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coltà e ad amare la fisica matematica.

Un grande ringraziamento va al prof. Antonio DeSimone della Scuola In-
ternazionale di Studi Superiori Avanzati (SISSA) che è stato co-relatore,
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Riassunto

Questa tesi di dottorato prende culturalmente le origini abbastanza lontane
nel tempo. La mia tesi 3-nnale in Matematica consistette in un lavoro di
ricomposizione teorica e numerica di una congettura di Alberto Bressan,
atta al superamento del paradosso dello “Scallop Theorem”. Purcell nel
1977 formalizzò questo famoso paradosso secondo cui un nuotatore 1-dim
(scallop), che si muove aprendo e chiudendo alternativamente le sue valve,
non ha uno spostamento netto in un fluido viscoso (nel modello Stokes), data
la reversibilità nel tempo delle equazioni del moto.

Nella tesi di laurea magistrale, condotta in collaborazione anche con il
prof. Antonio De Simone della Sissa, si entrò in dettaglio nello studio del
sistema nuotatore-fluido, coinvolgendo la teoria geometrica del controllo mec-
canico di nuotatori modellizzati finito-dimensionalmente.
La tesi è divisa in tre parti, una è stata sviluppata e portata avanti in colla-
borazione con il prof. Antonio De Simone della Sissa, il prof François Alouges
dell’École Polytechnique di Parigi e altri due ricercatori francesi, Laetitia Gi-
raldi e Pierre Martinon. Con loro abbiamo analizzato e definito una struttura
cinematica generale per trattare il problema dell’auto-propulsione in un flui-
do a bassi numeri di Reynolds. Abbiamo formulato il problema in termini di
un potenziale di gauge A, che ci fornisce il moto rigido netto risultante da un
arbitrario cambiamento di forma. Per studiare a fondo le implicazioni che la
controllabilità del nuotatore può avere sulla realizzazione di dispositivi bio-
ispirati, abbiamo costruito un modello nuovo per micro nuotatori filiformi,
che è più maneggevole.

Abbiamo presentato un modello discreto di un nuotatore filiforme che
nuota propagando bending waves lungo il suo corpo e in cui le interazioni
idrodinamiche sono trattate usando l’approssimazione locale della Resistive
Force Theory (RFT). Il modello è facile da assemblare e risolvere e sorpren-
dentemente accurato. Inoltre abbiamo provato che per il numero di link N
maggiore di 3 e per quasi ogni lunghezza dei link, usati per approssimare il
corpo del nuotatore, questo è controllabile in tutto il piano. I risultati ot-

iii



iv

tenuti in questa parte sono stati pubblicati durante il dottorato nelle seguenti
pubblicazioni:

• P.Martinon, L. Giraldi and M. Zoppello.
“Controllability and Optimal Strokes for N-link Micro-swimmer”
Conference on Decision and Control 2013.

• F.Alouges, A. DeSimone, L. Giraldi, and M. Zoppello
“Self-propulsion of slender micro-swimmers by curvature control: N-
link swimmers”.
International Journal of Non-Linear Mechanics, 2013.

Successivamente ci siamo focalizzati sul trovare una strategia di nuoto che
facesse muovere l’N -link swimmer tra due configurazioni fissate nel minimo
tempo e sul trovare anche il design migliore (rapporto tra le lunghezze dei
link) per massimizzare lo spostamento. Le simulazioni numeriche sono con-
sistenti con le nostre predizioni teoriche per piccole deformazioni. Maggiori
dettagli si trovano nell’ariticolo:

• P.Martinon, L. Giraldi and M. Zoppello.
“Optimal design of the three-link Purcell swimmer”
Physical Review E (2014)

Nella seconda parte della tesi si studia la natura geometrica del problema
del nuoto di un corpo continuo deformabile immerso in un fluido bidimensio-
nale ideale incomprimibile e irrotazionale. Si affronta un problema nuovo ed
originale: lo studio delle proprietà di controllabilità di un sistema dinamico
che parte con impulso iniziale non nullo. Reinterpretando le forze idrodi-
namiche esercitate dal fluido sul corpo come termini cinetici e descrivendo
i cambiamenti di forma con un numero finito di parametri, si ottengono le
equazioni del moto. Usando poi tecniche classiche in teoria del controllo si è
in grado di ottenere risultati interessanti sulla controllabilità di questo tipo
di sistemi.

In più dettaglio: (i) se il nuotatore parte con impulso iniziale nullo, ritro-
viamo risultati presenti in letteratura, più precisamente siamo sempre in
grado di trovare una velocità di deformazione appropriata che fa spostare
il nuotatore tra due configurazioni fissate; (ii) se invece il corpo parte con
impulso iniziale diverso da zero, il nuotatore può auto-propellersi in quasi
ogni direzione se è in grado di deformarsi con velocità sufficientemente ele-
vata. Il fatto che teniamo conto della presenza di un impulso iniziale non
nullo e l’analisi della controllabilità del sistema sembra innovativo e rende lo
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studio del nuoto in fluidi ideali più accurato e completo. I risultati prodotti
in questa parte, sviluppati nel secondo anno di dottorato, sono stati inseriti
nel lavoro

• M. Zoppello, F. Cardin.
“Swim like motion of bodies immersed in a fluid” Submitted (2014).

Infine nella terza parte, affrontata durante l’ultimo anno di dottorato, ab-
biamo svolto uno studio di fattibilità per la realizzazione ingegneristica di
nuotatori microscopici artificiali, formati da una testa, usata come conteni-
tore, e da una sottile coda flessibile costituita da materiale permanentemente
magnetico, messi in moto da un campo magnetico esterno oscillante. I nostri
risultati, illustrati nell’articolo:

• F. Alouges, A. DeSimone, L. Giraldi, M. Zoppello
“Can magnetic multilayers propel artificial micro-swimmers mimicking
sperm cells?” SoftRobotics (2015).

indicano che, per un sistema caratterizzato da parametri geometrici consi-
stenti con quelli ottenibili dalle moderne tecniche di costruzione e da valori
realistici dei parametri magneto-elastici (ad esempio quelli del Permalloy),
possono essere ottenute interessanti performance di nuoto usando campi ma-
gnetici facilmente producibili in laboratorio. La nostra analisi mostra che i
nuotatori magneto elastici da noi descritti si muovono con un meccanismo
molto diverso da quelli precedentemente riportati nella letteratura sui fila-
menti magneto elastici. Infatti la deformazione del nuotatore consiste di
una rotazione globale e di una deformazione fluente con curvatura spaziale
costante, entrambe oscillanti nel tempo alla stessa frequenza del campo ma-
gnetico esterno, ma con una traslazione di fase.
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Introduction

What does it mean swimming? How does mathematics can treat this prob-
lem? These questions have been addressed for the first time in the fiftie’s
by G.I. Taylor [81], he claims that swimming is the ability to advance in a
fluid in the absence of external propulsive forces by performing cyclic shape
changes. While large objects which propel themselves in air or water use iner-
tia in the surrounding fluid, the same idea cannot be transferred to problems
of propulsion in microscopic bodies for which the stresses due to viscosity
may be many thousands of times as great as those due to inertia. Later
Purcell in 1977 in [70] formalized the famous Scallop theorem according to
which a swimmer that moves like a scallop, opening and closing reciprocally
its valves, cannot achieve any net motion in a viscous fluid, because of the
time reversibility of the equations. Moreover Purcell presented a model of a
swimmer composed by three rigid links, that is able to overcome this paradox.

In this thesis we are interested in studying several aspects of the propul-
sion of a deformable continuous body, finitely controlled, in a fluid. After
the first pioneering papers quoted before, [81, 70], this kind of systems is
attracting again an increasing interest in recent literature. Many authors
focus on two different type of fluids. Some of them consider bodies immersed
in an ideal incompressible fluid [18, 43, 52, 55, 56, 62, 65] that propel them-
selves thanks to vortex shedding (see the literature of S.D. Kelly and the
papers quoted therein, e.g. [50, 78]) or to internal forces since in this case
the hydrodynamic equations turn out to be linear. Other are interested in
swimming at micro scale in a Stokes fluid [7, 8, 48, 67, 77], because in this
regime the inertial terms can be neglected and the hydrodynamic equations
are again linear.
Here the aim is to build a robust and exhaustive mathematical model, which
is essential to realize artificial devices mimicking the behavior of real organ-
isms. The design of artificial devices to be used in different contexts, from
medicine to various kind of flight and navigation, asks for a careful mechan-
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ical recognition of the model we are studying. This is obviously provided
by a long-lasting tradition which goes back to the beginning of the Calculus
of Variations and reaches the modern development of Analytical Mechanics,
arriving to a suitable Lagrangian/Hamiltonian formalism (see [79]). On the
other hand, the aim of producing sophisticated technologies where human
intervention can play a crucial role, leads naturally to connect this classical
mathematical area with Control Theory, a discipline born in the Fifties’ of
the previous century and today become essential background of both the-
oretical mathematicians and engineers dealing with highly technical issues.
The geometrical formalization of control theory has brought into the field
many mathematical concepts and structures, from differential geometry and
related areas. The combined use of these tools has led to new results on
several important control-theoretical questions, such as: controllability, os-
servability, robustness, tracking and optimal control. The control of general
mechanical systems can be addressed in at least two ways. The first, stan-
dard way, consists in regarding “generalized forces” as controls, within either
a Lagrangian or a Hamiltonian formalism. In the second one, started at the
end of the previous century [19, 20, 21, 61], the controller acts on the sys-
tem by directly assigning the values of some of the coordinates, the latter so
regarded as control parameters. The evolution of the remaining coordinates
(together with their conjugate momenta) can be determined by solving a
control system. The use of the coordinates as controls lead us to obtain a
fibration of the configuration space and to use the tools of differential ge-
ometry. We will use the “hard device” approach in the first chapters of this
work, while in the end we give some hints on how it is possible to use the
control on external forces in order to plan the motion of the system.

We now describe the physical environment in which we are interested. Let
us consider the Navier-Stokes equations

ρ
(∂v
∂t

+ (v · ∇)v
)

= −∇p+ η∆v

div v = 0
(1)

a dimensionless number arises naturally writing them in a dimensionless form.
This is done by rescaling position and velocity with x∗ = x

L
and v∗ = v

V
, where

L and V are characteristic length scale and velocity associated with the flow.
Reynolds number (Re) is defined by

Re =
V Lρ

η
=
V L

ν
(2)
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where ν = η
ρ

is the kinematic viscosity of the fluid. The Reynolds number
quantifies the relative importance of inertial versus viscous effects.

Re→∞
In the first part of this work, we focus on the special case in which the body
is immersed in a fluid whose Reynolds number tends to infinity (Re → ∞).
Therefore since the inertial effects dominate on the viscous ones we can con-
sider the body as immersed in an ideal, incompressible and irrotational fluid.
This special case has an interesting geometric nature and there is an at-
tractive mathematical framework for it. We exploit this intrinsic geometric
structure of the problem inspired by [76, 77] and [64], in which they interpret
the system in terms of gauge field on the space of shapes. The choice of tak-
ing into account the inertia can apparently lead to a more complex system,
but neglecting the viscosity the hydrodynamic equations are still linear, and
this fact makes the system more manageable. The same fluid regime and
existence of solutions of these hydrodynamic equations has been studied in
[43] regarding the motion of rigid bodies.
There are different ways of describing the deformation of the swimmer, some
authors, such as V.V. Kozlov and his coworkers, [55, 56] analyze the case
in which the motion of the body occurs due to the internal displacement
of masses, instead we start from an early idea of Alberto Bressan [18] and
some unpublished developments, according to which the shape changes can
be described by a finite number of parameters. These kind of systems, where
the controls are precisely given by further degrees of freedom of the systems,
as we have said before, have been first studied deeply by Aldo Bressan, see
e.g. [19, 20, 21]. In this framework we highlight that the composed system
“fluid-swimmer” is Lagrangian geodesic. Next, coupling this fact with some
techniques developed in [65], we are able to show that the kinetic energy of
the system (i.e. the Lagrangian) is bundle-like, a concept by Bruce Reinhart
[72] and introduced in control theory by Franco Rampazzo in [71]. This leads
us to express the equations of motion as linear control equations, where any
quadratic term is vanishing, radically simplifying our final analysis on the
system. The geometric construction of the control dynamic equations fol-
lows substantially the line of thought of [23, 61].
At a first glance, the deformations of the swimmer are naturally given by dif-
feomorphisms, that are infinite dimensional objects. By considering a planar
setting and making use of complex analysis, as suggested in [25, 65] the Rie-
mann Mapping Theorem plays a crucial role in describing the shape changes
of the swimmer. It turns out that the diffeomorphisms can be parametrized
by appropriate complex converging series. In the literature other authors
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exploit the same way of describing the shape changes by conformal maps, for
example in [65], in which they take into account only a finite number of terms
to represent the diffeomorphisms. We follow substantially an analogous ap-
proach to merge this idea with the setting of Alberto Bressan. The choice
of using a finite number of parameters means that the kind of deformations
that we consider is more restricted but still enough to describe a wide range
of swimmers.
In order to have a more manageable system that the one in [65], we estab-
lish a connection between the use of complex and real shape parameters. We
show that, if we consider small shape changes, a well precise choice of the real
and imaginary part of the shape parameters leads to obtain exactly the same
deformation proposed in [64], which use a rather different parametrization
governed by suitable small deformation. Therefore we gained a description of
our system with a finite number of parameters/coordinates, which is essential
to control the shape coordinates, to steer the swimmer between two different
configurations. In this environment we recover the well known Scallop The-
orem [6] in the case we have only one real shape parameter. Thanks to the
idea of using a finite number of parameters we can reduce our dynamic equa-
tions to a control system. The controllability issue has been recently linked
to the problem of swimming [3, 51, 48] since it helps in solving effectively
motion planning or optimal control problems.

Differently from what was done in other works, we focus our attention
on a crucial problem: the presence of an initial impulse. The case of zero
initial linear momentum is well studied in literature concerning systems of
different nature: both in the multi-particle or many-bodies field, [44, 46, 45],
and shape changing bodies, [62, 64, 65, 24], as the equation of motion are a
driftless affine control system whose controllability can be studied using clas-
sical techniques. Instead, the case of a non vanishing initial impulse leads us
to a more complex system since the equations of motion involve also a non
zero drift term and their controllability is more tricky to study. Therefore
we have two contributions to the motion of the system: the first one that is
purely geometrical and determined by the structure of the problem, and the
second one, strictly linked to the presence of a non vanishing initial impulse
(see formula (2.80) chapter 2).
The controllability of this kind of systems is studied in detail, and among
other facts it is worth noting that we need at least three real shape parame-
ters to make the system controllable. We have three state parameters, three
conjugate variables and at least three controls. Despite the evident complex-
ity of the computations linked to this number of variables, we managed to
obtain interesting results about its controllability.
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Re→ 0

In the second part (see chapters 3,4) of this work we deal with the problem
of swimming in an another type of fluid, also in this case reformulated in
terms of a gauge field on the space of shapes. We focus of the case in which
Re→ 0 and the rate of change of data driving the flow is slow, therefore the
Navier-Stokes equations can be approximated by the Stokes ones

− η∆v +∇p = 0

div v = 0
(3)

which are commonly used to study the hydrodynamics at low Reynolds num-
ber that has a rather special and unique character. Contrary to what happens
in the ideal case studied before, the effects of the inertia are negligible, which
is the case of bacteria or unicellular microorganisms. In the absence of in-
ertia, the motion of a swimmer through a fluid is completely determined by
the geometry of the sequence of shapes that the swimmer assumes. It is
independent of any variation in the rates at which different parts of the se-
quence are run through. We show that the problem of self-propulsion at low
Reynolds number naturally resolves itself into the computation of a Gauge
potential that describes the net translation and rotation resulting from an
arbitrary infinitesimal deformation of a shape. We compute explicitly the
Gauge potential in the case of strokes involving infinitesimal deformations of
a circle.

Since the problem is complex, due to the hydrodynamics equations, we
discuss a reduced model to compute the motion of slender swimmers which
propel themselves by propagating a bending wave along their body. Our
approach is based on the use of Resistive Force Theory for the evaluation
of the viscous forces and torques exerted by the surrounding fluid, and on
discretizing the kinematics of the swimmer by representing its body through
an articulated chain of N rigid links capable of planar deformations, as was
done in [47] to describe snake locomotion. The resulting system of ODEs
governing the motion of the swimmer is easy to assemble and to solve, making
our reduced model a valuable tool in the design and optimization of bio-
inspired engineered micro-devices. We test the accuracy and robustness of
our approach on three benchmark examples: Purcell’s 3-link swimmer [70],
Taylor’s swimming sheet [81] and some recent quantitative observations of
circular motion of a sperm cell [33]. An explicit formula for the displacement
of Purcell’s 3-link swimmer generated by a stroke of small amplitude is also
discussed.
Similarly to what was done before, low Reynolds number swimming can be
considered as a control problem which is linear in the control, and without
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drift [7]. We prove that the N -link swimmer is controllable in the whole
plane for N ≥ 3 and for almost every set of sticks length. As a direct result,
there exists an optimal swimming strategy to reach a desired configuration in
minimum time. Numerical experiments for N = 3 (Purcell swimmer) suggest
that the optimal strategy is periodic, namely a sequence of identical strokes.
Our results indicate that this candidate for an optimal stroke indeed gives a
better displacement speed than the classical Purcell stroke.

Moreover regarding still the Purcell swimmer, we address the optimal de-
sign issue, namely finding the optimal length ratio between the two lateral
equal links and the central one, which maximizes displacement of the swim-
mer [37]. A similar issue has been studied in [80] where a Fourier expansion
is used to derive an optimal design. Here, techniques from the control theory
are used to approximate the leading order term of the swimmer’s displace-
ment. The maximization of this leading term gives a theoretical value for
the optimal link ratio.

Engineering applications

After presenting and analyzing in detail the idea of controlling the shape of
our swimmer in either the ideal or Stokes regime, we deal with the problem of
realizing effectively an artificial device. In the last part of the thesis we would
like to provide a feasibility study for the engineering of microscopic artificial
swimmers consisting of a cargo head and of a flexible thin film tail made
of a permanent magnetic material, and propelled by an external oscillating
magnetic field (see Figure 1)

Figure 1: An example of a group of artificial micro swimmer with a cargo
head and a flexible tail

We formulate and solve the equations governing the dynamics of swim-
mer [4]. This is a variant of the model swimmer proposed by Dreyfus et al.
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in 2005 [31], whose tail is a filament obtained from the assembly of super-
paramagnetic beads. The swimmer is actuated by an oscillating magnetic
field, and its geometry is inspired by that of sperm cells. Using values for
the geometric and material parameters which are realistic for a magnetic
multi-layer, we show that the model swimmer can reach swimming speeds
exceeding one body-length per second, under reasonable values of the driv-
ing magnetic field. This provides a proof of principle for the viability of
this kind of microswimmers. In addition, we discuss the possibility to steer
the system along curved paths. Finally, we compare the propulsion mecha-
nism (swimming “gait”) of our swimmer with that of sperm cells. The main
difference between the two is that, contrary to its biological template, our
artificial system does not rely on the propagation of bending waves along the
tail, at least for the range of material and geometric parameters explored in
this work. Finally we put in evidence the fact that a microswimmer which is
composed of two links and actuated by an oscillating magnetic field, displays
a net motion, showing a way of overcoming the Scallop theorem.

The great part of the results presented in this thesis are new, more pre-
cisely the ones presented in Chapters 4 and 5 have been taken from papers
published during my PhD by A. DeSimone, F. Alouges, L. Giraldi, P. Mar-
tinon and me, [3, 4, 36, 37], and the material in Chapter 2 has been already
submitted by F. Cardin and me. The results presented in chapter 3 are taken
from a paper of Shapere and Wilczek [77] and are needed to bridge the cases
of different Reynolds numbers.
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Chapter 1

Geometrical setting of
deformable bodies immersed in
a fluid

In this chapter we present the geometrical setting that we use to describe the
dynamical system of a planar deformable bodies immersed in a fluid. At this
stage we do not specify the kind of fluid in which it is immersed that can be
either ideal and incompressible or a viscous one with low Reynolds number.
Our aim is to show that the motion of this deformable body through the fluid
is completely determined by the geometry of the sequence of shapes that the
idealized swimmer assumes, and to determine it.
First of all let us provide some preliminaries that are fundamental to describe
the geometry of the kind of systems that we analyze.

1.1 Preliminaries

This section covers some auxiliary mathematical topics, in particular from
Lie groups, fiber bundles and connections that we shall need later. This
summary will be helpful to set the notation, fill in some gaps, and to provide
a guide to the literature for needed background.

1.1.1 Lie Groups

Let us start from some geometric and algebraic notions on Lie groups, that
arise in discussing conservation laws for mechanical and control systems and
in the analysis of systems with some underlying symmetry.
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Definition 1.1. A Lie group is a smooth manifold G that is a group with
identity element e = gg−1 = g−1g, and for which the group operations of
multiplication, (g, h) 7→ gh for g, h ∈ G, and inversion, g 7→ g−1, are smooth.

Before giving a brief description of some of the theory of Lie groups we
mention an important example: the group of linear isomorphisms of Rn to
itself. This is a Lie group of dimension n2 called the general linear group and
denoted by GL(n,R). The conditions for a Lie group are easily checked. This
is a manifold, since it is an open subset of the linear space of all linear maps
of Rn to itself; the group operations are smooth, since they are algebraic
operations on the matrix entries.

Definition 1.2. A matrix Lie group is a set of invertible n×n matrices that
is closed under matrix multiplication and that is a submanifold of Rn×n.

Lie groups are frequently studied in conjunction with Lie algebras, which
are associated with the tangent spaces of Lie groups as we now describe.

Definition 1.3. For any pair of n × n matrices A, B we define the matrix
Lie bracket [A,B] = AB −BA.

Proposition 1.1. The matrix Lie bracket operation has the following two
properties:

(i) For any n×n matrices A and B, [B,A] = −[A,B] (this is the property
of skew-symmetry).

(ii) For any n× n matrices A, B, and C,
[[A,B], C] + [[B,C], A] + [[C,A], B] = 0. (This is known as the Jacobi
identity.)

As is known, properties (i) and (ii) above are often thought as the defi-
nition of more general Lie brackets (than AB −BA) on vector spaces called
Lie algebras.

Definition 1.4. A (matrix) Lie algebra g is a set of n × n matrices that
is a vector space with respect to the usual operations of matrix addition and
multiplication by real numbers (scalars) and that is closed under the matrix
Lie bracket operation [ · , · ].

Proposition 1.2. For any matrix Lie group G, the tangent space at the
identity TIG is a Lie algebra.
As usual, for matrix Lie groups one denotes e = I
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We now describe an example that plays an important role in mechanics
and control.

The planar Euclidean Group
Consider the Lie group of all 3× 3 matrices of the form(

R d
0 1

)
(1.1)

where R ∈ SO(2) and d ∈ R2. This group is usually denoted by SE(2)
and is called the special Euclidean group. The corresponding Lie algebra,
se(2), is three-dimensional and is spanned by

A1 =

0 −1 0
1 0 0
0 0 0

 A2 =

0 0 1
0 0 0
0 0 0

 A3 =

0 0 0
0 0 1
0 0 0

 (1.2)

The special Euclidean group is of central interest in mechanics since it de-
scribes the set of rigid motions and coordinate transformations on the plane.
Let G be a matrix Lie group and let g = TIG be the corresponding Lie alge-
bra. The dimensions of the differentiable manifold G and the vector space g
are of course the same, and there must be a one-to-one local correspondence
between a neighborhood of 0 in g and a neighborhood of the identity ele-
ment I in G. An explicit local correspondence is provided by the exponential
mapping exp : g 7→ G, which we now describe. For any A ∈ Rn×n (the space
of n× n matrices). exp(A) is defined by

exp(A) := I + A+
1

2!
A2 +

1

3!
A3 + . . . (1.3)

This map for SE(2) can be defined by the exponential of the elements of the
Lie algebra se(2). More precisely

exp(θA1) =

cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 (1.4)

exp(xA2) =

1 0 x
0 1 0
0 0 1

 exp(yA2) =

1 0 0
0 1 y
0 0 1

 (1.5)

Since [Ai,Aj] = 0 for all i, j = 1, 2, 3, we have that ∀(θ, x, y) ∈ R3 ≡ g =
se(2) :

exp(θA1 + xA2 + yA3) = exp(θA1) exp(xA2) exp(yA3)
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that is clearly elements of SE(2).
We now define the action of a Lie group G on a manifold Q. Roughly

speaking, a group action is a group of transformations of Q indexed by ele-
ments of the group G and whose composition in Q is compatible with group
multiplication in G.

Definition 1.5. Let Q be a manifold and let G be a Lie group. A left action
of a Lie group G on Q is a smooth mapping Φ : G 7→ Q such that

(i) Φ(e, q) = q for all q ∈ Q,

(ii) Φ(g,Φ(h, q)) = Φ(gh, q) for all g, h ∈ G and q ∈ Q,

(iii) Φ(g, · ) is a diffeomorphism for each g ∈ G.

A Lie group acts on its tangent bundle by the tangent map. We can
consider the left or the right action of G on g by: TeLgξ or TeRgξ, where
Lg and Rg denote left and right translations, respectively; so if g = g(t) is a
curve in G, then there exists a time dependent ξ( · ) ∈ g such that

ġ(t) = TeLg(t)ξ(t) = g(t)ξ(t) (1.6)

and similarly for the right action.
Given left action of a Lie group G on Q, Φ : G×Q→ Q, and ξ an element
of the Lie algebra g then Φξ : R×Q→ Q : (t, q) 7−→ Φ(exp tξ, q) is a flow on
Q, the corresponding vector field on Q is called infinitesimal generator of
Φ corresponding to ξ, is denoted by ξQ(q)

ξQ(q) =
d

dt
Φ(exp tξ, q)|t=0 . (1.7)

1.1.2 Fiber Bundles and Connections

Fiber bundles provide a basic geometric structure for the understanding of
many mechanical and control problems.

A fiber bundle essentially consists of a given space (the base) together
with another space (the fiber) attached at each point, plus some compatibility
conditions. More formally, we have the following:

Definition 1.6. Let S be a differentiable base manifold and G a Lie group.
A differentiable manifold Q is called principal fiber bundle if the following
conditions are satisfied:
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1 G acts on Q to the left, freely and differentiably:

Φ : G×Q→ Q (1.8)

writing Φ(g, q) = Φg · q = g · q .

2 S = Q/G and the canonical projection π : Q→ S is differentiable

3 Q is locally trivial, namely every point s ∈ S has a neighborhood U
such that π−1(U) ⊂ Q is isomorphic to U × G, in the sense that q ∈
π−1(U) 7→ (π(q), φ(q)) ∈ U × G is a diffeomorphism such that φ :
π−1(U)→ G satisfies φ(g · q) = gφ(q), ∀g ∈ G

An important additional structure on a bundle is a connection. Suppose
we have a bundle and consider (locally) a section of this bundle, i.e., a choice
of a point in the fiber over each point in the base. We call such a choice a
“field”. The idea is to single out fields that are “constant”. For vector fields
on a linear space, for example, it is clear what we want such fields to be; for
vector fields on a manifold or an arbitrary bundle, we have to specify this
notion. Such fields are called “horizontal”. A connection is used to single
out horizontal fields, more precisely fields which live in a subspace of the
the tangent space, and is chosen to have other desirable properties, such as
linearity.

Definition 1.7. Let (Q,S, π,G) be a principal fiber bundle. the kernel of
Tqπ denoted by Vq := {v ∈ TqQ|Tqπ(v) = 0}, is the subspace of TqQ tangent
to the fiber through q and is called vertical subspace. A connection on the
principal fiber bundle is a choice of a tangent subspace Hq ⊂ TqQ at each
point q ∈ Q called horizontal subspace such that:

(1) TqQ = Hq ⊕ Vq

(2) For all g ∈ G and q ∈ Q, TqΦg ·Hq = Hg · q

(3) Hq depends differentiably on q

Hence, for any q ∈ Q, we have that Tqπ determines an isomorphism
Hq
∼= Tπ(q)S: for all TqQ 3 v = vVq+vHq and we have that Tπ(q)(v) = vHq ∈ S.

In other words the choice of an horizontal subspace can be seen also as
the choice of a vector valued “connection one form” which vanishes on the
horizontal vectors.

It follows the definition
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Definition 1.8. An Ehresmann connection A is a vector valued one form
such that

(i) A is vertical valued: Aq : Tq −→ Vq is a linear map for each point q ∈ Q

(ii) A is a projection: A(v) = v for all v ∈ Vq.

In the special case in which (Q,S, π,G) is a principal fiber bundle the
previous conditions on A : TQ −→ g read:

(i) A(ξQ(q)) = ξ for all ξ ∈ g and q ∈ Q, where ξQ(q) is the infinitesimal
generator of the left action of G on Q (1.7).

(ii) A is equivariant:
A(Tq(Φg(v))) = Adg(A(v))

for all v ∈ TqQ and g ∈ G where Φg denotes the given action of G on
Q and where Ad denotes the adjoint action of G on g defined as

Adg := Te(Lg ◦Rg−1) : g→ g .

Therefore it is evident that the horizontal subspace Hq is the kernel of
Aq.
n the case in which there is a metric h(q) in our manifold Q, we have a special
way to define the horizontal subspace: it is the orthogonal with respect to
the metric to the vertical subspace.

Hq = {w ∈ TqQ : 〈w, h(q)v〉 = 0,∀v ∈ Vq} (1.9)

In this special case our connection A is called mechanical connection (see
[63] and therein references). We now would like to express the connection in
coordinates, in order to do this we first introduce the following definition

Definition 1.9. Let us consider the following diagram

Q

S ⊃ U

π σ where π ◦ σ = id|U

The functions like σ are sections and we call Γ(U,Q) the set of all sec-
tions from U in Q.
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Alternatively often a connection is introduced as a derivation∇ as follows.
Let ∇ be a map

∇ : Γ(Q)→ Γ(Q⊗ T ∗S) such that

∇(σ1 + σ2) = ∇(σ1) +∇(σ2)

∇(fσ) = f∇(σ) + σ ⊗ df if f is a C∞ function.

Let now e be a local basis of sections of the principal fiber bundle, in this
basis the connection one-form A can be expressed as

eaA
a
b = ∇eb a, b = 1 · · · dim(Q).

If we change basis in Γ(Q), say e = ẽΩ, the connection A changes, i.e.

ẽÃ =∇ẽ = ∇(eΩ−1) = (∇e)Ω−1 + edΩ−1 = eAΩ−1 + edΩ−1

= ẽΩAΩ−1 + ẽΩdΩ−1

therefore A and Ã satisfy the following relation

Ã = ΩAΩ−1 + ΩdΩ−1 (1.10)

Let u(t) be a smooth curve in S passing through the point P = u(0).
Let q ∈ QP = π−1(P ) be any point in the fiber of Q over P . We would like
to find a smooth curve γ(t) in Q such that π(γ(t)) = u(t), γ(0) = q, and
γ′(t) ∈ Hγ(t) (i.e., the tangent vectors to the curve γ(t) are horizontal).

From the usual theory of differential equations it follows that such a curve
γ(t) exists and is unique, at least locally at any point q ∈ Q (i.e., for small
values of t). The curve γ is called a horizontal lift of u. Regarding the
tangent vectors, for any q ∈ Q and any vector u̇ ∈ Tπ(q)S there exists a
unique vector v ∈ Hq ⊂ TqQ such that Tqπ : v 7→ u̇. The vector v is called
the horizontal lift of u̇.

Given an Ehresmann connection we can define the horizontal lift of curves
in S, hence we can also define a notion of parallel transport that allows us
to identify different fibers of Q.
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P=γ(0) Q=γ(t) 

π-1(P)=QP 

q γ(t) 

π-1(Q)=QQ 

Figure 1.1: Horizontal lift of the curve u(t)

Note that, in general, the parallel transport will be path-dependent. If we
start with two different curves u1(t) and u2(t), such that u1(0) = u2(0) = P
and u1(t̄) = u2(t̄) = S, then the horizontal lifts γ1 and γ2 at a point q ∈ QP

will not meet, in general, at a point in the fiber QS, i.e., we will have γ1(t̄) 6=
γ2(t̄). This gap on the fiber is called holonomy and depends on the choice
of the connection and on the topology of the base manifold. In particular if it
is connected the holonomy depends on the base point only up to conjugation
[54].

1.2 Geometry

As we have seen, in the general theory, connections are associated with bundle
mappings, which project larger spaces onto smaller ones. The larger space
is the bundle, and the smaller space is the base. Directions in the larger
space that project to a point are vertical directions. The connection is a
specification of a set of directions, the horizontal directions, at each point,
which complements the space of vertical directions. In general, we can expect
that for a horizontal motion in the bundle corresponding to a cyclic motion
in the base, the vertical motion will undergo a shift, called a phase shift,
between the beginning and the end of its path. The magnitude of the shift
will depend on the curvature of the connection and the area that is enclosed
by the path in the base space: it is exactly the holonomy. This shift in the
vertical element is often given by an element of a group, such as a rotation
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or translation group, and is called also the geometric phase. Referring
to what said in the previous subsection, the motion is determined only by
the geometrical properties of the system if it starts with zero initial impulse.
In many examples, the base space is the control space in the sense that
the path in the base space can be chosen by suitable control inputs to the
system, i.e. changes in internal shape. In the locomotion setting, the base
space describes the internal shape of the object, and cyclic paths in the shape
space correspond to the movements that lead to translational and rotational
motion of the body.
Nevertheless the shape changes are not the only ones to determine a net
motion of the body. More generally, this motion can always be decomposed
into two components: the geometric phase, determined by the shape of the
path and the area enclosed by it, and the dynamic phase, driven by the
internal kinetic energy of the system characterized by the impulse. It is
important to stress the difference between the two phases. The geometric
phase is due entirely to the geometric structure of the system. Instead the
dynamic phase is present if and only if the system has non zero initial impulse
or if the impulse is not a conserved quantity. More precisely if the curvature
of the connection is null, not necessarily the system does not move after a
cyclic motion in the base: a net motion can result if the system starts with
non zero initial impulse, and this motion is entirely due to the dynamic phase.

Shape space 

Horizontal lift (p*=0) 

p*≠ 0 

Geometric phase 

Dynamic phase 

Figure 1.2: Geometric phase and dynamic phase.

Figure (1.2) shows a schematic representation of this decomposition for
general rigid body motion. In this figure the sphere represents the base space,
with a loop in the shape space shown as a circular path on the sphere. The
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closed circle above the sphere represents the fiber of this bundle attached to
the indicated point. Given any path in the base (shape) space, there is an
associated path, called the horizontal lift, that is independent of the time
parametrization of the path and of the initial vertical position of the system
see. Following the lifted path along a loop in the shape space leads to a
net change in vertical position along the fiber. This net change is just the
geometric phase. On top of that, but decoupled from it, there is the motion
of the system driven by the impulse, (if it is not zero) which leads to the
dynamic phase. Combining these two provides the actual trajectory of the
system.

1.2.1 Gauge potential

Let us consider a planar body immersed in a 2 dimensional fluid, which moves
changing its shape. For the moment we do not specify the kind of fluid in
which it is immersed that can be either ideal and incompressible or a vis-
cous one with low Reynolds number. Our aim is to show that the motion
of this deformable body through the fluid is completely determined by the
geometry of the sequence of shapes that the idealized swimmer assumes, and
to determine it. This idea was introduced by Shapere and Wilczek in [77]
[76] and developed in [25], where they apply geometrical tools to describe
the motion of a deformable body in a fluid, focusing their attention on the
Stokes regime.
The configuration space of a deformable body is the space of all possible
shapes. We should distinguish between the space of shapes located some-
where in the plane and the more abstract space of unlocated shapes. The
latter space can be obtained from the space cum locations by making the quo-
tient with the group of rigid motions in the plane, i.e declaring two shapes
with different centers of mass and orientation to be equivalent. The first
problem we wish to solve can be stated as follows: what is the net rotation
and translation which results when a deformable body undergoes a given
sequence of unoriented shapes? The problem is intuitively well posed: when
a body changes its shape in some way a net rotation and translation is in-
duced. For example, if the system is composed simply by the body, its net
rigid motion can be computed by making use of the law of conservation of
momentum, if instead the body is immersed in an ideal incompressible fluid
this motion can be found by solving the Euler equations for the fluid flow
with boundary condition on the surface of the body with the shape corre-
sponding to the given deformation.
These remarks may seem straightforward, but we encounter a crucial ambi-
guity trying to formulate the problem more specifically. Namely how can we
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specify the net motion of an object which is continuously changing shape?
To quantify this motion it is necessary to attach a reference frame to each
unlocated shape. This is equivalent to choosing a standard location for
each shape; more precisely to each unlocated shape there now corresponds a
unique located shape. Once a choice of standard locations for shapes has been
made, then we shall say that the rigid motion required to move between two
different configurations is the displacement and rotation necessary to align
their centers and axes. In what follows we shall develop a formalism, already
used in [77] [76], which ensures us that the choice of axes for the unlocated
shapes is completely arbitrary and that the rigid motion on the physical
space is independent from this choice. This will be clear soon below.
Now let s parametrize the boundary of a shape S(s), ad let S0(s) be the
associated unlocated shape. Then

S(s) = RS0(s)

where R is a rigid motion. We emphasize that S and S0 are parametrized
shapes.
In considering the problem of self propulsion, we assume that our swimmer
has control on its form. A swimming stroke is therefore specified by a time
dependent sequence of unlocated shapes S0(t) (the s-dependence is implicit.
The corresponding sequence of located shapes S(t) are related by

S(t) = R(t)S0(t) (1.11)

where R is a time dependent rigid motion. This relation expresses how to
recover the located shapes S(t) given the unlocated ones, i.e. S0(t). It is
clear that we are dealing with a fiber bundle: the located shapes S(t) live
on the big manifold Q = SE(2) × S and the unlocated ones, S0(t), live on
the base manifold obtained by the quotient of the manifold Q by the plane
euclidean group SE(2), i.e S = Q/SE(2).

To make (1.11) more explicit we introduce a matrix representation for
the group of Euclidean motions, of which R is a member. A two dimensional
rigid motion consisting of a rotation R followed by a translation d may be
represented as a 3× 3 matrix

[R, d] =

(
R d
0 1

)
(1.12)

where R is an ordinary 2 × 2 rotation matrix, d is a 2 component column
vector. This is the matrix representation of the plane euclidean group action
SE(2) on the manifold Q where the located shapes S(t) live on.
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Now in considering the problem of self propulsion we shall assume that our
swimmer has control over its form but cannot exert net forces and torques on
itself. A swimming stroke is therefore specified by a time-dependent sequence
of forms, or equivalently unlocated shapes S0(t). The located shape will then
be expressed exactly by formula (1.11).

Our problem of determining the net rigid motion of the swimmer thus
resolves itself into the computation of R(t) given S0(t). In computing this
displacement it is most convenient to begin with infinitesimal motions and
to build up finite motions by integrating. So let us define the infinitesimal
motion A(t) by

dR
dt

= R
(
R−1dR

dt

)
≡ RA (1.13)

In this formula we can recognize the differential equation corresponding to
formula (1.6), from which we understand that A take values in the Lie algebra
of the plane euclidean group: g = se(2). For any given infinitesimal change
of shape A, formula (1.13), describes the net overall translation and rotation
which results. We can integrate it to obtain

R(t2) = R(t1)P̄ exp
[∫ t2

t1

A(t) dt
]

(1.14)

where P̄ denotes a reverse path ordering, known in literature as chronological
series [1]:

P̄ exp
[∫ t2

t1

A(t) dt
]

= 1 +

∫
t1<t<t2

A(t) dt+

∫∫
t1<t

′<t<t2

A(t)A(t
′
) dt dt

′
+ · · ·

(1.15)
The assignment of center and axes can be arbitrary, so we should expect that
physical results are independent of this assignment. How does this show up
in our formalism? A change in the choice of centers and axes can equally
well be thought of as a change (rigid motion) of the standard shapes, let us
write

S̃0 = Ω(S0)S0 (1.16)

The located shapes S(t) being unchanged, (1.11) requires us to define [77]
[76]

R̃(t) = R(t)Ω−1(S0(t))

From this, the transformation law of A follow

Ã = ΩAΩ−1 + Ω
dΩ−1

dt
(1.17)
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from which we can recognize the transformation laws (1.10) of an Ehresmann
connection called also Gauge potential, as explained in [77] . Our freedom
in choosing the assignment of axes shows up as a freedom of gauge choice
on the space of standard shapes. Accordingly the final relationship between
physical shapes is manifestly independent of such choices.
Our aim will be to compute this gauge potential A ∈ se(2) in function of the
unlocated shapes S0 that our swimmer is able to control.
The important fact to note is that the geometry which underline this kind of
system does not depend on the kind of fluid chosen; the difference will emerge
later when we will focus of two kind of fluids: the ideal incompressible and
irrotational one and, on the other hand, a Stokes viscous fluid. The way to
compute the equations of motion, will be different since the hydrodynamics
of each kind of fluid is very particular.

1.3 Tools in geometric control theory

Let us consider the following control system

q̇ = F(q, u) (1.18)

where q are local coordinates for smooth manifold Q with dimQ = n and
u : [0, T ] → U ⊂ Rm is the set of admissible controls. The unique solution
of (1.18) at time t ≥ t0 with initial condition q(t0) = q0 and input function
u( · ) is denoted q(t, t0, q0, u).

Definition 1.10. • The reachable set RV (q0, T ) is the set of points
in Q which are reachable from q0 at exactly time T > 0, following
trajectories which, for t ≤ T remain in a neighborhood V of q0

• The system (1.18) is locally accessible from x0 if, for any neighbor-
hood V of q0 and all T > 0 the set RV

T (q0) =
⋃
t≤T R

V (q0, t) contains a
non empty open set.

• The system (1.18) is locally strong accessible from q0 if for any
neighborhood V of q0 and all T > 0 sufficiently small, the set RV (q0, T )
contains a non empty open set.

• The system (1.18) is controllable, if for every q1 , q2 ∈ Q exists a
finite time T > 0 and an admissible control u : [0, T ] → U such that
q(T, 0, q1, u) = q2

• The system (1.18) is small time locally controllable (STLC) from
q0 ∈M if, for any neighborhood V of q0 and all T > 0, q0 is an interior
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point of the set RV
T (q0), that is a whole neighborhood of q0 is reachable

from q0 at arbitrary small time.

Let now suppose the system (1.18) to be an affine non linear control
system, namely

q̇ = F(q, u) = f(q) +
m∑
j=1

gj(q)uj (1.19)

We now present some general results for this type of control systems

Definition 1.11. The strong accessibility algebra C0 is the smallest sub-
algebra of the Lie algebra of smooth vector fields on M containing the control
vector fields g1 . . . gm, which is invariant under the drift vector field f , that
is [f,X] ∈ C0, ∀X ∈ C0, every element of the algebra C0 is a linear combi-
nation of repeated Lie brackets of the form [Xk, [Xk−1, [. . . , [X1, gj] . . .]]] for
j = 1 . . .m and where Xi ∈ {f, g1, . . . , gm}.

The strong accessibility distribution C0 is the corresponding involu-
tive distribution C0(q) = {X(q)|X ∈ C0}.

Proposition 1.3. Let qe be an equilibrium point of the system (1.19). The
linearization of the system (1.19) at qe is controllable if

rank
[
g|∂f
∂q
g|
(∂f
∂q

)2
g| . . . |

(∂f
∂q

)n−1
g
]
|qe = n (1.20)

We say that the Strong Accessibility Rank Condition at q0 ∈ Q is satisfied
if

dimC0(q0) = n (1.21)

Proposition 1.4. We say that the system (1.19) is locally strong accessible
from q0 if the strong accessibility rank condition is satisfied.

Proposition 1.5. If the system (1.19) is driftless, namely

q̇ =
m∑
i=1

uigi(q) (1.22)

its controllability is equivalent to its strong accessibility.

Theorem 1.1. (Chow (see [29])) Let m,n ∈ N and let (fi)i=1,n be C∞ vector
fields on Rn. Consider the control system, of state trajectory q,

q̇ =
m∑
i=1

uifi(q), (1.23)
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with input function u = (ui)i=1,m ∈ L∞ ([0,+∞[,BRn(0, r)) for some r > 0.
Let O an open and connected set of Rn and assume that

Lieq (f1, ...fm) = Rn q ∈ O

Then the system (1.23) is controllable, i.e., for every q0, q1 in O and for
every T > 0 exists u ∈ L∞((0, T ),BRn(0, r)) such that q(0) = q0 and q(T ) =
q1 and q(t) ∈ O for every t ∈ [0, T ].

Theorem 1.2 ((Orbit (see [49])). Let Q be an analytic manifold, and F a
family of analytic vector fields on Q. Then

a) each orbit of F is an analytic submanifold of Q, and

b) if N is an orbit of F , then the tangent space of N at x is given by
Liex(F). In particular the dimension of Liex(F) is constant as x varies
on N .

Let us recall the definition of iterated Lie brackets [29]

Definition 1.12. Let f ∈ C∞ and g ∈ C∞ we define by induction on k ∈ N
adkfg ∈ C∞

ad0
fg := g

adk+1
f g := [f, adkfg], ∀k ∈ N.

We are now ready to give a sufficient condition for small time local con-
trollability

Theorem 1.3. Assume that the controlled vector fields g1 · · · gm generate a
Lie algebra Lie{g1 · · · gm} that satisfies Lie{g1 · · · gm} = TqQ for all q in Q
then the corresponding affine system

q̇ = f(q) +
m∑
i=1

gi(q)ui

is strongly controllable whenever there are no restrictions on the size of the
controls.

Theorem 1.4. (see [38]) Assume that the drift term is bounded but non
zero and the vectors adkfgi(q) ∀i ∈ {1 · · ·m} k ∈ {0, 1, · · · } together with
the vectors [gi, gj](q) for all pairs i, j ∈ {1, · · · ,m} span Rn. Then the affine
control system is small time locally controllable from q, if the controls
are sufficiently large, i.e with controls λu̇ and u̇ ∈ {|u̇i| < 1, i = 1, · · · ,m}
for some large scalar λ > 0.
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1.4 Reynolds number

In this section we describe how it is possible to characterize the kind of
fluid involved in the following chapters. It is well known that there is a
system of partial differential equations describing the motion of a simple
2-dimensional viscous incompressible fluid (a Newtonian fluid): the Navier
Stokes equations.

ρ
(∂v
∂t

+ (v · ∇)v
)

= −∇p+ η∆v

div v = 0

where v and p are the velocity and the pressure in the fluid, ρ is the fluid
density, and η its viscosity. For simplicity external forces, such as gravity,
have been dropped from the right hand side of the first equation, which ex-
presses the balance between forces and rate of change of linear momentum.
The second equation constrains the flow to be volume preserving, in view of
incompressibility.
These equations can be put in a dimensionless form using the following def-
initions

x
′
=
x

L
y
′
=
y

L

v
′
=

v

V
p
′
=
pL

ηV

∇′ = ex
∂

∂x′
+ ey

∂

∂y′
= L∇ t

′
= t

V

L

Here, U and L are a characteristic velocity and a characteristic length.
Then

ρ
∂(V v

′
)

∂(L
V
t′)

+ ρV v
′ · 1

L
∇′V v′ = − 1

L2
∇′(ηV p′) + η

1

L2
∇′2(V v′)

Assuming ρ constant and multiplying both sides by L2

ηV
gives

Re(
∂v
′

∂t′
+ v

′ · ∇′v′) = −∇′p′ + ∆
′
v
′

div v
′
= 0

(1.24)

where Re is a dimensionless parameter known as the Reynolds number.
Pressure is a parameter fixed by the observer, so it follows that the only other
force is inertia force. Furthermore, the relative magnitudes of the pressure
and inertial forces are describe by the Reynolds number, defined as

Re =
Finertial
Fviscous

=
V Lρ

η
.
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For high Reynolds number flow (Re → ∞), the viscous force is small com-
pared to the inertia force, so it can be neglected, leaving Euler’s equation of
inviscid motion

ρ
(∂v
∂t

+ (v · ∇)v
)

= −∇p

div v = 0
(1.25)

For low Reynolds number (Re → 0), the inertia term is smaller than the
viscous term and can therefore be ignored, leaving the Stokes equations

∆v = ∇p
div v = 0

(1.26)

These two different regimes are those in analysis in our work. Since the
Reynolds number depends linearly on the characteristic length and velocity
of the system and decreases as the viscosity increases we can make different
assumptions on these quantities and obtain different regimes. In the first
case of study, supposing to have a fluid with vanishing viscosity, we will
consider a body immersed in a fluid with high Reynolds number, and as we
have seen, the equations are the Euler’s one. Next in the second case, we
consider swimming at micro-scales, therefore we focus on the case of a low
Reynolds number fluid, where the hydrodynamics is described by the Stokes
equations.
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Chapter 2

Ideal fluids

We now focus on a planar swimmer immersed in a fluid at high Reynolds
number, i. e. with viscosity low enough to be negligible. This is the case of a
body immersed in an ideal and incompressible fluid. The dynamical problem
of its self propulsion has been reduced to the calculation of the gauge potential
A. In our model we assume that the allowed motions, involving the same
sequence of forms will include additional time-dependent rigid displacements.
In other words the actual motion will be the composition of the given motion
sequence S0(t) and rigid displacements.

2.1 Structure of equations of motion

In this section we present the geometrical framework underlying dynamical
control systems. We derive the equations of motion and discuss how to use
the geometrical tools introduced before to gain informations on our system.

2.1.1 Geometry of control equations

In this subsection we derive the local dynamic equations for the control sys-
tem (Q, h,F) where F is a smooth k-dimensional foliation on Q, and h is the
Riemaniann metric on the manifold Q, as done in [61]. As is well known, on
a set U ⊂ Q adapted for the foliation, F coincides with the model foliation
of Rn by k-dimensional hyperplanes. Let φ : U −→ Rn, φ(P ) = (x, y) be
a local chart of Q in U , distinguished for F , so that φ maps F|U into the
trivial fibration π(x, y) = y. Set q = (x, y) ∈ Q; given a path u(t) ∈ π(φ(U)),
we suppose that for every t, the reaction forces that implement the (ideal)
constraint y ≡ u(t) are workless with respect to the set Vq(t)U = kerTq(t)π of
the virtual displacements compatible with the constraint y ≡ u(t).
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Let (Q, h,F) be a foliated Riemanian manifold, let U ⊂ Q be an open set
adapted for F an let q = (x, y). If T (q, q̇) = 1

2
q̇th(q)q̇ is the kinetic energy

of the unconstrained system (Q, h,F), then the kinetic energy of the system
subject to the time dependent constraint y ≡ u(t) is T (x, u(t), ẋ, u̇(t)). The
related dynamic equations are, in Lagrangian formalism

d

dt

∂T

∂ẋ
− ∂T

∂x
= 0 (2.1)

These can be put in Hamiltonian form by performing a partial legendre
transformation on the ẋ- variables. When we identify y with u(t) and ẏ with
d
dt
u(t), the above Lagrange equations are equivalent to

ẋ =
∂H

∂p
(x, p, u, u̇) ṗ = −∂H

∂x
(x, p, u, u̇) . (2.2)

We call these equations control equations. Let

q̇th(q)q̇ = ẋtCẋ+ ẋtMẏ + ẏtMtẋ+ ẏtBẏ (2.3)

be the local block representation of the metric h in φ(U), where C,B are
symmetric and invertible respectively k × k and (n− k)× (n− k) matrices.

To every q ∈ U denote with HqU the subspace orthogonal to VqU =
kerTqπ with respect to h. Referring to the local expression of h in U , it is
easy to see that HqU is the space orthogonal to the vectors (ei, 0)i=1···n with
respect to the metric h .

HqU = {(ẋ, ẏ) ∈ TqU such that C(q)ẋ+M(q)ẏ = 0} .

Therefore HqU can be equivalently assigned through the VqU -valued connec-
tion one form defined in Definition 1.8

A(q) = (dx+ C(q)dy)⊗ ∂

∂x
where (see 2.6) C = C−1M (2.4)

whose kernel and range are respectively HqU and VqU . Now we consider the
orthogonal splitting of a vector into its horizontal ad vertical components

v = vv + vh = A(q)v + hor(Tqπv) = (ẋ+ Cẏ, 0) + (−Cẏ, ẏ)

Using the above decomposition, we get the induced splitting of the kinetic
energy metric tensor into its vertical and horizontal part:

h(q)dq ⊗ dq = C(q)A(q)⊗ A(q) +K(q)dy ⊗ dy (2.5)

where K(q) = B −MtC−1M.



33

Definition 2.1. The Riemannian metric h is bundle-like for the foliation
F iff on a neighborhood U with adapted coordinates (x, y) the above orthog-
onal splitting of g holds with K = K(y).

The importance of this notion will be clear in the following subsection.
Using this notation we want to rewrite the control equations.

From

p =
∂T

∂ẋ
= Cẋ+Mẏ

we obtain

ẋ = C−1p− C−1Mu̇ = C−1p− Cu̇ (2.6)

Substituting (2.6) in (2.3) and recalling that −∂H
∂x

= ∂T
∂x

we have

ṗ = −∂H
∂x

=
∂T

∂x
= −1

2
pt
∂C−1

∂x
p+ pt

∂C

∂x
u̇+

1

2
u̇t
∂(B −MtC−1M)

∂x
u̇ (2.7)

Therefore the control equations are

{
ẋ = C−1p− C−1Mu̇

ṗ = −1
2
pt ∂C

−1

∂x
p+ pt ∂C

∂x
u̇+ 1

2
u̇t ∂(B−MtC−1M)

∂x
u̇

(2.8)

We now introduce, following [61], the global version of the above dynamic
equations when Q is the total space of a surjective submersion π : Q −→ S.
Let V Q be the vertical subbundle and V ∗Q the dual of V Q. Denote with
pQ : T ∗Q −→ Q the cotangent projection and set π̃ := π◦pQ, π̃ : V ∗Q −→ S.
If (x, y) are local fibered coordinates on Q, (x, y, p) are local fibered coor-
dinates on V ∗Q. Moreover, denote with z = (x, p) the local coordinates on
the π̃-fiber over y. Now, to every y ∈ S, π̃−1(y) is a fiber canonically sim-
plettomophic to T ∗(π−1(y)), representing the phase space of the constrained
system restricted to the π-fiber over y.
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T ∗Q

V ∗Q
(x, y, p)

Q

π

(x, y)

TQ

pQ

(x, y, ẋ, ẏ)

S
y

π̃

Suppose that a control vector field u̇ is given on S and that the path
u(t) is an integral curve of u̇. Then the dynamic equations (2.6) and (2.7)
are the local expression of a vector field Du̇ over V ∗Q that projects on u̇
by π̃. Moreover the field Du̇ is tangent to the fiber of π̃ only if the control
is trivial: u̇ vanishing. Let us suppose that the control is given by a curve
u : [t1, t2]→ S in S that is the integral curve of the vector field u̇. Thus the
movement of the system is described by a differentiable curve γ : [t1, t2]→ Q
such that π(γ(t)) = u(t). Note that dγ

dt
: [t1, t2]→ TQ is the natural increase

of the curve γ in the fiber tangent to Q. Composing dγ
dt

with the Legendre
transform LTQ → T ∗Q and with the projection τ : T ∗Q → V ∗Q we obtain
the parametric curve γ̂ = τ ◦ L ◦ dγ

dt
: [t1, t2] → V ∗Q which represent the

evolution of the system taking into account the control.

Let horQ : TS −→ TQ denote the horizontal lift of the Ehresmann con-
nection, introduced in the previous section, and pQ the cotangent projection,
using the above definitions we introduce the function

Ku̇ : V ∗Q −→ R Ku̇ ◦ p−1
Q (q) = (horQ(q)(u̇))th(q)horQ(q)(u̇)

Theorem 2.1. To every control vector field u̇ on S, the corresponding dy-
namic vector field Du̇ can be expressed as the sum of three terms:

Du̇ = XH0 −XKu̇ + hor(u̇) (2.9)
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with

XH0 = C−1p
∂

∂x
− 1

2
pt
∂C−1

∂x
p
∂

∂p
(2.10)

−XKu̇ =
1

2
u̇t
∂K

∂x
u̇
∂

∂p
(2.11)

hor(u̇) =
( ∂
∂y
− C ∂

∂x
+ pt

∂C

∂x

∂

∂p

)
u̇ (2.12)

where XH0 is the Hamiltonian vector field corresponding to the case of locked
control, XKu̇ is the Hamiltonian vector field on V ∗Q associated to Ku̇ and
hor is the horizontal lift of an Ehresmann connection on π̃ : V ∗Q −→ S
entirely determined by π and the metric. These equations are exactly the
control equations (2.8).

Proof: [23] �

The importance of initial impulse

In what follows let us suppose that the metric h is bundle like.

Proposition 2.1. The control system (2.8) is of two different types depend-
ing on the value of the initial value of the x conjugate variables p.

1. Case p(0) = 0

The system (2.8) is an affine non linear driftless control system;

2. Case p(0) 6= 0

The system (2.8) is an affine non linear control system with drift.

Proof: Since we have supposed to have a bundle like metric we have that

∂K(y)

∂x
=
∂(B −MtC−1M)(y)

∂x
= 0 .

Therefore the control equation (2.8) becomes{
ẋ = C−1p− C−1Mu̇

ṗ = −1
2
pt ∂C

−1
∂x

p+ pt ∂C
∂x
u̇

(2.13)

Case p(0) = 0.
The function p(t) = 0 is the unique solution of (2.13)2 according to the
Cauchy theorem. Thus (2.13)1 becomes a driftless control system.

ẋ = −C−1Mu̇
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It is clear that this last equation is entirely determined by the connection (see
(2.4)). Therefore in the case of null initial impulse case only the geometry of
the system determines its motion.
Case p(0) 6= 0.
In this case the equation (2.13)2 has no trivial solution that is p(t) 6= 0. Thus
(2.13)1 is a non linear control system with drift determined exactly by the
presence of a non zero p

ẋ = C−1p− C−1Mu̇

The presence of the drift is crucial because in this case the motion of the
system is determined both by the connection (given by the geometry) and
by the impulse, that is non zero. This proves the importance of the initial
value of p. �

In this work we analyze both the cases. The one with zero initial impulse
is well studied in literature for many systems [65, 64, 44, 46, 45]. The one
with p(0) 6= 0 is becoming of increasing interest since the presence of the
impulse influences deeply the motion, as we have seen. We deal with this
problem that is more complex and tricky to study because of the presence of
the drift.

2.2 Model

In this section we describe in detail the way in which we modelize a 2-dim
deformable body immersed in an ideal irrotational fluid.

2.2.1 System of coordinates

Let (O, ex, ey) be a reference Galilean frame by which we identify the physical
space to R2. At any time the swimmer occupies an open smooth connected
domain B and we denote by F = R2 \ B̄ the open connected domain of
the surrounding fluid. The coordinates in (O, ex, ey) are denoted with x =
(x1, x2)T and are usually called spatial coordinates. Let us call (−x2, x1)T =
x⊥.
Attached to the swimmer, we define also a moving frame (O∗, e∗x, e

∗
y). Its

choice is made such that its origin coincides at any time with the center of
mass of the body. This frame represents the choice of the axes in the space
of unlocated shapes. As we have shown before, the computation of the net
rigid motion of the swimmer due to shape changes is independent from this
choice that accordingly is arbitrary. The fact that this frame has always its
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origin in the center of mass is a matter of convenience: indeed this choice,
and others (see Remark 2.2), tell us that the body frame is the one in which
the kinetic energy of the body is minimal [58].
We denote by x∗ = (x∗1, x

∗
2)T the related so called body coordinates. In this

frame and at any time the swimmer occupies a region B∗ and the fluid the
domain F∗ := R2 \ B̄∗.
We define also the computational space, that is the Argand-Gauss plane which
we will need only to perform explicit calculations, endowed with the frame
(O,Ex,Ey) and in which the coordinates are denoted z = (z1, z2)T . In this
space D is the unit disk and O := R2 \ D̄.

2.2.2 Shape changes

Banach spaces of sequences. Inspired by [65], we denote any complex
sequence by c := (ck)k≥1 where for any k ≥ 1, ck := ak + ibk ∈ C, ak, bk ∈ R.
Most of the complex sequences we will consider live in the Banach space

S :=
{

(ck)k≥1 :
∑
k≥1

k(|ak|+ |bk|) < +∞
}

endowed with its natural norm ‖c‖S :=
∑

k≥1 k(|ak| + |bk|). This space is
continuously embedded in

T :=
{

(ck)k≥1 : sup
z∈∂D

∣∣∑
k≥1

kckz
k
∣∣ < +∞

}
whose norm is ‖c‖T := supz∈∂D |

∑
k≥1 kckz

k|, where D is the unit disk of
the computational space.

Definition 2.2. x We call D the intersection of the unit ball of T with the
space S.

This space will play an important role in the description of the shape
changes that will follow.
Finally we introduce also the Hilbert space

U :=
{

(ck)k≥1 :
∑
k≥1

k(|ak|2 + |bk|2) < +∞
}

whose norm is ‖c‖U :=
√∑

k≥1 k(|ak|2 + |bk|2). According to Parseval’s iden-

tity we have
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∑
k≥1

k|ck|2 ≤
∑
k≥1

k2|ck|2 =
1

2π

∫ 2π

0

(∑
k≥1

kcke
−ikθ)2

dθ ≤ sup
z∈∂D

∣∣∑
k≥1

kckz
k
∣∣2

Therefore we have the following space inclusions

S ⊂ T ⊂ U

We have introduced these spaces because they will be crucial in the descrip-
tion of the shape changes of the idealized swimmer.

Description of the shape changes

Following the line of thoughts of [65] and [25] the shape changes of the swim-
mer are described with respect to the moving frame (O∗, e∗x, e

∗
y) by a C1

diffeomorphism χ(c), depending on a shape variable c ∈ D which maps the
closed unit disk D̄ of the computational space onto the domain B∗ in the body
frame. The diffeomorphisms χ(c) allows us to associate to each sequence c
a shape of the swimmer in the body frame. We can write, according to our
notation, that for any c ∈ D (see definition 2.2),

χ(c) : C ⊃ D̄ → R2 ≡ (O∗, e∗x, e
∗
y) (2.14)

and B̄∗ = χ(c)(D̄).
We now explain how to build the map χ(c) for any given sequence c, see Fig
2.1.
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e2* 

e2 

Figure 2.1: The physical space and the body frame.

Theorem 2.2 (Riemann Mapping Theorem). Let K be a simply connected
open bounded subset of C with 0 ∈ K. Then there exists an holomorphic
isomorphism f : D → K with f(0) = 0. Any other isomorphisms with
f(0) = 0 are of the form z 7→ f(rz) with r ∈ ∂D a rotation. All functions
f can be extended to an homeomorphism of D̄ onto K̄ if and only if ∂K is a
Jordan curve.

Defining C∞ = {C ∪ ∞}, if O = C∞ \ D̄, from the isomorphism f
we have also an isomorphism from D to the exterior F∗; we apply to F∗
the inversion ρ(z) := 1

z
obtaining the open simply connected G, we find

another Riemann- isomorphism g : D → G with g(0) = 0. Then we consider
h = ρ ◦ g = 1

g
: D → F∗. The function g is injective around zero, therefore

g
′
(0) 6= 0, it follows that h has a pole of the first order in zero and therefore

has a Laurent expansion

h(z) =
1

z
+
g
′′
(0)

2
+
∞∑
k=1

ckz
k (2.15)

We now have the area theorem [68]: if a function like h is injective on the
punctured disk then we have

∞∑
k=1

k|ck|2 ≤ 1 (2.16)
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If we want an isomorphism of O on F∗ we take φ(c)(z) = h(1
z
)

φ(c)(z) = z +
∞∑
k=1

ck
zk

(2.17)

We now suppose that the boundary of B∗ is a Jordan curve, i.e. simple
closed curve in the plane, therefore the function φ(c) can be extended to
homeomorphism on the boundary. Now φ(c) : Ō → F∗ can be extended
continuously to all C∞ setting in the interior of D

χ(c)(z) := z +
∑
k≥1

ckz̄
k , (z ∈ D̄) (2.18)

Since z̄ = 1
z

on ∂D we deduce that the following map is continuous in C for
all c ∈ D:

Φ(c)(z) :=

{
χ(c)(z) if z ∈ D
φ(c)(z) if z ∈ Ō = C∞ \D

(2.19)

Proposition 2.2. For all c ∈ D, χ(c) : D̄ → B̄∗ and φ(c) : Ō → F̄∗ are both
well defined and invertible. Further, χ(c)|D is a C1 diffeomorphism, φ(c)|O
is a conformal mapping and Φ(c) is an homeomorphism form C onto C.

Proof: [65] �

Remark 2.1. Despite the generality of the Riemann Mapping Theorem, the
way in which we decided to represent our diffeomorphism, lead us to some
restrictions. Indeed in order to be sure that also χ(c) is well defined -from
proposition 2.2- we need to impose the restrictive condition c ∈ D, see (2.16),
meaning that the shape variables have to be finitely bounded for both the norms
of S and T . To summarize we can say that to use the shape variable c ∈ D
allows us to describe all of the bounded non-empty connected shapes of the
body that are not too far from the unit ball, accordingly to some criteria that
we specify below.

From the relation

x∗ = χ(c)(z) , (2.20)

(z ∈ D) we deduce that the area elements dx∗ and dz of respectively B∗ and
D can be deduced one from the other by the identity.

dx∗ := J(c)(z)dz, (z ∈ D, x∗ := χ(c)(z))
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where J(c)(z) := | detDχ(c)(z)|, (z ∈ D).
The density ρ∗c of the deformed idealized swimmer can be deduced from a
given constant density ρ0 > 0 by the conservation mass principle:

ρ∗c(x
∗) =

ρ0

J(c)(χ(c)−1(x∗))
, (x∗ ∈ B∗)

We define the element of mass in D by dm0 := ρ0dz and likewise dm∗ :=
ρ∗cdx

∗, is the element of mass in B∗. Then the area of the body is given by
(see 2.18)

V ol(B) =

∫
D

J(c)(z) dz =

∫
D

1−
∣∣∣∑
k≥0

(k+1)ck+1z̄
k
∣∣∣2 dz = π(1−‖c‖2

U) (2.21)

According to the incompressibility of the fluid both viewed in the physical
frame (O, ex, ey) and in the body frame (O∗, e∗x, e

∗
y), its area has to be con-

stant. We draw the same conclusion for the area of our idealized swimmer
because its area is nothing but the complementary of the area of the fluid.
Therefore we deduce that the function t 7→ ‖c(t)‖U = (‖c(0)‖U) has to be
constant. Thus we define the space

E(µ) =
{
c ∈ D : ‖c‖U = µ

}
(2.22)

moreover this set is not empty if and only if µ < 1 and differentiating by
time (2.21) we get an equivalent formulation for the conservation of the body
area ∑

k≥1

k(ȧkak + ḃkbk) = 0 (2.23)

This gives us the first condition to impose on the shape changes in order
to be physically allowable. Another condition is given by the fact that the
motion we are considering is self-propelled, therefore the Newton’s laws en-
sure that the linear and angular momenta of the swimmer with respect to
its attached frame (O∗, e∗x, e

∗
y) have to be and remain zero when it undergoes

shape changes. Hence we get the condition

d

dt

(∫
B∗
x∗ dm∗

)
= 0 (2.24)

which leads to ∫
D

χ̇(c) dm0 = 0

which is intrinsically satisfied since the body frame has its origin in the center
of mass.
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Regarding the angular momentum we find∫
D

χ̇(c) ·χ(c)⊥ dm0 = 0 (2.25)

This condition after some algebra gives the identity∑
k≥1

1

k + 1
(ḃkak − ȧkbk) = 0 (2.26)

Remark 2.2 (Minimal Kinetic Energy). It is worth noting that these con-
ditions tell us that the body frame that we have chosen is exactly the one of
the minimal kinetic energy. Indeed there are two conditions to verify. The
first one is that the velocity of the center of mass is null in this frame (2.24).
This condition is clearly satisfied by the fact that the origin of the frame co-
incides with the center of mass at any time. The second condition is that
the angular momentum with respect to the body frame has to be null, that is
exactly condition (2.25).

Remark 2.3. The orientation of the frame remains arbitrary and does not
effect the fact that it is the frame of minimal kinetic energy. One of the most
used conventions to define a possible orientation of such a system is to choose
as axes the eigenvectors of the moment of inertia of our body. Obviously as
we have said before this choice does not effect the located shape, since it is
independent on the choice of the frame.

These conditions lead us to give the following definition

Definition 2.3 (Physically allowable control). A smooth function t 7→ c(t)
is said to be physically allowable when:

i There exist µ > 0 such that c(t) ∈ E(µ) for all t ≥ 0.

ii Constraint (2.23) and (2.26) are satisfied.

The condition i specifies in a more rigorous way what we meant by shapes
near the circle in the remark (2.1).

2.2.3 Rigid motions

The overall motion of our body in the fluid is, as said before, the composition
of its shape changes with a rigid motion. The shape changes have been
described in the previous subsection and, as we will see, the Gauge potential
A described at the beginning depends only on the shape variable c that is

A = A(c) (2.27)
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this will be evident in the next sections.
The net rigid motion is described by an element of the planar euclidean group
as explained in subsection 1.2.1. More precisely it is given by a translation
d, which is the position of the center of mass, and a rotation R of an angle
θ, that gives the orientation of the moving frame (O∗, e∗x, e

∗
y) with respect to

the physical one.
Let the shape changes be frozen for a while and consider a physical point x
attached to the body. Then there exists a smooth function t 7→ (d(t), θ(t))
such that the point’s coordinates in (O, ex, ey) are given by x = R(θ)x0 + d.
Next compute the time derivative expression (ḋ, θ̇). We deduce that the
Eulerian velocity of the point is vd(x) = θ̇(x − d)⊥ + ḋ. It can be also
expressed in the moving frame (O∗, e∗x, e

∗
y) and reads v∗d = θ̇(x∗)⊥+ ḋ∗ where(

ḋ∗

θ̇

)
= R(θ)T

(
ḋ

θ̇

)
(2.28)

where R is an element of the euclidean group SE(2) of pure rotation.

Remark 2.4. Notice that ḋ∗ is not the time derivative of some d∗ but only
a symbol to expresse the velocity ḋ in the body frame.

Let us return to the general case where the shape changes are taken into
account. We deduce that the Eulerian velocity at a point x of B is

v(x) = θ̇(x− d)⊥ + ḋ +R(θ)χ̇(c)[χ(c)−1(R(θ)T (x− d))]

where the last term represent the velocity of deformation and is computed
deriving the relation 2.20 and taking into account that x = RT (θ)x∗ =
RT (θ)χ(c)(z). When we express this velocity in the moving frame we get

v∗(x∗) = (θ̇x∗
⊥

+ ḋ∗) + χ̇(c)(χ(c)−1(x∗)) , (2.29)

which is more compact and will be useful in what follows.

2.2.4 Dynamics for ideal fluid

In this section we use some well known ideas developed for example in some
works of A. Bressan [18], which further simplify the system of our idealized
swimmer.
We assume that the shape changes of our swimmer can be described by a
finite number of shape parameters, i.e. c = (c1, · · · , cm), thus we can call
q = (q1, · · · , qm+3) = (d, θ, c1, · · · , cm). This choice is widely spread in
recent literature as in [18, 64], and implies that we focus only on a class of
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deformations which consist of particular shape changes that are sufficient to
describe a wide range of swimmer behaviors. Let us call χ̃ the diffeomorphism
which describes the superimposition of the shape changes with a rigid motion,
more precisely χ̃(q)(z) := [R(θ),d] ◦ χ(c)(z) Assuming that there are no
external forces, we wish to derive a system of equations describing the net
motion of the body due to the shape changes and of the surrounding fluid
expressed in the moving frame. Let N = m+ 3 and

T (q, q̇) =
1

2

N∑
i,j=1

Ai j(q)q̇iq̇j (2.30)

describe the kinetic energy of the body. For simplicity, we assume that the
surrounding fluid has unit density. Calling v = v(x, t) its velocity at the
point x, the kinetic energy of the surrounding fluid is given by

K =

∫
F

|v(x)|2

2
dx (2.31)

If the only active force is due to the scalar pressure p, the motion of the fluid
is governed by the Euler equation for non-viscous, incompressible fluids:

vt + v · ∇v = −∇p (2.32)

supplemented by the incompressibility condition

div v = 0.

In addition, we need a boundary condition〈
v −

N∑
k=1

∂χ̃(q)(z)

∂qk
q̇k, −z

χ̃
′
(q)(z)

|χ̃′(q)(z)|

〉
= 0 (2.33)

−z χ̃
′
(q)(z)

|χ̃′ (q)(z)| = n(x), (x = χ̃(q)(z), z ∈ ∂D) denotes the unit outer normal to

the set χ̃(c)(D) = B at the point x, and is computed making the complex
derivative of the function χ̃(q)(z) expressed in polar coordinates that is

n = i
∂σ(χ̃(q)(eiσ))

|∂σ(χ̃(q)(eiσ))|
= −eiσ χ̃

′
(q)(eiσ)

|χ̃′(q)(eiσ)|
= −z χ̃

′
(q)(z)

|χ̃′(q)(z)|
(2.34)

which states that the velocity of the fluid has to be tangent to the surface of
the body. To find the evolution of the coordinate q, we observe that

d

dt

∂T

∂q̇k
=
∂T

∂qk
+ Fk k = 1 · · ·N (2.35)
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where T is the kinetic energy of the body and Fi are the components of the
external pressure forces acting on the boundary of B. To determine these
forces, we observe that, in connection with a small displacement of the qi

coordinate, the work done by the pressure forces is

δW = −δqk ·
∫
∂D

〈
−z χ̃

′
(q)(z)

|χ̃′(q)(z)|
,
∂χ̃(q)

∂qk
(z)

〉
p(χ̃(q)(z))J(q)(z) dσ (2.36)

The equations of motion for are

d

dt

∂T

∂q̇k
=
∂T

∂qk
−
∫
∂D

〈
−z χ̃

′
(q)(z)

|χ̃′(q)(z)|
,
∂χ̃(q)

∂qk
(z)

〉
p(χ̃(q)(z))J(q)(z) dσ

(2.37)
We now show that, in the case of irrotational flow, the coupled system can
be reduced to a finite dimensional impulsive Lagrangian system. It is well
known (see [43, 60]) that the velocity field of the fluid can be determined by
setting v = ∇ψ and solving the Neumann problem in the exterior domain

∆ψ = 0 x ∈ F
n · ∇ψ = n · v(x)|x=χ̃(q)(z) x ∈ ∂B
|ψ| → 0 |x| → ∞

(2.38)

where the boundary condition reads

n · v(x) = −z χ̃
′
(q)(z)

|χ̃′(q)(z)|
·
∑
k

∂χ̃(q)

∂qk
(z)q̇k (2.39)

Let us now consider the function φ̃(q) : R2 \D → R2 defined by the com-
position of φ(q)(z) with the rigid motion [R,d], that clearly on the boundary
of D coincides with the function χ̃(q). From the linearity of (2.38) the solu-
tion will be linear in q̇.

ψ(z,q, q̇) =
N∑
k=1

γk(z,q)q̇k (2.40)

The motion of the fluid can be obtained by solving the ordinary differential
equation

d

dt
φ̃(q)(z) =

∂ψ

∂xL
(x,q, q̇)|x=φ̃(q)(z) (2.41)

precisely

vL(x,q, q̇) =
∑
k

∂φ̃(q)

∂qk
(z)q̇k =

∑
k

∂γk
∂xL

(x,q)q̇k|x=φ̃(q)(z) (2.42)
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This has to be true for all curve R 3 t 7−→ q(t), with c as in definition (2.3)
thus we have

∂φ̃(q)

∂qk
(z) =

∂γk
∂xL

(x,q)|x=φ̃(q)(z) (2.43)

We now prove that the term of the equations of motion relative to the
pressure forces is a kinetic term

Fk =−
∫
∂D

−z φ̃
′
(q)(z)

|φ̃′(q)(z)|
∂φ̃(q)

∂qk
(z)p(φ̃(q)(z))J(q)(z) dσ =

−
∫
∂D

−z φ̃
′
(q)(z)

|φ̃′(q)(z)|
∂γk
∂xL

(φ̃(q)(z))p(φ̃(q)(z))J(q)(z) dσ =

= −
∫
∂B
nL(x)

∂γk
∂xL

p dx

(2.44)

applying the divergence theorem to (2.44)

=

∫
x∈F

∂

∂xL
(
∂γk
∂xL

p) dx =

∫
x∈F

(
p∆γk︸︷︷︸

=0

+∇γk · ∇p
)
dx =

=

∫
x∈F
∇γk · ∇p dx =

∫
z∈R2\D

∂φ̃(q)

∂qk
·
(
−v,t−v · ∇v

)
Ĵ(q)(z) dz =

= −
∫
z∈R2\D

∂φ̃(q)

∂qk
· d
dt
vĴ(q)(z) dz =

= −
∫
z∈R2\D

[
d

dt
(
∂φ̃(q)L
∂qk

vL)− vL
∂2φ̃(q)

∂qj∂qk
q̇k]Ĵ(q)(z) dz

where Ĵ(q)(z) is the determinant of the jacobian matrix of the function
φ̃(c)(z). Let us define

T f =
1

2

∫
x∈F
|v|2 dx =

1

2

N∑
i,j

Ãi j q̇iq̇j

then

Fk = −
( d
dt

∫
x∈F

∂|v|2

∂q̇k
dx−

∫
x∈F

∂|v|2

∂qk
dx
)

= − d

dt

∂T f

∂q̇k
+
∂T f

∂qk

In conclusion the system body+fluid is geodesic of Lagrangian

T = T body + T f (2.45)
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In what follows for simplicity we will express all the quantities in the moving

frame (O∗, e∗x, e∗y), denoting the total kinetic energy in this frame as
∗
T . We

will now compute explicitly the Lagrangian. Let us start with the kinetic
energy of the swimmer. Since we have chosen the body frame as the one of
minimal kinetic energy, according to Konig theorem, there is a decoupling
between the kinetic energy of the body due to its rigid motion and that due
to its shape changes, recalling (2.30):

∗
T
body

:=
1

2
m|ḋ∗|2 +

1

2
I(c)θ̇2 +

1

2

∫
B∗

∣∣∣χ̇(c)(χ(c)−1(x∗))
∣∣∣2 dm∗ (2.46)

where I(c) is the moment of inertia of the body thought as rigid with frozen
shape, and the last term being the kinetic energy of deformation. It can be
computed as follows:∫

B∗

∣∣∣χ̇(c)(χ(c)−1(x∗))
∣∣∣2 dm∗ =

∫
D

∣∣χ̇(c)(z)
∣∣2 dm0 = πρ0

m∑
k=1

|ċk|2

k + 1

where we used the formula (2.18) to compute the integral. Note that accord-
ingly to remark (2.3) the kinetic energy of the body in the frame (O∗, ex∗, e∗y)
does not depend on the orientation of the frame but only on its angular ve-
locity.

Kinetic energy of the fluid

Since we are interested on the effect of the shape changes of the swimmer on
the fluid, in this subsection we will compute all the quantities in the body
frame. As we have seen in subsection 1.2.1 we can recover the rigid motion
of the swimmer due to its deformation, exploiting the Gauge potential.
The kinetic energy of the fluid reads

∗
T
f

:=
1

2

∫
F∗
|u∗|2 dm∗f =

1

2

∫
F∗
|∇ψ∗|2 dm∗f (2.47)

There u∗ = ∇ψ∗ and ψ∗ is the solution of the Neumann problem
∆ψ∗ = 0 x ∈ F∗

n(x∗) · ∇ψ∗ = n(x∗) · v(x∗)|x∗=χ(q)(z) x∗ ∈ ∂B∗

|ψ∗| → 0 |x∗| → ∞
(2.48)

which is the same Neumann problem (2.38) expressed in the body frame.
Indeed since the Laplacian operator is invariant under rototranslations, the
function ψ∗(x∗) = ψ([R(θ),d](x)) is harmonic.
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We will use complex analysis to compute the potential function ψ∗. We
define the function ξ(z) := ψ∗(φ(c)(z)), (z ∈ O), where ψ∗ is the potential
function defined in (2.48) expressed in the moving frame and recalling (2.17)
φ(c)(z) is the conformal map from Ō = C \ D to the external domain F∗
. According to classical properties of conformal mappings, the function ξ is
harmonic in O and the following equality holds:

1

2

∫
F∗
|∇ψ∗|2 dm∗f =

1

2

∫
O
|∇ξ|2 dm0

f (2.49)

The main advantage of this substitution is that ξ is defined in the fixed do-
main O, whereas ψ∗ was defined in F∗ depending on c.
In the moving frame is now easier to compute explicitly the boundary condi-
tion of the Neumann problem. The outer normal to ∂B∗ is, recalling (2.34)

n(x∗) := n1(x∗) + in2(x∗) = −z φ
′
(c)(z)

|φ′(c)(z)|
(2.50)

where φ
′
(c)(z) is the complex derivative of φ(c). Recalling the following

identity
∂nξ

r
j (z)

|φ′(c)(z)|
= ∂nψ

∗r
j (x∗) (x∗ = φ(c)(z)) (2.51)

and taking into account the expression (2.29) of v∗, we deduce that the
Neumann boundary condition (2.39) reads

∂nξ(z) = ∇ξ ·n = −ḋ∗1<(zφ
′
(c)(z))− ḋ∗2=(zφ

′
(c)(z))− θ̇=(φ(c)(z)zφ

′
(c)(z))

−<(χ̇(c)zφ
′
(c)(z)) .

(2.52)
This equality leads us to introduce the functions ξrj (c) (j = 1, 2, 3) and ξd(c)
as being harmonic in O and satisfying the following Neumann boundary
conditions:

∂nξ
r
1(c)(z) = −<(zφ

′
(c)(z)), (2.53)

∂nξ
r
2(c)(z) = −=(zφ

′
(c)(z)), (2.54)

∂nξ
r
3(c)(z) = −=(φ(c)(z)zφ

′
(c)(z)), (2.55)

∂nξ
d(c)(z) = −<(χ̇(c)zφ

′
(c)(z)), (z ∈ ∂D). (2.56)

In this way we spilt the harmonicity and the Neumann boundary conditions
of the function ξ into the same properties for the functions ξrj (c) (j = 1, 2, 3)
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and ξd(c).
Next we have for all c ∈ D

<(χ̇(c)zφ
′
(c)(z)) =

m∑
k=1

ȧk<(zk+1φ
′
(c)(z)) + ḃk=(zk+1φ

′
(c)(z))

We introduce therefore the functions ξak(c) and ξbk(c), harmonic in O and
satisfying the boundary conditions:

∂nξ
a
k(c)(z) = −<(zk+1φ

′
(c)(z))− kak (2.57)

∂nξ
b
k(c)(z) = −=(zk+1φ

′
(c)(z))− kbk (2.58)

The extra terms kak, kbk have to be added for the boundary data to satisfy
the so called compatibility condition -

∫
∂B∗ n(x∗) · v∗(x∗) dx∗ = 0 - necessary

to ensure the well-posedness of the Neumann problems. Observe that under
condition (2.26) we recover

m∑
k=1

ȧk∂nξ
a
k(c) + ḃk∂nξ

b
k(c) = ∂nξ

d(c) (2.59)

Starting from the relations (2.53) - (2.55) on the normal derivatives ∂nξ
r
i i =

1, 2, 3 and from the relation above for ∂nξ
d, we would like to gain the same

property of linearity for the function ξ.

Proposition 2.3 (Potential decomposition). According to the Kirchhoff
law the formulas (2.53) - (2.55) and (2.59) imply that for any allowable
control (in the sense of (2.3)) the following identities hold in the sobolev
space H1(O):

ξ(c) = ḋ∗1ξ
r
1(c) + ḋ∗2ξ

r
2(c) + θ̇ξr3(c) + 〈ξd(c), ċ〉, (2.60)

〈ξd(c), ċ〉 =
m∑
k=1

ȧkξ
a
k(c) + ḃkξ

b
k(c). (2.61)

From the linearity of this expression with respect to ḋ∗, θ̇, ċ and since the
gradient function preserves the linearity, we deduce that the kinetic energy
of the fluid is a quadratic function of ḋ∗, θ̇, ċ.

2.2.5 The Gauge potential and the equations of motion

According to what proved in the preceding section the Lagrangian of our
system is a quadratic form in (ḋ∗, θ̇, ċ), therefore it can be written in blocks
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as follows

∗
T (ḋ∗, θ̇, ċ) =

1

2

(
(ḋ∗

T

, θ̇)Mr(c)

(
ḋ∗

θ̇

)
+ 2(ḋ∗

T

, θ̇)N(c)ċ + ċTMd(c)ċ
)

(2.62)

where Mr, N and Md play the role of the matrices C M and B, introduced
in the section 2.1.1, respectively

Remark 2.5. It is worth noting that in the physical space the kinetic energy
is

T (d, θ, c, ḋ, θ̇, ċ)

When it is expressed in the body frame instead it becomes

∗
T (c, ḋ∗, θ̇, ċ)

This expression does not depend on d and θ due to the symmetry of our
model with respect to the position and orientation of the body in the fluid.

As we have seen in the first section we are interested in determining the
Gauge potential A associated to our system which is

A = R−1dR
dt

= θ̇

( 0 1
−1 0

)
R(θ)T

(
ḋ1

ḋ2

)
0 0 0

 = θ̇

( 0 1
−1 0

) (
ḋ∗1
ḋ∗2

)
0 0 0


(2.63)

Since all the matrices Mr, N and Md depend only on c, the kinetic energy is
independent from d and θ and the metric that it defines is bundle like (see
Definition 2.1). In the principal fiber bundle SE(2) × S → S, the Gauge
potential A depends on the kinetic energy, through the equations of motion,
therefore also A does not depend on the state variables.
We now need to determine (ḋ∗1, ḋ

∗
2, θ̇). In order to do this we compute the

Hamiltonian associated to the Lagrangian function performing a partial leg-
endre transformation on the q̇∗ variables.
Before passing to formal calculations we recall how to interpret the con-
nection introduced before in the cotangent bundle setting following the steps
presented in subsection 2.1.1. This construction was presented also in [23, 61].
Let V Q be the vertical subbundle and V ∗Q the dual of V Q. Denote with
pQ : T ∗Q −→ Q the cotangent projection and set π̃ := π◦pQ, π̃ : V ∗Q −→ S.
If (d, θ, c) are local fibered coordinates on Q, (d, θ, c,p∗) are local fibered co-
ordinates on V ∗Q. Suppose that a control vector field ċ is given on S and
that the path c(t) is an integral curve of ċ. Then the equations of motion
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are the local expression of a vector field Dċ over V ∗Q that projects on ċ by
π̃. Moreover the field Dċ is tangent to the fiber of π̃ only if the control is
vanishing.
Recalling that q = (q1, · · · , qm+3) = (d, θ, c)

p∗ =
(∂ ∗

T

∂q̇∗i

)
i=1,2,3

= Mr(c)

(
ḋ∗

θ̇

)
+ N(c)ċ

which defines the translational and angular impulses of the system body plus
fluid. From this we obtain(

ḋ∗

θ̇

)
= M−1

r (c)p∗ −M−1
r (c)N(c)ċ (2.64)

This expression is very convenient to study the motion of the shape-
changing body since it gives the velocity with respect to the shape variable.

It is easy to recognize the terms of the sum in which the control equations
are split according to Theorem 2.1 :

XH0 =

(
M−1

r (c)p∗

0

)
XKċ

= 0

and

hor(ċ) =

(
−M−1

r (c)N(c)ċ
ċ

)
Note thus that we are exactly in the case of a bundle-like metric There-
fore the equations of motion regarding the state variables are exactly the
ones given by formula (2.64).

To obtain the equations of motion regarding the conjugate variables, we
follow the method explained in Lamb [57] and Munnier [65]: we introduce
P and Π, the translational and angular impulses, as well as L and Λ, the
impulses relating to the deformations:(

P
Π

)
= Mr(c)

(
ḋ∗

θ̇

) (
L
Λ

)
= N(c)ċ

p∗ =

(
P + L
Π + Λ

) (2.65)

We start from the Lagrange equations

d

dt

∂T

∂q̇i
− ∂T

∂qi
= 0, i = 1, 2, 3
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and recall that
∗
T (c, ḋ∗, θ̇, ċ) = T (c, R(θ)ḋ∗, θ̇, ċ).

Therefore recalling that ∂θR(θ) = −R(π
2
)R(θ)

d

dt

∂T

∂ḋ
− ∂T

∂d
=

d

dt

(∂ ∗
T

∂ḋ∗
R(θ)

)
=

d

dt
(P + L)− θ̇(P + L)⊥

d

dt

∂T

∂θ̇
− ∂T

∂d
=

d

dt
(
∂
∗
T

∂θ̇
)−R(θ)T ḋ · (P + L)⊥ =

=
d

dt
(Π + Λ)− ḋ∗ · (P + L)⊥

(2.66)

from these equations we get

d

dt

(
p∗1
p∗2

)
+ θ̇

(
−p∗2
p∗1

)
= 0

d

dt
p∗3 − ḋ∗2p∗1 + d∗1p

∗
2 = 0

(2.67)

Therefore the equations of motion in the body coordinates are

(
ḋ∗

θ̇

)
= M−1

r (c)p∗ −M−1
r (c)N(c)ċ

ṗ∗1 = θ̇p∗2
ṗ∗2 = −θ̇p∗1
ṗ∗3 = ḋ∗2p

∗
1 − ḋ∗1p∗2

(2.68)

Notice that these equations are exactly the ones presented in [64] which
describe the evolution of the state and the conservation of the impulse.

Equivalence in using real shape variables or complex ones

Since we are interested in studying small deformation around a circular shape,
see remark 2.1, in order to describe it we can also try to express the distance of
each point on the boundary of the circle in function of the shape parameters
c = a + ib. Let us consider deformation described by m shape parameters.
According to formula (2.18) the deformation can be written as:

χ(c)(z) = z +
m∑
k=1

ckz̄
k for z ∈ D
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therefore the modulus of a point on the boundary described in polar coordi-
nates by z = eiσ is given by

|χ(c)(z)|2 =(z +
m∑
k=1

ckz̄
k)(z̄ +

m∑
k=1

c̄kz
k) =

(
1 +

m∑
k=1

(ak cos((k + 1)σ) + bk sin((k + 1)σ))

+
m∑

h,k=1

(ak + ibk)(ah − ibh)
)

(2.69)

taking the square root and using the Taylor expansion around c = 0 which
corresponds to the circular shape we obtain

|χ(c)(z)| =
(
1 +

m∑
k=1

(
ak
2

cos((k+ 1)σ) +
bk
2

sin((k+ 1)σ))
)

+
m∑
k=1

o(c2
k) (2.70)

where we can neglect all the terms of order grater or equal than 2 supposing
ak, bk small for all k, for example of order ε.

Remark 2.6. Following this construction we have that to each complex shape
parameter correspond two real ones, i.e its real and immaginary part. There-
fore in practice to describe the deformation of the swimmer we need to pre-
scribe both the real and immagineary part of each complex number ck.

For example in the case m = 2 taking

a1 = 2εs1 b1 = 0 a2 = 2εs2 b2 = 2εs3 (2.71)

we find exactly the formula for the swimmer deformation proposed by Mason
and Burdick in ([64]).

F (σ, s) =
[
1 + ε(s1 cos(2σ) + s2 cos(3σ) + s3 sin(3σ))

]
(2.72)

Note that in this specific case we do not need to impose the conservation of
area and of linear momentum because the two conditions (2.23) and (2.26)
are not necessary if we neglect any contribution of order ε2.

This proves the equivalence of using the complex shape variables c or
the real ones s for deformations near the identity i.e., ak and bk of order ε.
Therefore we can use both the constructions depending on what we need.
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We can express the equations of motion (2.68) using the real parameters sk
as shape parameters instead of ck obtaining:

(
ḋ∗

θ̇

)
= M̄−1

r (s)p∗ − M̄−1
r (s)N̄(s)ṡ

ṗ∗1 = θ̇p∗2
ṗ∗2 = −θ̇p∗1
ṗ∗3 = ḋ∗2p

∗
1 − ḋ∗1p∗2

(2.73)

where the matrices M̄r and N̄ have the same physical meaning of the matrices
Mr and N but are expressed using the real shape parameters s.
From now on we focus only on shape transformations near the identity, like
(2.72) so that we can use real shape parameters to describe the deformation
of the system.

Curvature of the connection: geometric and dynamic phase

In this subsection we deal with the problem of having a net motion perform-
ing cyclical shape changes. Looking at equations (2.73)1 is evident that there

are two contributions: the one of M−1

r (s)p∗ which involves the impulse and

−M−1

r (s)N(s)ṡ which is entirely geometrical.

• p∗ = 0

First, let us suppose that the system starts with zero initial impulse,
i.e. p∗(0) = 0. With this assumption the last three equations of the
system (2.73) have as unique solution the null one therefore, the first
term of equation (2.73)1 vanishes and the infinitesimal relationship be-
tween shape changes and body velocity is described by the local form
of the connection computed above. Moreover we take into account the
reconstruction relation (2.28), which links the state velocity expressed
in the body frame with the one expressed in the physical frame,

ġ =

(
ḋ

θ̇

)
= −

(
R(θ) 0

0 1

)
M−1

r (s)N(s)ṡ = −gAi(s)ṡi (2.74)

where g is an element of the planar euclidean group SE(2). From these
we recognize the expression of the Gauge potential (1.13).
We would like to find a solution for this equations that will aid in de-
signing or evaluating motions that arise from shape variations. Because
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SE(2) is a Lie group this solution will generally have the form

g(t) = g(0)ez(t)

where z ∈ se(2), the Lie algebra relative to SE(2). An expansion for
the Lie algebra valued function z(t) is given by the Campbell-Hausdorff
formula

z = Ā+
1

2
[A,A] +

1

3
[[A,A], A] +

1

12
[A, [A,A]] + · · · (2.75)

A(t) ≡
∫ t

0

A(τ)ṡ(τ) dτ

To obtain useful results in the spatial coordinates, examine the group
displacement resulting from a periodic path α : [0, T ]→ Rm, such that
α(0) = α(T ). Taylor expand Ai about α(0) and then regroup, simplify,
apply integration by parts and use that the path is cyclic

z(α) = −1

2
Fij(α(0))

∫
α

dsi dsj+
1

3
(Fij,k−[Ai, Fjk])(α(0))

∫
α

dsi dsj dsk+· · ·

(2.76)
where

Fij ≡ Aj,i − Ai,j − [Ai, Aj] (2.77)

is called curvature of the connection.
For proportionally small deformations, the displacement experienced
during one deformation cycle is:

gdisp = ez(α) ≈ exp
(
−1

2
Fij(α(0))

∫
α

dsi dsj
)

(2.78)

If the curvature F is not null this displacement gives us the so called
geometric phase that is the statement of the well-known Ambrose-
Singer theorem [22].

• p∗ 6= 0

Let now suppose that the system starts with an initial impulse which
is non zero. Thus the last three equations of (2.73) are not trivial.
First of all we need to integrate this equations, which in function of the
deformation s and ṡ take the form

ṗ∗1 =
(
M−1
r (s)p∗

)
3
p∗2 −

(
A(s)ṡ

)
3
p∗2

ṗ∗2 = −
(
M−1
r (s)p∗

)
3
p∗1 +

(
A(s)ṡ

)
3
p∗1

ṗ∗3 =
(
M−1
r (s)p∗

)
2
p∗1 −

(
A(s)ṡ

)
2
p∗1 −

(
M−1
r (s)p∗

)
1
p∗2 +

(
A(s)ṡ

)
1
p∗2

(2.79)
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these can be solved once the shape s is prescribed as a function of time,
and as before we choose a periodic shape path α : [0, T ] → Rm,with
α(0) = α(T ).
Let us now consider the equations of motion regarding the state vari-
ables. We have both the contributions: the geometrical one, already
studied in the case with zero impulse, and also the one depending on
the impulse p∗.

ġ = g
(
M−1

r (s)p∗ − Ai(s)ṡi
)

(2.80)

As before the integration of this term along α(t) gives

gdisp = g(0)ez(t)

where

z = Z +
1

2
[Z,Z] +

1

3
[[Z,Z], Z] +

1

12
[Z, [Z,Z]] + · · · (2.81)

Z :=

∫ t

0

M−1

r (τ)p∗(τ)− A(τ)ṡ(τ) dτ

In order to see that gdisp is effectively the sum of two contribution let
us focus on the third equation of (2.80). It is

θ̇ =
(
M−1

r (s)p∗
)

3
−
(
A(s)ṡ

)
3

from this we can easly recognize two terms. The first one integrated
along α is ∫ T

0

(
M−1

r (α(τ))p∗(τ)
)

3
dτ , (2.82)

which value depends strictly on the evolution of the impulse p∗ given
by equations (2.73)2−4. The second term is the geometric contribution
analyzed in the previous section which depends on the curvature of the
connection.
Once we have integrated this system and obtained the time evolution
of θ we can solve also the ODEs regarding ḋ which are

ḋ = R(θ)
(
M−1

r (s)p∗
)

1,2
−R(θ)

(
A(s)ṡ

)
1,2

(2.83)

Also for these two equations it is clear that there are two terms. One
is always the geometric one, depending only on the shape s and ṡ. The
other one integrated over α gives∫ T

0

R(θ(τ))
(
M−1

r (α(τ))p∗(τ)
)

1,2
dτ (2.84)
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which is due to the presence of the impulse.
The two additional terms (2.82) and (2.84) are exactly the so called
dynamic phase presented in section 1.2 and represent the gap on the
fiber (d1, d2, θ) performed by the swimmer after a periodical change of
shape.

2.3 Swimmer controllability

In this section we will focus on the controllability of our system, i.e. its abil-
ity to move everywhere in the plane changing its shape.

Let us consider the control system (2.68), since they involve the impulse
p∗ we have two different type of control system depending on the initial
value of this impulse. If it is zero, we have a non linear drifltess affine control
system, whose controllability can be proved with classical techniques, instead
if it is not zero we have a non linear affine system with drift, which is more
tricky to study.

Remark 2.7 (Scallop Theorem). Note that in the case of zero initial impulse,
if we have only one real shape parameter we are exactly in the case of the
famous Scallop Theorem according to which if the swimmer performs a
cyclical shape change α the net motion of the swimmer after a period is null.(

∆d
∆θ

)
=

∫ T

0

A(s(t))ṡ(t) dt =

∫ α(T )

α(0)

A(α) dα = 0 since α(0) = α(T )

(2.85)

Remark 2.8. According to the definition of allowable controls (2.3) we need
to have almost two complex shape parameters different from zero. Indeed if we
describe the system’s deformation only by one complex parameter, since it has
to satisfy the conditions (2.23) and (2.26) in order to be allowable it turns out
that it has to be zero. Now we are interested in using real shape parameters,
and as we have seen in remark 2.6, to each complex parameter correspond at
least two real parameters, the real and the imaginary part. Therefore the last
observation implies that we need almost three real parameters s1, s2, s3.

Now let us study the controllability of this system in both cases of interest:
p∗0 = 0 and p∗0 6= 0.

2.3.1 Case p∗(0) = 0

In this subsection we want to study the controllability of the system which
starts with zero impulse. According to what said before this means that we
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deal with a non linear driftless affine control system.

Case of 3 real shape parameters

We have already noticed that we need at least two complex parameters in
order to be able to have some physically allowable controls. This means that
the minimum number of real parameters have to be at least three. To begin
we study exactly the case of three real controls, then we will generalized the
results obtained to a larger number of parameters. More precisely, suppose
that the deformation of our swimmer is governed by s1, s2, s3 and according
to [64] its shape is described in polar coordinates in the body frame by

F (σ, s) = 1 + ε(s1 cos(2σ) + s2 cos(3σ) + s3 sin(3σ)) (2.86)

The perfect irrotational fluid has density ρ and the potential ψ∗ can be
determined solving the Laplace problem with Neumann boundary conditions
following the steps described the preceding sections.
After that it is possible to compute the expression of the connection and the
equations of motion



ḋ∗

θ̇
ṗ∗1
ṗ∗2
ṗ∗3
ṡ1

ṡ2

ṡ3


=



−(1− µ)s2

−(1− µ)s3

0
0
0

−(1− µ)(s3p
∗
1 + s2p

∗
2)

1
0
0


ε2u1+

+



−s1

0

−2πρs3
M

2πρs3p∗2
M

−2πρs3p∗1
M

s1p
∗
2

0
1
0


ε2u2 +



0
−s1

−2πρs2
M

−2πρs2p∗2
M

2πρs2p∗1
M
−s1p

∗
2

0
0
1


ε2u3

(2.87)

with µ = 2πρ
M+πρ

and M the mass of our body.
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Due to the change of variables (2.28), the equations of motion have to be
supplemented with a so-called reconstruction equation allowing to recover d
knowing θ:



ḋ

θ̇
ṗ∗1
ṗ∗2
ṗ∗3
ṡ1

ṡ2

ṡ3


=



R(θ)

−(1− µ)s2

−(1− µ)s3

0


0
0

−(1− µ)(s3p
∗
1 + s2p

∗
2)

1
0
0


ε2u1+

+



R(θ)

 −s1

0

−2πρs3
M


2πρs3p∗2
M

−2πρs3p∗1
M

s1p
∗
2

0
1
0


ε2u2 +



R(θ)

 0
−s1

−2πρs2
M


−2πρs2p∗2

M
2πρs2p∗1
M
−s1p

∗
2

0
0
1


ε2u3

(2.88)

Theorem 2.3. The control system (2.88) is controllable almost everywhere.

Proof: First of all note that system (2.88) is clearly of the type

q̇ =
3∑
i=1

gi(θ,p
∗, s)ui

Since the initial impulses are zero it is reduced to only six non trivial equa-
tions, indeed we easily have that

p∗(t) = 0 ∀t

is a solution of the equations regarding p∗ (2.79).
Accordingly to theorem (1.5) to prove the controllability it suffices to verify
the Lie algebra rank condition, i.e dim

(
Lie{gi}i=1,2,3

)
= 6. We compute all

the vector fields gi and the Lie brackets of the first order [gi, gj] with i 6= j
(details in the Appendix) and compute their determinant

det
{
g1, g2, g3, [g1, g2], [g2, g3], [g1, g3]

}
=

4πµρε18
(
µM − 2π(µ− 1)ρ

(
s2

2 + s2
3

))
M2

(2.89)
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which is not null almost everywhere.
Thus g1, g2, g3, [g1, g2], [g2, g3], [g1, g3] are linearly independent for almost any
values of the parameters and dim(Lie{gi, i = 1, 2, 3}) = 6, which proves the
controllability result. �

General Case: m > 3

In this subsection we deal with a generalization of the previous controlla-
bility result. Suppose that the shape of the swimmer is described by m real
parameters si, i = 1 · · ·m, which define a transformation near to the iden-
tity, whose expression is a generalization of formula (2.86). Moreover recall
that we are still in the assumption that the swimmer starts with zero initial
impulse in body coordinates. In this case the equations of motion turn out
to be 

ẋ
ẏ

θ̇
ṡ1
...
ṡm


=

m∑
i=1

g̃iui (2.90)

Note that also in this case, since the initial value of p∗ is null, p∗(t) = 0
is still a solution and therefore p∗ does not appear in the system. We now
investigate the controllability of the system (2.90).

Theorem 2.4. The control system (2.90) is controllable almost everywhere.

Proof: First of all observe that if we keep constant and equal to zero the
last m − 3 controls, i.e. ui = 0, i = 4 · · ·m the last m − 3 equations gives
us easily si(t) ≡ 0 ∀t, ∀m ≥ 4. This means that the shape of the swim-
mer is actually described by only 3 parameters. Therefore the remaining
control equations have to be the same of the ones obtained in the previous
section with m = 3. This implies that the first six components of the vectors
g̃j|si≡0i=4···m, j = 1, 2, 3 have to be equal to the vectors gi defined before. As
a consequence we have that

Lie{
(
gi
0

)
, i = 1, 2, 3} ⊂ Lie{g̃i, i = 1 · · ·m} (2.91)

Moreover we have also that the vector space generated by the last m − 3
vector fields g̃i evaluated at si ≡ 0, i = 1, 2, 3 have to be contained in the Lie
algebra generated by all the g̃i, since they are some of the generators.

span{g̃j|si≡0, i=1,2,3, j ≥ 4} ⊂ Lie{g̃i, i = 1 · · ·m} (2.92)
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Furthermore we have also obviously that

Lie{
(
gi
0

)
, i = 1, 2, 3} ∩ span{g̃j|si≡0, i=1,2,3, j ≥ 4} = {0} (2.93)

This implies

dim
(
Lie{g̃i, i = 1 · · ·m}

)
≥ dim

(
Lie{

(
gi
0

)
, i = 1, 2, 3}

)
︸ ︷︷ ︸

=6

+

+ dim
(
span{g̃j|si≡0, i=1,2,3, j ≥ 4}

)
︸ ︷︷ ︸

≥m−3

(2.94)

where the first equality derives from the proof done before in the case m = 3.
Thus finally we obtain that

dim
(
Lie{g̃i, i = 1 · · ·m}

)
≥ m+ 3 (2.95)

which proves the controllability of the system. �

2.3.2 Case p∗0 6= 0

Let us suppose that our deformable body has an initial constant impulse p∗0
that is not null. As a consequence our control system is a system with drift
of dimension m+ 6.

Case of 3 shape parameters

We start we the simplest case of three control shape parameters; the de-
formation is the same as before and it is given by formula (2.86). Since we
start with an initial impulse that is not null we have the following control
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system with drift



ḋ∗

θ̇
ṗ∗1
ṗ∗2
ṗ∗3
ṡ1

ṡ2

ṡ3


=



M−1
r (s)p∗

(M−1
r (s)p∗)3p

∗
2

(M−1
r (s)p∗)3p

∗
1

(M−1
r (s)p∗)2p

∗
1 − (M−1

r (s)p∗)1p
∗
2

0
0
0


+

+



−(1− µ)s2

−(1− µ)s3

0
0
0

−(1− µ)(s3p
∗
1 + s2p

∗
2)

1
0
0


ε2u1 +



−s1

0

−2πρs3
M

2πρs3p∗2
M

−2πρs3p∗1
M

s1p
∗
2

0
1
0


ε2u2 +



0
−s1

−2πρs2
M

−2πρs2p∗2
M

2πρs2p∗1
M
−s1p

∗
2

0
0
1


ε2u3 .

(2.96)

Which taking into account the reconstruction equations becomes
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

ḋ

θ̇
ṗ∗1
ṗ∗2
ṗ∗3
ṡ1

ṡ2

ṡ3


=



R(θ)M−1
r (s)p∗

(M−1
r (s)p∗)3p

∗
2

(M−1
r (s)p∗)3p

∗
1

(M−1
r (s)p∗)2p

∗
1 − (M−1

r (s)p∗)1p
∗
2

0
0
0


+

+



R(θ)

−(1− µ)s2

−(1− µ)s3

0


0
0

−(1− µ)(s3p
∗
1 + s2p

∗
2)

1
0
0


ε2u1 +



R(θ)

 −s1

0

−2πρs3
M


2πρs3p∗2
M

−2πρs3p∗1
M

s1p
∗
2

0
1
0


ε2u2

+



R(θ)

 0
−s1

−2πρs2
M


−2πρs2p∗2

M
2πρs2p∗1
M
−s1p

∗
2

0
0
1


ε2u3

(2.97)

Theorem 2.5. The system (2.97) is strongly controllable almost everywhere
if there are no restrictions on the size of the controls, moreover it is also
STLC for almost any initial state and impulse, if the controls are sufficently
large, i.e. with controls λu̇ and u̇ ∈ {|u̇i| < 1, i = 1, · · · ,m} for some large
scalar λ > 0.

Proof: The system (2.97) is clearly of the type

q̇ = f(q) +
3∑
i=1

gi(q)ui (2.98)

Applying theorem (1.3) to prove the strong controllability the condition to
verify is that the Lie algebra generated by the vector fields gi has the same



64 Ideal fluids

dimension of the tangent space, i.e dim(Lie{gi, i = 1, 2, 3}) = 9. Thus we
compute the Lie brackets of zero, first and second order of the vectors gi (the
detailed expressions are in the Appendix).

The determinant of these vetcor fields is

det
{
g1,g2,g3, [g1,g2], [g1,g3], [g2,g3], [g1[g2,g3]], [g2[g2,g3]], [g3[g2,g3]]

}
=

8192

M10
π7µp∗2ρ

7s2
2s

2
3ε

36(Mp∗2 − 2πp∗1ρs2s3)(
M2(p∗1((2(µ− 3)µ+ 3)s2 − µs3) + +p∗2((2µ− 3)s2 + ((9− 4µ)µ− 6)s3))−

− 2π(µ− 1)Mρ
(
2µp∗1s2

(
s2

2 − 2s2
3

)
− p∗1(s2 + s3)

(
4s2

2 − 3s2s3 + s2
3

)
−

− p∗2s3

(
−2µs2

2 + s2
2 + s2

3

))
+ 8π2(µ− 1)2ρ2s2s3

(
s2

2 + s2
3

)
(p∗2s2 − p∗1s3)

)
.

(2.99)

Since this determinant is not null except at most a finite number of d1,
d2, θ, p∗1, p∗2, p∗3, s1, s2, s3, the system (2.88) is strongly controllable almost
everywhere if there are no restriction on the size of the controls.
Let us focus now on the proof of the STLC. First we recall the definition of
small time locally controllability (STLC).

Definition 2.4. (see [15] p.181) The system (2.98) is said to be small time
locally controllable (STLC) from q0 if, for any neighborhood V of q0 and all
T > 0, q0 is an interior point of the reachable set from q0 at time T . In
other words, it means that a whole neighborhood of q0 is reachable from q0 at
arbitrary small time.

In this case we have to use the theorem 1.4. We note that from the previ-
ous section, the matrix Mr and its inverse are analytic functions of {θ,p∗, s}
and therefore the drift term f is bounded. Then, to apply Lemma 1.4 we
have to compute the vectors fields involved at a point in which the vector
field f does not vanish. Since we have supposed that the initial value of the
impulse p∗ is not null, the drift does not vanish ∀s because the matrix Mr(s)
is invertible.
In what follows, we denote by q the 9-tuple (d, θ,p∗, s1, s2, s3) and we choose
the point q0 := (d, 0, p∗1, 0, 0, 1, 0, 1) p∗1 6= 0, to verify the condition of
Lemma 1.4.
By using formal calculation performed by a symbolic computation software
(for instance here we used Mathematica, to compute the vector fields that
are explicited in the Appendix), we are able to express g1(q0), g2(q0), g3(q0),
[g1,g2](q0), [g1,g3](q0), [g2,g3](q0), [f ,g1](q0), [f ,g2](q0) and [f ,g3](q0).

The determinant of these 9 vector fields is not null, for any p∗1 6= 0 and
almost any values of the parameters ρ and M , and can be computed by
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formal calculations

det(g1,g2,g3, [g1,g2], [g1,g3], [g2,g3], [f ,g1], [f ,g2], [f ,g3])(q0) =
n(p∗1)

d
(2.100)

where

n(p∗1) = 8192π2(p∗1)6ε8µρ2(Mµ− 2π(µ− 1)ρ)(8M(ε− µ+ 1)+

+ πρ
(
ε2(34− 23µ) + 8ε(µ− 1)− 4µ+ 4

)
)

d = M3(8M + 11περ)4

Finally, by using the classical analyticity argument (see for instance [7, 8,
36]), since this determinant is an analytic function with respect to position
(d), orientation (θ), impulse (p∗) and shape s it does not vanish for almost
all initial position, orientation,impulse and shape. This is conclude the proof
of the Theorem.

�

General case m > 3

In the case of initial impulse not zero, as we have said before we have a
control affine system with drift of dimension m+ 6.

ḋ∗1
ḋ∗2
θ̇
ṗ∗1
ṗ∗2
ṗ∗3
ṡ1
...
ṡm


= f̃ +

m∑
i=1

g̃iui (2.101)

Theorem 2.6. The control system (2.101) is strongly controllable if there
are no restriction on the size of the controls, moreover it is also STLC for
almost any initial state and impulse, if the controls are sufficently large, i.e.
with controls λu̇ and u̇ ∈ {|u̇i| < 1, i = 1, · · · ,m} for some large scalar λ > 0.

Proof: To prove the strong controllability of the system (2.101) we exploit
the theorem (1.4). Thus the condition to prove is that the dimension of the
Lie algebra genereted by the control vector fields g̃i has dimension m + 6.
The proof is similar to the proof of the previous theorem. Using the follofing
facts:



66 Ideal fluids

• Lie{
(

gi
0

)
, i = 1, 2, 3} ⊂ Lie{g̃i, i = 1, · · · ,m}

• span{g̃j|si≡0,i=1,2,3, j ≥ 4} ⊂ Lie{g̃i, i = 1, · · · ,m}

• Lie{
(

gi
0

)
, i = 1, 2, 3} ∩ span{g̃j|si≡0,i=1,2,3, j ≥ 4} = {0}

we deduce that

dim
(
Lie{g̃i, i = 1 · · ·m}

)
≥ dim

(
Lie{

(
gi
0

)
, i = 1, 2, 3}

)
︸ ︷︷ ︸

=9

+

+ dim
(
span{g̃j|si≡0, i=1,2,3, j ≥ 4}

)
︸ ︷︷ ︸

≥m−3

(2.102)

Which proves that dim
(
Lie{g̃i, i = 1 · · ·m}

)
= m+ 6.

Let us focus now on the STLC part. To deduce this result in the general case
we use an argument very similar to the previous one. First of all consider a
point q̃0 = (d, 0, p∗1, 0, 0, 1, 0, 1, 0, · · · , 0) = (q0, 0, · · · , 0) where q0 is the point
chosen in the case of only 3 parameters. Recalling that gi and f are the
vector fields of the system with 3 parameters the following relations hold

g̃i(q̃0) =

(
gi(q0)

0

)
i = 1, 2, 3 f̃(q̃0) =

(
f(q0)

0

)
. (2.103)

Therefore from what we have proved in the case m = 3

dim
(
span{[g̃i, g̃j], [f̃ , g̃i] i, j = 1, 2, 3}(q̃0)

)
= 6 . (2.104)

Moreover note that the last m components of the vector fields [g̃i, g̃j](q̃0) and
[f̃ , g̃i](q̃0) for i = 1, 2, 3 are null. Thus

span{g̃i, i = 1, · · · ,m} ∩ span{[g̃i, g̃j], [f̃ , g̃i] i, j = 1, 2, 3}(q̃0) = {0}
(2.105)

These last two relations imply that

dim
(
span{g̃i, [g̃i, g̃j ], adkf̃ g̃i i, j = 1 · · ·m, i 6= j, k ≥ 0}(q̃0)

)
≥

dim (span{g̃i}(q̃0)) + dim
(
span{[g̃i, g̃j ], [f̃ , g̃i] i, j = 1, 2, 3 i 6= j}(q̃0)

)
≥ m+ 6 .

(2.106)

This argument proves the STLC around the point q̃0. In order to obtain the
STLC almost everywhere we exploit the same analyticity argument used for
the case m = 3.

�



Chapter 3

Viscous fluids

While in the previous chapter we faced the problem of the self-propulsion
of a planar deformable body immersed in an ideal fluid, here we focus on
planar swimmers immersed in a viscous fluid. One of the pioneering works
in the field is the one by Taylor [81], who established the mathematical set-
ting for the problem of biological self-propulsion powered by thin undulating
filaments. He called attention on the paradoxical nature of swimmers of mi-
croscopic size: they move by exploiting (viscous) resistance to motion, since
at small scales viscous forces dominate over inertial ones. This is appar-
ent by recalling the definition of Reynolds number Re = LV

ν
(see Chapter

1), a dimensionless measure of the relative importance of inertial versus vis-
cous forces, where L is the body size, V is the swimming speed, and ν is
the kinematic viscosity to the surrounding fluid (10−6(m2s−1)−1 for water at
room temperature). Since for biological swimmers V is typically of the or-
der of one body length per second, Re ∼ 1 for organisms of 1-mm size, and
Re ∼ 10−6 << 1 when the size drops to 1 µm. It follows that for micron-
sized swimmers inertial effects are negligible: Taylor’s analysis focussed on
a model swimmer consisting of an infinite sheet propelling itself by prop-
agating a sinusoidal traveling wave of deformation, while surrounded by a
fluid governed by Stokes equations (the zero-Re-limit of Navier-Stokes equa-
tions). In the absence of inertia, the motion of a swimmer through a fluid
is completely determined by the geometry of the sequence of shape that the
swimmer assumes. We shall show that the problem of self-propulsion at low
Reynolds number, naturally resolves itself into the computation of a gauge
potential field A on the space of shapes, as said in Chapter 1.
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3.1 Planar bodies

In dimension two, there are powerful and quite practical techniques which
make explicit calculation of A, for a wide range of shapes. The similarity
between the equations of low Reynolds number hydrodynamics and of linear
elasticity theory is well known. In two dimensions, complex variable methods
developed in the context of elasticity theory [66] can be carried over almost
without modifications.

3.1.1 Determining the gauge potential

Since we have already shown in Chapter 1 that the dynamical problem of
self-propulsion at low Reynolds number is reduced to the calculation of the
gauge potential A, in this section we outline an effective method for deter-
mining it.
First let a sequence of forms S0(t) be given (introduced in subsection 1.2.1
in Chapter 1). In general, this sequence of shapes does not in itself specify
a possible motion according to our hypothesis, because it will involve net
forces and torques on the swimmer. The allowed motion, involving the same
sequence of deformations, will include additional time-dependent rigid dis-
placements. In other words, the actual motion will be the superimposition
of the given motion sequence S0(t) and counterflows corresponding to addi-
tional rigid displacements which cancel the forces and torques.
To calculate the counterflows, we solve for the response of the fluid to the
trial motion S0(t). This is given by the solution to the following boundary-
value problem for the velocity v of the fluid. The first two equations are the
standard equations for incompressible flow at low Reynolds numbers, and
the last one is the no-slip boundary condition:

div v = 0

∆(∇× v) = 0

v|S0 = dS0

dt

(3.1)

In interpreting the boundary condition it is important to remember that
the S0(t) are really parametrized shapes, S0(s, t), and that the variation is
meant to be taken with s fixed. The force and torques associated with the
trial motion can be inferred from the asymptotic behavior of v at spatial
infinity. The force on the shape is related to the external force on the fluid
at spatial infinity and hence to the asymptotic flow by the conservation of
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momentum. Indeed, if σij is the stress tensor, then the force on the shape is

Fi =

∫
S0

σij dSj (3.2)

but the stress tensor is conserved, ∂iσij = 0 (see (3.4) below), so this is

Fi = −
∫
∞
σij dSj . (3.3)

Now the stress tensor is given in terms of the velocity, and only the terms
that fall off slowly and have the right symmetry survive. Indeed the force
is linearly related to the leading term in the asymptotic flow. A similar
argument leads to an analogous conclusion for the torque. To cancel these
forces and torques, we must correct the motion by subtracting a Stokes flow
corresponding to a rigid displacement of the shape with the same leading
behavior at infinity as our solution.

Remark 3.1 (Scallop Theorem). We discuss a notable property of self propul-
sion at low Reynolds number: the generalized scallop theorem empha-
sized by Purcell in [70], that we have already recalled in the case of an ideal
fluid (see Remark 2.7). According to it a simple hinged object such as the
one shown in figure 3.1 cannot swim at low Reynolds number. Any periodic
stroke gives no net motion. In our framework this is evident because the space
of shapes available to this object is simply a bounded one dimensional angle
0 ≤ θ ≤ 2π. Thus the displacement induced by moving along the segment are
cancelled by those accumulated in the return motion.
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θ	
  

Figure 3.1: A simple hinged microorganism with one degree of freedom can-
not swim.

3.1.2 The two dimensional techniques

We now apply complex analysis techniques to study the swimming motion of
extended bodies at very low Reynolds number. In the case of planar swim-
mers the boundary value problem (3.1) can be solved by exploiting complex
analysis. The first two equations of (3.1) implies that the two component
vector v is the curl of a scalar potential U that is

v = ∇× U ≡
(∂U
∂y

,−∂U
∂x

)
∇× v = ∇× (∇× U) = −∆U

(3.4)

Thus U satisfies the biharmonic equation

∆2U = 0 (3.5)

This equation has been extensively been studied in the theory of elasticity
in two dimensions. In elastic boundary value problems, the second partial
derivatives of U represent the stresses on the elastic medium. Therefore we
can apply the methods of complex analysis to our problem, indeed biharmonic
functions have a simple representation in terms of analytic functions. Namely
any U satisfying (3.4) can be written in the form

1

2
U(z, z) = zφ(z) + zφ(z) + ψ(z) + ψ(z) (3.6)
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where φ and ψ are analytic in z = x + iy. As a corollary we obtain an
important representation for the velocity field, written as v = vx + ivy

v(z) =∇× U = − i
2

∂U

∂z
= −i[φ(z) + zφ′(z) + ψ′(z)]

φ1(z)− zφ′1(z) + φ2(z)

(3.7)

To discuss the swimming of shapes, we will consider an external boundary
value problem for U , with v = ∇× U specified on the exterior boundary of
a compact region Ω in the plane. Let s represent the complex coordinate z
restricted to the boundary. Then given v(s) we want to find functions φ1,
φ2, analytic in the exterior such that

v(s) = φ1(s)− sφ′1(s) + φ2(s) (3.8)

The problem is easily solved if Ω is a circle, i.e. we simply equate the Fourier
coefficients on both sides of (3.8). Suppose we have the Fourier expansions

v(s) =
∑∞

k=−∞ vks
k+1

φ1(s) =
∑

k<0 aks
k+1

φ2(s) =
∑

k<−1 bks
k+1

(3.9)

where s = eiθ . Then (3.8) is equivalent to

∞∑
k=−∞

vks
k+1 =

∑
k<0

aks
k+1 −

∑
k<0

(k + 1)aks
−k+1 +

∑
k<−1

bks
−k−1 (3.10)

since s−1 = s. The complete solution is
ak = vk k < 0

b−2 = v0

bk = v−k−2 + (k + 3)vk+2 k < −2

(3.11)

Thus solutions with v(s) = λsl+1 on the circle correspond to

φ1(s) = 0 φ2(s) = λs±−l − 1 l > −1 (3.12)

φ1(s) = λ φ2(s) = 0 l = −1 (3.13)

φ1(s) = λsl+1 φ2(s) = λ(l + 1)sl+1 l < −1 (3.14)

These may be extended to the entire region of the flow, i.e. the exterior of
the circle by substituting s → z and using the representation (3.7). The
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results are

v = λz−l−1 l > −1 (3.15)

v = λ l = −1 (3.16)

v = λzl+1 − λ(l + 1)zl−1(zz − 1) l < −1 (3.17)

This is the complete solution to the boundary value problem when Ω is a
circle.
To write it in the two-component vector notation we can take λ real or
imaginary in (3.15)-(3.17) to obtain a basis of equivalent solutions

for l ≥ −1

{
v1
l (r, θ) = r−l−1(cos(l + 1)θ, sin(l + 1)θ) ,

v2
l (r, θ) = r−l−1(− sin(l + 1)θ, cos(l + 1)θ)

(3.18)

and

for l < −1


v1
l = rl+1(cos(l + 1)θ − (l + 1)(1− r−2) cos(l − 1)θ,

sin(l + 1)θ + (l + 1)(1− r−2) sin(l − 1)θ)

v2
l = rl+1(− sin(l + 1)θ + (l + 1)(1− r−2) sin(l − 1)θ,

cos(l + 1)θ − (l + 1)(1− r−2) cos(l − 1)θ)

(3.19)

It is also useful to have combinations with definite helicity, i.e. that satisfy
simple properties under rotation

w±l (r, θ) ≡ i√
2

(v1
l ∓ iv2

l )

= r−l−1e±i(l+1)θ 1√
2

(1,∓i) (l ≥ −1)

= r−l−1
[
e±i(l+1)θ 1√

2
(1,∓i)

− (l + 1)(1− r−2)e±i(l−1)θ 1√
2

(1,±i)
]

(l < −1)

(3.20)

Rotation of an angle α changes these flows by

w±l → e±ilαw±l (3.21)

REMARK Note that the solution corresponding to translations of the circle
involve a rigid motion of the fluid as a whole. This unphysical behavior is
known as Stokes’ paradox, and is a well known peculiarity of two dimensional
low Reynolds number hydrodynamics. Because of our requirement that the
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external forces and torques vanish, we never encounter these rigid motions of
the circle, in fact we determine the Gauge potentials precisely by subtracting
them of. The fact that mathematically, rigid motions of the circle give rise to
such long-range motions of the fluid is actually a convenience, since it allows
us to identify the necessary counterflows.

3.1.3 Infinitesimal deformations

As we have done for ideal fluids we consider the case of infinitesimal defor-
mation of a shape. Let the standard shape be parametrized by

S0(t) = S0 + s(t) (3.22)

where the s(t) are infinitesimal. We expand it in terms of a fixed basis of
vector fields on S0

s(t) =
∑
i

αi(t)wi (3.23)

Then we have the velocity on S0(t):

v(t) =
dS0(t)

dt
=
∑
i

α̇iwi (3.24)

Now let us expand the Gauge potentials to second order:

Av(t)[S0(t] ≈Av(t)[S0] +
∑
i

∂Av
∂wi

α̇i

≈
∑
j

(
Awj α̇j +

∑
i

∂Awj
∂wi

αiα̇j
)

As explained in the first chapter che basic object giving the net displacement
is the path-ordered exponential integral (1.15)

P̄ exp
[∫ t2

t1

A(t) dt
]

= 1 +

∫
t1<t<t2

A(t) dt+

∫∫
t1<t

′<t<t2

A(t)A(t
′
) dt dt

′
+ · · ·

around a circle. The first order term gives no contribution, since it is a
total derivative. The second-order contributions are terms quadratic in A
and linear in its derivatives. Because the chronological integral is gauge
covariant for a cyclic path, its Taylor expansion in powers of s(t) must be
gauge covariant, order by order. In fact there is a unique second-order gauge
covariant term we can have, which is antisymmetric in the indices i and j:

Fwiwj ≡
∂Awi
∂wj

−
∂Awj
∂wi

+ [Awi , Awj ] (3.25)
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which is the curvature of the connection already introduced in equation
(2.77).
The physical meaning of Fwiwj is the following. Suppose we make a sequence
of successive deformations of S0 by εwi, ηwj and −εwi, −ηwj; finally we
close the sequence of shapes with the bracket −εη[wi, wj]. Then the net
displacement will be εηFwiwj . It is easily verified that the expansion of (1.15)
to second order gives

P exp
[∮

Adt
]

= 1 +
1

2

∮ ∑
i,j

Fwiwjαiα̇jdt (3.26)

We now focus on the nearly circular shapes deformations. To compute the
strength tensor F we mudt consider closed paths into the two-dimensional
space of shapes. Let v1, v2 be two velocity fields on the circle and let
R(εv1, ηv2) be the rototranslation of the circle induced by the following se-
quence of motions:

S → S + εv1 → S + εv1 + ηv2 → S + ηv2 → S

We work to second order in ε, η, then by (3.26)

R(εv1, ηv2) = [1, 0] + εηFwiwj

F is easily computed by matching the boundary condition ηv2(θ) on the
surface of the circle deformed by εv1(θ). If we call the resulting velocity field
v12, then Fv1v2 is related to the asymptotics of v12 at infinity. Following our
prescriptions we find{

F tr
v1v2

= limr→∞
∫

dθ
2π

(v12 − v21)

F rot
v1v2

= limr→∞
∫

dθ
2π
r × (v12 − v21)

(3.27)

where the translational and rotational parts are defined by

Fv1 v2 ≡

 0 F rot F tr
x

−F rot 0 F tr
y

0 0 0

 (3.28)

and the integral is around a large circle. It remains to compute v12. The
boundary conditions for v12 is

v2(θ) = v12(x)|surf
≈ v12(r, θ) + ε(v1 · ∇)v12(r, θ)|r=1

v2(θ) ≈ v12(1, θ) + ε(v1 · ∇)v12(r, θ)|r=1 (3.29)
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Thus we can find v12, v21 and F from v1, v2 obtaining{
F tr
v1v2

=
∫

dθ
2π

((v2 · ∇)v1 − (v1 · ∇)v2) ,

F rot
v1v2

= =
∫

dθ
2π
r × ((v2 · ∇)v1 − (v1 · ∇)v2)

(3.30)

This formula for the gauge field strength can be generalized to describe tan-
gential deformations of an arbitrary shape, indeed

∂Av1
∂v2

− ∂Av2
∂v1

= A[v1,v2]

where
[v1, v2] = (v1 · ∇)v2 − (v2 · ∇)v1

is the Lie bracket. Thus the complete field strength, like already showed in
(3.25), is

Fv1v2 = A[v1,v2] + [Av1 , Av2 ]

For the circle the second term vanishes, but it does not in general. When
both v1 and v2 are tangential fields, the Lie bracket may be completely eval-
uated in terms of their values on the shape, with no hydrodynamics. Thus
for purely tangential motions the form of A determines F directly.
We now insert the vector fields (3.20) into (3.30), the result for the transla-
tional part are as follows

F tr
m+n+ =

1√
2

[
−(m+ 1)θ−mδm+n+1e− + (n+ 1)θnδm+n+1e−

+ (m+ 1)θ−mδm+n−1e+ − (n+ 1)θ−nδn+n−1e+

]
(3.31)

F tr
m+−n− =

1√
2

[
−(m+ 1)θmδm−n+1e− − (n+ 1)θnδ−m+n+1e+

+ (m+ 1)θ−mδm+n−1e− − (n+ 1)θ−nδm+n−1e+

]
(3.32)

F tr
m+−n− =

1√
2

[
(m+ 1)θmδm−n+1e− − (n+ 1)θnδ−m+n+1e+

+ (m+ 1)θ−mδm−n−1e+ − (n+ 1)θ−nδ−m+n−1e−
]

(3.33)

F tr
m−n+ = −F tr

n+m− (3.34)

where e± = 1√
2
(1,±i) and θn is zero for negative n and 1 for non negative

n. It is understood here that the + and − labels refer to the solution w± in
(3.20). The matrix F is antisymmetric, moreover not surprisingly the vast
majority of the components of F vanish in the helicity basis. Since under
rotation of α w± is multiplied by the phase e±ilα, e± → eiαe± and F is linear
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in its argument and everything about our problem it is symmetric under
rotation, we can easily deduce which components of F may be not null.
For the rotational part of F we find

F rot
m+n+ = −[(m+ 1)θm − (n+ 1)θn]δm+n (3.35)

F rot
m−n− = [(m+ 1)θm − (n+ 1)θn]δm+n (3.36)

F rot
m+n− = −|m+ 1|δm−n (3.37)

F rot
m−n+ = −F rot

n+m− (3.38)

Once the net rotation and translation of a body due to any sequence of
deformations is known, it is natural to study the controllability of the system
and to optimize. Thus we wander if fixing any initial and final configuration
it is possible to find a suitable rate of deformation which moves the system
between the two and if yes what is the most efficient strategy. The answer
will depend on many factors, but also for planar bodies and infinitesimal
deformations is tricky to find algebraic condition even to prove the control-
lability of the system. The main difficulty it is to get an analytic expression
for the gauge potential, due to the complexity of the solution of the Stokes
problem. Therefore the idea is to try to simplify the hydrodinamics of the
problem making some approximations.



Chapter 4

Flagellar microrganisms

As explained in the previous chapter, one of the main difficulties in exploit-
ing control theory in order to solve effectively motion planning or optimal
control problems is the complexity of the hydrodynamic forces exerted by
the fluid on the swimmer as a reaction to its shape changes. In the case of
slender swimmers, Resistive Force Theory (RFT) [39] provides a simple and
concise way to compute a local approximation of such forces, and it has been
successfully used in several recent studies, see for example [13, 33]. From
now on we use this approach as well, in order to obtain the forces acting on
the swimmer. In addition, we simplify the kinematics of the swimmer by dis-
cretizing its body. This is represented by a chain of N rigid links moving in a
plane (N -link swimmer). Thus, its motion is described by a system of ODEs
that can be easily assembled and solved, hence providing a valuable tool for
the quantitative description of the motion of biological micro-swimmers. The
simplicity of the governing equations makes our model particularly appealing
as a tool for the design of engineered devices and for the optimization of their
performance as some design parameters are varied.

4.1 Mathematical setting of the problem

In this section we describe the kinematics of the N -link swimmer, a gener-
alization of Purcell’s 3-link swimmer. The angles between successive links
provide a discrete representation of the swimmer’s curvature, concentrated
at the joints between successive links. We think of them as freely prescribed
shape parameters. We then write the equations of motion (balance of total
viscous force and torque) and solve for the time evolution of position and ori-
entation of the swimmer in response to a prescribed history of (concentrated)
curvatures along the swimmer’s body.



78 Flagellar microrganisms

4.1.1 Kinematics of the N-link swimmer

We focus here on essentially one–dimensional swimmers moving in a plane.
This two-dimensional setting is suitable for the study of slender, essentially
one-dimensional swimmers exploring planar trajectories. While the gen-
eral case is slightly more involved because of the non-additivity of three–
dimensional rotations, see e.g. [5], it can be handled with similar techniques.

Our swimmer consists of N rigid links with joints at their ends (see Fig.
4.1), moving in a plane (2d lab-frame) which is defined by the vectors (ex, ey).
We set ez := ex × ey. The i-th link is the segment with end points xi and
xi+1. It has length Li > 0 and makes an angle θi with the horizontal x-axis.
The size of the sticks is chosen such that the length of the swimmer is of
order of µm. We define by xi := (xi, yi) (i = 1, · · · , N) the coordinates of the
first end of each link. Note that, for i ∈ {2 · · ·N}, the coordinates xi can be
expressed as a function of x1, θk and Lk, with k ∈ {1 · · · i− 1}:

xi := x1 +
i−1∑
k=1

Lk

(
cos(θk)
sin(θk)

)
. (4.1)

The swimmer is described by two sets of variables:

• the state variables which specify the position and the orientation of one
selected link, labeled as the i∗-th one;

• the shape variables which describe the relative orientations between
successive links. For each link with i > i∗, this is the angle relative
to the preceding one, denoted by αi = θi − θi−1, for i∗ < i ≤ N . For
i < i∗ this is the the angle relative to the following one, denoted by
αi = θi+1 − θi, for 1 ≤ i < i∗.

For example, if the triplet (x1, θ1) describes the state of the swimmer then
the vector (α2 = θ2 − θ1, · · · , αN = θN − θN−1) represents the shape of the
swimmer. This will be the default choice in the rest, with the only exception
of subsection 4.2.1, where the central link is selected as the i∗-th one, in order
to exploit the symmetries of the 3-link swimmer.
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•
•

•

•
•

θ1

α2

x1

xN
αN

Figure 4.1: Coordinates for the N -link swimmer.

4.1.2 Equations of motion

The equations which govern the dynamics of the swimmer form a system
of three ODEs, which is linear with respect to the rate of deformation, and
without drift.

The dynamics of the swimmer follows from Newton laws, in which inertia
is neglected. These read {

F = 0 ,
ez ·Tx1 = 0 ,

(4.2)

where F is the total force exerted on the swimmer by the fluid and Tx1 is
the corresponding total torque computed with respect to the point x1.

To couple the fluid and the swimmer, we use the local drag approximation
of Resistive Force Theory. We denote by s the arc length coordinate on the
i-th link (0 ≤ s ≤ Li) and by vi(s) the velocity of the corresponding point.

We also introduce the unit vectors ei =

(
cos(θi)
sin(θi)

)
and e⊥i =

(
− sin(θi)
cos(θi)

)
in the directions parallel and perpendicular to the i-th link and write xi(s) =
xi + sei. By differentiation, we obtain,

vi(s) = ẋi + sθ̇ie
⊥
i . (4.3)

The density of the force fi acting on the i-th segment is assumed to depend
linearly on the velocity. It is defined by

fi(s) := −ξ (vi(s) · ei) ei − η
(
vi(s) · e⊥i

)
e⊥i , (4.4)
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where ξ and η are respectively the drag coefficients in the directions of ei
and e⊥i measured in N s m−2 . We thus obtain

F =
N∑
i=1

∫ Li

0

fi(s) ds ,

ez ·Tx1 = ez ·
N∑
i=1

∫ Li

0

(xi(s)− x1)× fi(s) ds .
(4.5)

Using (4.3) and (4.4) into (4.5), the total force and torque can be expressed
as

F = −
N∑
i=1

Liξ(ẋi · ei) ei +

(
Liη(ẋi · e⊥i ) +

L2
i

2
ηθ̇i

)
e⊥i , (4.6)

and

ez ·Tx1 = −
N∑
i=1

L2
i

2
η
(
ẋi · e⊥i

)
+
L3
i

3
ηθ̇i

+ (xi − x1)×
(
Liξ(ẋi · ei) ei +

(
Liη(ẋi · e⊥i ) +

L2
i

2
ηθ̇i

)
e⊥i

)
· ez .(4.7)

Moreover, differentiating (4.1) gives

ẋi = ẋ1 +
i−1∑
k=1

Lkθ̇ke
⊥
k , (4.8)

an expression linear in ẋ1 and (θ̇k)1≤k≤N . This entails that (4.6) and (4.7)
are linear in ẋ1 and θ̇i for i ∈ [1 · · ·N ], and therefore system (4.2) reads

(
F

ez ·Tx1

)
= M (θ1, · · · , θN)


ẋ1

θ̇1

θ̇2
...

θ̇N

 =

0
0
0

 . (4.9)

Observing that for all i ∈ {2, · · · , N}, αi = θi− θi−1, equations (4.6) and
(4.7) can be expressed using the angles (αi)i=2,··· ,N instead of the variables



81

(θi)2≤i≤N . To this end, we introduce the matrix C defined by

C =



1 0 · · · · · · · · · · · · 0

0 1
. . . . . . . . . . . .

...

0 0 1
. . . . . .

...

0 0 −1
. . . . . .

...
...

... 0
. . . . . . 0

...
...

...
. . . . . . . . . 0

0 0 0 · · · 0 −1 1


(4.10)

and obtain

C


ẋ1

θ̇1

θ̇2
...

θ̇N

 =


ẋ1

θ̇1

α̇2
...
α̇N

 . (4.11)

Therefore, by setting

N(θ1, α2, · · · , αN) := M (θ1, θ2(θ1, α2, · · · , αN), · · · , θN(θ1, α2, · · · , αN)) C−1,
(4.12)

system (4.9) can be rewritten in the equivalent form

N (θ1, α2, · · · , αN)


ẋ1

θ̇1

α̇2
...
α̇N

 =

0
0
0

 . (4.13)

We observe that the 3× (N + 2) matrix N (θ1, α2, · · · , αN) can be block-
decomposed into a 3 × 3 sub-matrix A (θ1, α2, · · · , αN) and a 3 × (N − 1)
sub-matrix B (θ1, α2, · · · , αN), according to

N = (A |B) . (4.14)

The matrix A is the ‘grand-resistance-matrix’ of a rigid system evolving
at frozen shape, i.e., with α̇i ≡ 0, i = 2, . . . , N , see [41]. It is symmetric and
negative definite [41], as it can be easily verified, hence it is invertible. We
can then recast the equations of motion of the swimmer as an affine system
without drift. Indeed, solving (4.13) for (ẋ1, θ̇1) leads to(

ẋ1

θ̇1

)
= −A−1 (θ1, α2, · · · , αN) B (θ1, α2, · · · , αN)

 α̇2
...
α̇N

 (4.15)
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that we rewrite in the form(
ẋ1

θ̇1

)
=

N−1∑
i=1

gi (θ1, α2, · · · , αN) α̇i+1 , (4.16)

or similarly 
α̇2
...
α̇N
ẋ1

θ̇1

 =
N−1∑
i=1

(
bi

gi (θ1, α2, · · · , αN)

)
︸ ︷︷ ︸

gi(θ1,α2,··· ,αN )

α̇i+1 , (4.17)

where the N − 1 vector fields {gi}N−1
i=1 , are the columns of the 3× (N − 1)

matrix −A−1B, and bi is the i-th vector of the canonical basis of RN−1

The equation above links the displacement (both translation and rotation)
of the swimmer to its deformation. In other words, for a given history of
shapes, prescribed through functions t 7→ (α2, · · · , αN)(t), the motion of the
swimmer is obtained by solving the system (4.17). Typically, in what follows
a stroke is given by a time-periodic shape change, i.e., the functions t 7→ αi(t),
i = 2, · · · , N are all periodic, with the same period.

In order to solve (4.17) numerically, we need to construct the vector fields
gi explicitly. To this end, we observe that F and Tx1 depend linearly on
(ẋi)1≤i≤N and (θ̇i)1≤i≤N and that these quantities depend in turn linearly on
(ẋ1, θ̇1, · · · , θ̇N) in view of (4.8). Therefore, we can rewrite (4.6) and (4.7) as

F = P1



ẋ1
...

ẋN
−−
θ̇1
...

θ̇N


= P1Q


ẋ1

θ̇1
...

θ̇N

 , ez ·Tx1 = P2



ẋ1
...

ẋN
−−
θ̇1
...

θ̇N


= P2Q


ẋ1

θ̇1
...

θ̇N

 ,

(4.18)
where

P1 :=
(
−m1 · · · −mN | η

2
L2

1e
⊥
1 · · · η

2
L2
Ne⊥N

)
with mi := Li(ξei ⊗ ei + ηe⊥i ⊗ e⊥i ) for i = 1 · · ·N ,

P2 :=
(
· · · −(L2

i ηe
⊥
i + (xi − x1)×mi)

T · · · | · · · ηL2
i (
Li
3

+
(xi−x1)×e⊥i · ez

2
) · · ·

)
,
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and, finally,

Q =



1 0 0 0 · · · 0
1 L1e

⊥
1 0 0 · · · 0

1 L1e
⊥
1 L2e

⊥
2 0 · · · 0

...
...

...
. . . · · · 0

1 L1e
⊥
1 L2e

⊥
2 · · · LN−1e

⊥
N−1 0

0
... Id
0


.

We thus have

M =

(
P1Q
P2q

)
and can compute N = C−1M, where C−1 is explicitly given as

C−1 =



1 0 · · · · · · · · · · · · 0

0 1
. . . . . . . . . . . .

...

0 0 1
. . . . . .

...

0 0 1
. . . . . .

...
...

... 1
. . . . . . 0

...
...

...
. . . . . . . . . 0

0 0 1 · · · 1 1 1


. (4.19)

Matrices A and B are obtained from the columns of N as in (4.14) and,
finally, the vectors gi are simply the columns of −A−1B.

4.1.3 Geometric aspects

In this part we want to underline the fact that making use of the Resistive
Force Theory to approximate the local drag forces that the fluid exerts on
the swimmer, does not effect the geometrical setting of our problem. First of
all we introduce the moving frame, solidal to the swimmer (e∗x, e

∗
y) centered

in the first end of the first stick and with e∗x aligned with the first stick. Thus
similarly to what we have done in chapter two in the case of an ideal fluid, we
can express any velocity v in the lab-frame, starting from the same velocity
in the moving frame v∗ according to the formula:

v = R(θ1)v∗
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Now it is possible to show that equation (4.15) it is of the form

(
ẋ1

θ̇1

)
= −R(θ1)Ã−1 (α2, · · · , αN) B̃ (α2, · · · , αN)

 α̇2
...
α̇N

 (4.20)

indeed the matrix Ã−1B̃ is the expressions of the translational and angular
velocities of the swimmer expressed in the moving frame. Obviously they
do not depend on θ1 that is the angle that this frame forms with the ex
direction. To obtain the equations of motion in the lab frame it suffices to
rotate Ã−1B̃ of an angle θ1 according to what said before.
Now we can easily recover the usual expression (1.13)

dR
dt

= RA (4.21)

where R is a rotation and A is the usual gauge potential. This fact tell us
that the geometrical setting introduced in the first chapter does not depend
on the way to compute the hydrodynamic forces but only on the intrinsic
structure of the swimming problem.

4.2 Applications

4.2.1 Purcell’s 3−link swimmer

•
x2

β1

β3

θ2

ex

ey

Figure 4.2: Purcell’s 3-link swimmer.

We now focus on the case N = 3 (Purcell’s 3−link swimmer). To benefit
from the symmetry of the system, we use as state variables the coordinate
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x2 := (x2, y2) of the middle point of the second segment, and the angle θ2

that it forms with the x-axis. With the notation of the preceding sections,
we call β1 = θ2 − θ1 and β3 = θ3 − θ2 the relative angles to the central link
of the left and right arms respectively, see Figure 4.14.

(A remark on the notation: we point out that here we use as relative an-
gles the β1, β3 instead of the α2, α3 to highlight the symmetry of the system.
The relation between the two can be found in paragraph 4.5.)

Purcell introduced this system in [70], where he predicted that it would
exhibit net motion as a consequence of a suitable non-reciprocal stroke (a
square loop in the (β1, β3) plane). He also argued by symmetry that, for
a swimmer with first and third links of equal length, this symmetric stroke
would produce a net displacement along the direction of the central link, but
did not provide a formula to predict either the sign or the magnitude of this
displacement. In the following, we show the connection between Purcell’s
proposed stroke and Lie brackets, a classical tool of Geometric Control The-
ory. This enables us to obtain a formula for the displacement induced by a
Purcell-type stroke of infinitesimal amplitude. We also compute numerically
the motion resulting from a Purcell-type stroke of finite amplitude and check
it against the theoretical prediction.

Setting X := (β1, β3, x2, y2, θ2)T, and using (4.16), the equations of mo-
tion become

Ẋ = g1(θ2, β1, β3)β̇1 + g2(θ2, β1, β3)β̇3 . (4.22)

We refer to Appendix B for the explicit calculation of the coefficients ap-
pearing in (4.22). We remark that none of them depends on (x2, y2) as a
consequence of the translational invariance of the problem.

4.2.2 Displacement for square strokes of small ampli-
tude

Proposition 4.1. Let ε > 0, and consider the square stroke defined by

(β̇1(t), β̇3(t)) = (1, 0) for t ∈ (0, ε),

(β̇1(t), β̇3(t)) = (0, 1) for t ∈ (ε, 2ε),

(β̇1(t), β̇3(t)) = (−1, 0) for t ∈ (2ε, 3ε),

(β̇1(t), β̇3(t)) = (0,−1) for t ∈ (3ε, 4ε).

(4.23)
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Then, for small ε, the solution of (4.22) with initial condition X(0) is given
by

X (4ε)−X (0) =


0
0

ε2δ +O(ε3)
O(ε3)
O(ε3)

 , (4.24)

where

δ =
L1L2L3 (L2

1 + L1(L2 + L3) + L3(L2 + L3)) (η − ξ)
(L1 + L2 + L3)4ξ

(4.25)

Proof: The first two components in (4.24) vanish, as it is obvious from
direct integration of (4.23). Moreover, it is well known (see,e.g., [29]) and
easy to check that the solution of (4.22) for the square stroke given by (4.23)
satisfies the expansion

X(4ε)−X(0) = ε2[g1,g2] +O(ε3)

where the Lie bracket [g1,g2] is defined by

[g1,g2](y) := (g1 · ∇) g2(y)− (g1 · ∇) g2(y) . (4.26)

The direct calculation of this Lie bracket1 shows that

[g1,g2](y)|y=(0,0,0) =


0
0
δ
0
0

 , (4.27)

�

The proposition above provides us with an explicit formula for the net
displacement which, in the symmetric case L1 = L3 = L, reads

∆x2 = ε2
L3L2(3L+ 2L2)

(2L+ L2)4

(
η − ξ
ξ

)
e2 +O(ε3) . (4.28)

Formula (4.28) above shows that the net displacement at leading order is
along the axis of the central link and vanishes when η = ξ. As already stated

1We have used for this step the symbolic computation software MAPLE and the for-
mulas given in Appendix B.



87

by Purcell, it can also be shown that a square stroke (4.23) on such a symmet-
ric swimmer does not produce any global rotation or vertical displacement.

By integrating numerically the equations of motion for small angle ex-
cursion ε and small times 4ε, we have obtained the state of the swimmer,
t 7→ (x2(t), y2(t), θ2(t)). We have verified that after the square stroke y2(4ε)
and θ2(4ε) vanish, in accordance with the previous remark, and that the net
displacement along the x−axis is given by formula (4.28) (see Figure 4.3).
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10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

! (rad)

x−
di

sp
la

ce
m

en
t a

fte
r a

 s
tro

ke
 (m
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Figure 4.3: Graphs of the displacement of the 3-link-swimmer in meters after
one square stroke, as a function of the angle amplitude ε in radians. Here
L1 = L3 = 1µm, L2 = 2µm, and η = 2ξN s m−2. The blue squares are
obtained by numerical integration of the equations of motion, while the red
circles are obtained from the Lie bracket formula (4.28).

4.2.3 Displacement for square strokes of large ampli-
tude

The preceding results only apply to infinitesimal strokes. For strokes of large
amplitude, we can integrate the equations of motion numerically and com-
pare our results to known results from the literature. To this aim, we use
the same data as in [13], namely L1 = L3 = L = 1, L2 = 2, ξ = 1 and η = 2,
∆θ = π

3
and the control angles given by
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β1(t) =



−(
∆θ

2
− t) if 0 ≤ t ≤ ∆θ

∆θ

2
if ∆θ ≤ t ≤ 2∆θ

−(t− 5∆θ

2
) if 2∆θ ≤ t ≤ 3∆θ

−∆θ

2
if 3∆θ ≤ t ≤ 4∆θ

, β3(t) =



∆θ

2
if 0 ≤ t ≤ ∆θ

(
3∆θ

2
− t) if ∆θ ≤ t ≤ 2∆θ

−∆θ

2
if 2∆θ ≤ t ≤ 3∆θ

(t− 7∆θ

2
) if 3∆θ ≤ t ≤ 4∆θ

.

This leads to a square stroke of amplitude
π

3
, as shown in Figure 4.2.3.

Such a stroke produces the displacement of the swimmer given in Figure 4.5,
which matches exactly Figure 6 in [13].

1 2 3 4
timeHsL

-0.4
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0.2

0.4

AnglesHradL

-0.6 -0.4 -0.2 0.2 0.4 0.6
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-0.4

-0.2

0.2

0.4

0.6

Β3HradL

Figure 4.4: Control functions β1 (red) and β3 (blue) as functions of time
(above), and their phase portrait (below). The square loop on the right is
traced clockwise.
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Figure 4.5: Graphs of x2(t) (blue), and y2(t) (red) as a function of time
during the stroke of Figure 4.2.3. A net horizontal backward displacement is
observed when the square stroke is traced clockwise, matching the results of
[13].

4.2.4 N−link swimmers

The full N−link swimmer can be used as a discrete model of a flexible tail
whose shape is controlled by curvature. We show how curvature control can
be implemented in our model in some concrete cases reproducing the motion
of Taylor’s sheet [81] and the motion of a sperm cell analyzed in [33].

Curvature approximation

Here, we show how to approximate the curvature of a beating tail with a
discrete N link swimmer. Let L > 0 be the total length of the flexible tail
and let us denote by r(s, t) the position at time t > 0 of the point of arc-
length coordinate s ∈ [0, L] along the tail, in the body frame of the swimmer
(see Figure 4.6). We also define Ψ(s, t) as the angle between the tangent
vector to the tail at the point r(s, t) and the x−axis in the lab-frame. We
recall that the derivative of Ψ(s, t) with respect to s is the local curvature of
the curve.
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We divide the swimmer into N equal parts of size Li = L/N , and define
the angles (θi)1≤i≤N by averaging Ψ(s, t) on the interval [iL/N, (i+ 1)L/N ]

θi(t) =
N

L

∫ iL
N

(i−1)L
N

Ψ(s, t) ds , i = 1 . . . N . (4.29)

Finally, we differentiate (4.29) with respect to time to get θ̇i, i = 1, · · · , N ,

θ̇i(t) =
N

L

∫ iL
N

(i−1)L
N

∂Ψ(s, t)

∂t
ds , i = 1 . . . N . (4.30)
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Figure 4.6: A prescribed continuous wave (red curve) and its discrete ap-
proximation by the N -link swimmer (blue curve), N = 15.

4.2.5 N-link approximation of Taylor’s swimming sheet

We now use our discretization method to compute the displacement and ve-
locity of the so-called Taylor sheet [81]. To that aim, we describe a sinusoidal
wave propagating along the tail in its frame by

r(s(x, t), t) = b sin(kx− σt) + b sin(σt) (4.31)

where the arclength s and x are linked by

s(x, t) =

∫ x

0

√
1 + b2k2(cos(ku− σt))2 du . (4.32)

(Notice that r(0, t) = 0, which keeps the origin fixed in the swimmer’s frame.)
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Figure 4.7: A sinusoidal wave (red) and its N−link approximation (blue)
with N = 10

Using Resistive Force Theory, Gray and Hancock give in [39] the following
formula for the velocity of the sheet in the horizontal direction:

Vx = σkb2

(
ξ − η
η

)
, (4.33)

from which one can recover Taylor’s formula

Vx = −1

2
kσb2 (4.34)

by setting ξ = 1 and η = 2. The net displacement of the swimmer after a
period T = 2π

σ
is therefore

∆x = VxT = σkb2

(
ξ − η
η

)
T . (4.35)

We have solved numerically the equations of motion choosing as parameters

σ = 1 rad s−1, k = 4 radµm−1, and N = 50 links to describe the swimmer,
and drag coefficients ξ = 1N sµm−2 and η = 2 N sµm−2. The displacement
in the parallel direction after one period is plotted in Figure 4.8, together
with the the one predicted by (4.35), for a wave amplitude b = 0.001µm.
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Figure 4.8: Graphs of the displacement of Taylor’s sheet for b = 1 · 10−3 µm.
The blue curve is the one obtained by numerical integration of the equations
of motion while the red one is the one predicted by (4.35)
.
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Figure 4.9: Logarithmic plot of the x-displacement as a function of the am-
plitude b (blue squares) compared with the one obtained from (4.35) (red
dots).

The dependence of the displacements on the amplitude b is shown in
Figure 4.9. The graph shows that formula (4.35) gives an accurate prediction
for an amplitude of the wave b smaller than 1 · 10−1.

4.2.6 N-link approximation of sperm cell swimmer

We now turn to the simulation of the motion of a sperm cell and compare
to the one reported in [33]. To that aim, we modify the first segment of
the N−link swimmer to take into account the presence of the head of the
sperm cell, which possesses its own translational and rotational viscous drag.
Indeed, we call x1 the position of the center of the head and θ1 the angle
that the direction e1 of first segment (attached to the head) makes with the
horizontal axis. We assume that the viscous force and torque generated by
a movement of the head are given by

Fhead = −ξhead(ẋ1 · e1)e1 − ηhead(ẋ1 · e⊥1 )e⊥1 , (4.36)

and

Thead · ez = −ζheadθ̇1 . (4.37)
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We also assume that the head length is Lhead = 10µm and we call again L
the length of the tail which is fixed to one of the extremities of the head
segment. The wave profile along the tail of the sperm cell was obtained from
experimental data, keeping only the two first Fourier modes as suggested in
[73] and we use the method described in section 4.2.4 to approximate the
motion of the tail.

More precisely, we describe the wave shape shown in Fig. 4.10 by

r(s, t) =
Lhead

2
e1(t) +

∫ s

0

cos(Ψ(u, t))e1(t) + sin(Ψ(u, t)e⊥1 (t)du . (4.38)

where

Ψ(s, t) = K0s+ 2A0s cos(ωt− 2πs

λ
) . (4.39)

In the preceding equations, K0 is the mean flagellar curvature while ω, λ
and A0 are respectively the frequency, the wave-length and the amplitude
of the wave. Following [33], in the numerical simulations below we use the
following values for the wave parameters: A0 = 15.2 · 103 rad m−1, K0 =
19.1 · 103 rad m−1, ω = 200 rad s−1 and λ = 71.6 · 10−6 m.

Apart from the first segment, the rest of the tail is discretized with N −1
segments of extremities (xi,xi+1) for i = 2, · · · , N . We discretize the beating
wave using the method described in section 4.2.4, and obtain the shapes
shown in Figure 4.11 for one period (0 ≤ t ≤ 2π

ω
).
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Figure 4.10: The prescribed continuous wave (red curve) and its discrete
approximation by the N -link swimmer (blue curve), N = 15.
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Figure 4.11: Flagellar beating during one period. The red curve represents
the tail as described by formula (4.38) while the blue links describe the tail
according to our discrete approximation.

With the notation above, the equations of motion become
F = Fhead +

N∑
i=1

∫ Li

0

fi(s) ds ,

Tx1 = Thead +
N∑
i=1

∫ Li

0

fi(s)× (xi(s)− x1) ds .

(4.40)

where Li = L/N is the length of each segment (xi,xi+1) for i = 2, · · · , N ,
while the first segment, also of size L1 = L/N is given by (x1 + Lhead

2
e1,x2).

Thanks to the fact that the two previous formulas (4.40) are linear in θ̇1

and ẋ1, we get the same compact expression of the equations of motion as in
(4.16). More in detail, the matrix P1 and P2 defined the system (4.18) are
replaced by

Phead
1 :=

(
−ξheade1 ⊗ e1 + ηheade

⊥
1 ⊗ e⊥1 −m1 · · · −mN | η

2
L2

1e
⊥
1 · · · η

2
L2
Ne⊥N

)
and

Phead
2 :=

(
−p1 · · · −pN | −ζhead + q1 q2 · · · qN

)
,

with mi := Li(ξei⊗ ei + ηe⊥i ⊗ e⊥i ) for i = 1 · · ·N , and pi := (L2
i ηe

⊥
i + (xi−

x1)×mi)
T , qi := ηL2

i (
Li
3

+
(xi−x1)×e⊥i · ez

2
), for i = 1 · · ·N .

We use the following values for the drag coefficients

• for the head, ξhead = 40.3 · 103 pN s m−1, ηhead = 46.1 · 103 pN s m−1, and
ζhead = 0.84 · 10−6 pN s m
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• for the links representing the tail, ξ = 0.38 · 109 pN s m−2, η
ξ

= 1.89.

Our results, summarized by the graphs in Figures 4.12 and 4.13 below, are
in perfect agreement with those of [33] (see Figure 3 for the trajectory and
Figure 4 for the various speeds).
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Figure 4.12: Above translational speed of the swimmer head in the tangent
and perpendicular directions, and below rotational speed.
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Figure 4.13: Trajectory of the head of the sperm-cell during one period.

4.3 Controllability

In this section we present a controllability result for the N -link swimmer,
and a new optimal stroke for displacement in minimum time. First, we
prove by geometrical control techniques that for N ≥ 3 sticks, the N -link
swimmer is capable to reach any configuration in the plane. More precisely,
we show that for almost any swimmer (i.e. for almost every set of sticks
length) and for any initial configuration, the swimmer can reach any final
position with a fixed final configuration. The global controllability result
proved here shows the existence of a suitable shape deformation which leads
the swimmer the desired final state. As a direct consequence, we show that
the optimal swimming problem, that is to minimize the time to reach a given
configuration, is well posed. Therefore, there exists an optimal strategy which
leads to the set final position and configuration in minimum time. Finally,
we perform some numerical simulations for the Purcell swimmer (N = 3),
without any assumptions on the structure of the optimal strategy. Our results
suggest that the optimal swimming motion is indeed periodic, and we show
that the stroke we obtain gives a displacement 20% better than the Purcell
one.

Theorem 4.1. Consider the N-link swimmer described in Section 4.1 evolv-
ing in the space R2. Then for almost any length of sticks (Li)i=1,··· ,N and for
any initial configuration
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(xi1, θ
i
1, α

i
2, · · · , αiN) ∈ R2×[0, 2π]N , any final configuration (xf1 , θ

f
1 , α

f
2 , · · · , α

f
N)

and any final time T > 0, there exists a shape function (α2, · · · , αN) ∈
W1,∞([0, T ]), satisfying (α2, · · · , αN)(0) = (αi2, · · · , αiN) and (α2, · · · , αN)(T ) =
(αf2 , · · · , α

f
N) and such that if the self-propelled swimmer starts in position

(xi1, θ
i
1) with the shape (αi2, · · · , αiN) at time t = 0, it ends at position (xf1 , θ

f
1 )

and shape (αf2 , · · · , α
f
N) at time t = T by changing its shape along (α2, · · · , αN)(t).

Proof: The proof of the theorem is divided into three steps. First, we deal
with the analyticity of the dynamics vector fields. Then, we prove the con-
trollability of the Purcell 3-link swimmer, exploiting the Chow theorem and
the Orbit theorem. Finally, we generalize the result to the N -link swimmer.

4.3.1 Regularity

The first step is to prove that the vector fields of the motion equation of the
swimmer are analytic on M.

As a direct consequence of (4.6) and (4.7), the linear maps A and B
belong to the set of matrices whose entries are analytic functions on [0, 2π]N .
The family of vector (g̃i(θ1, α2, · · · , αN))i=1,··· ,N−1 is obtained by the multi-

plication of A−1 by B. Since the coefficients of A−1 are obtained by multipli-
cation and division of those of A, and because the determinant of A is never
null, the entries of inverse matrix A−1 remain analytic functions on [0, 2π]N .
Thus, the family of vector fields (g̃i)i=1,··· ,N are analytic on [0, 2π]N .

4.3.2 Controllability of the Purcell Swimmer (N=3)

Now we prove the controllability of the Purcell’s swimmer. By replacing
N = 3 in (4.17), the Purcell’s dynamics reads

α̇2

α̇3

ẋ1

ẏ1

θ̇1

 = g1(θ1, α2, α3)α̇2 + g2(θ1, α2, α3)α̇3 . (4.41)

We now express the Lie algebra of the vector fields g1 and g2 for any
θ1 ∈ [0, 2π] at the point (α2, α3) = (0, 0), for a swimmer whose sticks have
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same length L > 0.

The two vectors g1(θ1, 0, 0) and g2(θ1, 0, 0) are

g1(θ1, 0, 0) =


1
0

2L sin θ1
27

−2L cos θ1
27

20
27

 , g2(θ1, 0, 0) =


0
1

−5L sin θ1
54

5L cos θ1
54

− 7
27

 .

Then, the iterated Lie brackets are equals to

[g1,g2](θ1, 0, 0) =


0
0

5L(η−ξ) cos θ1
81ξ

5L(η−ξ) sin θ1
81ξ

0

 ,

[g1, [g1,g2]](θ1, 0, 0) =


0
0

−L(85η2−58ηξ+21ξ2) sin θ1
2187ξη

L(85η2−58ηξ+21ξ2) cos θ1
2187ξη

−22η2−28ηξ+22ξ2

729

 ,

[g2, [g1,g2]](θ1, 0, 0) =


0
0

L(47η2−110ηξ+111ξ2) sin θ1
2187ηξ

−L(47η2−110ηξ+111ξ2) cos θ1
2187ηξ

22η2−28ηξ+22ξ2

729

 .

The determinant of the matrix whose columns are the previous vector
fields is equal to∣∣∣(g1 g2 [g1,g2] [g1, [g1,g2]] [g2, [g1,g2]]

)
(θ1, 0, 0)

∣∣∣
= 20L2(η−ξ)2(19η+45ξ)(11η2−14ξη+11ξ2)

129140163η2ξ2
.

(4.42)

Since ξ and η are both strictly positive and anisotropic, the determinant
is never null. Thus for any θ1 ∈ [0, 2π], the Lie algebra of the vector fields g1
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and g2 is fully generated at the point (θ1, α2, α3) = (θ1, 0, 0). Remark that
any point (α2, α3,x1, θ1) ∈ [0, 2π]2 ×R2 × [0, 2π] belongs to the orbit of the
point (0, 0,x1, θ1). Since the vector fields are analytic, Orbit Theorem (cfr
1.2) guarantees that the Lie algebra of g1 and g2 is fully generated every-
where in the manifold [0, 2π]2 ×R2 × [0, 2π].

To conclude, by Chow Theorem 1.1 we get the controllability of the Pur-
cell’s swimmer whose sticks have same length.

4.3.3 Controllability of the N-link swimmer

The third step is to generalize the previous controllability result to the N-link
swimmer.

The dynamics of this swimmer is described by the ODE (4.17). By con-
struction, the family of vector fields gi generates the tangent space of the
manifolds [0, 2π]N−1,

Span(g1, · · · ,gN−1) = RN−1 . (4.43)

The two vector fields g1 and g2 are related to the Purcell’s one defined
in (4.41): we add N − 2 rows of zeroes, take sticks of null length Li = 0 for
4 ≤ i ≤ N − 1, while keeping the three sticks L1 = L3 = L and L2 = 2L
unchanged.

In this case, for any (x1, θ1) ∈ R2× [0, 2π] Subsection 4.3.2 shows that the
vectors g1(θ1, 0, · · · 0), g2(θ1, 0, · · · 0) and their iterated Lie brackets [g1,g2](θ1, 0, · · · 0),
[g1, [g1,g2]](θ1, 0, · · · 0), and [g2, [g1,g2]](θ1, 0, · · · 0) are linearly independent.

Therefore, the Lie algebra of the family (gi)i=1,··· ,N−1 at the point (θ1, 0, · · · , 0)
is equal to the tangent space T(0,··· ,0,x1,θ1)M.

Then, by analyticity of the vector fields gi, Orbit Theorem 1.2 states that
the Lie algebra is fully generated everywhere for a swimmer whose the length
of sticks verify L1 = L3 = L, L2 = 2L and Li = 0, for 4 ≤ i ≤ N − 1.

Notice that the vector fields of the motion equation depend analytically
also on the sticks length Li, i = 1, · · · , N . We define by D(0,··· ,0), the function
which associates to the N−uplet of the sticks lengths the determinant of the
vectors g1(0, · · · , 0), · · · ,gN−1(0, · · · , 0) and their iterated Lie brakets at the
point (0, · · · , 0).

Since the dependance on Li of vector fields gi is analytic, we get the ana-
lyticity of the function D(0,··· ,0). Thus for any L > 0, the value of D(0,··· ,0) at
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the point (L, 2L,L, 0 · · · 0) is not null. Then, by analyticity it remains non
null almost everywhere in RN . Therefore, we obtain that the Lie algebra is
fully generated for almost every swimmer.

Finally, by using Chow Theorem 1.1, we get the controllability stated in
the Theorem 4.1.

4.4 Minimum time optimal control problem

for the N-Link swimmer

This Section describes the minimum time optimal control problem for the N -
link swimmer. The problem is defined in 4.4.1, and is well defined, from the
controllability result proven in 4.3. Then in 4.4.2 we present the optimization
strategy we used to find a solution to this optimal control problem.

4.4.1 Optimal Time Control Problem Statement

For any time t > 0, let us denote the state of the swimmer by z(t) :=
(α̇2, · · · , α̇N , ẋ1, θ̇1)(t)T , the control function by u(t) := (α̇2, · · · , α̇N)(t) and
the dynamics by f(z(t),u(t)) =

∑N−1
i=1 gi(z(t)) α̇i(t).

In the following we assume that the swimmer starts at the initial configura-
tion zi and we set a final state zf . We want to find an optimal swimming
strategy which minimizes the time to reach the final configuration, i.e.,

(OCP )


inf T
ż(t) = f(z(t),u(t)) , ∀t ∈ [0, T ]
u(t) ∈ U := [−1, 1]N , ∀t ∈ [0, T ]
z(0) = zi

z(T ) = zf

By rescaling the dynamics (4.17), from the controllability result 4.1 the
following statement holds.

Corollary 4.1. Consider the N-link swimmer described in Section 4.1 evolv-
ing in R2. Then for almost any sticks lengths (Li)i=1,··· ,N and for any initial

configuration (xi1, θ
i
1, α

i
2, · · · , αiN), any final configuration (xf1 , θ

f
1 , α

f
2 , · · · , α

f
N)

and any final time T > 0, there exists a function (α2, · · · , αN) ∈ W1,∞([0, T ])
such that (α̇2, · · · , α̇N) ∈ U, satisfying (α2, · · · , αN)(0) = (αi2, · · · , αiN) and
(α2, · · · , αN)(T ) = (αf2 , · · · , α

f
N) and such that if the self-propelled swimmer

starts in position xi1, θ
i
1 with the shape αi2, · · · , αiN at time t = 0, it ends at
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position (xf1 , θ
f
1 ) and shape αf2 , · · · , α

f
N at time t = T by changing its shape

along (α2, · · · , αN)(t).

This corollary means that the displacement of the swimmer does not
depend of the speed of the shape changes of the swimmer. By applying
Filippov-Cesary Theorem (as stated in [82]), there exist a minimal time such
that the constraints are satisfied, and the optimal problem reads

(OCP )


min T
ż(t) = f(z(t),u(t)) , ∀t ∈ [0, T ]
u(t) ∈ U := [−1, 1]N , ∀t ∈ [0, T ]
z(0) = zi

z(T ) = zf

(4.44)

4.4.2 Optimization Strategy

In order to solve this optimal control problem, we use a so-called direct
approach. The direct approach transforms the infinite dimensional opti-
mal control problem (OCP ) into a finite dimensional optimization problem
(NLP ). This is done by a discretization in time applied to the state and con-
trol variables, as well as the dynamics equation. These methods are usually
less precise than indirect methods based on Pontryagin’s Maximum Princi-
ple, but more robust with respect to the initialization. Also, they are more
straightforward to apply, hence they are widely used in industrial applica-
tions.

Summary of the time discretization:

t ∈ [0, T ] → {t0 = 0, . . . , tN = T}
z( · ), u( · ) → X = {z0, . . . , zN , u0, . . . , uN−1, T}
Criterion → min T
Dynamics → (ex : Euler) zi+i = zi + hf(zi, ui)
Adm. Cont. → −1 ≤ ui ≤ 1
Bnd. Cond. → Φ(z0, zN) = 0

We therefore obtain a nonlinear programming problem on the discretized
state and control variables

(NLP )

{
min F (z) = T
LB ≤ C(z) ≤ UB

All tests were run using the software Bocop2 ([17]). The discretized non-
linear optimization problem is solved by the well-known solver Ipopt ([83])

2http://bocop.org
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with MUMPS ([10, 9]), while the derivatives are computed by sparse auto-
matic differentiation with Adol-C ([84]) and ColPack ([35]). In the numerical
experiments, we used a Midpoint (implicit 2nd order) discretization with 1000
time steps. Execution times on a Xeon 3.2GHz CPU were a few minutes.

4.5 Numerical simulations for the Purcell swim-

mer (N = 3)

In this Section, we present the numerical simulations associated with the
problem (4.44) in the case of N=3 sticks (Purcell’s swimmer). We observe
that while we did not make any assumptions on the structure of the optimal
trajectory, the solution given by the direct solver Bocop shows a periodic
structure. We extract a stroke from these solutions, and check that we ob-
tain a better displacement better than the one of Purcell ([70], [13]).

In the rest, we reformulate the system in order to match the state variables
used in the literature for the Purcell swimmer ([13]), as we have done in the
previuous section. Following [13], we take the sticks lengths L1 = L3 = 1
and L2 = 2. For the sake of clarity we recall that, the state of the swimmer
(see Fig 4.14) is described by

• the position (x2, y2) of the center of the second stick, and θ2 := θ1−α2

the angle between the x-axis and the second stick

• the shape of the swimmer, defined by the two angles β1 := −α2 and
β3 := α3.

•
x2β1

β3

θ2

ex

ey

Figure 4.14: Purcell’s 3-link swimmer.

The time derivative of the new variables which describe the swimmer are
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linear in the previous ones,
β̇1

β̇3

ẋ2

θ̇2

 = M (θ2, β1)


α̇2

α̇3

ẋ1

θ̇1

 ,

where the matrix M (θ2, β1) is defined by,

M (θ2, β1) =


−1 0 0 0 0
0 1 0 0 0

sin(θ2) + cos(β1) 0 1 0 − sin(θ2)
− cos(β1)− cos(θ2) 0 0 1 cos(θ2)

−1 0 0 0 1

 .

As a result, the dynamics (4.17) reads in this case
β̇1

β̇3

ẋ2

θ̇2

 = f̃1 (θ2, β2, β3) β̇1 + f̃2 (θ2, β2, β3) β̇3 (4.45)

where for i = 1, 2

f̃i (θ2, β1, β3) = M (θ2, β1, ) gi (θ1, α2, α3) . (4.46)

Since the variables which describe the swimmer are the image of the
previous one by a one-to-one mapping, it is clear that the controllability
result proved in Section 4.3.2 holds for the ODE (4.45).

4.5.1 The classical Purcell stroke

Here, we recall the Purcell Stroke given in [70] and studied in more detail in
[13]. Moreover in order to compare better the results Let us denote by ∆θ,
the angular excursion of β1 and β3, meaning that for all time β1(t) and β3(t)
belong to the interval [−∆θ

2
, ∆θ

2
]. Calling T the interval of time in which the

swimmer performs the stroke, the Purcell stroke is defined by the following
periodic cycle of deformation,

β1(t) =



4∆θ

T
t− ∆θ

2
if 0 ≤ t ≤ T

4

∆θ

2
if T

4
≤ t ≤ T

2

−4∆θ

T
t+

5∆θ

2
if T

2
≤ t ≤ 3T

4

−∆θ

2
if 3T

4
≤ t ≤ T

,
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and

β3(t) =



∆θ

2
if 0 ≤ t ≤ T

4

−4∆θ

T
t+

3∆θ

2
if T

4
≤ t ≤ T

2

−∆θ

2
if T

2
≤ t ≤ 3T

4

4∆θ

T
t− 7∆θ

2
if 3T

4
≤ t ≤ T

.

In the following, we call the ”classical” Purcell stroke the one corresponding
to ∆θ = π

3
.

4.5.2 Comparison of the optimal stroke with the clas-
sical Purcell stroke

For the comparison, we take the initial position x2 = (0, 0) and θ2 = 0 and
the final position x2 = (−0.25, 0) and θ2 = 0. We also constrain the angles
β1(t) and β3(t) to vary between −π

6
and π

6
for all time t > 0. We recompute

the displacement produced by the classical Purcell’s stroke, integrating the
dynamics (4.45) with a classical fourth order Runge-Kutta method. Solving
the minimum time problem with the direct method gives us a periodic solu-
tion from which we extract a candidate for the time optimal stroke.
We describe this stroke in more details, and show its displacement versus the
Purcell one.

Solving the optimal problem (4.44) we observe that the solution is peri-
odic, as show the graphs on Fig. 4.15 for the angles functions β1, β3 and the
x-displacement.
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Figure 4.15: Angles and x-displacement for a whole periodic trajectory.
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From the plots above it is evident that the optimal controls have a periodic
structure and perform more than one period in the optimal interval of time.
In order to compare the results for the displacement with the Purcell’s ones,
we need to select only one period (i.e. one stroke). Moreover we chose the
period T of the classical Purcell stroke equal to the period of the optimal
stroke. We show on Fig. 4.5.2 the angles functions β1 and β3. Moreover,
Fig. 4.17 represents the phase portrait for both the classical Purcell stroke
and our selected optimal stroke in the same period T.
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Figure 4.16: Angles of Purcell stroke and optimal stroke.
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Figure 4.17: Phase portrait of Purcell stroke and optimal stroke.

We show now the shape changes in the (X,Y) plane for the Purcell and
optimal stroke. Figure 4.18 shows the Purcell swimmer in four different
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times during the classical Purcell stroke, and figure 4.19 shows the swimmer
performing the selected optimal stroke.
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Figure 4.18: Shape changes for the Purcell’s stroke.
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Figure 4.19: Shape changes for the optimal stroke.

We draw on Fig. 4.20 the displacement of the point (x2, y2) during one
classical Purcell stroke and one optimal stroke. The final displacement ob-
served for the Purcell stroke matches the results of [13]. We observe that our
optimal stroke allows the swimmer to move 20% further in the x-direction.
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Figure 4.20: On the left the x displacement for the Purcell swimmer and the
optimal one in the time of 6 Purcell strokes. On the right y displacement for
one Purcell and one optimal stroke.

We study now for both strokes the x-displacement with respect to the
angular excursion, as shown on Fig. 4.21. In both cases, we see that a larger
interval of angular excursion gives a greater displacement. The results we
find for the Purcell stroke results match the ones in [13]. Here again, it is
obvious that the strokes given by our optimization strategy produce a greater
x-displacement than the Purcell, one for any range of angular excursion.
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Figure 4.21: x displacement wrt angular excursion, Purcell and optimal
stroke.
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4.5.3 Optimization of other movements: y-displacement
and rotation

We try here different final conditions, (0, 1, 0) for a displacement along the
y-axis, and (0, 0, π/4) for a rotation at the origin. The angular excursion is
here 2π/3, i.e. the angles β1 and β3 are in [−π/3, π/3].

First numerical simulations indicate periodic movements for both y-displacement
and rotations, and the strokes have different shapes than in the x displace-
ment case. The y-displacement case is shown on Fig. 4.22 and Fig. 4.23,
we note that the distance covered in one ”stroke” is lesser than in the x-
displacement case. This would be consistent with the fact that the drag
force of the fluid is greater in this direction.
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Figure 4.22: Y-displacement: Y, angles
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Figure 4.23: Y-displacement: trajectory in the plane

Fig. 4.24 shows the solution for a rotation of the angle θ2. Fig. 4.25 is
the associated displacement in the plane around the origin before returning
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to (0, 0). Is would seem that rotations cannot be performed while staying at
the same (x,y) coordinates all the time, which would need to be confirmed
by a formal study of the dynamics.

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

TIME

θ2

θ2 ROTATION

0 5 10 15 20 25

−1

−0.5

0

0.5

1

TIME
AN

G
LE

S
 

 

β1
β3

Figure 4.24: θ2-rotation: θ2, angles
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Figure 4.25: θ2-rotation: trajectory in the plane

4.6 Optimal design of the three link Purcell

swimmer

In this subsection we address the question of the optimal design for the
Purcell 3-link swimmer presented in the previous section. More precisely
we investigate the best link length ratio which maximizes its displacement.
Among a set of optimal strategies of deformation (strokes), we provide an
asymptotic estimate of the displacement for small deformations, from which
we derive the optimal link ratio.
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To this end we recall throughout a picture the variables by which we
describe our system

•x2β1

β3

θ2

ex

ey

L2

L

Figure 4.26: Purcell’s 3-link swimmer with variable stick’s length.

Notice that we denote by L and L2 the length of the two external arms
and central link whose optimal ration we wish to determine.

4.6.1 Optimal strokes

We are interested in finding a periodic sequence of deformations which max-
imizes the displacement of the swimmer along the x-axis. More precisely, we
optimize both the link length ratio L2/L and the deformation of the swimmer
over time. Taking the deformation speed β̇1|3 as control functions, we obtain
the optimal control problem

(OCP )



max x2(T ) s.t.

ż(t) = f(z(t), β̇1, β̇3) ∀t ∈ [0, T ] ,

β̇1|3 ∈ U = [−b, b] ∀t ∈ [0, T ] ,
β1|3(t) ∈ [−a, a] ∀t ∈ [0, T ] ,
x2(0) = y2(0) = θ2(0) = 0, y2(T ) = θ2(T ) = 0 ,
β1|3(0) = β1|3(T ),
2L+ L2 = c.

We set the constraints a and b over the amplitude and deformation speed,
as well as the total length c of the swimmer. The final time T is fixed, and the
constraint β1|3(0) = β1|3(T ) ensures that the swimmer is in the same config-
uration at the initial and final time. Note that this condition can be satisfied
by either a single stroke or a sequence of strokes. From [36], numerically
solving (OCP ) typically gives a periodic sequence of identical strokes. Their
phase portrait is octagonal, as illustrated on Fig.4.27, and we will detail how
this shape is consistent with optimal control theory.
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We would like also to recall here the Pontryagin Maximum Principle
(PMP) as it gives some insight on the shape of optimal strokes. This theo-
rem in optimal control introduced by Pontryagin et al. in [16] gives necessary
conditions for local optimality. More information on the PMP can be found
in [2, 82]. The PMP is characterized by an Hamiltonian function H that
formally depends on the state variables z, the control functions β̇1|3, and
so-called costate variables noted p. While originally inspired by the Hamil-
tonian in mechanics, in the context of optimal control H does not actually
correspond to the energy of the system. The costate variables play the part
of the generalized velocities in Lagrangian mechanics, and they can be in-
terpreted as Lagrange multipliers (in the sense of constrained optimization)
related to the dynamics of the system. Let the Hamiltonian be

H(z,p, β̇1, β̇3) = 〈p,g1(z)〉 β̇1 + 〈p,g2(z)〉 β̇3. (4.47)

Under the assumption that g1|2 are continuous and C1 with respect to z, the
PMP states that:
if (z∗, β̇∗1 , β̇

∗
3) is a solution of (OCP ) then there exists p∗ 6= 0 absolutely con-

tinuous such that ż∗ = Hp(z
∗,p∗, β̇∗1 , β̇

∗
3), ṗ∗ = −Hz(z

∗,p∗, β̇∗1 , β̇
∗
3), p∗(T ) is

orthogonal to the cotangent cone of the final conditions at z∗(T ) and (β̇∗1 , β̇
∗
3)

maximizes the Hamiltonian for almost every time t ∈ [0, T ].
The Hamiltonian in (4.47) is linear in the controls β̇1|3. If we assume 〈p,gi(z)〉 6=
0 for i = 1, 2 over a time interval, then the optimal control β̇1|3∗ that maxi-
mizes H must be on the boundary of U = {(−b,−b), (−b, b), (b,−b), (b, b)}.
In terms of phase portrait, this corresponds to diagonal lines.
Moreover, we have the constraints on the joint angles β1|3(t) ∈ [−a, a]. When

one of them is active and |βi| = a, the corresponding control β̇i = 0. In terms
of phase portrait, this gives horizontal or vertical lines.

Finally as stated in [80], we expect optimal strokes to be symmetric with
respect to the diagonal axes β1 = β3 and β1 = −β3. This comes from the
equations of motion being linear and time independent. From the linearity,
optimal strokes should be invariant by reflection with respect to the axis of
the swimmer’s body. From time independence, the stroke should be invariant
when inverting the arms movement and going backwards in time.

4.6.2 Optimal swimmer design

In this section, we express the leader term of the swimmer’s displacement
for a stroke of small perimeter which satisfies all properties stated in the
previous section. We represent the stroke by a closed octagonal curve γ in
the phase portrait (β1, β3), see Fig. 4.27.
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Figure 4.27: Phase portrait (β1, β3) of the octagonal stroke considered for
the expansion of the displacement.

As a consequence of neglecting inertia forces, velocities appear linearly
in the dynamic, and time can be rescaled without changing the dynamics.
Thus the displacement of the swimmer after one stroke does not depend on
the speed along the curve γ, but only on the shape of the stroke. From now
on, we parametrize γ by the arc-length s. Using a similar approach to [29],
we express the swimmer’s displacement along the x-axis (i.e., x(T ) − x(0))
as an asymptotic expansion for small length ai, i = 1, · · · , 4.

Displacement over the arc s ∈ [0, a1].
On this part, according to Fig. 4.27, we set u = (β̇1, β̇3) = (0,−1). The dy-
namics of the swimmer is therefore given by ż = −g2, and the time expansion
at order two is given by

z(a1) = z(0)− a1g2(z(0))

+
a2

1

2

∂g2

∂z
(z(0)) (g2(z(0))) + o(a3

1) . (4.48)

Displacement over the arc s ∈ [a1, a1 + a2].
Similarly, the position of the swimmer at s = a1 + a2 can be expressed as

z(a1 + a2) = z(a1)− a2

√
2

2
h(z(a1))

+
a2

2

4

∂h

∂z
(z(a1)) (h(z(a1))) + o(a3

2) , (4.49)

where h := g1 + g2. Plugging the value of z(a1) from (4.48) into (4.49) and
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neglecting the terms of order greater than two, we get

z(a1 + a2) = z(0) + c1(g1,g2, z(0), a1, a2)

+c2(g1,g2, z(0), a1, a2)

+o(a3
1) + o(a3

2) (4.50)

with

c1(f ,g, z, a1, a2) = −
√

2a2

2
f(z)

+(−a1 −
√

2a2

2
)g(z),

c2(f ,g, z, a1, a2) =
a2

2

4

∂f

∂z
(z) (f(z)) +

a2
2

4

∂g

∂z
(z) (f(z))

+

(
a1a2

√
2

2
+
a2

2

4

)
∂f

∂z
(z) (g(z))

+

(
a1a2

√
2

2
+
a2

2

4
+
a2

1

2

)
∂g

∂z
(z) (g(z)) .

Displacement over the complete stroke.
Iterating the computations along each arc and noting by P = 2(a1 + a2 +
a3 +a4) the stroke perimeter, the expansion of the total displacement for the
octagonal stroke is finally obtained as

z(T )− z(0) = C [g1,g2](z(0)) + o(a3
i )i=1−4 , (4.51)

where

C =
a1a2

√
2

2
+ a1a3 +

a2a3

√
2

2
+
a1a4

√
2

2
+ a2a4 +

a3a4

√
2

2

and
[g1,g2](z(0)) = ∇g2(z(0)) ·g1(z(0))−∇g1(z(0)) ·g2(z(0))

is the Lie brackets of g1 and g2 at point z(0). Choosing the starting point
z(0) such that θ(0) = β1(0) = β3(0) = 0, we compute the Lie bracket with a
formal calculus tool

[g1,g2](0, 0, x, y, 0) =


0
0

η−ξ
ξ

L3L2(3L+2L2)
(2L+L2)4

0
0

 . (4.52)



115

Consequently, the x-displacement after one stroke is approximated by

x(T )− x(0) = C

(
η − ξ
ξ

)(
L3L2(3L+ 2L2)

(2L+ L2)4

)
+ o(a3

i )i=1−4 (4.53)

Setting the total length of the swimmer by a constant equal to c, i.e., 2L +
L2 = c, we find that (4.53) has a unique maximum at

L∗ = c
(

1−
√

2

5

)
, L∗2 = c

(
2

√
2

5
− 1
)
, (4.54)

which gives an optimal ratio of(
L2

L

)∗
=

√
10− 1

3
∼ 0.721 . (4.55)

Remark: in [80] an optimal ratio of 0.747 is given for an efficiency-type
criterion. The small gap may be due to the difference in models, or the
change of the objective function.

4.6.3 Numerical simulations

We solve now the optimal control problem (OCP ) numerically, in order to
determine the optimal swimming strategy and link ratio. Simulations are
performed with the toolbox Bocop ([17]) that implements a direct tran-
scription method. This approach uses a time discretization to transform the
continuous (OCP ) into a finite-dimensional optimization problem (nonlinear
programming). We refer to [14] for more details on these methods. We use
here an implicit midpoint discretization with 100 to 2500 time steps. Note
that this method does not use the PMP.

As stated in (OCP ), the criterion is to maximize the total displacement
along the x-axis over a fixed time T . The initial state of the swimmer is set
as x(0) = y(0) = θ2(0) = 0, with the final conditions y(T ) = θ2(T ) = 0.
The initial shape angles are left free, with the periodicity conditions βi(0) =
βi(T ), i = 1, 3. We set the total length c = 4 for an easier comparison with
the classical Purcell swimmer (L = 1, L2 = 2).

We explore different values for the bounds a, b on the shape angles and
deformation speed and see their influence on the optimal stroke and link
ratio. For practical applications, the values for a and b should reflect the
physical characteristics of the studied swimmer. It should be pointed out
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that the period of the optimal stroke is not known a priori. We arbitrar-
ily set T = 1 in the first set of simulations, and T = 25 when studying the
larger amplitudes. In the latter case we find that the swimming strategy con-
sists in a periodic sequence of identical strokes, as previously observed in [36].

Small amplitudes, influence of speed limits

We start with small amplitudes by setting a = π/20 and solve (OCP ) for
different values of the speed limit b. Here we set T = 1 and use 250 time steps
for the discretization. Optimizations take about one minute on a standard
laptop. Results are given in Table.4.1, with the phase portraits for the shape
angles β1, β3 on Fig.4.28.

First, we observe that the optimal ratio L2/L is very close to its theoreti-
cal value of 0.721 from (4.55), regardless of b. The speed bound does however
have an influence on the shape of the optimal stroke, and its displacement.
Displacement increases with higher speeds, and we find the following empir-
ical relation between b and the stroke shape, confirmed by simulations with
other values of a:
- for b < 4a/T : diamond stroke, which touches the bound a for the limit case
b = 4a/T .
- for 4a/T < b < 8a/T : octagonal stroke.
- for b = 8a/T : classical Purcell stroke (square).
- for b > 8a/T : sequence of several strokes.
The three strokes observed (diamond, octagon, square) match the discussion
from subsection 4.6.1. They include only diagonal lines (bang arcs saturat-
ing the speed limit b) and horizontal/vertical lines (constrained arcs for the
amplitude limit a). Note also that the square and diamond strokes are par-
ticular cases of the octagonal one, by setting the appropriate arc lengths to
0.

Remark 4.1. This empirical relation can also be interpreted in terms of
the period T , with the two limit values T = 8a/b for the Purcell stroke and
T = 4a/b for the diamond touching a.
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Table 4.1: Small amplitude (a = π/20).
b x(T ) L2/L stroke
0.5 2.68E-3 0.719 diamond
π/5 4.23E-3 0.719 diamond
0.75 5.70E-3 0.719 octagon
1 7.73E-3 0.719 octagon
2π/5 8.42E-3 0.717 square
1.5 1.14E-2 0.719 octagon (x2)
2 1.55E-2 0.719 octagon (x2)
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Figure 4.28: Phase portraits of the strokes for small amplitudes, a = π/20.
The shapes observed are consistent with the discussion in subsection 4.6.1.

Comparison with the classical Purcell swimmer

Now we compare the performance of the optimal swimmer with respect to
the classical Purcell swimmer defined by L = 1, L2 = 2, meaning a ratio of
2. For this comparison we set a = π/6 (thus a stroke amplitude of π/3)
and b = π/3, 2π/3, π, 4π/3 and T = 1. The optimization for the Purcell
swimmer is done by setting L = 1 instead of letting it free. The results are
summed up in Table.4.2 and Fig.4.29. We see that the shape of the stroke
matches the empirical law, and that the optimal link ratio stays close to its
theoretical value. We also observe a consistent gain in displacement that
seems to increase with the speed limit, up to 64% for the classical Purcell
stroke (square).
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Table 4.2: Optimal swimmer vs Purcell swimmer.
b x(T) L2/L stroke xPurcell(T ) gain
pi/3 1.17E-2 0.717 diamond 7.373E-3 51%
2π/3 4.57E-2 0.708 diamond 2.848E-2 60%
π 7.82E-2 0.699 octagon 4.806E-2 63%
4π/3 8.80E-2 0.695 square 5.359E-2 64%
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Figure 4.29: Displacement for the optimal/Purcell swimmer.

Large amplitudes, influence of angle limits

Now we study the influence of the maximal amplitude of the stroke, set by
the bound a. In this last part we set the deformation speed limit b = 1 to
focus on the amplitude. Since we would like to study only the true optimal
strokes, whose period is not known, we also take a longer final time T = 25.
We expect to obtain trajectories that exhibit a sequence of several identical
strokes with a period T ∗ < T . The number of time steps is raised accordingly
to 2500, which increases the computational time up to half an hour. Another
way of finding the optimal stroke directly could be to leave the final time T
free in the optimization, while maximizing the average speed of the stroke
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x(T )/T instead of the displacement x(T ).

The results are illustrated in Table.4.3 and Figs.4.30-4.31. First, the sim-
ulations confirm that the optimal strategy is a periodic sequence of identical
strokes. The shape of the optimal stroke is always octagonal until it becomes
unconstrained for very large values of a. We observe that the central sym-
metry observed for small amplitudes is lost for larger a, however symmetry
w.r.t both diagonal axes still holds as expected.

In the unconstrained case, we see arcs that are neither bang arcs (diag-
onal) or constrained arcs (horizontal/vertical), but rather appear as smooth
curves (see Fig.4.30) . These are characteristic of so-called singular arcs,
namely the case where 〈p, gi(z)〉 = 0 in the PMP. More details on the anal-
ysis of singular arcs can be found in [82], unfortunately here the complexity
of the gi makes further study quite difficult.

The total displacement x(T ) increases with a, first almost linearly when
a < π/3 (see Fig.4.31). From a ≈ 1.95 and above, we obtain the same,
unconstrained solution. The improvement in displacement appears to be
marginal between a = π/3 and the unconstrained case. Note that since the
displacement is expected to be a monotone increasing function of a, we see
that for a = 1.5, the optimization converged to a local solution.

The optimal ratio L2/L shows a steady decrease with a, starting quite
close to the value 0.721 computed for small amplitudes, the seemingly reach-
ing a limit value of 2/3 in the unconstrained case (i.e. L = 1.5, L2 = 1). We
recall that the classical Purcell swimmer has a link ratio of 2 (L = 1, L2 = 2).

a x(T) L2/L stroke
π/20 0.192 0.719 octagon x26
π/10 0.384 0.712 octagon x13
π/6 0.593 0.697 octagon x7
0.75 0.811 0.676 octagon x5
π/3 1.088 0.660 octagon x4
1.25 1.266 0.660 octagon x4
1.5 1.263 0.660 octagon x3
1.75 1.329 0.667 octagon x3
2π/3 1.335 0.667 unconstrained x3
2.5 1.335 0.667 unconstrained x3

Table 4.3: Larger amplitudes: optimal link ratio and stroke. Solutions be-
come unconstrained about a = 1.95.
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Figure 4.30: Larger amplitudes - Phase portrait (with several superposed
strokes for each trajectory).
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Figure 4.31: Larger amplitudes - Overall displacement. Note that since the
displacement is expected to be a strictly increasing function of a, we see that
for a = 1.5, the optimization converged to a local solution.



Chapter 5

Magneto-elastic flagellar
microswimmer

While the idea of building artificial devices emulating these motile capabilities
is quite natural, much remains to be done for this to be practical. Learning
skills from biological organisms requires, in particular, that we learn how to
move and control continuously deformable objects such as filaments, cilia,
and flagella. This is, in fact, an instance of bio-inspired soft robotics, where
novel designs are inspired by the study of how animals exploit soft materi-
als to move effectively in complex and unpredictable natural environments
[11, 12, 42, 53, 59, 69]. Artificial devices mimicking sperm cells, in which
the payload could be contained in a relatively large head, and propulsion
forces could be extracted from the beating of a long, thin tail, is a natural
concept which has been pioneered in [31]. The idea is particularly attrac-
tive also because it may lend itself to diverse micro-fabrication techniques.
For example, one may consider functionalized magnetic multi-layers (MMLs)
originally conceived for spintronics applications, an idea explored in [30]. The
flexibility in the fabrication procedure could be exploited to target diverse
biotechnological applications, by including different functional components.
In addition, it could be used to tune the magnetic and elastic properties in
order to optimize performance, controllability, manoeuvrability. For the time
being, attention is mostly focused on actuation with an externally applied
magnetic field, but autonomous self-propelled systems can also be envisaged
by using built-in motors, such as muscle cells like in [32], or by using active
materials, such as in [75].

Having in mind the applications discussed above, in this chapter we
present and discuss a computational tool for the simulation of the behaviour
of a model magneto-elastic swimmer, consisting of a head and of a tail made
of a film of permanent magnetic material, and activated by an oscillating
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magnetic field. This system is inspired by the pioneering concept explored in
[31], based on a magnetic filament consisting of super-paramagnetic beads,
and thoroughly analyzed in [34] and [74]. Recent work on a simpler system
made of two rigid magnetic segments [40] is also relevant to our analysis.
Our aim is to provide a feasibility study for the concept of a magneto-elastic
swimmer based on MML fabrication techniques. The main specific questions
we address are whether, by restricting oneself to the small parameter window
of magnetic, elastic, and geometric parameters that are realistic for MMLs,
and to magnetic field amplitude and actuation frequencies achievable in a
laboratory, reasonable swimming speeds can be obtained and, if so, thanks
to which swimming gaits. Our answers to these questions are based on a
simplified model that makes the problems of control and motion planning
tractable. The problem is complex, and inherently multiphysics. Indeed, it
combines magnetism, elasticity, and fluid dynamics in a single system where
magnetic torques drive the shape changes of an elastic flagellum which, in
turn, produce a propulsive force through the interaction with a surround-
ing viscous fluid. While a full description of the system via three coupled
systems of partial differential equations is, in principle, feasible, our aim is
here to develop an agile numerical tool that may help the design, optimiza-
tion, and motion planning stages. Our simplifying assumptions reduce the
governing equations of our magneto-elastic swimmer to a system of ordinary
differential equations (ODEs). Solving these does not require the complex
three-dimensional meshing necessary for the numerical solution of the cou-
pled system of partial differential equations of elasticity, magnetostatics, and
hydrodynamics. By contrast, our system of ODEs can be easily and quickly
solved on a small laptop computer. So, exploring the effect of varying geo-
metric, material, and actuation parameters becomes a feasible task. Given
the length scales involved, the induced flows are characterized by very low
Reynolds numbers. Accordingly, and in view of the slenderness of the tails,
we use the local drag approximation of Resistive Force Theory [39]. Bending
of the tail is rendered by concentrating the elasticity on a finite number of
points, so that the tail is modeled as a sequence of (many) rigid segments
joined by angular springs. Finally, the magnetic behaviour of the segments
is modeled by assuming that their magnetization is always parallel to the
segment, and with fixed magnitude, and that stray fields can be neglected.
In future work, we will remove some of the simplifying assumptions leading
to the reduced model, as this may be required to resolve some finer details.
The main results of our work are the following. First, we show that by ac-
tuating a system made of a non-magnetic head and an MML tail with a
magnetic field composed of a constant longitudinal component and an oscil-
latory transversal one, one can propel it along the longitudinal axis achieving
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swimming speeds comparable to those observed for bull sperm cells in [33],
and using magnetic fields that are easily attainable in a laboratory. We use
for the magnetic film the material parameters of Permalloy, and geometric
parameters that are in the range of current manufacturing techniques. This
proves that the MML swimmer is a viable concept, at least in principle. In
addition, we compare the swimming gait of our MML swimmer with that of
other natural and artificial micro-swimmers and, in particular, with sperm
cells, whose behaviour is well known from the exisiting literature. It turns
out that the mechanisms underlying the motility of MML swimmers and of
sperm cells are radically different. Sperm cells propel themselves by prop-
agating bending waves along the flagellum. Similarly, the behaviour of the
model swimmer in [31] can be understood as arising from the propagation of
bending waves between free and tethered ends, and it is shown in [74] that
the resulting gait is intermediate between that of eukaryotic sperm cells and
the one of a waggled elastic rod. By contrast, our MML swimmer moves
in the absence of bending waves, through a mechanism similar to the one
propelling the two-link system studied in [40]. The main difference is that,
in our case, the two rigid links with an angular elastic joint are replaced by
a flexible magnetic tail which exhibits a time-dependent spatially constant
curvature. Finally, we show that the transversal magnetic field can be used
as a steering device, and that by varying its direction one can guide the
magneto-elastic swimmer along curved trajectories and even sharply curved
pipes.

5.1 Formulation of the problem

Following the line of thought of chapter 4, we think of our swimmer as com-
posed by N segments (Li)1≤i≤N , which move in the plane z = 0. The first
segment is special, as it describes the non-magnetic ‘head’ where the pay-
load is located. Accordingly, it experiences different hydrodynamic drag, as
described below. The other segments are characterised by thickness ti (in
direction perpendicular to the filament axis), width wi (in direction perpen-
dicular to the plane z = 0), and length li (along the filament axis) such that
ti � wi � li. We take l1 = lhead, t1 = thead, w1 = whead, and li = ltail,
wi = wtail, ti = ttail for i = 2, . . . , N . The actual values used for these geo-
metric parameters in the concrete examples analysed in Section 5.2 are given
in Table 5.1.

The position at time t of segment Li is specified by the position of its
first end xi = (xi, yi, 0), and the angle θi that Li makes with the x−axis. We
also denote by ei,‖ = (cos(θi), sin(θi), 0) (resp. ei,⊥ = (− sin(θi), cos(θi), 0))
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the unit vector along (resp. orthogonal to) the axis of segment Li.
The segments are linked together, so that the first end of Li+1 coincides

with the second end of Li, namely, xi+1 = xi + liei,‖. We rewrite these
kinematic constraints in the explicit form{

xi+1 = xi + li cos(θi) ,
yi+1 = yi + li sin(θi) .

(5.1)

The three different physical mechanisms governing the motion of our
magneto-elastic swimmer are rendered in the way described below.

5.1.1 Elasticity

We account for the elasticity of the structure by using a discrete beam theory.
At the junction between the segments Li and Li+1, a torsional spring with
spring constant κ independent of i, is assumed to be present. The spring
exerts a torque with the same magnitude Tel

i,xi
= κ(θi+1 − θi)ez, but with

opposite signs, on each of the two neighboring segments Li and Li+1 of the
swimmer. The spring constant is given by

κ =
(EJ)tail
ltail

(5.2)

where E is Young’s modulus and J is the moment of inertia of the cross-
section of the tail segments

J =
1

12
wtailt

3
tail . (5.3)

The actual values used in Section 5.2 for these geometric and material pa-
rameters are given in Table 5.1.

5.1.2 Hydrodynamics

We assume that the swimmer is immersed in water, that it is neutrally buoy-
ant, and that its size and the actuation frequency are such that the induced
flows are governed by low Reynolds number hydrodynamics [26]. We model
the interaction with the surrounding fluid by using the local drag approx-
imation of Resistive Force Theory [39]. This assumes a linear dependence
between the hydrodynamic drag force per unit length acting on the swimmer
at a point x and the velocity at that point through the relation

fh(x) = −ξiu‖(x)− ηiu⊥(x) . (5.4)



125

Here x is the current location of a point on the i−th link, while u‖(x) and
u⊥(x) stand for the components of the velocity vector of the swimmer at
x (and thus of the fluid at the same point x, due to the no-slip boundary
condition) along ei,‖ and ei,⊥ respectively.

The shortcomings of the local drag approximation are well known. In
particular, the relation (5.4) being local, hydrodynamic interactions between
the different elements of the swimmer are neglected. Nevertheless, it gives
satisfactory results, which are often in striking agreement with experiments,
at least for very slender filaments in low Reynolds number flows (see e.g.
[33]).

Noticing that at x = xi + sei,‖ we have u(x) = ẋi + sθ̇iei,⊥, we can
compute the total hydrodynamic force on Li which is given by

Fh
i =

∫
Li

fh(x) dx = −liξi(ẋi · ei,‖)ei,‖ −
(
liηi(ẋi · ei,⊥) +

l2i
2
ηiθ̇i

)
ei,⊥ . (5.5)

Similarly, the (component perpendicular to the plane z = 0 of the) torque
with respect to any point x0 is given by

ez ·Th
i,x0

= ez ·
∫
Li

(x− x0)× fh(x) dx

= − l
2
i

2
ηi(ẋi · ei,⊥) +

l3i
3
ηiθ̇i (5.6)

+(xi − x0)×
(
liξi(ẋi · ei,‖)ei,‖ +

(
liηi(ẋi · ei,⊥) +

l2i
2
ηiθ̇i

)
ei,⊥

)
· ez .

For simplicity, we will assume that the drag coefficients are constant along
the tail and set ξi = ζtail,‖, ηi = ζtail,⊥, for i = 2, . . . , N . The first segment
describing the ‘head’ is special, and we take ξ1 = η1 = ζhead The actual values
used in Section 5.2 for these material parameters are given in Table 5.1.

5.1.3 Magnetism

We assume that each segment, excluding only the first one describing the
head, is constantly magnetized, and we make the simplifying assumption
that the magnetization on each segment stays permanently aligned with the
segment axis. We also neglect the magneto-static coupling between different
segments, in particular through the stray-field induced by the magnetic dis-
tribution along the swimmer. The only magnetic interaction we consider is
that with an external applied field: we assume that each segment experiences
a (magnetic) torque due to the external magnetic field that is imposed to the
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swimmer. For the i−th segment, this torque takes the form

Tm
i = Mi ×B (5.7)

where Mi is the (total) magnetization of the i−th segment, B the external
magnetic field, and i ranges from 2 to N . In view of our assumptions, the
magnetization of the i−th segment can be written as

Mi = M li ei,‖ . (5.8)

Here M is for the magnetization per unit length of each segment, which is
given by

M = Msttailwtail , (5.9)

where Ms is the saturation magnetization. The actual values used in Section
5.2 for these material parameters are given in Table 5.1.

5.1.4 Governing equations

It remains to assemble the equations governing the motion of the magneto-
elastic swimmer, by putting together the various contributions to forces and
torques described above.

We start by observing that the swimmer is completely described - both
for its position and shape - by the 3N variables (xi, yi, θi)1≤i≤N satisfying the
2(N − 1) constraints (5.1). Therefore, we need to write N + 2 additional
equations. To that aim, and recalling that the motion takes place in the
plane z = 0, we write the total balance of horizontal forces (2 equations) and
a balance of the torque components perpendicular to z = 0 with respect to
xk on each of the subsystems consisting of all the segments from k to N , for
k = 1, · · · , N (N equations). Since inertia is assumed to be negligible, and
since the (spatially uniform) external magnetic field exerts no forces but only
torques on the various parts of the swimmer, these equations take the form

F =
∑N

i=1 Fh
i = 0 ,

ez ·
∑N

i=1

(
Th
i,x1

+ Tm
i

)
= 0 ,

ez ·
∑N

i=2

(
Th
i,x2

+ Tm
i

)
= −κ(θ2 − θ1) ,

...

ez ·
∑N

i=k

(
Th
i,xk

+ Tm
i

)
= −κ(θk − θk−1) ,

...
ez ·

(
Th
N,xN

+ Tm
N

)
= −κ(θN − θN−1) .

(5.10)

In view of equations (5.5), (5.6), (5.7) and (5.8), we see that all quantities
appearing in system (5.10) above depend linearly on the rate of positional and
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orientational changes (ẋi, ẏi, θ̇i)1≤i≤N . Therefore, if we append to equations
(5.10) above the time derivative of the 2(N − 1) constraints (5.1), namely,{

ẋi+1 − ẋi + li sin(θi)θ̇i = 0 ,

ẏi+1 − ẏi − li cos(θi)θ̇i = 0 ,
(5.11)

then we end up with a system of ODEs which completely determines the
evolution of the magneto-elastic swimmer. This system takes the form

A



ẋ1
...
ẋN
ẏ1
...
ẏN
θ̇1
...

θ̇N


= F0 + F1Bx(t) + F2By(t) . (5.12)

The explicit expressions of the matrix A and of the vector-fields F0, F1,
and F2 are given in the Appendix. Assembling and solving this system
numerically, for a given external field B(t) = (Bx(t), By(t)) is a relatively
straightforward task, see e.g.[3].

5.2 A case study

We consider the swimmer depicted in Fig. 1, which consists of a large (say,
disk-shaped) head linked to a tail composed of 10 segments. Each segment,
including the head, is 10µm long, so that the length of the whole system
is 110µm. For the head, we take whead = lhead and thead = ttail. In order
to represent a continuous tail made of a Permalloy thin film, we use the
following values for the magneto-elastic parameters: E = 1011Nm−2 and
Ms = 8 · 105Am−1 . As for the drag coefficients, we follow [33] and take
ζtail,‖ = 6.2 · 10−3 Nsm−2, ζtail,⊥ = 12.4 · 10−3 Nsm−2, ζhead = 0.05Nsm−2.
The values for the other parameters used in the numerical simulations are
given in Tab. 5.1.

5.2.1 Straight swimming

We first consider the case where the swimmer, originally in the horizontal
position, is excited by a magnetic field with a constant horizontal component
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Figure 5.1: The magneto-elastic swimmer: initial configuration, before the
application of the external magnetic field. Lengths are in µm.

and an oscillating vertical one

B(t) = (Bx, By sin(ωt))t (5.13)

where Bx, By have the (fixed) values given in Tab. 5.1. These values
have been selected on a trial-and-error basis, as field strengths of magnitude
achievable in a laboratory and producing interesting performance. Notice
that the presence of a nonzero value of Bx proved necessary to obtain stable
net motion along the horizontal axis.

We explore the dynamics of the swimmer by varying the driving frequency
ω/2π in the range 3-70 Hz. We see from Fig. 5.2 that the net horizontal dis-
placement per cycle is maximised at about 8 Hz, while the maximal swimming
speed is attained around 50 Hz. The value of this maximal displacement is
close to 5 µm, while the maximal swimming speed is around 70µm/s.

The evolving shape of the swimmer is well characterised by the angle
Ψ(s, t) between the horizontal axis and the tangent to the swimmer at arc-
length distance s from the external end of the head segment. Following [33],
we compute the Fourier coefficients of Ψ(s, · )

Ψ̂n(s) =

∫ 2π
ω

0

Ψ(s, t) exp (inωt) dt

in order to capture its periodic behavior, and remark that only the term
Ψ̂1(s) corresponding to the smaller frequency (i.e. the frequency of the mag-
netic field) is non negligible. We plot in Fig. 5.3 the complex values of
Ψ̂1(s) normalized in such a way that Ψ̂1(0) is real (in other words, we plot

Ψ̂1(s)Ψ̂1(0)

|Ψ̂1(0)|
). These graphs, shown for the three frequencies highlighted in
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Figure 5.2: Horizontal displacement during one period of the external field
(left) and velocity of the swimmer (right). Very small and very high fre-
quencies are not effective and a maximum displacement is obtained for a
frequency of about 8 Hz. Three bullets indicate the frequencies 3, 8 and 50
Hz that are used in the sequel for a more thorough analysis.

Fig. 2, clearly show that Ψ̂1(s) is well approximated by a function of the type
Ψ̂1(s) = λ + µs exp(iφ) which indicates a behaviour of Ψ(s, t) that is well
approximated by the function

Ψ(s, t) ∼ Re(Ψ̂1(s) exp(iωt))

∼ λ cos(ωt) + µs cos(ωt+ φ) . (5.14)

The deformation of the swimmer is thus composed of a global rotation (the
spatially constant term) and of a term describing bending with a spatially
constant curvature (the term linear in s), which both oscillate in time with
angular frequency ω and a phase shift φ.

According to (5.14), there is no travelling wave of curvature propagating
along the tail of the swimmer. Therefore, this swimming mechanism is very
different from the one observed in sperm cells in [33], but also from the one
observed in the artificial system described in [31], which is also actuated by
an external oscillating magnetic field. In particular, notice that by differenti-
ating (5.14) with respect to s, we obtain that the curvature remains constant
along the tail of the swimmer (i.e., s-independent) at every time, while being
modulated by a time-dependent amplitude.
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Figure 5.3: The Fourier mode Ψ̂1(s) corresponding to the three frequen-
cies 50 Hz (black), 8 Hz (red), and 3 Hz (blue). The circles, represented
in the complex plane, correspond to the data obtained from the numerical
simulations, and we have interpolated them with straight lines. This linear
approximation leads to formula (5.14).

Figure 5.4: Trajectory of the head of the swimmer with the magnetic field
given by (5.13) with ω = 8 Hz. The close-up view in the right panel empha-
sizes the oscillations in the head movement. Lengths are in µm.

5.2.2 Swimming in circles

The previous section shows that, as it was pointed out already in [31], the
constant horizontal component of the magnetic field (which is parallel to the
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Ms 8 · 105Am−1

E 1011Nm−2

lhead 10 µm
ltail 10 µm
wtail 1 µm
ttail 0.1 µm
ζhead 0.05Nsm−2

ζtail,⊥ 12.4 · 10−3Nsm−2

ζtail,‖ 6.2 · 10−3Nsm−2

Bx 0.01T
By 0.02T

Table 5.1: Values of the parameters used in the numerical simulations.

initial straight configuration of the magnetic tail, and then parallel to its
average orientation during the motion), acts in a stabilising way, keeping
the average orientation of the swimmer always aligned with it. Indeed, the
swimmer oscillates, following the oscillations of the transversal component
of the applied field, but its average motion is that of a translation along the
average direction of the oscillating magnetic field, which is horizontal.

If we now consider an external magnetic field which is obtained by su-
perposing fast transversal oscillations with frequency ω on a slowly varying
longitudinal field, oscillating at frequency ω′ � ω, we expect that we can
use the direction of the slowly varying field to steer the swimmer. As an
example, consider an external magnetic field of the form

B = B‖eθ(t) +B⊥ sin(ωt)e⊥θ(t) (5.15)

where eθ(t) is the unit vector forming an angle θ(t) with the horizontal axis
given by

θ(t) = 2πt/Tmax , (5.16)

and B‖ and B⊥ have the same values of Bx and By, respectively, given
in Table 5.1. Here, in order to have a clear separation of the time scales
associated with fast and slow oscillations, we take ω/2π = 8Hz, and Tmax =
40 s, which, in view of (5.16) leads to a frequency ω′/2π = 0.025Hz � ω/2π.

The swimmer traces now a circular trajectory, and its average orientation
follows the slow modulations of the applied magnetic field (see Fig. 5.5, where
only the part of the trajectory following one quarter of a circle is shown).
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Figure 5.5: Trajectory of the head of the swimmer with the magnetic field
given by equations (5.15, 5.16). The average direction of the magnetic field
experiences a low frequency circular motion together with a high frequency
oscillation. The swimmer follows the slow modulations of the applied mag-
netic field by tracing a circular trajectory. Lengths are in µm.

5.2.3 Turning abruptly

In this last section we push further the idea developed in the previous section.
Indeed, we take the same parameters as before, given in Tab. 5.1, and use
now a magnetic field given by (5.15) which oscillates around an average
orientation eθ(t) that now varies in time according to

θ(t) =
π

4

(
1 + tanh

(
30

(
t

Tmax

− 1

2

)))
. (5.17)

Notice that θ(t) experiences a sudden jump from 0 to π
2

around t = Tmax

2
. The

result we obtain is displayed in Fig. 5.6 and shows clearly a sudden change in
the swimming direction which would allow the swimmer to navigate along an
elbow in a pipe. Here, we are tacitly assuming that the pipe is wide enough
with respect to the size of the swimmer so that the hydrodynamics effects
of the walls can be neglected. Enriching the model to consider explicitly the
confining effects due to the pipe walls would be interesting, also in view of
recent results in [8], but will not be done here.



133

Figure 5.6: Trajectory of the head of the swimmer with the magnetic field
given by equations (5.15, 5.17) where we have used ω/2π = 8Hz and Tmax =
10 s. The sudden rotation of the axis along which the magnetic field oscillates
induces a sudden change in the swimming direction that could allow the
swimmer to navigate along the elbow of a pipe (not shown). Lengths are in
µm.

5.2.4 The swimming mechanism: propagation of bend-
ing waves along the tail is not necessary for propul-
sion

In order to shed light on the mechanism propelling our swimmer, it is useful
to introduce the angles θR := θN and θL := θ1 giving the orientations of the
right-most and of the left-most segments, respectively. Figure 5.7 shows that
the dynamics is such that the point (θL(t), θR(t)) traces a loop. By contrast,
the orientation of the second link is always very near the one of the first link,
and the corresponding loop (shown in red in Figure 5.7) is close to a single
line. The right panel shows snapshots of the swimming stroke along the beat
cycle and the dots in the left panel locate them along the loop in the (θL, θR)
plane.
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Figure 5.7: Left − The loop in the (θL, θR) traced by the MML swimmer
is indicated in blue. The curve described by (θL, θ2) is given in red. Right
- Snapshots of the swimming stroke along the beat cycle corresponding to
points A, B, C and D.

The presence of a loop in the (θL, θR) plane shows that the dynamics of
the swimmer is not time reversible: net motion in the horizontal direction
arises precisely from this lack of time reversibility. In order to make this
statement clearer and more quantitative, we compare the swimming gait
of our swimmer with the one of a simplified system consisting of two rigid
magnetic links joined by an elastic spring where all the bending elasticity is
concentrated. A somewhat similar system has been analyzed in [40] In our
case, the first link has also a passive head attached, and hence experiences
hydrodynamic forces and torques different from those acting on the second
link. The total length and the magnetic properties of the two swimmers are
otherwise identical. The length of each link is 5l, the one of the head is l.
The drag coefficient of the head is ζhead and the ones for the tail are ζtail,||
and ζtail,⊥. We derive the equations of motion for this system from (5.12) by
setting N = 3 and θ2 = θ1. The last assumption is made to fix the orientation
of head to be equal to the one of the first segment. Figure 8 shows that the
behaviour of the simpler two-link system reproduces the one of our original
system, made of a stiff but deformable magnetoelastic tail.
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Figure 5.8: Left - The loop in the (θL, θR) plane traced by the 2-link swim-
mer is indicated in blue. The dashed curve gives the corresponding picture
when no passive head is attached to the first link. Right - Snapshots of the
swimming stroke along the beat cycle corresponding to points A, B, C and
D.

5.8 also shows that no loop is generated in the two-link system when the
passive head is removed (dashed curve). Indeed, in this case the the two
links are subject to the same hydrodynamic forces and no net displacement
is produced, as expected.
The dynamics of the simpler two-link system can be easily analyzed. Con-
sidering the subsystem made by the first 2 rows of (5.12) and by noticing
that the 2 first components of vector fields F0, F1 and F2 are null, we get

M

(
ẋ1

ẏ1

)
= (GL,GR)

(
θ̇L
θ̇R

)
(5.18)

where M is a symmetric matrix defined by

M =

(
m11 m12

m12 m22

)

with
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m11 = 5l(ζtail,⊥ − ζtail,||))(cos2 θL + cos2 θR)− 10ζtail,⊥l − ζheadl
m12 = 5l(ζtail,⊥ − ζtail,||))(sin θL cos θL + sin θR cos θR)

m2,2 = −5l(ζtail,⊥ − ζtail,||))(cos2 θL + cos2 θR)− 10ζtail,⊥l − ζheadl

Here Gi = (G1
i , G

2
i ) with i = L,R, are the two column vectors whose expres-

sion is

G1
L = −30l2 cos θR(ζtail,⊥ − ζtail,||)(sin θL cos θR − sin θR cos θL) +

1

2
l2 sin θL(95ζtail,⊥ + ζhead)

G2
L = −30l2 cos θR(ζtail,⊥ − ζtail,||)(sin θL cos θR − sin θR cos θL)−

1

2
l2 cos θL(ζhead + 35ζtail,⊥ + 60ζtail, ||)

G1
R =

25

2
ζtail,⊥ sin θRl

2

G2
R = −

25

2
ζtail,⊥ cos θRl

2

The first component of system (5.18) is

ẋ = gL(θL, θR)θ̇L + gR(θL, θR)θ̇R

Integrating this equation over a swimming cycle, and using Stokes theo-
rem, we obtain

∆x = −
∫∫

γ

curl(gL, gR)(θL, θR) dθL dθR

where γ denotes the region enclosed by the closed loop traced by (θL, θR)
during the cycle. The minus sign comes from the fact that the loops are
traced clockwise (in the direction ABCD in Figures 5.7 and 5.8). Assuming
that the amplitudes of the two angles are sufficiently small, the leading order
term of ∆x becomes

∆x ≈ −Area(γ)curl(gL, gR)(0, 0) (5.19)

We can therefore conclude that the net horizontal displacement is propor-
tional to the area of the loop, with a non-vanishing factor given by

curl(gL, gR)(0, 0) = −5

2

l(ζtail,⊥ − ζtail,||)(50ζtail,⊥ + 11ζtail,||)

(10ζtail,|| + ζhead)(10ζtail,⊥ + ζhead)



Conclusions and perspectives

In this thesis we have investigated the geometric nature of the swimming
problem of a 2-dimensional deformable body immersed in a fluid. In the
first part we suppose it immersed in an ideal incompressible and irrotational
fluid. We faced a new problem: the study of the controllability properties of
a dynamical system which can start with a non zero initial impulse. Reinter-
preting the hydrodynamic forces exerted by the fluid on the body, as kinetic
terms, and describing the shape changes with a finite number of parameters,
we derive the equations of motion of the system. Using classical techniques
in control theory [29, 49] we are able to gain some interesting results for the
controllability of this kind of system.
If it starts with zero initial impulse we recover results present in the litera-
ture, we are always able to find a suitable rate of deformation which makes
the swimmer moving between two different fixed configurations. If instead
the body starts with an initial impulse different from zero, the swimmer can
self-propel in almost any direction if it can undergo shape changes without
any bound on their velocity.
The fact that we take into account the presence of an initial impulse not null,
and the analysis of the controllability of this system seems innovative and
makes the study of the self-propulsion of deformable bodies in an ideal fluid
more accurate and complete.
The approach described here can be extended in a number of natural ways.
To begin with, we have restricted our attention to planar swimmers. The
general 3-dimensional case is conceptually straightforward, even though the
way of describing the shape changes is rather different.
The study of bodies that change their shape using only a finite number of
parameters is the initial point of a more complex study of controlling the
deformation by diffeomorphisms. Future work will also explore the optimal
control problem associated to these kind of systems, especially in the case of
non zero initial impulse.

In the second part of the work we set a general kinematic framework for
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discussing self-propulsion in a fluid at low Reynolds number. We have for-
mulated this problem in terms of a gauge potential A, which gives the net
rigid motion resulting from an arbitrary change of shape [76, 77]. Finite
motions due to a sequence of changes of shape are given by a path-ordered
exponential integral of A along a path in shape space, and cyclic infinitesi-
mal swimming motions are described by the covariant curl F of A. We have
discussed an algorithm for determining A at shapes related to the circle by
a conformal map of finite degree, and evaluated A explicitly for all deforma-
tions of conformal degree two.
In order to study deeper the implication that the controllability of microswim-
mers can have on the design of bio-inspired replicas, we build up a new model
for slender swimmers which is more manageable [3]. We have presented a dis-
crete model of a slender swimmer which swims by propagating bending waves
along its body, and in which hydrodynamic interactions are treated with the
local drag approximation of Resistive Force Theory. The model is easy to
assemble and to solve, and surprisingly accurate, as shown by the comparison
with some benchmark examples such as the measured trajectories of sperm
cells reported in [33]. Moreover we prove that for N greater than 3 and for
almost any N -uplet of sticks lengths, the swimmer is globally controllable in
the whole plane. Then, we focus on finding a swimming strategy that leads
the N -link swimmer from an fixed initial position to a given final position, in
minimum time. As a consequence of the controllability result, we show that
there exists a shape change function which allows to reach the final state in a
minimal time. Instead of using the approach of the minimum time function
[27, 28], we formulate this optimal control problem and solve it with a direct
approach (Bocop) for the case N = 3 (Purcell swimmer). Without any
assumption on the structure of the trajectory, we obtain a periodic solution,
from which we identify an optimal stroke. Comparing this optimal stroke
with the Purcell one confirms that it is better and gives a speed greater by
about 20%.
Current work includes solving the optimal control problem for more com-
plex displacements (along the y axis, rotations) and for the optimal design,
i.e. the optimization of the link ratio of the three-link swimmer for max-
imal displacement. We provide an estimate of the displacement based on
an expansion for small deformations, which gives a theoretical optimal link
ratio. Numerical simulations are consistent with this theoretical ratio for
small amplitudes of deformation. We also observe that the optimal ratio
changes for large amplitudes of deformation, with a limit value of 0.667 in
the unconstrained case versus a theoretical ratio of 0.721 obtained for small
amplitudes of deformation. For an amplitude of π/3, the displacement gain
is about 60% compared with the classical Purcell swimmer design. A possible
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continuation of this work is the comparison of different objective functions,
such as speed or efficiency.

Also, noticing that the N -link swimmer was introduced in [3] in the per-
spective of approximating the motion of several living micro organisms, an
interesting extension of this model is to generalize the simulations to greater
values of N . Of course, comparing the candidate for the optimal motion
strategy with the one used by real micro organism could be a more tricky
issue. On the other hand, another interesting direction is to study formally
the existence of the periodic solution for the optimal problem.

Finally we made a feasibility study for the engineering of microscopic ar-
tificial swimmers consisting of a cargo head and of a flexible thin film tail
made of a permanent magnetic material, and propelled by an external oscil-
lating magnetic field. Our results indicate that for a system characterized by
geometric parameters consistent with those achievable by current manufac-
turing techniques, and by realistic values of the magneto-elastic parameters
(consistent with those of Permalloy), interesting swimming performance can
be achieved by using magnetic fields that are easily attainable in a labora-
tory (field magnitude of a few tens of mT, frequencies of a few tens of Hz).
Our analysis shows that the magneto-elastic swimmer we have described in
this work propels itself with a mechanism, which is very different from the
ones previously reported in the literature for flexible magneto-elastic fila-
ments. Indeed, the deformation of the swimmer is composed of a global
rotation and of a bending deformation with a spatially constant curvature,
which both oscillate in time at the same frequency of the external magnetic
field, but with a phase shift. By contrast, sperm cells and artificial swimmers
exploiting control of their curvature propel themselves by propagating inter-
nally activated waves of bending along the flagellum [3, 33]. This mechanism
can be understood in terms of the classical swimming sheet model of G.I.
Taylor [81], since the flagellum is able to produce traveling waves of bending,
propagating from tail to head.
Contrary to the behaviour of sperm cells, our swimmer swims tail first. Also
the steering mechanism we use to produce curved trajectories differs from the
one used by sperm cells. Our swimmer curves by maintaining the alignment
between its average orientation and the average orientation of the external
magnetic field. Sperm cells (and, similarly, artificial bio-mimetic devices
based on internal actuation providing curvature control) can turn by actuat-
ing their tails with waves of curvature with non-zero spatial average, produc-
ing trajectories whose curvatures are proportional to the average curvature
of the tail, see [3, 33].
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Appendix A

The vector Fields gi and their Lie brackets of the first order mentioned in
theorem 2.3 are

g1 = ε2


R(θ)

−(1− µ)s2

−(1− µ)s3

0


1
0
0

 g2 = ε2


R(θ)

 −s1

0

−2πρs3
M


0
1
0



g3 = ε2


R(θ)

 0
−s1

−2πρs2
M


0
0
1



(5.20)
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The Lie brackets generated by these vector fields are

[g1, g2] = ε4



2πs2s3(µ−1)ρ sin(θ)−cos(θ)(Mµ−2πs23(µ−1)ρ)
M

sin(θ)(2πs23(µ−1)ρ−Mµ)−2πs2s3(µ−1)ρ cos(θ)

M

0
0
0
0



[g1, g3] = ε4



sin(θ)(Mµ−2πs22(µ−1)ρ)−2πs2s3(µ−1)ρ cos(θ)

M

− cos(θ)(Mµ−2πs22(µ−1)ρ)+2πs2s3(µ−1)ρ sin(θ)

M

0
0
0
0



[g2, g3] = ε4



2πs1ρ(s2 sin(θ)+s3 cos(θ))
M

2πs1ρ(s3 sin(θ)−s2 cos(θ))
M

−4πρ
M

0
0
0



(5.21)

The vector fields that we need to compute the Lie algebra generated by



143

gi in theorem 2.5 are

g1 = ε2



R(θ)

−(1− µ)s2

−(1− µ)s3

0


0
0

−(1− µ)(s3p
∗
1 + s2p

∗
2)

1
0
0


g2 = ε2



R(θ)

 −s1

0
−2πρs3

M


2πρs3p∗2
M

−2πρs3p∗1
M

s1p
∗
2

0
1
0



g3 = ε2



R(θ)

 0
−s1

−2πρs2
M


−2πρs2p∗2

M
2πρs2p∗1
M

−s1p
∗
2

0
0
1



(5.22)
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Their Lie brackets of the first order are

[g1,g2] = ε4



2πs2s3(µ−1)ρ sin(θ)−cos(θ)(Mµ−2πs23(µ−1)ρ)
M

sin(θ)(2πs23(µ−1)ρ−Mµ)−2πs2s3(µ−1)ρ cos(θ)

M
0
0
0

2πs3(µ−1)ρ(p∗1s2−p∗2s3)−Mp∗2(µ−2)
M
0
0
0



[g1,g3] = ε4



sin(θ)(Mµ−2πs22(µ−1)ρ)−2πs2s3(µ−1)ρ cos(θ)

M

− cos(θ)(Mµ−2πs22(µ−1)ρ)+2πs2s3(µ−1)ρ sin(θ)

M
0
0
0

(2πs2(µ−1)ρ(p∗1s2+p∗2s3)−M(p∗1(µ−1)+p∗2))
M
0
0
0



[g2,g3] = ε4



2πs1ρ(s2 sin(θ)+s3 cos(θ))
M

2πs1ρ(s3 sin(θ)−s2 cos(θ))
M

−4πρ
M

−4πρ(Mp∗2−2πp∗1s2s3ρ)
M2

−8π2p∗2s2s3ρ
2

M2

2πp∗1s1ρ(s2+s3)
M
0
0
0



(5.23)
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Finally the only non zero brackets of the second order are

[g1, [g2,g3]] = ε6



−2π(2µ−3)ρ(s2 sin(θ)+s3 cos(θ))
M

2π(2µ−3)ρ(s2 cos(θ)−s3 sin(θ))
M
0
0
0

2πρ(M(p∗1(s2+s3)+2p∗2s3(µ−1))+4πs2s3(µ−1)ρ(p∗2s2−p∗1s3))
M2

0
0
0



[g2, [g2,g3]] = ε6



2πs1ρ(sin(θ)(3M−2πs23ρ)+2πs2s3ρ cos(θ))
M2

2πs1ρ(2πs3ρ(s2 sin(θ)+s3 cos(θ))−3M cos(θ))
M2

0
16π2s3ρ2(Mp∗1+2πp∗2s2s3ρ)

M3

−16π2s3ρ2(Mp∗2−2πp∗1s2s3ρ)
M3

2πs1ρ(Mp∗1+2πp∗2s3ρ(3s2+s3))
M2

0
0
0



[g3, [g2,g3]] = ε6



2πs1ρ(cos(θ)(3M−2πs22ρ)+2πs2s3ρ sin(θ))
M2

2πs1ρ(3M sin(θ)−2πs2ρ(s2 sin(θ)+s3 cos(θ)))
M2

0
16π2s2ρ2(Mp∗1−2πp∗2s2s3ρ)

M3

−16π2s2ρ2(Mp∗2−2πp∗1s2s3ρ)
M3

2πs1ρ(Mp∗1−2πp∗2s2ρ(s2+3s3))
M2

0
0
0



(5.24)

To use the theorem 1.4 at the point q0 we need also the Lie brackets of
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the vector fields gi with the drift that are:

[f ,g1](q0) =



16p∗1(µ−1)

8M+11περ

0

−8p∗1(8M(ε−µ+1)+π((34−23µ)ε2+8(µ−1)ε−4µ+4)ρ)
ε(8M+11περ)2

0

−8(p∗1)2(8M(ε−µ+1)+π((34−23µ)ε2+8(µ−1)ε−4µ+4)ρ)
ε(8M+11περ)2

0
0
0
0


(5.25)

[f ,g2](q0) =



0
16p∗1(−4(ε2−1)M2+2π(3ε2+6ε+1)ρM+11π2ε2ρ2)

M(8M+11περ)(8M+π(23ε2+8ε+4)ρ)

0

− 32(p∗1)2πρ

8M2+11περM

0

−16(p∗1)2(4(ε2+1)M2+π(17ε2−4ε+2)ρM−11π2ε2ρ2)
M(8M+11περ)(8M+π(23ε2+8ε+4)ρ)

0
0
0


(5.26)

[f ,g3](q0) =



− 8p∗1
8M+11περ

0

− 8p∗1
8M+11περ

0

− 8(p∗1)2

8M+11περ
8(p∗1)2

8M+11περ

0
0
0


(5.27)
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The forces Fi, i = 1, 2, 3 acting on each segment of Purcell’s 3-link swimmer,
introduced in Subsection 4.2.1 are given by

F1 = −ξL1(ẋ2 cos(θ2 + β1) + ẏ2 sin(θ2 + β1)− L2

2
sin β1θ̇2)e1

−η(−L1ẋ2 sin(θ2 + β1) + L1ẏ2 cos(θ2 + β1)− L1L2

2
cos β1θ̇2

−L2
1

2
(θ̇2 + β̇1))e⊥1 ,

F2 = −ξL2(ẋ2 cos θ2 + ẏ2 sin θ2)e2 − ηL2(−ẋ2 sin θ2 + ẏ2 cos θ2)e⊥2 ,

F3 = −ξL3(ẋ2 cos(θ2 + β3) + ẏ2 sin(θ2 + β3) + L2

2
sin β3θ̇2)e3

η(−L3ẋ2 sin(θ2 + β3) + L3ẏ2 cos(θ2 + β3) + L3L2

2
cos β3θ̇2+

+
L2
3

2
(θ̇2 + β̇3))e⊥3 ,

(5.28)
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while the total torque, obtained by using formula (4.5), is given by

Tx2 · ez =ẋ2(ξ
L1L2

2
sin β1 cos(θ2 + β1)− ηL1L2

2
cos β1 sin(θ2 + β1)

− ηL
2
1

2
sin(θ2 + β1)− ξL3L2

2
sin β3 cos(θ2 + β3)

+ η
L3L2

2
cos β3 sin(θ2 + β3) + η

L2
3

2
sin(θ2 + β3))

ẏ2(ξ
L1L2

2
sin β1 sin(θ2 + β1) + η

L1L2

2
cos β1 cos(θ2 + β1)

+ η
L2

1

2
cos(θ2 + β1)− ξL3L2

2
sin β3 sin(θ2 + β3)

− ηL3L2

2
cos β3 cos(θ2 + β3)− ηL

2
3

2
cos(θ2 + β3))

θ̇2(−ξL1L
2
2

4
sin2 β1 − ηL1(

L1

2
+
L2

2
cos β1)2 + η

L3
1

12

− ξL3L
2
2

4
sin2 β3 − ηL1(

L3

2
+
L2

2
cos β3)2 + η

L3
3

12
)

+ β̇1(−η(
L3

1

3
+
L2

1L2

4
cos β1)) + β̇3(−η(

L3
3

3
+
L2

3L2

4
cos β3)) .

(5.29)

We now write the equations of motion of the system. Since we are ne-
glecting inertia these reduce to F = 0 and M = 0. These scalar equations can
be seen as ODEs in the unknown functions x2(t), y2(t) and θ2(t). Explicitly,
they read as

Fx = ẋ2(−ξL1(cos(θ2 + β1))2 − ηL1(sin(θ2 + β1))2 − ξL2(cos(θ2))2

− ηL2(sin(θ2))2 − ξL3(cos(θ2 + β3))2 − ηL3(sin(θ2 + β3))2)

+ ẏ2(−ξL1 cos(θ2 + β1) sin(θ2 + β1) + ηL1 cos(θ2 + β1) sin(θ2 + β1)

− ξL2 sin(θ2) cos(θ2) + ηL2 cos(θ2) sin(θ2)

− ξL3 sin(θ2 + β3) cos(θ2 + β3) + ηL3 sin(θ2 + β3) cos(θ2 + β3)) +

+ θ̇2(ξL1
L2

2
sin(β1) cos(θ2 + β1)− ηL1

L2

2
cos(β1) sin(θ2 + β1)

− ηL1(
L1

2
) sin(θ2 + β1)− ξL3

L2

2
sin(β3) cos(θ2 + β3)

+ ηL3
L2

2
cos(β3) sin(θ2 + β3) + ηL3(

L3

2
) sin(θ2 + β3)

+ β̇1(−ηL
2
1

2
sin(θ2 + β1)) + β̇3(η

L2
3

2
sin(θ2 + β3)) = 0 .

(5.30)
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Fy = ẋ2(−ξL1 cos(θ2 + β1) sin(θ2 + β1) + ηL1 cos(θ2 + β1) sin(θ2 + β1)

− ξL2 sin(θ2) cos(θ2) + ηL2 cos(θ2) sin(θ2)

− ξL3 sin(θ2 + β3) cos(θ2 + β3) + ηL3 sin(θ2 + β3) cos(θ2 + β3)) +

+ ẏ2(−ξL1(sin(θ2 + β1))2 − ηL1(cos(θ2 + β1))2 − ξL2(sin(θ2))2

− ηL2(cos(θ2))2 −−ξL3(sin(θ2 + β3))2 − ηL3(cos(θ2 + β3))2) +

+ θ̇2(ξL1
L2

2
sin(β1) sin(θ2 + β1) + ηL1

L2

2
cos(β1) cos(θ2 + β1)

+ ηL1(
L1

2
) cos(θ2 + β1)− ξL3

L2

2
sin(β3) sin(θ2 + β3)

− ηL3
L2

2
cos(β3) cos(θ2 + β3)− ηL3(

L3

2
) cos(θ2 + β3))

+ β̇1(η
L2

1

2
cos(θ2 + β1)) + β̇3(−ηL

2
3

2
cos(θ2 + β3)) = 0 .

(5.31)

Tx2 = ẋ2(ξL1
L2

2
sin(β1) cos(θ2 + β1)− ηL1

L2

2
cos(β1) sin(θ2 + β1)

− ηL1(
L1

2
) sin(θ2 + β1)− ξL3

L2

2
sin(β3) cos(θ2 + β3)

+ ηL3
L2

2
cos(β3) sin(θ2 + β3) + ηL3(

L3

2
) sin(θ2 + β3))

ẏ2(ξL1
L2

2
sin(β1) sin(θ2 + β1) + ηL1

L2

2
cos(β1) cos(θ2 + β1)

+ ηL1(
L1

2
) cos(θ2 + β1)− ξL3

L2

2
sin(β3) sin(θ2 + β3)

− ηL3
L2

2
cos(β3) cos(θ2 + β3)− ηL3(

L3

2
) cos(θ2 + β3)

θ̇2(−ξL1
(L2)2

4
(sin(β1))2 +

η

3
((
L2

2
cos(β1))3 − (

L2

2
cos(β1) + L1)3)

− η(
L3

2

12
)− ξL3

(L2)2

4
(sin(β3))2 − η

3
((
L2

2
cos(β3) + L3)3

− (
L2

2
cos(β3))3)) + β̇1(−η(

L3
1

3
+
L2

1L2

4
cos β1))

+ β̇3(−η(
L3

3

3
+
L2

3L2

4
cos β3)) = 0 .

(5.32)

These equations lead to the system

A(θ2, β1, β3)

ẋ2

ẏ2

θ̇2

+ b1(θ2, β1, β3)β̇1 + b2(θ2, β1, β3)β̇3 = 0 , (5.33)
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where

A =

a1 1 a1 2 a1 3

a1 2 a2 2 a2 3

a1 3 a2 3 a3 3

 (5.34)

is a symmetric matrix with

a1 1 = −ξL1 cos(θ2 + β1) sin(θ2 + β1) + ηL1 cos(θ2 + β1) sin(θ2 + β1)

− ξL2 sin(θ2) cos(θ2) + ηL2 cos(θ2) sin(θ2)− ξL3 sin(θ2 + β3) cos(θ2 + β3)

+ ηL3 sin(θ2 + β3) cos(θ2 + β3) ,

a1 2 = −ξL1 cos(θ2 + β1) sin(θ2 + β1) + ηL1 cos(θ2 + β1) sin(θ2 + β1)

− ξL2 sin(θ2) cos(θ2) + ηL2 cos(θ2) sin(θ2)− ξL3 sin(θ2 + β3) cos(θ2 + β3)

+ ηL3 sin(θ2 + β3) cos(θ2 + β3) ,

a1 3 = (ξL1
L2

2
sin(β1) cos(θ2 + β1)− ηL1

L2

2
cos(β1) sin(θ2 + β1)

− ηL1(
L1

2
) sin(θ2 + β1)− ξL3

L2

2
sin(β3) cos(θ2 + β3)

+ ηL3
L2

2
cos(β3) sin(θ2 + β3) + ηL3(

L3

2
) sin(θ2 + β3) ,

a2 2 = −ξL1(sin(θ2 + β1))2 − ηL1(cos(θ2 + β1))2 − ξL2(sin(θ2))2

− ηL2(cos(θ2))2 − ξL3(sin(θ2 + β3))2 − ηL3(cos(θ2 + β3))2 ,

a2 3 = (ξL1
L2

2
sin(β1) sin(θ2 + β1) + ηL1

L2

2
cos(β1) cos(θ2 + β1)

+ ηL1(
L1

2
) cos(θ2 + β1)− ξL3

L2

2
sin(β3) sin(θ2 + β3)

− ηL3
L2

2
cos(β3) cos(θ2 + β3)− ηL3(

L3

2
) cos(θ2 + β3)) ,

a3 3 = (−ξL1
(L2)2

4
(sin(β1))2 +

η

3
((
L2

2
cos(β1))3 − (

L2

2
cos(β1) + L1)3)

− η(
L3

2

12
)− ξL3

(L2)2

4
(sin(β3))2 − η

3
((
L2

2
cos(β3) + L3)3 − (

L2

2
cos(β3))3)) .

The vector b1 (resp. b2) is the vector of total force and torque due to a
rotation of the left (resp. right) arm β̇1 = 1 (resp. β̇3 = 1) while the other
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coordinates are kept constant. These vectors are given by

b1 =


−ηL

2
1

2
sin(θ2 + β1)

η
L2
1

2
cos(θ2 + β1)

−η(L1(
L2
1

3
+ L2L1

4
cos β1)

 , b2 =


η
L2
3

2
sin(θ2 + β3)

−ηL
2
3

2
cos(θ2 + β3)

−ηL3(
L2
3

3
+ L2L3

4
cos β3)

 .

(5.35)

Thanks to the invertibility of the matrix A we obtain the system (4.22),
with

g1(θ2, β1, β3) =

 1
0

−A−1(θ2, β1, β3)b1(θ2, β1, β3)

 (5.36)

and

g2(θ2, β1, β3) =

 0
1

−A−1(θ2, β1, β3)b2(θ2, β1, β3)

 . (5.37)
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Appendix C

The 3N × 3N matrix A appearing in equation (5.12) is given by blocks as

A =


Fx,ẋ Fx,ẏ Fx,θ̇
Fy,ẋ Fy,ẏ Fy,θ̇
Tẋ Tẏ Tθ̇
Cx,ẋ 0 Cx,θ̇

0 Cy,ẏ Cy,θ̇

 (5.38)

according to the force, torque and constraint equations (5.10)-(5.11). The F
matrices are 1×N row vectors given component-wise by

(Fx,ẋ)1,i = −li(ξi cos2 θi + ηi sin
2 θi) , (Fy,ẋ)1,i = −li(ξi − ηi) sin θi cos θi ,

(Fx,ẏ)1,i = (Fy,ẋ)1,i , (Fx,ẏ)1,i = −li(ξi − ηi) sin θi cos θi ,

(Fx,θ̇)1,i =
l2i
2
ηi sin θi , (Fy,θ̇)1,i = − l2i

2
ηi cos θi ,

for i = 1 · · ·N . Matrices T are N ×N matrices given by

(Tẋ)ij = ηj
l2j
2

sin θj − (xj − xi)lj(ξj − ηj) sin θj cos θj + (yj − yi)lj(ξj cos2 θj + ηj sin2 θj) ,

(Tẏ)ij = −ηj
l2j
2

cos θj + (xj − xi)lj(ξj sin2 θj + ηj cos2 θj)− (yj − yi)lj(ξj − ηj) sin θj cos θj ,

(Tθ̇)ij = −ηj
l3j
3
− (xj − xi)

l2j
2
ηj cos θj − (yj − yi)

l2j
2
ηj sin θj

for i, j ranging from 1 to N . Finally, matrices C are (N − 1) × N matrices
for which the non-vanishing terms are given by

(Cx,ẋ)i,i = −1 , (Cx,ẋ)i,i+1 = 1 , (Cx,θ̇)i,i = li sin θi ,

(Cy,ẏ)i,i = −1 , (Cy,ẏ)i,i+1 = 1 , (Cx,θ̇)i,i = −li cos θi ,



for i ranging from 1 to N − 1. For what concerns the vector-fields appearing
in equation (5.12), we have

F0 = −κ(0, 0, 0, θ2 − θ1, · · · , θN − θN−1, 0 · · · , 0)t ,

F1 = −Ms(0, 0,
N∑
i=1

sin θi, · · · ,
N∑
i=k

sin θi, · · · , sin θN , 0 · · · , 0)t ,

F2 = Ms(0, 0,
N∑
i=1

cos θi, · · · ,
N∑
i=k

cos θi, · · · , cos θN , 0 · · · , 0)t .

Notice that the 2(N − 1) zeros at the end of the vector-fields correspond to
the (differential) constraint equations (5.11)
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