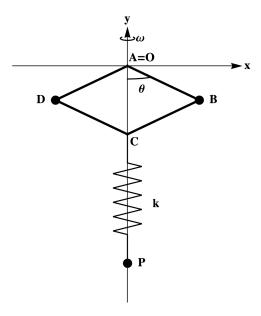
1

Quattro aste di lunghezza ℓ sono incernierate tra loro negli estremi così da formare un parallelepipedo snodato ABCD che è vincolato senza attrito sul piano cartesiano Oxy. Il vertice A del parallelepipedo è vincolato nell'origine, il vertice C è vincolato a scorrere lungo l'asse delle y. In B e D sono attaccati punti materiali di massa m. Al punto C è attaccata una molla di costante elastica h>0 al cui capo libero è attaccato un punto materiale P di massa m, vincolato a scorrere sull'asse delle y. Il sistema di riferimento non è inerziale, ma gira con velocità angolare ω attorno all'asse delle y. Sul sistema agisce la gravità, che è verticale discendente. Scegliendo come coordinate Lagrangiane (ϑ,s) , ϑ : angolo tra $-e_y$, versore dell'asse orientato delle y che punta verso le y decrescenti ed il versore $e_{AB} = AB/|AB|$, ed $s = y_P$: la coordinata y di P; si consideri di operare nell'aperto $\vartheta \in (0, \pi/2)$.

- a. Scrivere la Lagrangiana del sistema.
- b. Determinare il valore di ω per il quale esiste una configurazione di equilibrio con $\vartheta=\pi/3$. Qual è questa configurazione (quanto vale s)?
- c. Determinare le frequenze delle piccole oscillazioni attorno all'equilibrio con $\vartheta>0$ che si ottiene quando $\omega=2\sqrt{\frac{g}{\ell}}$. Per semplificare i conti nell'equazione secolare, assumere anche che $mg=\frac{2}{3}h\ell$.



2

Sia W una matrice $N \times N$ reale emisimmetrica: $W^T = -W$. Si consideri in \mathbb{R}^N la trasformazione puntuale dipendente dal tempo:

$$\tilde{q} = \tilde{q}(q,t) := e^{Wt}q \qquad \quad (e^{Wt} : \text{matrice esponenziale}).$$

Determinare $\tilde{p} = \tilde{p}(q, p, t)$ tale che la complessiva trasformazione sia canonica 1-valente di $\mathbb{R}^{2N} \times \mathbb{R}$ in sè. Determinare $K_0(\tilde{q}, \tilde{p}, t)$.

3

Due particelle S e P di massa rispettivamente M e m sono soggette al sistema di forze interne (con intensità inversamente proporzionale al cubo della mutua distanza):

$$F_S = \gamma \frac{SP}{|SP|^4} \; , \qquad F_P = \gamma \frac{PS}{|PS|^4} \qquad (\gamma > 0, \text{costante}) \; .$$

- (i) Scrivere l'equazione differenziale delle traiettorie geometriche di P rispetto ad S in un opportuno piano nel sistema della massa ridotta in cui S è solidale all'origine.
- (ii) Determinare condizioni su c (costante delle aree), μ (massa ridotta) e γ , affinché tra le traiettorie geometriche $r = r(\vartheta)$ ci sia anche qualche spirale logaritmica, del tipo $r = a e^{b\vartheta}$.
- (Facoltativo, ma solo dopo aver risposto ai tre quesiti precedenti: Problema della brachistocrona.)

Soluzione di $\mathbf{1}$ (nella soluzione è scambiato h con k)

$$OB = \ell(\sin \vartheta, -\cos \vartheta), \qquad OD = \ell(-\sin \vartheta, -\cos \vartheta), \qquad OP = (0, s), \qquad OC = \ell(0, -2\cos \vartheta)$$

da cui si ha che

$$\dot{OB} = \ell \dot{\vartheta}(\cos \vartheta, \sin \vartheta), \qquad \dot{OD} = \ell \dot{\vartheta}(-\cos \vartheta, \sin \vartheta), \qquad \dot{OP} = (0, \dot{s})$$

Si ha quindi che l'energia cinetica del sistema è

$$T(\vartheta, s, \dot{\vartheta}, \dot{s}) = \frac{1}{2} m \left(\dot{s}^2 + 2\ell^2 \dot{\vartheta}^2 \right)$$

Il potenziale è la funzione $V(r,s)=V_{\omega_B}+V_{\omega_D}+V_{\omega_P}+V_{g_B}+V_{g_D}+V_{g_P}+V_{k_{PC}}$. In particolare,

$$V_{\omega_B} = -\frac{1}{2}m\omega^2 x_B^2 = -\frac{1}{2}m\omega^2 \ell^2 \sin^2 \theta = V_{\omega_D}, \qquad V_{\omega_P} = 0$$

$$V_{g_B} = mgy_B = -mg\ell\cos\vartheta = V_{g_D}, \qquad V_{g_P} = mgs, \qquad V_{k_{PC}} = \frac{k}{2}|PC|^2 = \frac{k}{2}(2\ell\cos\vartheta + s)^2$$

Ne segue che

$$V(\vartheta, s) = -m\omega^2 \ell^2 \sin^2 \vartheta - 2mg\ell \cos \vartheta + mgs + \frac{k}{2} (2\ell \cos \vartheta + s)^2$$

La Lagrangiana è la funzione T - V.

b. Dal momento che la Lagrangiana è indipendente dal tempo, determinare gli equilibri è equivalente a determinare i punti stazionari del potenziale. Il gradiente di V è

$$\nabla V(\vartheta,s) = \left(\begin{smallmatrix} -2\ell \left(-gm + ks + \ell \left(m\omega^2 + 2k \right) \cos(\theta) \right) \sin(\theta) \\ gm + ks + 2k\ell \cos(\theta) \end{smallmatrix} \right)$$

Perchè esista una configurazione di equilibrio in $\vartheta=\pi/3$ deve essere che $\nabla V(\pi/3,s)=0$ per qualche s. Calcolando il gradiente in $\vartheta=\pi/3$ si ha $\binom{-\sqrt{3}\ell\left(-gm+ks+\frac{1}{2}\ell\left(m\omega^2+2k\right)\right)}{gm+ks+k\ell}$. Segue che $s=-\frac{gm+k\ell}{k}$ dalla seconda equazione e che quindi $\omega=\pm\frac{2\sqrt{g}}{\sqrt{\ell}}$ dalla prima.

c. Il valore di ω è precisamente quello trovato sopra, quindi l'equilibrio è $(\pi/3, -\frac{gm+k\ell}{k})$. Per studiare le piccole oscillazioni si deve calcolare la matrice cinetica nell'equilibrio, che è la matrice $A = \begin{pmatrix} 2m\ell^2 & 0 \\ 0 & m \end{pmatrix}$ e la matrice Hessiana del potenziale al punto di equilibrio, che è $V'' = \begin{pmatrix} 3\ell(2gm+k\ell) & -\sqrt{3}k\ell \\ -\sqrt{3}k\ell & k \end{pmatrix}$. L'equazione per determinare le frequenze di piccole oscillazioni è

$$\det\left[\left(\begin{smallmatrix}3\ell(2gm+k\ell)&-\sqrt{3}k\ell\\-\sqrt{3}k\ell&k\end{smallmatrix}\right)-\lambda\left(\begin{smallmatrix}2m\ell^2&0\\0&m\end{smallmatrix}\right)\right]=0.$$

Assumendo che $mg = \frac{2}{3}k\ell$ si ha l'equazione

$$\det\left[\left(\begin{smallmatrix}7k\ell^2 & -\sqrt{3}k\ell\\ -\sqrt{3}k\ell & k\end{smallmatrix}\right) - \lambda m\left(\begin{smallmatrix}2\ell^2 & 0\\ 0 & 1\end{smallmatrix}\right)\right] = 0,$$

da cui si ricava che $4k^2\ell^2 + 2m^2\lambda\underline{\ell^2} - 9k\underline{m}\lambda\ell^2$, le cui soluzioni sono $\frac{k}{2m}, \frac{4k}{m}$. Quindi, le frequenze delle piccole oscillazioni sono $\sqrt{\frac{k}{2m}}$ e $\sqrt{\frac{4k}{m}}$

Soluzione di 2

Si riconosce che per ogni $t \in \mathbb{R}$ si ha che $R(t) := e^{Wt} \in SO(3)$, La trasf. canonica cercata è la trasformazione dipendente dal tempo delle coordinate nel cotangente che si realizza estendendo la $\tilde{q}(q,t) = e^{Wt}q$ alle p con l'inverso del trasposto dello Jacobiano:

$$\begin{split} \tilde{q}(q,t) &= e^{Wt}q\\ \tilde{p}(q,p,t) &= [e^{Wt}]^{-T}p = e^{Wt}p \end{split}$$

Questa trasf. è canonica e 1-valente:

$$\begin{pmatrix} R & \mathbb{O} \\ \mathbb{O} & R \end{pmatrix} \begin{pmatrix} \mathbb{O} & \mathbb{I} \\ -\mathbb{I} & \mathbb{O} \end{pmatrix} \begin{pmatrix} R^T & \mathbb{O} \\ \mathbb{O} & R^T \end{pmatrix} = \begin{pmatrix} \mathbb{O} & \mathbb{I} \\ -\mathbb{I} & \mathbb{O} \end{pmatrix}$$

Il campo vettoriale Hamiltoniano $\mathbb{E}\nabla K_0(y,t)$ per cui

$$\frac{\partial y}{\partial t}(x,t) = \mathbb{E}\nabla K_0(y(x,t),t)$$

si determina:

$$\frac{\partial y}{\partial t}(x,t) = \begin{pmatrix} \frac{\partial \tilde{q}}{\partial t}(q,p,t) \\ \frac{\partial p}{\partial t}(q,p,t) \end{pmatrix} = \begin{pmatrix} \mathbb{O} & \mathbb{I} \\ -\mathbb{I} & \mathbb{O} \end{pmatrix} \begin{pmatrix} \frac{\partial K_0}{\partial \tilde{q}}(\tilde{q},\tilde{p},t) \\ \frac{\partial K_0}{\partial \tilde{p}}(\tilde{q},\tilde{p},t) \end{pmatrix},$$

$$\begin{pmatrix} W\tilde{q} \\ W\tilde{p} \end{pmatrix} = \begin{pmatrix} \mathbb{O} & \mathbb{I} \\ -\mathbb{I} & \mathbb{O} \end{pmatrix} \begin{pmatrix} \frac{\partial K_0}{\partial \tilde{q}} \\ \frac{\partial K_0}{\partial \tilde{p}} \end{pmatrix} \Rightarrow K_0(\tilde{q},\tilde{p}) = \tilde{p}^T W\tilde{q} = \sum_{i,j=1}^N \tilde{p}_i W_{ij} \tilde{q}_j$$

Soluzione di 3

Usando Binet nel piano ove avviene il moto nel sistema della massa ridotta

$$\begin{split} -\mu \frac{c^2}{r^2} \left(\frac{d^2}{d\vartheta^2} \frac{1}{r} + \frac{1}{r} \right) e_r &= -\gamma \frac{1}{r^3} e_r \\ \frac{d^2}{d\vartheta^2} \frac{1}{r} &= \left(\frac{\gamma}{\mu^* c^2} - 1 \right) \frac{1}{r} \end{split}$$

Se
$$\alpha := \left(\frac{\gamma}{\mu c^2} - 1\right) > 0$$
 si ha che

$$\frac{1}{r}(\vartheta, c_1, c_2) = c_1 e^{\sqrt{\alpha}\vartheta} + c_2 e^{-\sqrt{\alpha}\vartheta}$$

da cui spirali logaritmiche sono possibili soluzioni.