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For a dominant weightλ, let V (λ) be the corresponding Weyl module and let
L(λ) be its irreducible quotient. Letk[G/H] denote the ring of regular functions
on a homogeneous space andk[O] denote the ring of regular functions on a con-
jugacy classO. By [2, Theorem 1.2], erroneously cited in the paper, if a homoge-
neousG-spaceG/H is spherical thendimHom(V (λ), k[G/H]) ≤ 1. In particu-
lar, sinceL(λ) is a quotient ofV (λ), we have an injectionHom(L(λ), k[G/H])→
Hom(V (λ), k[G/H]), sodim Hom(L(λ), k[G/H]) ≤ 1 and the multiplicity of
L(λ) in the socle of theG-modulek[G/H] is at most1. For this reason we called
k[G/H] multiplicity-free. The reader should be warned that the same term is used
in [1] with a different meaning. We add some details to the statement and the proof
of Theorem 4.17 when the characteristic ofk is positive.

Theorem 0.1 LetO, v0, w, Π be as in Theorem 4.4. IfHom(V (λ), k[O]) 6= 0 then
−w0λ = λ andλ ∈ P+ ∩ Q ∩ Ker(1 + w). In particular, this happens for the
weights for whichL(λ) occurs in the socle ofk[O].

Proof. If Hom(V (λ), k[O]) 6= 0 there exists0 6= f ∈ k[O] such thatt.f(x) =
f(t−1.x) = λ(t)f(x) for all x in an open subset ofO. In particular, forx ∈ ẇU
and everyt ∈ (Tw)◦ we haveλ(t) = 1. We proceed as in Theorem 4.7. �
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