of (5.10) are found to be:

λk = 4(n + 1)2 sin2

(
kπ

2(n + 1)

)
, k = 1, . . . , n, (5.20)

uk = {uk,i} =

{√
2

n + 1
sin

(
kπ

n + 1
i

)}
, k = 1, . . . , n. (5.21)

Since sin t ≈ t as t→ 0, the leftmost eigenvalues converge to the quantities

λk(−Lh) −→ (πk)2, k = 1, . . . , n, (5.22)

while the eigenvectors behave as:

uk −→ sin(kπx), k = 1, . . . , n, 0 6 x 6 1. (5.23)
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Figure 5.1: Graphic of f(x) = 30

(
1− e−

x2

2

)

The largest eigenvalue is provided by (5.20) with k = n:

λn(−Lh) =
4

h2
sin2

(
π

2

n

n + 1

)
≈ 4

h2
. (5.24)

Note that the eigenpairs obviously satisfy Remarks 4 and 5.
Our sample test considers the Nemitski operator F associated to the

function

f : R→ R, f(x) = α
(
1− e−

x2

2

)
.

(See figure 5.1). Note that F is Lipschitz, with Lipschitz constant equal to

C = sup |f ′| = α/
√

e ≈ 18.1959(α = 30).

Discretizing with n = 80 nodes, we can look for a suitable eigenvalue to
perform the cutoff. The first candidates for contractive factors M are found
to be

M =
|f ′|
λ1

≈ 1.84364, M =
|f ′|
λ2

≈ 0.460912, M =
|f ′|
λ3

≈ 0.204852, . . .

We set m = 2, so that the contractive factor for the fixed point iteration
given in (5.16) is 0.204852. The splitting is organized as follows:

H = R80 = P2H ⊕Q2H,

v = µ̂ + η̂ = a′
1u1 + a′

2u2 + a′′
1u3 + · · ·+ a′′

n−2un,

To show the convergence characteristics of the map (5.16), we perform several
iterations by applying the Peano-Picard procedure. All the eigenpairs of
(5.19) are employed in the calculations. The effects of using a much smaller
number of eigenpairs (k � n) will be addressed in the next section.
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Figure 5.2: Convergence of the contractive map (5.16) for the same finite part
µ(0) = 10u2 and different randomly generated starting queues η(0)

We fix as a first guess µ̂(0) = 500u1 + 500u2 (u1 and u2 are the first two
eigenvectors), and randomly generate η̂(0). Denoting by η̂(j) the j-th iterate
of the contraction map, we expect the following estimate to be fulfilled,

∥∥η̂(j+1) − η̂(j)
∥∥ 6 0.21

∥∥η̂(j) − η̂(j−1)
∥∥ ,

The results are reported in Table 5.2.1 and illustrated in figure 5.2. After
20 iterations, the norm of the difference between two successive iterations,
ε
(j)
η =

∥∥η̂(j) − η̂(j−1)
∥∥, becomes smaller than 10−15 with a contractive factor

of approximately 0.16. Note that M is always smaller than the theoretical
predictions and seems to stabilize around the 12th iteration. After that, small
oscillations appear due to round-off errors. Similar behavior is found when
changing the initial guess µ(0). The number of iterations changes slightly,
while M always converges to 0.16. The solution of the full problem is obtained
by solving

µ̂ = PmFh (gh (µ̂ + η̂(µ̂))) . (5.25)

Here we iterate by means again of the Peano-Picard procedure, though we do
not possess any contraction result. Note that in this phase a more perform-
ing Newton-Raphson procedure could be employed. It is reported in the last
section. Note that at each of the iterations of the µ̂–map we have to solve the
η̂–map. To ensure convergence of the latter we perform a fixed number of
iterations equal to 20. This allows ε

(20)
η to become always smaller than 10−15.
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j ε
(j)
η M

1 8.21310× 101 ?
2 5.56597× 100 0.067770
3 9.43390× 10−1 0.169492
4 1.60178× 10−1 0.169790
5 2.71269× 10−2 0.169355
6 4.58876× 10−3 0.169159
7 7.75914× 10−4 0.169090
8 1.31182× 10−4 0.169067
9 2.21776× 10−5 0.169060

10 3.74931× 10−6 0.169058

j ε
(j)
η M

11 6.33852× 10−7 0.169058
12 1.07158× 10−7 0.169058
13 1.81159× 10−8 0.169059
14 3.06254× 10−9 0.169053
15 5.17750× 10−10 0.169059
16 8.75862× 10−11 0.169167
17 1.47106× 10−11 0.167956
18 2.57688× 10−12 0.175171
19 4.18135× 10−13 0.162264
20 1.28513× 10−13 0.307348

Table 5.1: Convergence of the Peano-Picard iterations applied to (17) with m = 2,
µ0 = 500u1 + 500u2 and using all the eigenspectrum of (20), (n = 640, l = 640).

Table 5.2.1 reports the results of this problem. Note that numerically calcu-
lated contractive factor of this small scale (m = 2) problem is rather small,
achieving a value of about 0.22 (see table 5.2.1, 4th column). As apparent
from table 5.2.1, and from figure 5.3, the map converges spontaneously to

µ̂ = 626.853u1 − (7.67118× 10−14)u2,

in 20 iterations. By means of the contraction map we can build the approx-
imate solution of the discretized problem,

ū = gh(µ̂ + η̂(µ̂)),

and, by interpolation, construct a candidate solution for the analytical prob-
lem (5.1),

H 3 ũ(x) := interpolation(ū).

Now we give an estimate of the goodness of the solution evaluating the residue
function E(x) := − ∂2

∂x2 ũ(x)− F (ũ(x)). Next we evaluate the L1 and the L2

norm of the residue function. We check the theoretical convergence of the
finite difference method does not degenerate as the number of subdivisions
n = 10, 20, . . . , 320, 640 grows. Theoretically, the norm of the error function
should decrease proportionally to the square of the number of subdivisions.
As apparent from table 5.2.1, doubling the subdivisions, the error seems
asymptotically decrease by 1

4
, as expected. See also figure 5.4.
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j µ(j) ε
(j)
µ M

1 (230.589,−40.3486) 6.7037× 101 ?
2 (283.236,−16.8716) 5.7644× 101 0.859881
3 (369.349,−6.96820) 8.6680× 101 1.503710
4 (482.325,−2.46623) 1.1307× 102 1.304410
5 (573.516,−0.605729) 9.1209× 101 0.806688
6 (612.605,−0.103476) 3.9092× 101 0.428595
7 (623.499,−0.0150424) 1.0895× 101 0.278693
...

...
...

...
16 (626.853,−2.61551× 10−10) 1.7451× 10−5 0.225253
17 (626.853,−3.56424× 10−11) 3.9308× 10−6 0.225253
18 (626.853,−4.93335× 10−12) 8.8543× 10−7 0.225253
19 (626.853,−5.30742× 10−13) 1.9945× 10−7 0.225253
20 (626.853,−7.67118× 10−14) 4.4925× 10−8 0.225252

Table 5.2: Convergence behavior of the complete map starting with m = 2,
µ(0) = 100u1 − 100u2 and using all the eigenspectrum of (20), (n = 640, l = 640).

L1–norm of the residue

n nth–residue nth–residue
2nth–residue

10 9.07257× 10−1 ?
20 2.81267× 10−1 3.22561
40 7.59899× 10−2 3.701369
80 1.55879× 10−2 4.874926
160 3.30348× 10−3 4.718633
320 7.46062× 10−4 4.427889
640 1.76359× 10−4 4.230356

L2–norm of the residue

n nth–residue nth–residue
2nth–residue

10 1.53448 ?
20 7.778759× 10−1 1.97042
40 2.47547× 10−1 3.14590
80 5.12011× 10−2 4.83480
160 9.88305× 10−3 5.18070
320 1.94486× 10−3 5.08160
640 4.02237× 10−4 4.83512

Table 5.3: Behavior of the residue of the approximated solution when the number
of subdivisions n increases (m = 2, l = n).
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µ(0) = (300, 0) µ(0) = (300,−300) µ(0) = (−500,−500)
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Figure 5.3: Peano-Picard iteration for the map (5.25) from different µ(0) converg-
ing to the same solution µ̂ ≈ (626.853, 0).
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Figure 5.4: Graphic of the residue function E(x) = −Lũ(x)− F (ũ(x)).
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Improving the performances

As claimed in the previous section, we are not able in general to determine the
complete eigensolution of the elliptic operator −Lh. Nevertheless, theoretical
considerations suggest that a not so big number of eigenvectors could suffice
to evaluate a good approximated solution of the b.v.p. We consider the
solution ū so far determined employing l = n = 640 eigenvectors as the
“exact” solution, and we try to approximate it progressively reducing the
number l � n of eigenvectors involved to generate the solution.

First we test the contractiveness of the generator of the queue η̂. We will
calculate and follow the behavior of ε

(j)
η :=

∥∥η̂(j+1) − η̂(j)
∥∥ and the contractive

factor Mj =
ε
(j)
η

ε
(j−1)
η

. Recall that theoretically the contractive factor should be

M 6 0.20485. See the table 5.2.1
Next we try the Peano-Picard procedure to obtain successive approximate

solutions, increasing the number l < 640 of eigenvectors involved, and check
the eventual rate of convergence to the more accurate, but more expensive,
solution ũ, obtained employing all eigenvectors (l = n = 640).

See tables 5.2.1.

5.2.2 Newton-Raphson procedure

The solutions µ̂ of the reduced equation (5.25)

µ̂ = PmFh(gh(µ̂ + η̃(µ̂))),

are, in other words, the fixed points of the map

µ 7→ PP (µ) := PmFh(gh(µ̂ + η̃(µ̂))).

The Peano-Picard procedure consists in the iterated application of PP (·)
from a tentative starting point µ0.

µ1 = PP (µ0), . . . , µi = PP i(µ0), . . .

If a limit is reached then a solution of the original problem is found. Alter-
natively, the solutions of (5.25) can also be considered as the zeros of the
map:

NR : Rm → Rm,

µ 7→ NR(µ) := µ− PmFh(gh(µ̂ + η̃(µ̂))),

which could be sought by means of the Newton-Raphson procedure. Namely,
we look for a limit in the sequence of the iterated of the map:

µ 7→ −(JNR(µ))−1NR(µ).
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l = 160

j ε
(j)
η M

1 7.84170× 101 ?
2 3.99984× 100 0.051007
3 2.89345× 10−1 0.072339
4 2.34318× 10−2 0.080982
5 2.18111× 10−3 0.093083
6 2.22913× 10−4 0.102202
7 2.37485× 10−5 0.106537
8 2.56871× 10−6 0.108163
9 2.79277× 10−7 0.108722

10 3.04167× 10−8 0.108912
11 3.31465× 10−9 0.108975
12 3.61567× 10−10 0.109081
13 3.94282× 10−11 0.109048
14 4.31287× 10−12 0.109385
15 3.79512× 10−13 0.111259

l = 40

j ε
(j)
η M

1 6.99369× 101 ?
2 3.90643× 100 0.055857
3 2.76129× 10−1 0.070686
4 2.17559× 10−2 0.078789
5 1.98066× 10−3 0.091040
6 2.00151× 10−4 0.101052
7 2.12306× 10−5 0.106073
8 2.29291× 10−6 0.108000
9 2.49164× 10−7 0.108667

10 2.71326× 10−8 0.108894
11 2.95671× 10−9 0.108973
12 3.22190× 10−10 0.108969
13 3.51193× 10−11 0.109002
14 3.89529× 10−12 0.110916
15 4.26181× 10−13 0.109409

l = 10

j ε
(j)
η M

1 6.63682× 101 ?
2 4.00190× 100 0.060298
3 2.79898× 10−1 0.069941
4 2.15908× 10−2 0.077138
5 1.93161× 10−3 0.089464
6 1.93531× 10−4 0.100192
7 2.04669× 10−5 0.105755
8 2.20834× 10−6 0.107898
9 2.39886× 10−7 0.108628

10 2.61154× 10−8 0.108866
11 2.84542× 10−9 0.108955
12 3.09856× 10−10 0.108896
13 3.37722× 10−11 0.108993
14 3.72282× 10−12 0.110233
15 3.92485× 10−13 0.105427

l = 4

j ε
(j)
η M

1 5.69242× 101 ?
2 3.07766× 100 0.054066
3 1.81176× 10−1 0.058868
4 1.29883× 10−2 0.071689
5 1.13693× 10−3 0.087535
6 1.09579× 10−4 0.096382
7 1.08595× 10−5 0.099102
8 1.08213× 10−6 0.099648
9 1.07857× 10−7 0.099671

10 1.07438× 10−8 0.099611
11 1.06966× 10−9 0.099561
12 1.06517× 10−10 0.099580
13 1.06174× 10−11 0.099678
14 1.05226× 10−12 0.099107
15 1.35749× 10−13 0.129007

Table 5.4: Convergence of Peano-Picard iterations applied to (5.16) starting with
m = 2, µ(0) = 500u1 + 500u2 and (n = 640, l = 160, 40, 10, 4).
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l = 160

j µ(j) µ(j) − µ̄ Mj

1 (557.101, 115.658) 135.063 ?
2 (605.908, 21.1875) 29.7917 0.220576
3 (621.783, 3.16681) 5.97733 0.200637
4 (625.692, 0.443249) 1.24227 0.207830
5 (626.590, 0.0610481) 0.269357 0.216826
6 (626.793, 0.00837702) 0.0597325 0.221759
7 (626.839, 0.00114853) 0.0133737 0.223893
8 (626.849, 0.000157440) 0.00300559 0.224738
9 (626.851, 0.0000215808) 0.000676438 0.225059

10 (626.852, 2.95813454× 10−6) 0.000152321 0.225180

l = 40

j µ(j) µ(j) − µ̄ Mj

1 (557.101, 115.658) 135.063 ?
2 (605.908, 21.1875) 29.7917 0.2205767
3 (621.783, 3.16681) 5.97733 0.2006370
4 (625.692, 0.4432489) 1.24227 0.2078307
5 (626.590, 0.06104813) 0.2693578 0.2168263
6 (626.793, 0.008377023) 0.05973271 0.2217596
7 (626.839, 0.001148533) 0.01337393 0.2238963
8 (626.849, 0.0001574401) 0.003005773 0.2247486
9 (626.851, 0.00002158085) 0.0006766204 0.2251069

10 (626.852, 2.95813× 10−6) 0.0001525030 0.2253893

l = 4

j µ(j) µ(j) − µ̄ Mj

1 (557.082, 115.788) 135.184 ?
2 (605.986, 21.2413) 29.7753 0.220257
3 (621.865, 3.17323) 5.91074 0.198510
4 (625.757, 0.443697) 1.18196 0.199969
5 (626.646, 0.0610455) 0.215283 0.182140
6 (626.846, 0.00836796) 0.0105572 0.0490387
7 (626.890, 0.00114610) 0.0384218 3.63938
8 (626.901, 0.000156945) 0.0484506 1.26101
9 (626.903, 0.0000214909) 0.0507005 1.04643

10 (626.903, 2.94278× 10−6) 0.0512045 1.00994

Table 5.5: Convergence of the Peano-Picard iterations applied to (5.25) with
m = 2, µ0 = 600u1 + 0u2 and with n = 640 nodes and employing l = 160, 40, 4
eigenvectors.



5. Numerical application of the finite parameters reduction 69

The determination of the Jacobian

JNR(µ) =

(
∂NRi

∂µj

(µ)

)

i,j=1,...,m

,

∂NRi

∂µj

(µ) = δij −
∂(Fh)i

∂ur

·
(

1

λr

∂

∂µj

(µ + η̃(µ))

)
=

= δij −
∂(Fh)i

∂uj

1

λj

−
k∑

r=3

∂(Fh)i

∂ur

· 1

λr

∂η̃r(µ)

∂µj

. (5.26)

is performed in a few steps.
First we calculate the Jacobian of Fh(u) with respect to the eigenvectors

coordinates, i.e. considering u[u1, . . . , uk](x) = u1û1(x)+· · ·+ukûk(x). Thus,

∂(Fh)i

∂ur

(u) =
∂

∂ur

((Fh)i(u1û1 + · · ·+ ukûk)) =

=
∂

∂ur

(〈Fh(u1û1 + · · ·+ ukûk), ûi〉) =

=
∂

∂ur

n∑

l=1

f(u[u1, . . . , uk](xl))ûi(xl) =

=
n∑

l=1

df

du
(u(xl))

∂u

∂ur

(xl)ûi(xl) =

=
n∑

l=1

f ′(u(xl))ûr(xl)ûi(xl).

(5.27)

Next, in order to determine the derivative of η̃(µ), we differentiate the defin-
ing equation,

η̃(µ) = QmFh(gh(µ + η̃(µ)))

∂η̃s

∂µj

(µ) =
∂(Fh)r

∂uj

1

λj

+
k∑

s=3

∂(Fh)r

∂us

1

λr

∂η̃r

∂µj

(µ),

and solve the linear system:

k∑

s=3

(
δrs −

∂(Fh)r

∂us

1

λr

)
∂η̃r

∂µj

=
1

λj

∂(Fh)r

∂uj

.
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µ0 = (100, 0)

j µj εj
µ

εj−1
µ

(εj
µ)2

1 (205.949, 1.66223× 10−15) 105.95 ?
2 (160.633,−1.08118× 10−15) 45.316 0.00403693
3 (159.585,−5.48825× 10−16) 1.04871 0.000510684
4 (159.582, 6.32719× 10−16) 0.00283031 0.0025735
5 (159.582, 2.17691× 10−15) 2.10223× 10−8 0.00262429

L2-Residue = 0.00103257

µ0 = (600, 0)

j µj εj
µ

εj−1
µ

(εj
µ)2

1 (627.622, 1.59563× 10−15) 27.6225 ?
2 (626.853,−4.35704× 10−17) 0.769375 0.00100835
3 (626.852, 1.88864× 10−16) 0.000522536 0.000882756
4 (626.852, 1.73901× 10−15) 2.41811× 10−10 0.000885613

L2-Residue = 0.0205632

Table 5.6: Solutions found starting from µ0 = (100, 0) and µ0 = (600, 0), with
n = 640 subdivisions, employing k = 32 eigenvectors

Application of Newton-Raphson

Implementing the previous algorithm we obtained the same solution found
by Peano-Picard, and also a new solution. (See figure 5.5). As apparent from

the tables 5.6, the ratio
εj
µ

(εj+1
µ )2

converges, in agree with the theoretical pre-

diction of Newton-Raphson algorithm. Furthermore, the new solution found
(159.582, 0), could not be reached by Peano-Picard. Indeed, tentative itera-
tions of the previous procedure diverge from it, though slowly, as illustrated
in table 5.2.2.
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µ̂ = (159.582, 0) µ̂ = (626.852, 0)

100 200 300 400 500 600

0.5

1
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100 200 300 400 500 600

0.5

1

1.5

2
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Figure 5.5: The two solutions for the map (5.25) obtained by Newton-Raphson
procedure.

j µ(j) ε
(j)
µ M

1 (159.582,−4.78656 10−16) 0.000136467 ?
2 (159.582,−3.60152× 10−16) 0.000230661 1.69024
3 (159.581, 3.31963× 10−17) 0.000389873 1.69024
...

...
...

...
15 (159.064, 1.01548× 10−15) 0.211715 1.68935
16 (158.706, 3.33287× 10−16) 0.357531 1.68874
17 (158.103, 1.48207× 10−15) 0.603402 1.68769
18 (157.085, 1.93238× 10−15) 1.01728 1.6859
19 (155.373, 1.36685× 10−15) 1.71191 1.68284
20 (152.502, 8.66× 10−16) 2.87176 1.67752

...
...

...
...

Table 5.7: Divergence of Peano-Picard iterations applied to (5.16) near a solution
found by means of Newton-Raphson m = 2, µ(0) = 159.582u1 + 0u2 and (n = l =
640).
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