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Introduzione

Questa tesi di Dottorato indaga, da un punto di vista nuovo, l’equazione di Schrödinger e le
sue soluzioni, 




i~∂tψ(t, x) =

(
− ~2

2m
∆ + V (x)

)
ψ(t, x)

ψ(0, x) = ϕ(x) ∈ H2(Rn)

(1)

dove V ∈ C2(Rn) è una funzione di energia potenziale a supporto compatto, modellizzante
per esempio problemi di scattering. Come è noto la soluzione di questo problema di Cauchy
si esprime mediante la formula

ψ(t) = U(t)ϕ,

dove U(t) = e−
i
~

tH è il ben noto Propagatore di Schrödinger, corrispondente al gruppo di

operatori lineari unitari generato dall’Hamiltoniano quantistico H = − ~
2

2m∆ + V (x).
Lo scopo centrale di questa tesi è quello di costruire una classe di rappresentazioni integrali
per una opportuna ε-regolarizzazione Uε(t), mostrando successivamente l’attesa convergenza

Uε(t)ϕ
ε→0+

// U(t)ϕ . Precisamente, viene introdotto il Propagatore regolarizzato,

Uε(t) := e−
i+ε

~
tHε ,

dove il generatore di tale semigruppo è definito da Hε := − ~2

2m∆ − V
(i+ε)2

, e per il quale si

dimostra la seguente proprietà di convergenza forte:

U(t)ϕ
L2(Rn)

= lim
ε→0+

Uε(t)ϕ, ∀ϕ ∈ H2(Rn), ∀t ≥ 0. (2)

Il risultato principale della tesi consiste nella rappresentazione,

Uε(t)ϕ(x) =

∫

Rn

Uε(t, x, y)ϕ(y) dy,

il cui nucleo si costruisce mediante una classe di integrali oscillanti:

Uε(t, x, y) =

∫

Rk

e
i

(1+ε2)~
S(t,x,y,u)

ρ~

ε(t, x, y, u) du. (3)

i
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In questo tipo di rappresentazioni integrali risulta centrale l’utilizzo della classe delle fun-
zioni generatrici S (debolmente) quadratiche all’infinito relative alla famiglia di sottovarietà
Lagrangiane, grafico di Trasformazioni Canoniche,

Λt :=
{
(y, ξ;x, p) ∈ T ⋆Rn × T ⋆Rn : (x, p) = φt

H(y, ξ)
}

=
{
(y, ξ;x, p) ∈ T ⋆Rn × T ⋆Rn : p = ∇xS, ξ = − ∇yS, 0 = ∇uS

}
,

(4)

Tali funzioni generatrici, introdotte e usate da Chaperon, Laudenbach, Sikorav e Viterbo,
sono oggetti tipici della topologia simplettica e ricorrono in molte questioni di Calcolo delle
Variazioni, di Teoria di Morse e di Lusternik-Schnirelman. Il loro uso sistematico nell’attuale
ambiente (Schrödinger, Integrali Oscillanti) appare nuovo, anche rispetto alla vicina teoria
degli Operatori Integrali di Fourier.
Nella (4) φt

H è il gruppo di trasformazioni canoniche da T ⋆Rn in T ⋆Rn che risolve le equazioni

relative all’Hamiltoniana classica H(x, p) = p2

2m + V (x). In altre parole, (x, p)(t) := φt
H(y, ξ)

risolve: 



ẋ = ∇pH(x, p),

ṗ = −∇xH(x, p).
(5)

La costruzione di questi integrali oscillanti si realizza per mezzo di serie di operatori forte-
mente convergenti al Propagatore regolarizzato,

Uε(t)ϕ =

∞∑

j=0

Bε,j(t)ϕ, (6)

i cui termini ammettono rappresentazioni integrali con nuclei

Bε,j(t, x, y) =

∫

Rk

e
i

(1+ε2)~
S(t,x,y,u)

ρ~

ε,j(t, x, y, u) du, (7)

e dove le funzioni ρ~
ε,j ∈ L1(Rn × Rn × Rk; C), ∀ε > 0, ∀j ≥ 0, definiscono una serie L1

convergente:
∞∑

j=0

ρ~

ε,j = ρ~

ε ∈ L1(Rn × Rn × Rk; C).

Queste considerazioni permettono di dedurre che il nucleo del Propagatore regolarizzato Uε(t)
si rappresenta mediante un’integrale oscillante di fase S e di ampiezza complessa ρ~

ε dipen-
dente dalla scelta di S, ottenendo cośı la rappresentazione (3) sopra annunciata.
Un’importante conseguenza dell’esistenza di questa ampia classe di rappresentazioni con-
siste in una formulazione finito-dimensionale di Path Integral del Propagatore. Precisamente,
facendo riferimento ad un risultato dimostrato in [7], il Funzionale d’Azione classico del Cal-
colo delle Variazioni

A[γ] =

∫ t

0

1

2
m |γ̇(s)|2 − V (γ(s)) ds,

ammette una riduzione finito dimensionale (in cui lo spazio delle curve Γ(t, x, y) ⊂ H1([0, t]; Rn)
ha la struttura di varietà finito-dimensionale Γ ≃ Rk). Il funzionale cos̀ı ridotto rappresenta
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una funzione generatrice S per Λt. Applicando i risultati generali esposti sopra a questo caso
particolare di funzione generatrice dimostriamo la seguente formula di rappresentazione

Uε(t, x, y) =

∫

Γ(t,x,y)
e

i

(1+ε2)~
A[γ]

P ~

ε (dγ), (8)

dove la misura P ~
ε (dγ) viene definita come immagine della misura di Lebesgue complessa

ρ~
ε(t, x, y, u)du.

È importante sottolineare come la costruzione di questa classe di rappresentazioni integrali
sia globale nel tempo avendo evitato, con questa tecnica, i problemi legati alla comparsa delle
caustiche. Questo corrisponde al noto problema della non trasversalità delle sottovarietà La-
grangiane Λt rispetto alla varietà base Rn×Rn, il quale compare dopo un tempo critico e che
come conseguenza non permette l’esistenza di una funzione generatrice globale S(t, x, y) (cioè
senza parametri ausiliari). In questa tesi viene appunto risolto questo problema utilizzando
la classe delle funzioni generatrici S(t, x, y, u) con parametri ausiliari u ∈ Rk, generanti la
sottovarietà Lagrangiana Λt, anche in presenza di caustiche.
Differenti tecniche sono state usate per determinare rappresentazioni del Propagatore di
Schrödinger. Nelle prime formulazioni del metodo WKB [20], [22] si rappresenta la soluzione
ψ dell’equazione (1) nella forma

ψ(t, x) = A~(t, x)e
i
~
S(t,x).

In questa formula la funzione di fase S, definita solamente per t ∈ [0, t0] con t0 abbastanza
piccolo (relativo alla non esistenza di caustiche), risolve l’equazione di Hamilton-Jacobi:

|∇S(t, x)|2
2m

+ V (x) + ∂tS(t, x) = 0,

e la funzione ampiezza reale ammette uno sviluppo formale A~(t, x) =
∑∞

j=0 ~jAj(t, x), nel
quale i temini sono ottenuti per mezzo di una relazione ricorsiva e dove il termine di ordine
zero risolve l’equazione del trasporto:

∂tA0(t, x) +∇xS(t, x) · ∇xA0(t, x) +
1

2
∆xS(t, x)A0(t, x) = 0.

Il problema delle soluzioni globali nel tempo è affrontato nella teoria dell’Operatore Cano-
nico di Tunnel, [22], e nella teoria degli Operatori Integrali Fourier, sviluppatasi ad opera
di Hörmander [11] e Duistermaat [9] (per i risultati più recenti ved.[5], [15], [17], [6], [10]).
Altri approcci al problema impiegano le funzioni e misure di Wigner, e.g. [31]. Rispetto a
queste tecniche una delle differenze salienti con questo lavoro consiste nel tipo di funzioni
generatrici considerate. Mentre nella teoria degli Operatori Integrali di Fourier vengono uti-
lizzate sistematicamente varietà Lagrangiane coniche, cioè generate da funzioni 1−omogenee,
in questo approccio, come già accennato, assumono un ruolo centrale le funzioni generatrici
quadratiche all’infinito. In senso lato, mentre nel primo approccio si generalizza l’operazione
di trasformata di Fourier, nel secondo il riferimento euristico lo si può ritrovare negli integrali
di Fresnel.

Rispetto al problema di rappresentare il Propagatore di Schrödinger con integrali definiti
su spazi di curve, noti come Path Integrals, vi sono numerosi approcci (e.g. [2], [25], [12]). In
particolare Albeverio and Mazzucchi [2] hanno dimostrato recentemente una rappresentazione
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esatta mediante la teoria degli integrali di Fresnel infinito dimesionali, che rende rigorosa la
formulazione dell’integrale di Feymann. Segnaliamo infine il lavoro di Robbin and Salomon,
[25], che nel caso particolare di Hamiltoniani quadratici hanno ottenuto un Path Integral
finito dimensionale in connessione con la rappresentazione metaplettica del Propagatore.

La struttura della tesi è la seguente. Dopo alcuni preliminari iniziali, il capitolo 1 sviluppa
alcuni risultati generali circa l’espansione in serie per semigruppi C0 di operatori lineari.
Questi risultati non dipendono dalla particolare scelta del generatore e saranno applicati al
capitolo 4 al caso centrale del Propagatore di Schrödinger. Prima di fare questo è necessario
dimostrare alcuni teoremi riguardanti una larga classe di funzioni generatrici delle sottova-
rietà Lagrangiane Λt, che verranno usate come funzioni di fase per costruire gli integrali
oscillanti. A questo scopo nel capitolo 2 si ricorda la definizione delle funzioni generatrici
debolmente quadratiche all’infinito (GFWQI). Di seguito, utilizzando un risultato di Viterbo
[34] che riguarda l’equivalenza di due funzioni GFWQI, si prova che per V ∈ C2(Rn) a sup-
porto compatto, esiste una GFWQI per la sottovarietà Lagrangiana Λt e ne viene mostrata la
forma esplicita. Il passo successivo, il capitolo 3, è quello di introdurre una famiglia di opera-
tori integrali associati alla classe funzioni generatrici studiate nel capitolo precedente, i quali
ammettono kernel b(t, x, y) =

∫
Rk e

iλS(t,x,y,u)ρ(t, x, y, u) du, λ ∈ R. In particolare, vengono
studiate alcune operazioni fra tali operatori, provando che questa famiglia è chiusa rispetto
all’operazione di composizione. Infine, nel capitolo 4, vengono applicati i risultati ottenuti nei

capitoli precedenti al Propagatore e−
i+ε

~
tHε , derivando l’esistenza di un insieme di sviluppi

in serie di operatori i quali ammettono rappresentazioni mediante la famiglia degli integrali
oscillanti introdotta. L’ultimo teorema riguarda il caso speciale nel quale viene utilizzato
il funzionale d’Azione A[γ] come funzione generatrice, che permette di realizzare, a partire
dalla formulazione generale, una rappresentazione di Path Integral finito dimensionale per ψε.



Introduction

In this Phd Thesis we consider the Schrödinger equation




i~∂tψ(t, x) =

(
− ~2

2m
∆ + V (x)

)
ψ(t, x),

ψ(0, x) = ϕ(x) ∈ H2(Rn),

(9)

where V ∈ C2(Rn) is a compact support energy potential function, e.g. modelizing a one
particle scattering problem. As known the solution of this Cauchy problem can be represented
by the formula

ψ(t) = U(t)ϕ,

where U(t) = e−
i
~

tH is called Schrödinger Propagator, that corresponds to the group of

unitary linear operators generated from the quantistic Hamiltonian H = − ~
2

2m∆ + V (x).
The central aim of this Thesis is to construct a class of integral representations for a suitable
ε-regularization Uε(t), showing afterwards the expected convergence Uε(t)ϕ

ε→0+
// U(t)ϕ .

More precisely, it is introduced the regularized Propagator,

Uε(t) := e−
i+ε

~
tHε ,

where the generator of this semigroup is defined as Hε := − ~
2

2m∆− V
(i+ε)2 , and for which it is

proved the following property of strong convergence:

U(t)ϕ
L2(Rn)

= lim
ε→0+

Uε(t)ϕ, ∀ϕ ∈ H2(Rn), ∀t ≥ 0. (10)

the main result of this Thesis consists in the representation,

Uε(t)ϕ(x) =

∫

Rn

Uε(t, x, y)ϕ(y) dy,

where the kernel is constructed throught a class of oscillating integrals:

Uε(t, x, y) =

∫

Rk

e
i

(1+ε2)~
S(t,x,y,u)

ρ~

ε(t, x, y, u) du. (11)

v
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In this type of representation it is important the use of the class of generating function S

(weakly) quadratic at infinity relative to the family of Lagrangian submanifolds, graph of
Canonical Transformation,

Λt :=
{
(y, ξ;x, p) ∈ T ⋆Rn × T ⋆Rn : (x, p) = φt

H(y, ξ)
}

=
{
(y, ξ;x, p) ∈ T ⋆Rn × T ⋆Rn : p = ∇xS, ξ = − ∇yS, 0 = ∇uS

}
,

(12)

These generating function, introduced and used by Chaperon, Laudenbach, Sikorav e Viterbo,
are tipical objects of symplectic topology and arises in many questions of Calculus of Vari-
ations, Morse Theory and Lusternik-Schnirelman Theory. Their frequent use in the actual
framework (Schrödinger, Oscillating Integrals) is new, even respect to the near theory of
Fourier Integral Operator.
In (12) φt

H is the group of canonical transformations from T ⋆Rn in T ⋆Rn that solves the

related Hamilton’s equations for H(x, p) = p2

2m + V (x). In others words, (x, p)(t) := φt
H(y, ξ)

solves: 



ẋ = ∇pH(x, p),

ṗ = −∇xH(x, p).
(13)

The construction of this type of integrals it is realized by series of operators strongly conver-
gent to the regularized Propagator,

Uε(t)ϕ =

∞∑

j=0

Bε,j(t)ϕ, (14)

where the terms admits integral representations with kernels

Bε,j(t, x, y) =

∫

Rk

e
i

(1+ε2)~
S(t,x,y,u)

ρ~

ε,j(t, x, y, u) du, (15)

and where the functions ρ~
ε,j ∈ L1(Rn×Rn×Rk; C), ∀ε > 0, ∀j ≥ 0, define an L1-convergent

series:
∞∑

j=0

ρ~

ε,j = ρ~

ε ∈ L1(Rn × Rn × Rk; C).

These considerations permit us to realize that the kernel of the regularized Propagator Uε(t)
can be represented by an oscillating integral of phase function S and complex amplitude ρ~

ε

depending on the choice of S, obtaining in this way the representation (11) announced above.
An important conseguence of the existence of this type of representations consists in a finite
dimensional Path Integral formulation of the Propagator. More precisely in [7] it has been
proved that the classical mechanical Action functional

A[γ] =

∫ t

0

1

2
m |γ̇(s)|2 − V (γ(s)) ds,

evaluated on an suitable space of curves Γ(t, x, y) ⊂ H1([0, t]; Rn), that it is in fact a finite
dimensional manifold, corresponds to a weakly quadratic global generating function S for Λt.
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Applying the general results descripted above in this particular case of generating function
we prove the following representation:

Uε(t, x, y) =

∫

Γ(t,x,y)
e

i

(1+ε2)~
A[γ]

P ~

ε (dγ) (16)

Where P ~
ε (dγ) is well defined, as the complex image measure of ρ~

ε(t, x, y, u)du on Γ(t, x, y).
It is important to point out that the construction (11) is global in time, overcoming the
problem related to the occurrence of caustics. This is the well known problem of the non-
transversality of the Lagrangian submanifolds Λt that occours after a critical time, and this
behaviour does not permit the existence of a global generating function S(t, x, y) (without
auxiliary parameters). We overtake this problem by using the direct generalizations of this
function, namely the class of global generating functions S(t, x, y, u) involving auxiliary pa-
rameters u ∈ Rk that permit, as shown in (12), to generate the entire Lagrangian submanifold
even in the presence of non-transversality.

Different techniques have been used to find representations of the Schrödinger Propagator.
First of all we mention the WKB methods [20], [22] where the solution of (9) is represented
as

ψ(t, x) = A~(t, x)e
i
~
S(t,x).

In this formula the phase function S, that it is defined only for t ∈ [0, t0] with t0 small enough
(relative to the nonexistence of caustics) solves the Hamilton-Jacobi’s equation:

|∇S(t, x)|2
2m

+ V (x) + ∂tS(t, x) = 0,

and the real amplitude function admits a formal expansion A~(t, x) =
∑∞

j=0 ~jAj(t, x), where
the terms are obtained through a ricoursive relation and where the zero order term solves the
transport equation:

∂tA0(t, x) +∇xS(t, x) · ∇xA0(t, x) +
1

2
∆xS(t, x)A0(t, x) = 0.

The problem of the solution global in time it has been faced in the theory of Tunnel Canonical
Operator, [22], and in the theory of Fourier Integral Operators developed by Hörmander [11]
and Duistermaat [9]( for more recently results see [5], [15], [17], [6], [10]). Other results have
been obtained by the use of Wigner Functions and Wigner Measures, see for example [31].
With respect to this techniques one of the most important differents with this work corre-
sponds to the type of generating functions considered. While in the theory of Fourier Integral
Operators are always used conic Lagrangian manifold, that is generated by 1-omogeneous
functions, in this approach the generating functions quadratic at infinity have a central role.
While in the first approach it is generalized the operation of Fourier transform, in the second
an heuristic connection can be found in Fresnel integrals.
Respect to the problem to represent the Schrödinger Propagator with integrals defined on
spaces of curves, known as Path Integrals, there are several approaches (for example [2], [25],
[12]). In particular Albeverio and Mazzucchi [2] proved an exact representation by the use of
infinite dimensional Fresnel integrals, that provide a rigourus formulaton of Feynman integral.
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We mention the work of Robbin and Salomon [25] that in the case of quadratic Hamiltoni-
ans obtained a finite dimensional phase space Path Integral in connection with metaplectic
representation.

The plan of our paper is the following. In chapter 1, after some preliminaries, we developes
some general results about series expansion for C0−semigroup of linear operators. These
results are not depending of the particular choice of the generator and will be applied in
chapter 4 to the central case of the Schrödinger group. Before to do this we have to develop
some machinery about generating functions, that are the basic ingredient in order to build the
integral representation. To this purpose, in chapter 2 we first recall the definition of generating
function weakly quadratic ad infinity (GFWQI). Then, following a result by Viterbo [34] about
equivalence of two GFWQI, we prove that, under suitable assumption on potential V , there
exists a GFWQI for the Lagrangian submanifold Λt. The next step, chapter 3, is to introduce
a family of integral operators of the type we will use for our representation, that is, integral
operators with kernel b(t, x, y) =

∫
Rk e

iλS(t,x,y,u)ρ(t, x, y, u) du, λ ∈ R. In particular, we
study some operations among such operators, proving that this family is closed under these

operations. Finally, in chapter 4, we apply the previous machinery to the semigroup e−
i+ε

~
tHε

and we derive the existence of ρ~
ε by following the plane drawn above. The last theorem goes

to the special case in which we apply the integral representation to the functional given by
the classical mechanical action, that is, A[γ]. This allows us to derive a finite dimensional
path integral representation of ψε.





Chapter 1

Series expansions for semigroups of

linear operators

1.1 Introduction

In all this chapter we will assume that L : D(L) ⊂ X −→ X is a infinitesimal generator of
a C0−semigroup {etL}t≥0 on a Banach space X. In particular, L is a densely defined linear
operator satisfying the hypotheses of Hille–Yoshida theorem.
It is well known that if L ∈ L(X) the series expansion,

etL =

∞∑

j=0

(tL)j

j!
, (1.1)

holds true (and, indeed, this is a way to define the semigroup). However, this series does not
makes sense, generally, if L is an unbounded operator generating a C0−semigroup.
The main aim of this first chapter is to prove that the semigroup of linear operators etL,
generated by an arbitrary (generally unbounded) operator L, admits a general set of series
expansions:

etL =

+∞∑

j=0

Bj(t), (1.2)

that of course, in the case of bounded L, contains the particular series (1.1). It will be shown
that the set of all this series expansions has the structure of infinite dimesional affine space.
Moreover we will show how each series (1.2) changes after bounded variation of the generator,
namely if we consider L+K where K is any bounded linear operator.

1
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1.2 Preliminaries and settings

In the following X will denote a Banach space, H an Hilbert space. If I ⊂ R is an interval,
C(I;X) and Ck(I;X) will be, respectively, the sets of all continuous and continuously k times
differentiable functions ψ : I ⊂ R→ X. If I is closed and bounded such spaces will be endowed
by the standard norms ‖ψ‖C(I;X) := supt∈I ‖ψ(t)‖X, ‖ψ‖Ck(I;X) :=

∑k
j=0 ‖ψ(j)‖C0(I;X) (here

ψ(j) denotes the strong derivative of order j). Shortly, we will write ‖ψ‖C0 , ‖ψ‖C1 , . . . for
such norms. We will denote also by Cb(I;X) the set of functions ψ ∈ C(I;X) such that
‖ψ‖C0 < +∞. Such notation is kept also in the case of classical spaces Ck

b ([a, b]×Rd; Rm), that
is the space of functions F ∈ Ck([a, b]×Rd; Rm) such that F with all his derivatives up to order
k are bounded on [a, b]×Rd. The space of bounded linear operators on X will be denoted, as
usual, by L(X). This is a Banach space endowed with the operator–norm that will be denoted
by ‖L‖L(X) (or ‖L‖ shortly if it is clear what do we intend with) for an operator L ∈ L(X). If

ψ ∈ C([0, T ];X) then it is well-defined the Riemann Integral
∫ T
0 ψ(s) ds. Such integral is also

well defined in the case of a ψ belonging to Cb(]0, T ];X), a case that we will need in what
follows. We will need also to define convolutions. To this purpose let G : [0, T ] → L(X) and
assume thatG is strongly continuous (namely, G(·)ξ ∈ C([0, T ];X) for any ξ ∈ X). In this case,
if ψ ∈ C0([0, T ];X) is well defined the convolution G ∗ ψ(t) :=

∫ t
0 G(t− s)ψ(s) ds, ∀t ∈ [0, T ]

and, in fact, this defines a map of C([0, T ];X) into itself. If, moreover, we assume that G is
strongly differentiable and G′ : [0, T ] −→ L(X) we have that the above defined mapping takes
values in C1([0, T ];X). All these facts hold true also in the case of G :]0, T ] −→ L(X) under
the assumption, respectively, G(·)ϕ ∈ Cb(]0, T ];X) and G′(·)ϕ ∈ Cb(]0, T ];X).
The notation {etL}t≥0 stands for the C0−semigroup generated by a (generally unbounded)
linear operator L : D(L) ⊂ X −→ X which satisfies the hypotheses of Hille–Yosida theorem.
For such matter we will refer to Pazy [23]. We recall that if ϕ ∈ D(L), the function ψ(t) = etLϕ

is a strong solution of the Cauchy problem
{
ψ′(t) = Lψ(t), t ≥ 0,
ψ(0) = ϕ,

(1.3)

that is ψ ∈ C1([0,+∞[;X) ∩ C([0,+∞[;D(L)) and satisfies (1.3).

1.3 Series expansions and Integral equations

In this section we prove a wide set of series expansions for {etL}t≥0, and this is obtained
by proving a bijective corrispondence with a set of integral equations solving the Cauchy
problem (1.3).
To begin we introduce the definition of a mapping, related to the semigroup, that acts on a
general space of linear operators.

Definition 1.1. Over the space of linear operators

G := {G :]0, T ]→ L(X) |G(·)ϕ ∈ Cb(]0, T ];X) ∀ϕ ∈ X},

we define the mapping:

ΩL : G→ G, [ΩL(G)(t)]ϕ := etLϕ−
∫ t

0
G(s)e(t−s)Lϕ ds, ϕ ∈ X.
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Remark 1.2. It is easy to check that ΩL(G) ⊂ G. We call WL := ΩL(G), and observe that it
is an infinite dimensional affine sub-space of G. The space WL contains lots of elements and
in particular {etL}t≥0 belongs to WL (indeed etL = ΩL(0)).

Now we provide a new characterization of WL which is important because it is made by using
the generator L instead of the semigroup {etL}t≥0.

Theorem 1.3. In order that W ∈ G belongs to WL the following conditions must be satisfied
by W : there exists D ⊂ D(L) linear subspace dense in X such that

i) W (·)ϕ ∈ C([0, T ];X), ∀ϕ ∈ X;

ii) W (·)ϕ ∈ C1(]0, T ];X), ∀ϕ ∈ D;

iii) W (0)ϕ = ϕ, ∀ϕ ∈ X;

iv) there exists a constant CT ≥ 0 depending only by T such that

‖(W (t)L−W ′(t))ϕ‖ ≤ CT ‖ϕ‖, ∀ϕ ∈ D, ∀t ∈]0, T ].

Proof. Suppose first that W (·) ∈WL. Then, there exists G ∈ G such that

W (t)ϕ = etLϕ−
∫ t

0
G(s)e(t−s)Lϕ ds.

The first three properties are easily veryfied with D := D(L). For the last, notice that

W (t)Lϕ−W ′(t)ϕ = etLLϕ−
∫ t

0
G(s)e(t−s)LLϕ ds− LetLϕ

+ G(t)ϕ +

∫ t

0
G(s)Le(t−s)Lϕ ds

= G(t)ϕ, ∀ϕ ∈ D(L).

By the Banach–Steinhaus theorem it follows that CT := supt∈]0,T ] ‖G(t)‖ < +∞. Therefore

‖(W (t)L−W ′(t))ϕ‖ = ‖G(t)ϕ‖ ≤ CT ‖ϕ‖, ∀ϕ ∈ D(L), t ∈]0, T ].

Conversely, suppose the map W (t) : [0, T ] → L(X) satisfies i),. . . ,iv). By iv) turns out that
the operator W (t)L−W ′(t) can be extended from D to X. Let be G(t) such linear extention.
Clearly, by definition, if ϕ ∈ D we have G(·)ϕ ∈ Cb(]0, T ];X). For general ϕ ∈ X there is a
ψ ∈ D such that ‖ϕ− ψ‖ ≤ ε (here ε > 0). Therefore

‖G(t)ϕ −G(t0)ϕ‖ ≤ ‖G(t)(ϕ − ψ)‖ + ‖G(t)ψ −G(t0)ψ‖+ ‖G(t0)(ψ − ϕ)‖

≤ 2CT ‖ϕ− ψ‖+ ‖G(t)ψ −G(t0)ψ‖

≤ 2CT ε+ ‖G(t)ψ −G(t0)ψ‖ .
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Therefore we deduce that lim supt→t0 ‖G(t)ϕ − G(t0)ϕ‖ ≤ 2CT ε. Because ε is arbitrary, by
this {etL}t≥0follows G(·)ϕ ∈ C(]0, T ];X).
By the same argument it follows that ‖G(·)ϕ‖C0 ≤ CT ‖ϕ‖ so that G(·)ϕ ∈ Cb(]0, T ];X) for
any ϕ ∈ X. Now: take ϕ ∈ D ⊂ D(L) and ε > 0. We have

etLϕ−
∫ t

ε
G(s)e(t−s)Lϕ ds = etLϕ−

∫ t

ε
[W (s)L−W ′(s)]e(t−s)Lϕ ds

= etLϕ+

∫ t

ε

d

ds

[
W (s)e(t−s)Lϕ

]
ds

= etLϕ+
[
W (s)e(t−s)Lϕ

]s=t

s=ε

= etLϕ+W (t)ϕ−W (ε)e(t−ε)Lϕ.

(1.4)

By the Banach–Steinhaus theorem it follows that sups∈[0,T ] ‖W (s)‖ < +∞. Recalling that

W (ε)etLϕ −→W (0)etLϕ = etLϕ as ε→ 0+ and because

∥∥∥W (ε)e(t−ε)Lϕ−W (ε)etLϕ
∥∥∥ ≤ sup

s∈[0,T ]
‖W (s)‖

∥∥∥e(t−ε)Lϕ− etLϕ
∥∥∥ −→ 0, ε→ 0+,

we deduce that W (ε)e(t−ε)Lϕ −→ etLϕ as ε → 0+. Finally, by letting ε → 0+ in (1.4) and
bu using the property W (0) = I we obtain that ΩL(G) = W , and this concludes the second
part of the proof.

Consider now the Cauchy problem





ψ′(t) = Lψ(t), t ≥ 0

ψ(0) = ϕ,

(1.5)

where L is an infinitesimal generator of a C0-semigroup etL. The next theorem will show that
any couple (G,W := ΩL(G)) may be used to give an integral representation of the solution
ψ (namely of the semigroup etL:

Proposition 1.4. Let L : D(L) ⊆ X → X be a densely defined linear operator generating a
C0-semigroup, G ∈ G and W = ΩL(G) ∈ WL. Then ψ ∈ C([0, T ];X) is a strong solution of
(1.5) if and only if ψ is the unique solution of

ψ(t) = W (t)ϕ+

∫ t

0
G(t− s)ψ(s) ds. (1.6)

Proof. If ψ(t) = etLϕ is a strong solution of (1.5) with ϕ ∈ D(L), the conclusion follows
immediately by the definition of W = ΩL(G). Conversely: assume that ψ solves (1.6) with
W = ΩL(G). By a straightforward application of the Banach–Caccioppoli theorem it follows
that (1.6) has a unique solution C([0, T ];X) for any ϕ ∈ X. Indeed we observe that if ϕ ∈ D(L)
then a solution is etLϕ, but it is also unique in view of the contraction property of an suitable
iteration of map (1.6).
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The last proposition allows us to consider series expansion for ψ. Indeed, by the successive
approximations, setting

B0(t)ϕ := W (t)ϕ,

Bj+1(t)ϕ :=

∫ t

0
G(t− s)Bj(s)ϕ ds, ∀j ≥ 0,

(1.7)

we have

ψ(t) =

∞∑

j=0

Bj(t)ϕ,

and this series is strongly convergent for any ϕ ∈ X fixed. In other words we have the

Theorem 1.5. Let L : D(L) ⊆ X → X be a densely defined linear operator generating a
C0−semigroup, G ∈ G and W = ΩL(G) ∈WL. Then

etLϕ =

+∞∑

j=0

Bj(t)ϕ, (1.8)

where the operators Bj(t), j ≥ 0, are defined by (1.7).

Notice that in the case L = L0 +K with arbitrary bounded operator K (for instance, L =

i ~

2m∆− i
~
V in the Schrödinger equation (1)), choosing W (t) = etL0 (that is W (t) = ei

~

2m
t∆),

the corresponding G is G(t) = W (t)L −W ′(t) = etL0(L0 + K) − L0e
tL0 = etL0K, and the

series expansion becomes

etLϕ = etL0ϕ+

∫ t

0
e(t−t1)L0Ket1L0ϕ dt1

+

∫ t

0

∫ t1

0
e(t−t1)L0Ke(t1−t2)L0Ket2L0ϕ dt2 dt1 + . . .

(1.9)

This is one of the more classical perturbative method to construct the semigroup et(L0+K).
However the choice of W is not necessarily linked to semigroups. Indeed we will use different
kind of operators to represent the series of etL in a suitable way. This permits us, in the last
chapter, to discover a Feynman like representation of the propagator for the solution.

Remark 1.6. It is important to point out that for each W ∈WL it is constructed a different
series expansion (1.8). But as we seen in the Remark (1.2), WL has the structure of affine
dimensional space, so we deduce the same structure for the set of all possible series contructed
with this technique.
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1.4 Perturbations of Series expansions

We begin pointing out that expansion (1.9) allows us to prove a stability result for “lower
order” perturbations of the generator L of the semigroup.

Theorem 1.7. Let L0 : D(L0) ⊆ X→ X be an infinitesimal generator of a C0-semigroup etL0

and a family {Kε}ε>0 ⊂ L(X) is such that limε→0 ‖Kε‖ = 0. Finally, let be Lε := L0 +Kε

and etLε the C0−semigroup generated by Lε. Then, if CT := supt∈[0,T ] ‖etL0‖,
∥∥etLε − etL0

∥∥ ≤ e‖Kε‖CT t − 1. (1.10)

Proof. Indeed, recalling that there exists M > 0, ω ∈ R such that ‖etL0‖ ≤ Meωt, by (1.9)
we have that

∥∥∥etLεϕ− etL0ϕ
∥∥∥ ≤

∥∥∥
∫ t

0
e(t−t1)L0Kεe

t1L0ϕdt1

∥∥∥

+
∥∥∥
∫ t

0

∫ t1

0
e(t−t1)L0Kεe

(t1−t2)L0Kεe
t2L0ϕ dt2 dt1

∥∥∥+ . . .

≤




∞∑

j=1

‖Kε‖j
(

sup
τ∈[0,t]

‖eτL0‖
)j tj

j!


 ‖ϕ‖

=




∞∑

j=1

‖Kε‖jCj
T

tj

j!


 ‖ϕ‖

=
(
e‖Kε‖CT t − 1

)
‖ϕ‖,

and the conclusion is straightforward.

Now we notice that the class WL does not depend by bounded variations of the operator
L, namely perturbations made adding bounded linear operators. This concept is going to be
defined in the following

Definition 1.8. Let X be Banach space, L1 : D(L1) ⊆ X→ X and L2 : D(L2) ⊆ X→ X two
densely defined linear operators. We say that L1 ∼ L2 if and only if D(L1) ∩D(L2) is dense
in X and there exists some constant C1,2 depending by L1 and L2 such that ‖(L1 − L2)ϕ‖ ≤
C1,2‖ϕ‖, ∀ϕ ∈ D(L1) ∩D(L2).

With respect to this definition we have the

Proposition 1.9. Let be L1 and L2 two infinitesimal generators of C0−semigroups such that
L1 ∼ L2. Then WL1 = WL2 , that is the set WL depends only on the equivalence class [L].

Proof. We prove only that WL1 ⊂WL2 , the opposite inclusion being the same. Let be W1 ∈
WL1 . By the Proposition 1.3 we know that there exists a certain D1 ⊂ D(L1) linear subspace
dense in X on which W1 satisfies properties i),. . . ,iv). By Banach–Steinhaus theorem KT :=
supt∈[0,T ] ‖W (t)‖ is finite. In order that W1 ∈ WL2 we have just to check the iv) with L2 in
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place of L1. Let be D2 := D1 ∩D(L2). Clearly D2 is a dense linear subspace of X. Moreover,
by taking ϕ ∈ D2 ⊂ D(L1) ∩D(L2) we have

‖(W1(t)L2 −W ′(t))ϕ‖ = ‖(W1(t)(L2 − L1 + L1)−W ′
1(t))ϕ‖

≤ ‖W1(t)(L2 − L1)ϕ‖ + ‖(W1(t)L1 −W ′
1(t))ϕ‖

≤ ‖W1(t)‖ · ‖(L2 − L1)ϕ‖+ CT ‖ϕ‖

≤ (KTC1,2 + CT )‖ϕ‖. �

In particular we have the straightforward

Corollary 1.10. Let X Banach space, L : D(L) ⊆ X → X a linear operator generating
C0−semigroup. If L1 ∼ L, then exp{tL1} ∈WL.

We have shown that the set of all series expansions for etL, contructed with our technique,
has a bijective mapping with the infinite dimesional affine space WL, moreover we have
proved that this set depends only from the equivalent class [L]. Now we show how these
series expansions changes after a bounded variation of the generator the semigroup. This is
the subject of the following result:

Theorem 1.11. Let L : D(L) ⊆ X → X be a densely defined linear operator generating a
C0−semigroup, G ∈ G and W = ΩL(G) ∈WL. Then, if

etL
strongly

=

∞∑

j=0

Bj(t),

and K ∈ L(X), we have that

et(L+K) strongly
=

∞∑

j=0

B̃j(t),

Then,

B̃0(t) = B0(t) = W (t),

B̃j+1(t) = Bj+1(t) +

∫ t

0
W (t− s)KBj(s) ds. (1.11)

Proof. We use the property that WL+K does depend only from [L +K] that of course it is
the same of [L], so we can use W (t) to define B̃0(t) and to determine G̃(t):

G̃(t) = W (t)(L+K)− Ẇ (t) = W (t)L− Ẇ (t) +W (t)K

= G(t) +W (t)K.

Now the conclusion follows easily:

B̃j+1(t) =

∫ t

0
[G(t− s) +W (t− s)K]Bj(s) ds

= Bj+1(t) +

∫ t

0
W (t− s)KBj(s) ds. (1.12)



8 Lorenzo Zanelli



Chapter 2

Generating functions for

Lagrangian submanifolds

2.1 Introduction

In this chapter we first review some topics from the theory of generating functions for canon-
ical transformations theory, where Symplectic geometry — symplectic manifolds and their
Lagrangian submanifolds — is the natural framework to treat this subject.
Then, we begin by considering an important theorem of Viterbo [34] about quadratic at in-
finity generating functions of Lagrangian submanifolds contained in T ⋆Rn, and we prove the
validity of this result also for weakly quadratic generating functions of the submanifold Λt,
contained in T ⋆Rn × T ⋆Rn and generated by a certain class of Hamiltonian flows.
Finally, as our main goal, we will prove the existence and the explicit representation of a
global generating function weakly quadratic at infinity for Λt. But together with the pre-
vious result, we obtain in this way the explicit representations for all the weakly quadratic
generating functions of Λt.

9
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2.2 Some topics on the theory of generating functions

Adopting standard notations, as in [2], [4], we denote by ω = dp ∧ dx =
∑n

i=1 dpi ∧ dxi the
natural symplectic 2-form on T ⋆Rn. The notion of Lagrangian submanifold of T ⋆Rn can be
introduced by thinking of it as a multivalued generalization of the graph of the differential
of a function f on Rn, graph(df) = {(x, p) ∈ T ⋆Rn : p = ∇xf(x), x ∈ Rn}. It is easy to see
that: ω

∣∣
graph(f)

= ∂2
xixjf dx

i∧dxj ≡ 0, dim graph(f) = n, and graph(f) is globally transverse

to the fibers of T ⋆Rn −→ Rn. Thus, we say Λ ⊂ T ⋆Rn is a Lagrangian submanifold if: ω
∣∣
Λ

= 0

and dimΛ = n = 1
2dim(T ⋆Rn).

Maslov [21] and Hörmander[11] theory draws the local (with respect the base manifold Rn =
{x}) description of the Lagrangian submanifold Λ by means of the generating functions
S(x, u). Here is the definition of global generating function:

Definition 2.1. A generating function for a Lagrangian submanifold Λ is a smooth function
S = S(x, u) : Rn × Rk −→ R such that

i) Λ = {(x, p) ∈ T ⋆Rn : p = ∇xS, 0 = ∇uS },

ii) zero (in Rk) is a regular value of the map (x, u) 7−→ ∇uS(x, u).

In many questions on symplectic topology the generating functions quadratic at infinity and
weakly quadratic are of particular interest:

Definition 2.2. A generating function S : Rn × Rk → R is called

• quadratic at infinity (GFQI) if there exists a compact set K ⊂ Rk and a nondegen-
erate quadratic function a(x, u) = 〈a(x)u, u〉 such that S(x, u) = a(x, u) ∀u ∈ Rk \K.

• weakly quadratic at infinity (GFWQI) if there exists a non degenerate quadratic
function a(x, u) such that

‖S(x, ·) − a(x, ·)‖C1(Rk) <∞, ∀x ∈ Rn.

Of course a GFQI is a GFWQI. GFQI are very important in the description of Lagrangian
manifold. The basic reason is that there is a fundamental theorem due to Viterbo that
says that any generating function S̃ of a Lagrangian manifold is obtained from a generating
function quadratic at infinity S by a mixture of three basic operations that now we will
introduce:

Definition 2.3. Let S = S(x, u) be a generating function for a Lagrangian submanifold Λ,
S : Rn ×Rk −→ R. We say that S̃ is obtained by

• a stabilization from S, if there exists a regular non degenerate quadratic function
a = a(x, v) ≡ 〈a(x)v, v〉, v ∈ Rh and S̃(x, u, v) ≡ S(x, u) + 〈a(x)v, v〉.

• a fibered diffeomorphisms from S, if there exists a regular u : Rn×Rk −→ Rk such
that u(x, ·) is a diffeomorphism and S̃(x, v) ≡ S(x, u(x, v)).

• an addition of constant from S, if there exists a constant C ∈ R such that S̃(x, u) ≡
S(x, u) +C.



2. Generating functions for Lagrangian submanifolds 11

Remark 2.4. Although it is trivial to check that each of these operations on S gives still a
generating function S̃ for to the same Lagrangian submanifold, it is a rather intriguing fact
that by means of these three operations we can exactly classify all the generating functions of
a large enough class — see theorem (2.5) below — of Lagrangian submanifolds.

The Hamiltonian vector field XH , related to the Hamiltonian function H : T ⋆Rn → R,
is defined by iXH

ω = −dH. Denoting curves by γ = (x, p), the related Hamilton system
γ̇ = XH(γ) reads:

γ̇ = J∇H(γ), ⇐⇒





ẋ = ∇pH(x, p),

ṗ = −∇xH(x, p),
where J =

(
O I

−I O

)
.

We denote by φt
H : T ⋆Rn → T ⋆Rn the flow generated by XH , that is d

dtφ
t
H = J∇H(φt

H).
It is well known that Hamiltonian flows send Lagrangian submanifolds into Lagrangian sub-
manifolds. Furthermore, for any Lagrangian submanifold Λ belonging to a regular fiber of a
Hamiltonian H, Λ ⊂ H−1(e), we have: XH(x, p) ∈ T(x,p)Λ.

2.3 Equivalence of generating functions

The following theorem (see [34]) establishes the equivalence, in the sense of definition (2.3),
between all the generating functions quadratic at infinity for the Lagrangian manifolds in
T ⋆Rn related to the class of Hamiltonian flow φt

H with H compact supported.

Theorem 2.5 (Viterbo). Let p0 ∈ Rn, Λ0 := {(x, p0) ∈ T ⋆Rn : x ∈ Rn} and Λt = φt
H(Λ0)

⊂ T ⋆Rn the Lagrangian submanifold related to the Hamiltonian flow with a Hamiltonian H

having compact support. Then Λt admits by a GFQI. Furthermore, assuming Sj(t, x, uj) :
[0, T ] × Rn × Rkj −→ R, j = 1, 2 are two generating functions quadratic at infinity for Λt,
then there exist two stabilizations S̃1(t, x, v) and S̃2(t, x, v) of S1 and S2, with same final
parameter space Rk = Rk1 × Rh1 = Rk2 × Rh2, a fibered diffeomorphism

R : Rn × Rk −→ Rn × Rk

and a constant C, such that S̃1 and S̃2 + C are equivalent, that is the following diagram
commutes:

Rn × Rk

S̃1(t,·)
��

R
//
Rn × Rk

S̃2(t,·)+C
��

R
id

// R

(2.1)

Remark 2.6. The previous theorem has been generalized by Thèret (see [33]) for weakly
quadratic generating functions and the same Lagrangian submanifold.

The assumption about the support of H in Theorem 2.5 is naturally un-natural for the case
of mechanical Hamiltonians of type H(p, x) = 1

2mp
2 + V (x). However, with some work we

can extend the result also to this case under suitable assumption on V .
First, we begin to consider in some detail the product manifold T ⋆Rn × T ⋆Rn, and we will
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equipe it by a suitable symplectic structure ω̄ in order to deal with canonical transforma-
tions as Lagrangian submanifolds in such a ‘graph structure’. Let us consider the standard
projections

pr1 pr2
T ⋆Rn ←− T ⋆Rn × T ⋆Rn −→ T ⋆Rn

and we carry out a symplectic structure ω̄ on T ⋆Rn×T ⋆Rn ∼= T ⋆ (Rn × Rn) by the following
twofold pull-back of the standard symplectic 2-form on T ⋆Rn,

ω̄ := pr⋆
2ω − pr⋆

1ω = dp2 ∧ dx2 − dp1 ∧ dx1.

We point out that for any fixed time t ∈ [0, T ] the set

Λt :=
{
(y, ξ, x, p) ∈ T ⋆Rn × T ⋆Rn : (x, p) = φt

H(y, ξ)
}

(2.2)

is a Lagrangian submanifold of (T ⋆Rn × T ⋆Rn, ω̄), that is:

ω̄
∣∣
Λt

= 0, dim Λt = 2n =
1

2
dim(T ⋆Rn × T ⋆Rn).

Therefore we can try to determine a global generating function:

Λt = {(y, ξ;x, p) ∈ T ⋆Rn × T ⋆Rn : p = ∇xS, ξ = −∇yS, 0 = ∇uS } .

Before to do this, we first recall a classical result on Hamiltonian flows.

Proposition 2.7 (Hamilton). Let H(x, p) := H0(x, p) + H1(x, p) and denote φt
H(x, p),

φt
H0

(x, p) related Hamiltonian flows. Define the time-dependent Hamiltonian K(t, x, p) :=

(φt
H0

)⋆(H1) and consider the related flow φ
t,0
K (x, p). We have:

φt
H = φt

H0
◦ φt,0

K . (2.3)

Now we prove that Theorem of Viterbo (2.5) can be applied also for the Lagrangian sub-
manifold Λt ⊂ T ⋆Rn × T ⋆Rn and involving the general class of weakly quadratic at infinity
generating functions.

Theorem 2.8. Th.2.5, for (weakly) GFQI, does work also for the canonical transformation
Lagrangian submanifold Λt ⊂ T ⋆Rn×T ⋆Rn, related to the non-compact supported (in T ⋆Rn)

mechanical Hamiltonian H(x, p) := p2

2m + V (x), where the potential energy V is compact
supported (in Rn).

Proof. Define the map, by Viterbo [34]:

h : T ⋆Rn × T ⋆Rn −→ T ⋆(Rn × Rn),

(y, ξ;x, p) 7−→ (X̂ ; P̂ ) :=
(x+ y

2
,
ξ + p

2
; p− ξ, y − x

)
,

and observe that it is a symplectic isomorphism, sending the diagonal into the zero section.
Indeed the invertibility is straightforward, while:

h⋆ω(2n) =
1

2
(dp− dξ) ∧ (dy + dx) +

1

2
(dy − dx) ∧ (dξ + dp)

= dp ∧ dx− dξ ∧ dy = ω
(n)
2 − ω(n)

1 = ω̄,
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tells us that the pull back of the 2-form ω2n on T ⋆(Rn×Rn) is exactly ω̄ on T ⋆Rn×T ⋆Rn, so
it is a symplectic map. We consider the set Λ̂t := h(Λt) that is a Lagrangian submanifold of
T ⋆(Rn×Rn) because the map h is a symplectic and Λt is Lagrangian. In view of this relation,
we can find a generating function for Λ̂t if we know S for Λt:

Ŝ(t, X̂1, X̂2, ξ) := S(t, α, β, u) + (α + β − 2X̂1)γ + X̂2(α− β), ξ = (α, β, γ, u). (2.4)

For the same reason, if we compute h−1,

h−1 : T ⋆(Rn × Rn) −→ T ⋆Rn × T ⋆Rn,

(X̂1, X̂2; P̂1, P̂2) 7−→ (y, ξ;x, p) :=
(
X̂1 +

1

2
P̂2, X̂2 −

1

2
P̂1; X̂1 −

1

2
P̂2, X̂2 +

1

2
P̂1

)
,

we can determine S if we know Ŝ:

S(t, x, y, χ) := Ŝ(t, α, β, u) − y
(
β − 1

2
µ
)

+ x
(
β +

1

2
µ
)
− µα, χ = (α, β, µ, u). (2.5)

This two transformations preserves the property of quadraticity at infinity, so we deduce that
the existence and the unicity (modulo stabilitazions and fibered diffeomorphims) that we are
going to prove for generating function Ŝ it is proved also for S.
We easily observe that Λ̂t = φt

Ĥ
(Λ̂0), namely it is generated by an Hamiltonian flow, where:

Ĥ(X̂1, X̂2; P̂1, P̂2) := H
(
X̂1 −

1

2
P̂2, X̂2 +

1

2
P̂1

)

=
1

2m

(
X̂2 +

1

2
P̂1

)2
+ V

(
X̂1 −

1

2
P̂2

)
=: Ĥ0 + Ĥ1.

Note that this Hamiltonian is the sum of quadratic and compact supported terms. Now we
apply Proposition (2.7) to represent its flow:

φt
Ĥ

(X̂1, X̂2; P̂1, P̂2) = φt
Ĥ0
◦ φt,0

K̂
(X̂1, X̂2; P̂1, P̂2), (2.6)

with K̂ = (φt
Ĥ0

)⋆(Ĥ1). If we define Λ̃t := φ
t,0

K̂
(Λ̂0) then Λ̂t = φt

Ĥ0
(Λ̃t) and consequently

Λ̃t := φ−t

Ĥ0
(Λ̂t). Now we write down the explicit structure of φt

Ĥ0
:

φt
Ĥ0

(X̂1, X̂2; P̂1, P̂2) =
(
X̂1 +

t

2m

(
X̂2 +

P̂1

2

)
, X̂2; P̂1, P̂2 +

t

m

(
X̂2 +

P̂1

2

))
. (2.7)

This transformation is linear and symplectic, so admits a non degenerate quadratic generating
function S1 = S1(q1, q2, Q1, Q2); For this reason, given a generarating function S̃ for Λ̃t for
Λ̃t, we can immediatly determine Ŝ(t, Q̂1, Q̂2, u) in this way:

Ŝ(t, Q̂1, Q̂2, µ, z, u) = S̃(t, µ, z, u) + S1(µ, z, Q̂1, Q̂2). (2.8)

By the same argument, by S2 generating (φt
Ĥ0

)−1, we can determine Ŝ if we know S̃:

S̃(t, Q̃1, Q̃2, α, β, u) = Ŝ(t, α, β, u) + S2(α, β, Q̃1, Q̃2). (2.9)

In view of the compactness of K we can now apply Th. (2.5) to have the existence and
unicity (modulo stabilitazions and fibered diffeomorphism) for generating functions weakly
quadratic at infinity S̃ of Λ̃t, but the transformations (2.8) and (2.9) preserves the property
of quadraticity at infinity, so we conclude the validity of the theorem also for Λ̂t.
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2.4 Representations of generating functions

In this section we provide a result of existence and representation for the class of weakly
quadratic generating functions of Λt described in the previous section. We begin proving a
simple Lemma about the “partial reduction” of a generating function; this will be useful in
the next theorem, where it is possible to prove the property of weakly quadraticity at infinity
(see definition 2.2) only after this type of particular reduction.

Lemma 2.9. Consider the stationary condition for a generating function S of Λ ⊂ T ⋆Rn ×
T ⋆Rn, with respect to the group of the parameters u:

0 = ∇uS(x, y, u, v), (2.10)

Suppose that there exists a smoot function g : R2n × Rk → Rk such that

u = g(x, y, v),

realize the relation (2.10); then it is possible to determine a reduced new generating function
S,

S(x, y, v) = S(x, y, g(x, y, v), v).

Proof. Indeed

{(y, ξ, x, p) ∈ T ⋆Rn × T ⋆Rn : ξ = −∇yS p = ∇xS, 0 = ∇vS}
= {(y, ξ, x, p) : ξ = −∇yS +∇uS · ∇yg, p = ∇xS +∇uS · ∇xg, 0 = ∇uS · ∇vg, 0 = ∇vS}
= {(y, ξ, x, p) : ξ = −∇yS p = ∇xS, 0 = ∇uS, 0 = ∇vS} = Λ

The following theorem establishes the existence and the explicit representation for a weakly
quadratic generating function for Λt.

Theorem 2.10. Suppose that V ∈ C2(Rn) with compact support, and let be H(x, p) :=
p2

2m + V (x). Then there exists a generating function S(t, x, y, u) weakly quadratic at infinity
for the Lagrangian submanifold Λt, such that in the interval t ∈ [0, T ] assumes this form:

S(t, x, y, u) = m
|x− y|2

2t
+
m

2
|u|2 + c(t, x, y, u), (2.11)

where the auxiliary parameters u ∈ Rk with k = k(T, V ) ∈ N and the remaining term c ∈
C2

b ([0, T ] ×Rn × Rn × Rk; R).

Proof. We start borrowing a result by [7]. In order to do this we have first to introduce some
notations. Let N ∈ N and µ := 2n(2N + 1). In the space L2([0, t]; R2n), given v ∈ Rµ ≡
(R2N+1)2n, v = (v−N , . . . , vN ) with vj ∈ R2n, let pN (v) :=

∑
|j|≤N vjej(r), ej(r) = 1√

t
ei

2π
t

jr

be the trigonometric polynomial with coefficients v and PNL
2([0, t]; R2n) the linear subspace

of L2([0, t]; R2n) whose elements are {pN (v)}v∈Rk . We will use the notation pN (v) = (vx, vp),
where vx, vp ∈ L2([0, t]; Rn). Finally, define QNL

2([0, t]; R2n) := PNL
2([0, t]; R2n)⊥.
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In [7] has been proved that, if N is big enough 1, namely if N is such that

‖∇2H‖L∞ · (1 +
√

2N )T

2πN
< 1,

then it is possible construct a global generating function for any Lagrangian submanifold Λt,
t ∈ [0, T ], of type

S(t, x, y, v) = A[γ(t, x, y, v)] =

∫ t

0
[γp(s)γ̇x(s)−H(γx(s), γp(s))] ds, (2.12)

where A[·] is the action functional evaluated on a suitable set of curves(2) γ = (γx, γp) ∈
H1([0, t]; R2n) depending of (t, x, y, v) ∈ [0, T ] × Rn × Rn × Rk (where k = k(T, V, n) =
2n(2N + 1)). The curves (γx, γp) have the following structure





γx(s) := y +
x− y
t

s+

∫ s

0
φx(r) dr − s

t

∫ t

0
φx(r) dr, φx := ux + fx

u ,

γp(s) := m
x− y
t

+
1

t

∫ t

0
φx(r) dr +

∫ s

0
φp(r) dr, φp := vp + f

p
v ,

(2.13)

where (fx, fp) ≡ (fx
N (t, x, y, v), fp

N (t, x, y, v)) ∈ QNL
2([0, t]; R2n) solves the fixed point equa-

tion:

(fx, fp) = QNJ∇H (h(t, x, y, (vx, vp) + (fx, fp))) . (2.14)

About (fx, fp) we have precisely that





fx(·) =
1

m
QNh

p(t, x, y, vp + fp)(·) =
1

m
QN

∫ •

0
fp(r) dr,

fp(·) = −QN∇V (hx(t, x, y, vx + fx)(·)).
(2.15)

It is easy to check that (2.15) can be rewritten in the form:





QN γ̇
x(t, x, y, v) =

1

m
QNγ

p(t, x, y, v),

QN γ̇
p(t, x, y, v) = −QN∇V (γx(t, x, y, v)).

(2.16)

Generally, fx and fp they are non linear functional(3), of v, and [7] provides some good
information on them that will be useful in what follows. In particular, there exists constant
C,C ′ ≥ 0 such that

‖f(t, x, y, v)(·)‖L2 ≤ Ct, ‖∇vf(t, x, y, v)(·)‖L2 ≤ C ′t. (2.17)

1in order to equation (2.14) is generated by a contraction map
2Clearly H1([0, t]; R2n) is the usual Sobolev space.
3We stress the fact that the upper indexes x and p are just labels that recall to us on which component

we are working. On the other side the lower indexes are true variables for the various functions involved. In
particular, vx, vp are elements of L2([0, t]; Rn) that depends only by v ∈ Rk whereas f

x,p

N (t, x, y, v) is again in
L2([0, t]; Rn) and it depends by x, y, u and t explicitly.
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Moreover it is important to observe that the fx(t, x, y, v)(s), and then γx(t, x, y, v)(s), depends
only of (vx

−N , ..v
x
−1, v

x
1 , ...v

x
N ), so they are not depending of vp and vx

0 . Indeed by the second
of (2.15) we deduce that fp does not depend of vp and vx

0 , and because the first of (2.15)
shows a linear relation between fx and fp, the same holds true also for fx. Finally, in view of
the definition of γx(t, x, y, v)(s), it is straightforward to recognize that the same conclusion
holds for it. The utility of this observations will be clear below.
We now come back to (2.12),

S(t, x, y, v) =

∫ t

0
γp(s)γ̇x(s)−H(γx(s), γp(s)) ds

=

∫ t

0
γp(s)γ̇x(s)− 1

2m
|γp(s)|2 − V (γx(s)) ds

=

∫ t

0
(PN + QN )γp(s) · (PN + QN )γ̇x(s)− 1

2m
|(PN + QN )γp(s)|2 − V (γx(s)) ds

=

∫ t

0
PNγ

p(s) · PN γ̇
x(s) + QNγ

p(s) ·QN γ̇
x(s)

− 1

2m
|PNγ

p(s)|2 − 1

2m
|QNγ

p(s)|2 − V (γx(s)) ds.

(2.18)

By the first of (2.16) we have that

S(t, x, y, v) =

∫ t

0
PNγ

p(s) · PN γ̇
x(s)− 1

2m
|PNγ

p(s)|2 +
m

2
|QN γ̇

x(s)|2 − V (γx(s)) ds.

(2.19)

We recall now that the function S so constructed generates the Lagrangian submanifold Λt:

Λt :=
{
(y, ξ;x, p) ∈ T ⋆Rn × T ⋆Rn : (x, p) = φt

H(y, ξ)
}

= {(y, ξ;x, p) ∈ T ⋆Rn × T ⋆Rn : p = ∇xS, ξ = − ∇yS, 0 = ∇vS} .

Therefore, the stationary condition,

0 = ∇vS(v) = (∇vxS(v),∇vpS(v)), (2.20)

we derive the following relations:





PN γ̇
x(t, x, y, v) =

1

m
PNγ

p(t, x, y, v),

PN γ̇
p(t, x, y, v) = −PN∇V (γx(t, x, y, v)).

(2.21)

Recalling the parametrizations (2.13), the previous relations becomes





vx(s) +
x− y
t
− vx

0√
t

=
1

m
PNγ

p(t, x, y, v)(s),

vp(s) = −PN∇V (γx(t, x, y, v))(s).

(2.22)
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In view of the Lemma 2.9, we can insert the first (2.21) in (2.19), and obtain a reduced
generating function:

S =

∫ t

0
mPN γ̇

x(s) · PN γ̇
x(s) +mQN γ̇

x(s) ·QN γ̇
x(s)

− m

2
|PN γ̇

x(s)|2 − m

2
|QN γ̇

x(s)|2 − V (γx(s)) ds

=

∫ t

0

m

2
|PN γ̇

x(s)|2 +
m

2
|QN γ̇

x(s)|2 − V (γx(s)) ds

=

∫ t

0

m

2
|PN γ̇

x(s)|2 +
m

2
|fx(s)|2 − V (γx(s)) ds.

(2.23)

We realize that the new associated parameter space is u := (vx
−N , ..v

x
−1, v

x
1 , ...v

x
N ) ∈ R2N ·n =

Rk ⊂ Rµ because, in wiev of the observation made above, fx and γx have the dependence only
on u and not on all the other parameter (vx

0 ; vp), and obviuosly we have that PN γ̇
x(s) depends

only from u parameters, because the derivative eliminate the dependence from the mean term
vx
0 . In this way we obtain a more detailed representation of the generating function:

S(t, x, y, u) =

∫ t

0

m

2

∣∣∣vx(s) +
x− y
t
− v0√

t

∣∣∣
2
+
m

2
|fx(s)|2 − V (γx(s)) ds

= m
|x− y|2

2t
+
m

2

∫ t

0

∣∣∣vx(s)− v0√
t

∣∣∣
2
ds+

m

2

∫ t

0
|fx(s)|2 ds−

∫ t

0
V (γx(s)) ds

= m
|x− y|2

2t
+
m

2

∑

0<|j|≤N

|uj |2 +
m

2

∫ t

0
|fx(t, x, y, u)(s)|2 − V (γx(t, x, y, u)(s)) ds.

(2.24)

Finally, by defining

c(t, x, y, u) :=

∫ t

0

m

2
|fx(t, x, y, u)(s)|2 − V (γx(t, x, y, u)(s)) ds,

we conclude that

S(t, x, y, u) = m
|x− y|2

2t
+
m

2
|u|2 + c(t, x, y, u),

generate the same Lagrangian submanifold Λt and it is the expected generating function
weakly quadratic at infinity. In order to check this final sentence, it is enough consider the
non degenerate quadratic form P (u) := m

2 |u|2, for which

‖S − P‖C1 = ‖∇uS −∇uP‖C0 = ‖∇uc‖C0 < +∞. (2.25)

Moreover by using the C2
b -regularity property of f(t, x, y, u)(τ) and γx(t, x, y, u)(τ) in the

variables (t, x, y, u) we obtain the C2
b -regularity of c(t, x, y, u) and so of S(t, x, y, u).

Remark 2.11. We remark that for (t, x, y) ∈ [0, T ] × Rn × Rn fixed the space of curves
Γ(t, x, y) := {γx(t, x, y, u) ∈ H1([0, t]; R2n) : u ∈ Rk} has a structure of finite dimensional
manifold induced by the map γ(t, x, y, ·) : Rk −→ H1([0, t]; R2n). Indeed the inverse of this
injective map, together with Γ(t, x, y), represents exactly the unique local chart needed to
define the structure of manifold.
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As a conseguence of Theorems (2.8) and (2.10) we prove the representation for a generic
weakly quadratic generating function of Λt.

Theorem 2.12. Suppose that V ∈ C2(Rn) with compact support, and let be H(x, p) :=
p2

2m + V (x). Then any generating function S(t, x, y, v1) weakly quadratic for the Lagrangian
submanifold Λt verifies the relation:

S(t, x, y, v1)+Ω(t, x, y)w1 ·w1 = m
|x− y|2

2t
+
m

2
|v2|2+c(t, x, y, v2)+Q(t, x, y)w2·w2+C, (2.26)

Proof. We consider the generating function of Theorem (2.10):

S(t, x, y, u) = m
|x− y|2

2t
+
m

2
|u|2 + c(t, x, y, u), u ∈ Rk. (2.27)

Appling Thereom (2.8) we deduce that any other generating function is connected with
this one by combinations of three operations: stabilization by suitable nondegenerate matrix
Q(t, x, y) and Ω(t, x, y) on some Rk1 and Rk2, a composition with a fibered diffeomorphism
Φ(t, x, y, ·) : Rµ → Rµ, sum of a constant C, (see definition 2.3). From the composition of S
with these operations we obtain the expected result.



Chapter 3

Integral operators related to

generating functions

3.1 Introduction

In this chapter we construct a family of integral operators related to the class of generating
functions studied in the previous chapter. More precisely we made a direct link between the
representations of the kernel for this operators and weakly quadratic at infinity generating
functions of the Lagrangian submanifolds Λt = φt

HΛ0. For these operators we will show some
important properties, that are due to the use of Hamiltonian flow φt

H to define the set Λt.
In particular, we study some operations among such operators, proving that this family is
closed under these operations. In the next chapter we will use a particular subset of these
operators, that are more strictly connected to φt

H and that will be foundamental to determine
the integral representations of Schrödinger Propagator .

19
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3.2 A family of integral operators

In this section we define a large class of Integral operators that exibits interesting properties
related to generating functions.
Consider a generating function S : [0, T ]× Rn × Rn × Rk −→ R weakly quadratic at infinity
for Λt. The existence of such functions was proved in Theorem 2.10. We are interested here
to study integral operators of type

[B(t)ϕ] (x) :=

∫

Rn

b(t, x, y)ϕ(y) dy, where b(t, x, y) :=

∫

Rk

eiλS(t,x,y,u)ρ(t, x, y, u) du, (3.1)

where λ ∈ R and ρ is some complex amplitude function. Among all the several possible
hypotheses on ρ that makes B(t) a bounded linear operator on L2(Rn) we will introduce the
following class of densities:

Definition 3.1. Let Ξk be the class of all the complex functions ρ : [0, T ]×Rn×Rn×Rk −→ C,
ρ = ρ(t, x, y, u) such that

i) supx∈Rn ‖ρ(t, x, ·, ·)‖L1(Rn×Rk) ≤ CT < +∞, ∀t ∈ [0, T ];

ii) supy∈Rn ‖ρ(t, ·, y, ·)‖L1(Rn×Rk) ≤ CT , ∀t ∈ [0, T ].

It is easy to check that if ρ ∈ Ξk then B(t) is well defined and B(t) ∈ L(L2(Rn)). Moreover

Lemma 3.2. The family of operators {B(t)}t∈[0,T ] is uniformly bounded on L2(Rn), that is
‖B(t)‖ ≤ CT for all t ∈ [0, T ].

Proof. By Schur Lemma and the properties of ρ ∈ Ξk we have

‖B(t)‖2 ≤
(

sup
x∈Rn

∫

Rn

|b(t, x, y)|dy
)
·
(

sup
y∈Rn

∫

Rn

|b(t, x, y)|dx
)

≤
(

sup
x∈Rn

∫

Rn

∫

Rk

|ρ(t, x, y, u)|dudy
)
·
(

sup
y∈Rn

∫

Rn

∫

Rk

|ρ(t, x, y, u)|dudx
)

= sup
x∈Rn

‖ρ(t, x, ·, ·)‖L1(Rn×Rk) · sup
y∈Rn

‖ρ(t, ·, y, ·)‖L1(Rn×Rk).

≤ C2
T
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3.3 Properties of operators

Here we establish some important properties about the family of integral operators defined
in the previous section. Operators of type (3.1) are the base to construct the integral rep-
resentations (3). The next theorem is a crucial step because it allows us to prove that their
kernel admits the same type of representation for each generating function S.

Theorem 3.3. Assume that S1 and S2 be two generating functions for Λt weakly quadratic
at infinity with space of parameters, respectively, Rk1 and Rk2. Then, for any (t, x, y) ∈
[0, T ]× Rn × Rn and λ ∈ R, there exists a bounded linear operator

N = Nt,x,y,λ : L1(Rk1 ; C) −→ L1(Rk2; C), (3.2)

such that ∫

Rk1

eiλS1(t,x,y,u)ρ(u) du =

∫

Rk2

eiλS2(t,x,y,v) [Nρ] (v) dv, ∀λ ∈ R.

Moreover

‖Nt,x,y,λ‖L(L1(Rk1 );L1(Rk2 )) ≤ 1. (3.3)

In particular: if ρ ∈ Ξk1, then ρ̃ = Nρ, that is ρ̃(t, x, y, v) := [Nt,x,y,λρ(t, x, y, ·)] (v) belongs
to Ξk2 for all λ ∈ R.

Proof. By Viterbo’s theorem 2.5 there exists stabilizations

S̃1 = S1(t, x, y, u) + 〈Q1(t, x, y)ū, ū〉,

S̃2 = S2(t, x, y, v) + 〈Q2(t, x, y)v̄, v̄〉,

of the generating functions S1 and S2 on the same space of parameters (u, ū), (v, v̄) ∈ Rk =
Rk1 × Rk̄1 = Rk2 × Rk̄2. We will call w the new parameters, that is u = Πk1w, ū = Πk̄1

w.
Moreover there exists a fibered diffeomorphism

Rt,x,y : Rk −→ Rk

such that S̃1 and S̃2 are equivalent, that means

S̃1(t, x, y, w) = S̃2(t, x, y,Rt,x,y(w)), ∀w ∈ Rk.

Now, define

σ1
t,x,y,λ(ū) :=

1

(2π)k/2
e−

|ū|2

2
−iλ〈Q1(t,x,y)ū,ū〉.

This function clearly fulfills the following identity:

∫

Rk̄1

eiλ〈Q1(t,x,y)ū,ū〉σ1
t,x,y,λ(ū) dū = 1.
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Then, for any ρ ∈ L1(Rk1; C), we have

∫

Rk1

eiλS1(t,x,y,u)ρ(u) du =

∫

Rk1×Rk̄1

eiλ(S1(t,x,y,u)+〈Q1(t,x,y)ū,ū〉)ρ(u)σ1
t,x,y,λ(ū) du dū

=

∫

Rk1×Rk̄1

eiλS̃1(t,x,y,w)ρ(Πk1w)σ1
t,x,y,λ(Πk̄1

w) dw

=

∫

Rk1×Rk̄1

eiλ
eS2(t,x,y,Rt,x,y(w))ρ(Πk1w)σ1

t,x,y,λ(Πk̄1
w) dw

=

∫

Rk2×Rk̄2

eiλ
eS2(t,x,y,w)ρ

(
Πk1R

−1
t,x,y(w)

)
σ1

t,x,y,λ

(
Πk̄1

R−1
t,x,y(w)

)
|JR−1

t,x,y(w)| dw

=

∫

Rk2

eiλS2(t,x,y,v) [Nt,x,y,λ ρ] (v) dv,

where, of course,

[Nt,x,y,λ ρ] (v) :=

∫

Rk̄2

eiλ〈Q2(t,x,y)v̄,v̄〉ρ
(
Πk1R

−1
t,x,y(v, v̄)

)
σ1

t,x,y,λ

(
Πk̄1

R−1
t,x,y(v, v̄)

)
|JR−1

t,x,y(v, v̄)| dv̄.
(3.4)

It remains to prove that N ≡ Nt,x,y,λ ∈ L(L1(Rk1);L1(Rk2)). This is straightforward because,

|Nρ(v)| ≤
∫

Rk̄2

∣∣ρ
(
Πk1R

−1
t,x,y(v, v̄)

)∣∣σ1
t,x,y,λ

(
Πk̄1

R−1
t,x,y(v, v̄)

)
|JR−1

t,x,y(v, v̄)| dv̄

hence,

‖Nρ‖L1(Rk2 ) =

∫

Rk2

|Nρ(v)| dv

≤
∫

Rk2

(∫

Rk̄2

∣∣ρ
(
Πk1R

−1
t,x,y(v, v̄)

)∣∣ σ1
t,x,y,λ

(
Πk̄1

R−1
t,x,y(v, v̄)

)
|JR−1

t,x,y(v, v̄)| dv̄
)
dv

=

∫

Rk1×Rk̄1

|ρ (Πk1w)|σ1
t,x,y,λ

(
Πk̄1

w
)
dw

=

(∫

Rk1

|ρ(u)| du
)(∫

Rk̄1

σ1
t,x,y,λ(ū) dū

)

= ‖ρ‖L1(Rk1 ).

For the last part of the statement, just the last inequality shows that

‖ρ̃(t, x, y, ·)‖L1(Rk2 ) ≤ ‖ρ(t, x, y, ·)‖L1(Rk1 ),

and by this and the fact that ρ ∈ Ξk1 it follows immediately that ρ̃ ∈ Ξk2, for any λ ∈ R.
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We now consider two operators of type (3.1) based upon two different ρ and different S,
generating functions for Λt weakly quadratic at infinity. By the previous theorem, modulo a
linear transformation, we can assume that the two kernels are of type

b1,2(t, x, y) =

∫

Rk

eiλS(t,x,y,u)ρ1,2(t, x, y, u) du.

The next corollary, that indeed is an immediate consequence of the Theorem 3.3, shows that
the convolution of the two operators generated in this way is still of the same type:

Corollary 3.4. Consider λ ∈ R, S(t, x, y, u) GFQI of Λt, ρ1,2 ∈ Ξk and let b1,2 be the
corresponding kernels for the operators B1,2 defined as in (3.1). Moreover, suppose that
‖ρ1(t, x, y, ·)‖L1(Rk) is uniformly bounded in t ∈ [0, T ] and y ∈ Rn, that is (1)

sup
t∈[0,t]

sup
y∈Rn

‖ρ1(t, x, y, ·)‖L1(Rk) < +∞.

Finally, the operator

B(t)ϕ :=

∫ t

0
B1(t− s)B2(s)ϕds.

is well defined and is of type (3.1) with corresponding ρ given by

ρ(t, x, z, u) =

∫ t

0
Nt,x,z,λbs(t, x, z, ·) ds,

where
bs(t, x, z, w) = ρ1(t− s, x, y, u)ρ2(s, y, z, v), w = (y, u, v).

Proof. First notice that, by definition,

B(t)ϕ =

∫ t

0
B1(t− s)B2(s)ϕ ds

=

∫ t

0

(∫

Rn

b1(t− s, x, y)
∫

Rn

b2(s, y, z)ϕ(z) dz dy

)
ds

=

∫

Rn

(∫ t

0

∫

Rn

b1(t− s, x, y)b2(s, y, z) dy ds
)
ϕ(z) dz.

Now, by definition of b1,2,
∫

Rn

b1(t− s, x, y)b2(s, y, z) dy

=

∫

Rn

(∫

Rk

eiλS(t−s,x,y,u)ρ1(t− s, x, y, u) du
)(∫

Rk

eiλS(s,y,z,v)ρ2(s, y, z, v) dv

)
dy

=

∫

Rk×Rk

(∫

Rn

eiλ[S(t−s,x,y,u)+S(s,y,z,v)]ρ1(t− s, x, y, u)ρ2(s, y, z, v) dy

)
dudv,

1This is striclty more than ρ1 ∈ Ξk, but enough for our purpose.
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all the exchanges in the integrals being justified by the application of Fubini–Tonelli theorem,
that holds true in our hypotheses.

Define now the space of parameters w := (y, u, v) ∈ Rn×Rk×Rk = Rn+2k, and notice that
the function

S̃s(t, x, z, w) := S(t− s, x, y, u) + S(s, y, z, v)

is still a generating function of Λt, with parameters w and for 0 < s < t. Introducing the
auxiliary kernel bs(t, x, z, w) := ρ1(t − s, x, y, u)ρ2(s, y, z, v), and applying (3.2) the theorem
3.3 we can write

∫

Rn

b1(t− s, x, y)b2(s, y, z) dy =

∫

Rn+2k

eiλS̃s(t,x,z,w)bs(t, x, z, w) dw

=

∫

Rk

eiλS(t,x,z,u)Nbs(u) du,

where N was defined in (3.4). We have to precise that Nbs stands for Nt,x,z,λbs(t, x, z, ·), and
moreover that N depends upon s. We can finally write the form for the kernel of B(t), being

b(t, x, z) =

∫ t

0

∫

Rk

eiλS(t,x,z,u)Nbs(u) du =

∫

Rk

eiλS(t,x,z,u)

(∫ t

0
Nbs(u) ds

)
du,

so that the dependance on s disappear in ρ(t, x, z, u) :=
∫ t
0 Nbs(u) ds. We have just finally

to check that ρ ∈ Ξk. To this purpose, by (3.3), we have that

‖ρ(t, x, z, ·)‖L1(Rk) ≤
∫ t

0
‖Nbs(·)‖L1(Rk) ds ≤

∫ t

0
‖bs‖L1(Rn+2k) ds.

Now

‖bs‖L1(Rn+2k) ≤
∫

Rn

∫

Rk

∫

Rk

|ρ1(t− s, x, y, u)ρ2(s, y, z, v)| dv du dy

≤ sup
r∈[0,T ],y∈Rn

‖ρ1(r, x, y, ·)‖L1(Rk)‖ρ2(s, y, ·, ·)‖L1(Rn×Rk)

and since ρ2 ∈ Ξk the conclusion is immediate.



Chapter 4

The Schrödinger Propagator

4.1 Introduction

We briefly recall some well known facts about Schrödinger equation. First, if the potential
V ∈ L∞(Rn) ∩ Lp(Rn) with p > n

2 and p > 2, it is well defined the selfadjoint operator

H := − ~2

2M ∆x + V (x) on the domain H2(Rn) (here H2(Rn) stands for the usual Sobolev
space W 2,2(Rn)). Also in the case of V ∈ L∞(Rn; R) the same conclusions hold; in particular,
as we have done in the previous sections, there will be considered V ∈ C2(Rn; R) with compact
support. This class of potentials arises in many problems of quantum mechanics, for example
in problems of scattering and molecular modelling.
By Stone theorem it follows that it is well defined the unitary group of linear operators

e−
i
~

tH , and for any ϕ ∈ H2(Rn) the function ψ(t, x) := e−
i
~
tHϕ(x) is a strong solution for

the Schrödinger equation




i~∂tψ(t, x) =
(
− ~

2

2m∆ + V (x)
)
ψ(t, x), t ∈ R, x ∈ Rn,

ψ(0, x) = ϕ(x), x ∈ Rn.

The starting point for a derivation of Feynman Path Integral representation is the following
well known perturbative series expansion:

e−
i
~
tHϕ = e

i~
2

t∆ϕ+

∫ t

0
e

i~
2

(t−s)∆V e
i~
2

s∆ϕ ds+ . . . (4.1)

Unfortunately, the Feynman Path Integral,

e−
i
~

tHϕ =

∫

γ(t)=x
e

i
~
A[γ] ϕ(γ(0)) Dγ, (4.2)

that arises by this expansion is purely formal.
In order to obtain a rigorous Feynman like formula together with a wide class of integral rep-
resentations, we apply the results of chapter 1 to determine a general set of series expansions

for the regularized Propagator Uε(t) := e−
i+ε

~
tHε , with Hε := − ~

2

2m∆− V
(i+ε)2 :

Uε(t)ϕ =

∞∑

j=0

Bε,j(t)ϕ.

25
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It will be shown the connection between these series of operators and the class of generating
functions S for the Lagrangian submanifold Λt by an appropriate integral representation.
Indeed each terms of the series has the representation

Bε,j(t)ϕ =

∫

Rn

∫

Rk

e
i

(1+ε2)~
S(t,x,y,u)

ρ~

ε,j(t, x, y, u) du ϕ(y) dy. (4.3)

The convergence of the series:

∞∑

j=0

ρ~

ε,j = ρ~

ε ∈ L1(Rn × Rn × Rk; C),

related to the series of the integral operators, permits us to obtain the representation:

Uε(t)ϕ(x) =

∫

Rn

∫

Rk

e
i

(1+ε2)~
S(t,x,y,u)

ρ~

ε(t, x, y, u) du ϕ(y) dy. (4.4)

We point out that this representation is obtained for any generating function weakly quadratic
at infinity S studied in chapter 2. In particular the generating function constructed in the The-
orem 2.10 corresponds to the use of the Action functional A[γ] =

∫ t
0

1
2m |γ̇(s)|

2 − V (γ(s)) ds
evaluated on a suitable finite dimensional space of curves Γ(t, x, y). This permits us to obtain
a finite dimensional Path Integral formulation:

Uε(t)ϕ(x) =

∫

Rn

∫

Γ(t,x,y)
e

i

(1+ε2)~
A[γ]

P ~

ε (dγ) ϕ(y) dy.

This will be the subject of the last theorem of the chapter.
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4.2 Series expansions of the Propagator

In this section we apply the results of chapter 1, about the series expansions of semigroups
of linear operators, to the case of the regularized Schrodinger Propagator.
Now we begin by proving that a suitable ε-regularitazion of the Hamiltonian allows to ap-

proximate the unitary group e−
i
~
tH .

Theorem 4.1. Assume that V ∈ L∞(Rn) ∩ Lp(Rn), p > n
2 and p > 2 and set

Hε := − ~2

2m
∆− V

(i+ ε)2
.

Then e−
i
~
tH is the strong limit of e−

i+ε
~

tHε , that is

lim
ε→0+

e−
i+ε

~
tHεϕ

L2(Rn)
= e−

i
~

tHϕ, ∀ϕ ∈ H2(Rn). (4.5)

Proof. By triangular inequality we have

lim sup
ε→0+

∥∥∥e−
i+ε

~
tHεϕ− e− i

~
tHϕ

∥∥∥
L2
≤ lim sup

ε→0+

∥∥∥e−
i+ε

~
tHεϕ− e− i+ε

~
tHϕ

∥∥∥
L2

+lim sup
ε→0+

∥∥∥e−
i+ε

~
tHϕ− e− i

~
tHϕ

∥∥∥
L2

For the first term in the right hand side we observe that

Kε := Hε −H = − ~2

2m
∆− V

(i+ ε)2
−
(
− ~2

2m
∆ + V

)
= −

[
1 +

1

(i+ ε)2

]
V

it is a bounded operator on L2(Rn) ∀ε > 0, and verifies limε→0+ ‖Kε‖ = 0. Therefore, applying
Theorem 1.7 we conclude that

∥∥∥e−
i+ε

~
tHεϕ− e− i+ε

~
tHϕ

∥∥∥
L2
≤
(
e‖Kε‖CT t − 1

)
‖ϕ‖L2

ε→0+−→ 0,

where CT = supε∈]0,1]

∥∥∥e−
i+ε

~
tH
∥∥∥ < +∞ for any t fixed. For the second term

∥∥∥e−
i+ε

~
tHϕ− e− i

~
tHϕ

∥∥∥
L2

=
∥∥∥e−

ε
~
tHϕ− ϕ

∥∥∥
L2

ε→0+−→ 0,

by the strong continuity of the semigroup e−
ε
~
tH .

In the following definition we will assume that S is the generating function constructed in

Theorem (2.10), where it is proved the decomposition S = m
|x−y|2

2t + m
2 |u|2 +c(t, x, y, u), with

the remaining term c ∈ C2
b .

Definition 4.2. We introduce the set

Σ~

ε :=

{
σ ∈ L1(Rk; C) :

∫

Rk

σ(u)e
− 1

(i+ε)~

m
2
|u|2

du = 1

}
. (4.6)
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Then, given σ~
ε ∈ Σ~

ε , we define the integral operator with parameters t ∈]0, T ] and ε > 0:

Wε(t)ϕ(x) :=

∫

Rn

∫

Rk

1

(2πt(i+ ε)~)n/2
e
− 1

(i+ε)~
S(t,x,y,u)

σ~

ε (u) du ϕ(y) dy. (4.7)

We will denote by Wε(t, x, y) the kernel of Wε(t), that is,

Wε(t, x, y) :=

∫

Rk

1

(2πt(i+ ε)~)n/2
e
− 1

(i+ε)~
S(t,x,y,u)

σ~

ε (u) du. (4.8)

Remark 4.3. This set of operators, defined as the conseguence of the different choice of the
function σ~

ε ∈ Σ~
ε , is contained in the family of operators studied in the previous chapter. For

this reason the operators Wε(t) are not directly related to the particular function S because, in
view of Theorem 3.2, this representation of the kernel is possible for any generating function
weakly quadratic at infinity. Moreover we observe that the functions σ~

ε depends only from the
auxiliary parameters u ∈ Rk. As a conseguence we can say that these operators are related to
the entire class of weakly quadratic generating functions, and with respect to this we can say
that they are directly connected to the group of canonical transfomations φt

H generating Λt.
As we will see in next theorems, these operators represent the main tool to contruct series
expansions converging to the Schrödinger Propagator.

With this settings, we have the following theorem about properties of these operators:

Theorem 4.4. Let σ~
ε ∈ Σ~

ε , {Wε(t)}t∈[0,T ], ε > 0 defined by (4.2). Then Wε(t) ∈ L(L2(Rn))
and verifies the properties of Theorem 1.3, that is:

i) Wε(·)ϕ ∈ C0([0, T ];L2(Rn)), ∀ϕ ∈ L2(Rn);

ii) Wε(·)ϕ ∈ C1(]0, T ];L2(Rn)), ∀ϕ ∈ H2(Rn);

iii) limt→0+ Wε(t)ϕ = ϕ, ∀ϕ ∈ L2(Rn);

iv) there exists a constant CT ≥ 0 depending only by T such that

‖(Wε(t)Lε −W ′
ε(t))ϕ‖L2 ≤ CT ‖ϕ‖L2 , ∀ϕ ∈ H2(Rn), ∀t ∈]0, T ];

where Lε := − i+ε
~
Hε = − i+ε

~

(
− ~

2

2m∆− V
(i+ε)2

)
.

Proof. We first prove that Wε(t) ∈ L(L2(Rn)) for all t ∈]0, T ] (Wε(0) = I). Due to the Schur
lemma, we prove that

sup
x∈Rn

∫

Rn

|Wε(t, x, y)| dy < +∞, sup
y∈Rn

∫

Rn

|Wε(t, x, y)| dx < +∞.

Because these two estimates are similar, we will limit to prove only the first one. To do this
first notice that

∫

Rn

|Wε(t, x, y)| dy ≤
∫

Rn

∫

Rk

∣∣∣∣∣
1

(2πt(i + ε)~)n/2
e
− 1

~(i+ε)
S(t,x,y,u)

σ~

ε (u)

∣∣∣∣∣ du dy.
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Now, we recall that a particular generating function S, constructed in theorem 2.10, has the
decomposition:

S(t, x, y, u) = m
|x− y|2

2t
+
m

2
|u|2 + c(t, x, y, u). (4.9)

But all the others are obtained by fibered diffeomorphism, stabilizations and sum of constants
so they the proof in what follows does not change so much in the general case. However in
this case we can obtain the estimate:

∣∣∣e−
1

~(i+ε)
S
∣∣∣ ≤ e

− ε

~(1+ε2)

„
|x−y|2

2t
+ m

2
|u|2+c(t,x,y,u)

«

, ∀t ∈ [0, T ], (4.10)

Therefore,
∫

Rn

|Wε(t, x, y)| dy

≤
∫

Rn

1
(
2π~t

√
1 + ε2

)n/2
e
− ε

~(1+ε2)

|x−y|2

2t

[∫

Rk

e
− ε

~(1+ε2)
(m

2
|u|2+c(t,x,y,u))|σ~

ε (u)| du
]
dy

≤M~

ε

∫

Rn

1
(
2π~t

√
1 + ε2

)n/2
e
− ε

~(1+ε2)

|x−y|2

2t dy

Indeed, in view of the definition (4.6) of σ~
ε and by using the property c(t, ·) ∈ L∞ with

respect all variables, we have:

M~

ε := sup
(t,x,y)∈[0,T ]×R2n

∫

Rk

e
− ε

~(1+ε2)
(m

2
|u|2+c(t,x,y,u))|σ~

ε (u)| du < +∞ (4.11)

Henceforth, noticing moreover that

∫

Rn

1
(
2π~t

√
1 + ε2

)n/2
e
− ε

~(1+ε2)

|x−y|2

2t dy =

(√
1 + ε2

ε

)n/2

,

we finally conclude that, ,

∫

Rn

|Wε(t, x, y)| dy ≤M~

ε

(√
1 + ε2

ε

)n/2

, ∀ 0 < ε < 1, t ∈ [0, T ],

and by this the conclusion is immediate. For the remaining statements of the Lemma, the
unique serious part is the proof of point iv). Let ϕ ∈ H2(Rn). By direct computation and
integration by parts, we have

Wε(t)Lεϕ−W ′
ε(t)ϕ =

=

∫

Rn

[
Wε(t, x, y)

(
− i+ ε

~

(
− ~2

2m
∆yϕ(y) − V (y)

(i+ ε)2
ϕ(y)

))
− ∂tWε(t, x, y)ϕ(y)

]
dy

=

∫

Rn

[
(i+ ε)~

2m
∆yWε(t, x, y) +Wε(t, x, y)

V (y)

(i + ε)~
− ∂tWε(t, x, y)

]
ϕ(y) dy

=:

∫

Rn

Gε(t, x, y)ϕ(y) dy. (4.12)
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By computing all the derivatives in Wε(t, x, y) we deduce:

Gε(t, x, y) =

∫

Rk

[
V (y)

(i+ ε)~
− ∆yS

2m
+

1

(i+ ε)~

|∇yS|2
2m

+
n

2t
+

1

(i+ ε)~
∂tS

]
σ~

ε (u)e
− ε

1+ε2
S
eiλε,~Sdu

=:

∫

Rk

gε(t, x, y, u)e
iλε,~ S du,

(4.13)
for λε,~ = 1

(1+ε2)~
. By using (4.9) in (4.13) we obtain

gε(t, x, y, u) =

=

[
V (y)

(i+ ε)~
− ∆yc

2M
− n

2t
+

1

(i+ ε)~

|∇yc|2
2m

+
1

(i+ ε)~

|∇yS0|2
2m

+
1

(i+ ε)~

∇yS0 · ∇yc

m

+
n

2t
+

1

(i+ ε)~
∂tS0 +

1

(i+ ε)~
∂tc

]
σ~

ε (u)

(2πt(i+ ε)~)n/2
e
− ε

1+ε2
S

=

[
V (y)

(i+ ε)~
− ∆yc

2m
+

1

(i+ ε)~

|∇yc|2
2m

+
1

(i+ ε)~

∇yS0 · ∇yc

m
+

1

(i+ ε)~
∂tc

]
σ~

ε (u)e
− ε

1+ε2
S

(2πt(i + ε)~)n/2

because, if we denote as S0 := m |x−y|2
2t , then we have:

|∇S0|2
2m

+ ∂tS0 = 0.

We can now proceed with the estimates: it is easy to check that for ε ≤ 1 we have that

|gε(t, x, y, u)| ≤
[
C1 +

C2

~
+
C3

~
|x− y|

] |σ~
ε (u)|

(
2π~
√

1 + ε2t
)n/2

∣∣∣e−
ε

1+ε
S
∣∣∣ , (4.14)

The constants C1,2,3 are also depending upon T :

C1 :=
1

2m
sup

t∈[0,T ]
‖∆yc(t, ·)‖∞ (4.15)

C2 := sup
t∈[0,T ]

∥∥∥∥V (·) +
|∇yc(t, ·)|2

2m
+∇yc(t, ·) + ∂tc(t, ·)

∥∥∥∥
∞

(4.16)

C3 := sup
t∈[0,T ]

∥∥∥∥
∇yc(t, ·)

t

∥∥∥∥
∞

(4.17)

where ‖·‖∞ is evaluated with respect to (x, y, u) ∈ Rn × Rn × Rk.
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Therefore, recalling also (4.10),

sup
x∈Rn

∫

Rn

|Gε(t, x, y)|dy

≤ sup
x∈Rn

∫

Rn

∣∣∣∣
∫

Rk

gε(t, x, y, u)e
iλε,~S(t,x,y,u) du

∣∣∣∣ dy

≤ sup
x∈Rn

∫

Rn

∫

Rk

|gε(t, x, y, u)| du dy

≤ sup
x∈Rn

∫

Rn

∫

Rk

[
C1 +

C2

~
+
C3

~
|x− y|

] |σ~
ε (u)|

(
2π~t

√
1 + ε2

)n/2

∣∣∣e−
ε

1+ε
S
∣∣∣ du dy

= sup
x∈Rn

∫

Rn

∫

Rk

[
C1 +

C2

~
+
C3

~
|x− y|

] |σ~
ε (u)|

(
2π~t

√
1 + ε2

)n/2
e
− ε

~(1+ε2)

„
|x−y|2

2t
+ m

2
|u|2+c(t,x,y,u)

«

dudy

≤ M~

ε sup
x∈Rn

∫

Rn

[
C1 +

C2

~
+
C3

~
|x− y|

]
1

(
2π~t

√
1 + ε2

)n/2
e
− ε

~(1+ε2)

|x−y|2

2t dy

where M~
ε it is defined in (4.11). Integrating the others terms we have:

sup
x∈Rn

∫

Rn

|Gε(t, x, y)|dy ≤ M~

ε

(
C1 +

C2

~
+
C3

2~

)(√
1 + ε2

ε

)n
2

, ∀t ∈]0, T ], (4.18)

Because:
∫

Rn

|x− y| 1
(
2π~t

√
1 + ε2

)n/2
e
− ε

~(1+ε2)

|x−y|2

2t dy =
1

2

(√
1 + ε2

ε

)n
2

In the same way

sup
y∈Rn

∫

Rn

|Gε(t, x, y,~)|dx ≤M~

ε

(
C1 +

C2

~
+
C3

2~

)(√
1 + ε2

ε

)n
2

, ∀t ∈]0, T ], (4.19)

Finally, by (4.18) and (4.19),

‖Wε(t)Lεϕ−W ′
ε(t)ϕ‖2L2 ≤

(
sup
x∈Rn

∫

Rn

|Gε(t, x, y)| dy
)(

sup
y∈Rn

∫

Rn

|Gε(t, x, y)| dx
)
‖ϕ‖2L2

≤
[
M~

ε

(
C1 +

C2

~
+
C3

2~

)]2
(√

1 + ε2

ε

)n

, ∀t ∈]0, T ].

which is the conclusion.

In the previous theorem we have proved that operators Wε(t) satisfy the properties of
Thereom 1.3; this is important because now we can apply Theorem 1.5 and use these operators
to construct series that converges directly to the semigroup of linear operators corresponding
to regularized Propagator Uε(t).
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Theorem 4.5. Let σ~
ε ∈ Σ~

ε fixed, Σ~
ε being defined by (4.6), Wε(t) defined by (4.7) and

Gε(t) := Wε(t)Lε −W ′
ε(t) with Lε := − i+ε

~
Hε. Then, the semigroup of bounded operators

generated by the operator Hε = − ~2

2m∆ − V
(i+ε)2

admits the strongly convergent series expan-
sion:

e−
(i+ε)

~
tHεϕ =

∞∑

j=0

Bε,j(t)ϕ, ∀ϕ ∈ H2(Rn), (4.20)

where Bε,0(t) := Wε(t), and

Bε,j+1(t)ϕ =

∫ t

0
Gε(t− s)Bε,j(s)ϕ ds, ∀j ≥ 0.

Remark 4.6. Notice that there is not a unique series expansion (4.20), because this depends
on the choice of σ~

ε ∈ Σ~
ε . In this way we have a set of different series that converges to

the same semigroup, that anyway is not the entire set of possible series that arises in the
setting of chapter 1. This is due to the choice we made about the definition of the set Σ~

ε , in
order to contruct in a simple way a set of operators Wε(t) that it is intrisically related to the
Hamiltonian flow, as we have pointed out in Remark 4.3.

4.3 Integral Representations of the Propagator

The next step is to study the form of series espansion (4.20). In particular, we want to show

that there is an appropriate integral representation of e−
(i+ε)

~
tHεϕ. In order to do this we have

to study the convergence of the kernels of the operators Bε,j(t):

Theorem 4.7. Let ε, ~ > 0, σ~
ε ∈ Σ~

ε fixed. Choose a generating function S weakly quadratic
at infinity for the submanifold Λt. There exists then a function ρ~

ε = ρ~
ε(t, x, y, u) such that

e−
(i+ε)

~
tHεϕ(x) =

∫

Rn

Uε(t, x, y)ϕ(y) dy, ∀ϕ ∈ H2(Rn), (4.21)

where

Uε(t, x, y) :=

∫

Rk

e
i

(1+ε2)~
S(t,x,y,u)

ρ~

ε(t, x, y, u) du. (4.22)

Proof. By (4.20) we have

e−
(i+ε)

~
tHεϕ =

∞∑

j=0

Bε,j(t)ϕ, ∀ϕ ∈ H2(Rn).

We recall that

Bε,j(t)ϕ(x) =

∫

Rn

(∫

Rk

1

(2πt(i+ ε)~)n/2
e
− 1

(i+ε)~
S(t,x,y,u)

σ~

ε (u) du

)
ϕ(y) dy.
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Defining

ρ~

ε,0(t, x, y, u) :=
1

(2πt(i+ ε)~)n/2
e
− ε

(1+ε2)~
S(t,x,y,u)

σ~

ε (u),

we have that

Bε,0(t)ϕ(x) =

∫

Rn

(∫

Rk

eiλε,~S(t,x,y,u)ρ~

ε,0(t, x, y, u) du

)
ϕ(y) dy,

where λε,~ = 1
(1+ε2)~

. It is easy to check that ρ~
ε,0 ∈ Ξk, where the class Ξk is defined by 3.1.

Moreover, by definition of the operator Gε(t) and (4.13),

Gε(t)ϕ(x) =

∫

Rn

(∫

Rk

eiλε,~Sgε(t, x, y, u)σ
~

ε (u) du

)
ϕ(y) dy,

It is easily verified that, by (4.14), gε×σ~
ε ∈ Ξk. Furthermore, by (4.18), ‖gε(t, x, y, ·)σ~

ε (·)‖L1

is uniformly bounded in (t, y) ∈ [0, T ] × Rn. Therefore, applying corollary 3.4 j-times we
obtain that

Bε,j(t)ϕ(x) =

∫

Rn

(∫

Rk

eiλε,~S(t,x,y,u)ρ~

ε,j(t, x, y, u) du

)
ϕ(y) dy,

where

ρ~

ε,j(t, x, y, u) =

∫ t

0
Nt,x,y,λε,~

[
gε(t− s, x, ♭, ♯)σ~

ε (♯)ρ~

ε,j−1(s, ♭, y, ♮)
]
ds. (4.23)

Therefore

e−
(i+ε)

t
~Hεϕ(x) =

∞∑

j=0

∫

Rn

∫

Rk

eiλε,~S(t,x,y,u)ρ~

ε,j(t, x, y, u)ϕ(y) du dy. (4.24)

Our aim is now to exchange the sum with the two integrals in (4.24). In order to do this it is
enough to prove the total convergence of the series

∑∞
j=0 e

iλε,~S(t,x,y,u)ρ~

ε,j(t, x, y, u)ϕ(y), that

is the convergence in norm L1(Rn × Rk). With this respect, note that

∞∑

j=0

∥∥∥eiλε,~S(t,x,·,•)ρ~

ε,j(t, x, ·, •)ϕ(·)
∥∥∥

L1(Rn×Rk)
≤

∞∑

j=0

∥∥∥ρ~

ε,j(t, x, ·, •)ϕ(·)
∥∥∥

L1(Rn×Rk)

=

∞∑

j=0

∫

Rn

∫

Rk

|ρ~

ε,j(t, x, y, u)|du |ϕ(y)| dy

Now, by (3.3) and (4.23) we have that

‖ρ~

ε,j(t, x, y, ·)‖L1(Rk) ≤
∫ t

0

∥∥∥gε(t− s, x, ♭, ♯)σ~

ε (♯)ρ~

ε,j−1(s, ♭, y, ♮)
∥∥∥

L1(Rn×Rk×Rk)
ds.
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Recalling (4.14),
∥∥∥gε(t− s, x, ♭, ♯)σ~

ε (♯)ρ~

ε,j−1(s, ♭, y, ♮)
∥∥∥

L1(Rn×Rk×Rk)

=

∫

Rn

∫

Rk

∫

Rk

|gε(t− s, x, z, v)σ~

ε (v)ρ~

ε,j−1(s, z, y, u)| dv du dz

=

∫

Rn

∫

Rk

|gε(t− s, x, z, v)σ~

ε (v)| ‖ρ~

ε,j−1(s, z, y, ·)‖L1(Rk) dv dz,

therefore

‖ρ~

ε,j(t, x, y, ·)‖L1(Rk) ≤
∫ t

0

(∫

Rn

∫

Rk

|gε(t− s, x, z, v)σ~

ε (v)| ‖ρ~

ε,j−1(s, z, y, ·)‖L1(Rk) dv dz

)
ds,

and iterating this inequality we obtain

‖ρ~

ε,j(t, x, y, ·)‖L1(Rk)

≤
∫

∆j

(∫

(Rn)j+1

∫

(Rk)j

j∏

k=1

|gε(tk−1 − tk, xk, xk+1, vk)σ
~

ε (vk)| ‖ρ~

ε,0(tj , xj+1, y, ·)‖L1(Rk)dvdx

)
dt,

where dv = dv1 · · · dvj, dx = dx1 · · · dxj+1, dt = dt1 · · · dtj, ∆j = {(t1, . . . , tj) : 0 ≤ tj ≤
tj−1 ≤ . . . ≤ t1 ≤ t} is the j−dimensional simplex and with the agreeing that x0 = x and
t0 = t. Now, by definition of ρ~

ε,0, by (4.10) applied in a similar way of (4.18) we obtain

sup
xj∈Rn

∫

Rn

∫

Rk

|gε(tj−1 − tj, xj , xj+1, vj)σ
~

ε (vj)| ‖ρ~

ε,0(tj , xj+1, y, ·)‖L1(Rk) dxj+1 dvj ≤ K~

ε

where the constant K~
ε depend (as shown) from ε and ~ but also from t, that we consider

fixed. In order to conclude we observe that iterating the previous estimate we get:

‖ρ~

ε,j(t, x, y, ·)‖L1(Rk) ≤ K~

ε,j

∫

∆j

dt = K~

ε,j

tj

j!
,

and now the conclusion follows easily.

Now we consider the previuos result about integral representations of the regularized Prop-
agator Uε(t), together with the result, Th. (4.1), on the covergence to the exact Propagator
U(t) as ε→ 0.

Theorem 4.8. Let H = − ~
2

2m∆ + V (x) where V ∈ C2(Rn) with compact support, and

ψ(t) := e−
i
~
tHϕ, ϕ ∈ H2(Rn). Choose a generating function S weakly quadratic at infinity

for the submanifold Λt.
Then, for any ε > 0 there exists ρ~

ε(t, x, y, u) such that:

ψ(t)
L2(Rn)

= lim
ε→0+

ψε(t), ψε(t, x) =

∫

Rn

(∫

Rk

e
i

(1+ε2)~
S(t,x,y,u)

ρ~

ε(t, x, y, u)du

)
ϕ(y)dy. (4.25)

Proof. In the Theorem (4.1) we proved

e−
i
~
tHϕ = lim

ε→0+
e−

i+ε
~

tHεϕ.

Now, applying Theorem (4.7) we obtain immediatly the representation 4.25.
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4.4 Path Integral representation

In this last section we apply the results previously obtained, in order to realize a Path
Integral representation of the Propagator. More precisely we consider Thereom 4.8, where
now we make a particular choice of generating function, namely the generating function of
Theorem 2.10 involving the Action functional. We are now ready to prove the following:

Theorem 4.9. Take the operator H = − ~2

2m∆x + V (x) where V ∈ C2(Rn) with compact
support. Then the solution of the Schrödinger equation





i~∂tψ(t, x) =
(
− ~

2

2m∆x + V (x)
)
ψ(t, x),

ψ(0, x) = ϕ(x) ∈ H2(Rn),

(4.26)

admits the path integral representation:

ψ(t, ·) L2(Rn)
= lim

ε→0+
ψε(t, ·), (4.27)

ψε(t, x) =

∫

Rn

Uε(t, x, y)ϕ(y) dy, Uε(t, x, y) =

∫

Γ(t,x,y)
e

i

(1+ε2)~
A[γ]

P ~

ε (dγ), (4.28)

where γ ∈ Γ(t, x, y) ⊂ H1([0, t]; R2n), and Γ(t, x, y) it is a finite dimensional manifold.

Proof. As corollary of previous result we choose the global generating function described in
Theorem (2.10), where

S(t, x, y, u) = A[γx(t, x, y, u)] =

∫ t

0

1

2
m|γ̇x(s)|2 − V (γx(s)) ds. (4.29)

The action functional A[·] is evaluated on a suitable set of curves γx with parameters
(t, x, y, u) ∈ [0, T ]×Rn×Rn×Rk. The curves γx(t, x, y, u)(·) ∈ H1([0, t]; R2n) are constructed
as follows:

γx(t, x, y, u)(s) := y+
x− y
t

s+

∫ s

0
φx(r)dr− s

t

∫ t

0
φx(r)dr , φx(s) := ux(s)+fx(t, x, y, u)(s).

(4.30)
For construction ux(·) ∈ PNL

2([0, t]; Rn) while the functions fx(·) ∈ QNL
2([0, t]; Rn) are

defined in [7].
The space of curves Γ(t, x, y) := {γ(t, x, y, u)(·)|u ∈ Rk} ≃ Rk has a structure of finite
dimensional manifold as we have seen in the Remark 2.11, and of course it has also the
structure of measurable space.
Thus we can apply the generalized theorem of change of variables from the domain Rk to
Γ(t, x, y) in this way:

U ε(t)ϕ =

∫

Rn

∫

Rk

e
i

(1+ε2)~
S(t,x,y,u)

ρ~

ε(t, x, y, u) du ϕ(y) dy

=

∫

Rn

∫

Rk

e
i

(1+ε2)~
A[γ(t,x,y,u)]

ρ~

ε(t, x, y, u) du ϕ(y) dy

=

∫

Rn

∫

Γ(t,x,y)
e

i

(1+ε2)~
A[γ]

P ~

ε (dγ) ϕ(y) dy.
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We conclude that the kernel admids the representation:

Uε(t, x, y) =

∫

Γ(t,x,y)
e

i

(1+ε2)~
A[γ]

P ~

ε (dγ),

where we have defined P ~
ε (dγ) := γ⋆[ρ

~
ε(u)du], as the complex image measure of the map

γ : Rk → Γ(t, x, y) on the complex measure ρ~
ε(t, x, y, u)du.



Appendix

In this appendix we prove some properties about generating functions that are necessary to
prove Theorem 2.8.

We define the Hamiltonian function H(x, p) := p2

2m + V (x) where V ∈ C2(Rn) has com-
pact support, and denote φt

H as the group of canonical transformations definined on T ⋆Rn

that solves the related Hamilton’s equations; (x, p)(t) := φt
H(y, ξ) solves:





ẋ = ∇pH(x, p)

ṗ = −∇xH(x, p).
(4.31)

Let us consider the family of Lagrangian submanifolds

Λt :=
{
(y, ξ;x, p) ∈ T ⋆Rn × T ⋆Rn : (x, p) = φt

H(y, ξ)
}
. (4.32)

Suppose that S(t, x, y, u) : [0, T ]× Rn × Rn × Rk → R is a global generating function:

Λt = {(y, ξ;x, p) ∈ T ⋆Rn × T ⋆Rn : p = ∇xS, ξ = − ∇yS, 0 = ∇uS} . (4.33)

Now we define the symplectic transformation:

h : T ⋆Rn × T ⋆Rn −→ T ⋆(Rn × Rn)

(y, ξ;x, p) 7−→
(
X̂1, X̂2; P̂1, P̂2

)
:=
(x+ y

2
,
ξ + p

2
; p− ξ, y − x

)

The set Λ̂t := h(Λt), for every t fixed, is a Lagrangian submanifold because it is defined as
the image of a Lagrangian submanifold Λt through a symplectic transformation h. We state
that a related generating function is:

Ŝ(t, X̂1, X̂2, ω) := S(t, α, β, u) + (α+ β − 2X̂1)γ + X̂2(β − α) ω := (α, β, γ, u). (4.34)

More precisely:

Λ̂t =
{(
X̂1, X̂2; P̂1, P̂2

)
∈ T ⋆(Rn × Rn) : P̂1 = ∇X̂1

S P̂2 = ∇X̂2
S 0 = ∇ωS

}
.

37
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The sistems of equations read exactly:

P̂1 = ∇X̂1
S = −2γ

P̂2 = ∇X̂2
S = β − α

0 = ∇αŜ = ∇αS + γ − X̂2

0 = ∇βŜ = ∇βS + γ + X̂2

0 = ∇γŜ = α+ β − 2X̂1

0 = ∇uŜ = ∇uS (4.35)

We remember that, from tha initial hypotesis, S generates Λt, so we obtain:

γ = −(∇αS +∇βS)

2

P̂1 = −2γ = ∇αS +∇βS = p− ξ
P̂2 = β − α = y − x

X̂1 =
(α+ β)

2
=

(x+ y)

2

X̂2 =
(∇αS −∇βS)

2
=
p+ ξ

2
0 = ∇uS (4.36)

these relations correspond exactly to the Lagrangian submanifold Λ̂t.
Now we consider the inverse transformation h−1:

h−1 : T ⋆(Rn × Rn) −→ T ⋆Rn × T ⋆Rn

(X̂1, X̂2; P̂1, P̂2) 7−→ (y, ξ;x, p) :=
(
X̂1+

1

2
P̂2, X̂2−

1

2
P̂1; X̂1−

1

2
P̂2, X̂2+

1

2
P̂1

)

and a generating function Ŝ of Λ̂t. We prove that a generating function S for Λt can be
constructed as:

S(t, x, y, χ) = Ŝ(t, δ, ρ, ω) − y
(
ρ− 1

2
µ
)

+ x
(
ρ+

1

2
µ
)
− µδ χ = (δ, ρ, µ, ω) (4.37)

Indeed we prove that the function S so contructed generates Λt:

Λt = {(y, ξ;x, p) ∈ T ⋆Rn × T ⋆Rn : p = ∇xS, ξ = − ∇yS, 0 = ∇χS} (4.38)

The sistems of related equations reads:

p = ∇xS = ρ+
µ

2

ξ = −∇yS = ρ− µ

2

0 = ∇δS = ∇δŜ − µ
0 = ∇ρS = ∇ρŜ + x− y

0 = ∇µS =
(x+ y)

2
− δ

0 = ∇ωS = ∇ωŜ (4.39)
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By using the fact that Ŝ generates Λ̂t, we obtain:

µ = ∇δŜ = P̂1

p = ρ+
µ

2
= X̂2 +

P̂1

2

ξ = ρ− µ

2
= X̂2 −

P̂1

2

0 = ∇ρS + x− y = P̂2 + x− y

0 =
(x+ y)

2
− δ =

(x+ y)

2
− X̂1

0 = ∇uS (4.40)

More clearly, we obtain the transformation h−1 on Λ̂t, that it is exactly Λt:

p = X̂2 +
P̂1

2

ξ = X̂2 −
P̂1

2

x = X̂1 −
P̂2

2

y = X̂1 +
P̂2

2
(4.41)

To conclude we verify that Λ̂t = φt
Ĥ

(Λ̂0), the image an Hamiltonian flow φt
Ĥ

. We prove that
the corresponding Hamiltonan is:

Ĥ(X̂1, X̂2; P̂1, P̂2) := H
(
X̂1 −

1

2
P̂2, X̂2 +

1

2
P̂1

)

=
1

2m

(
X̂2 +

1

2
P̂1

)2
+ V

(
X̂1 −

1

2
P̂2

)

= Ĥ0 + Ĥ1 (4.42)

Indeed we remember that Λ̂t := h(Λt), where:

h : T ⋆Rn × T ⋆Rn −→ T ⋆(Rn × Rn)

(y, ξ;x, p) 7−→
(
X̂1, X̂2; P̂1, P̂2

)
:=
(x+ y

2
,
ξ + p

2
; p− ξ, y − x

)

and Λt is defined by (4.32).

We easily observe that the relations between derivatives of the variables
(
X̂1, X̂2; P̂1, P̂2

)

relative to Λ̂t and the variables (y, ξ;x, p) of Λt corresponds to:

˙̂
P1 = ṗ

˙̂
P2 = −ẋ
˙̂
X1 =

ẋ

2
˙̂
X2 =

ṗ

2
(4.43)
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But the Hamilton’s equations written for Ĥ are:

˙̂
P1 = −∇X̂1

Ĥ = −∇V
(
X̂1 −

1

2
P̂2

)

˙̂
P2 = −∇X̂2

Ĥ = − 1

m
·
(
X̂2 +

1

2
P̂1

)

˙̂
X1 = ∇P̂1

Ĥ =
1

m
·
(
X̂2 +

1

2
P̂1

)

˙̂
X2 = ∇P̂2

Ĥ = −1

2
∇V

(
X̂1 −

1

2
P̂2

)

Using the inverse transformation h−1 and the Hamilton’s equations for H, we obtain the
same group of relations:

˙̂
P1 = −∇V (x) = ṗ

˙̂
P2 = − p

m
= −ẋ

˙̂
X1 =

p

2m
=
ẋ

2

˙̂
X2 = −∇V (x)

2
=
ṗ

2
(4.44)

This means that the Lagrangian submanifold Λ̂t corresponds exactly to the image of Hamil-
tonian flow gererated by Ĥ, that is Λ̂t = φt

Ĥ
(Λ̂0).



Bibliography

[1] Aebischer, B. et al., Symplectic Geometry, Progress in Mathematics (Boston, Mass.).
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[11] L. Hörmander, Fourier integral operators. I. Acta Math. 127 (1971), No. 1-2, 79–183.

[12] V. Kolokoltsov, A new path integral representation for the solution of Schrödinger, heat
and sthocastic Schrödinger equations, Mathematical Proceedings of Cambridge Phylo-
sophical Society, 2000.

[13] V. Kolokoltsov, V. Maslov, Idempotent Analysis and Its Applications, Kluwer Academic
Publishers (1997).

[14] F. Lalonde, J.C Sikorav, Sous-varits lagrangiennes et lagrangiennes exactes des fibrs
cotangents, Commun. Math. Helv. 66 (1991) 18–33.

41



42 Lorenzo Zanelli

[15] A. Laptev, I.M. Sigal, Global Fourier Integral Operators and Semiclassical Asymptotics,
Review of Mathematical Physics, Vol. 12, No 5 (2000) 749-766

[16] A. Martinez, An introduction to semiclassical and microlocal analysis. Universitext,
Springer-Verlag, New York, 2002.

[17] A. Martinez, K. Yajima, On the Fundamental Solution of Semiclassical Schrödinger
Equations at Resonant Times, Commun. Math. Phys. 216, 357-373 (2001).

[18] A. Martinez, V. Sordoni, A general reduction scheme for the time-dependent Born-
Oppenheimer approximation. C. R. Math. Acad. Sci. Paris 334 (2002), no. 3, 185–188.

[19] A. Martinez, S. Nakamura, V.Sordoni, Analytic smoothing effect for the Schrdinger
equation with long-range perturbation. Comm. Pure Appl. Math. 59 (2006), no. 9, 1330–
1351.

[20] V. P. Maslov, The Complex WKB Method for Nonlinear Equations I, Linear Theory,
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