Addendum to: Spherical conjugacy classes and involutions in the Weyl group, Math. Z. 260(1) 1–23 (2008)

Giovanna Carnovale

18 november 2008

For a dominant weight λ , let $V(\lambda)$ be the corresponding Weyl module and let $L(\lambda)$ be its irreducible quotient. Let k[G/H] denote the ring of regular functions on a homogeneous space and $k[\mathcal{O}]$ denote the ring of regular functions on a conjugacy class \mathcal{O} . By [2, Theorem 1.2], erroneously cited in the paper, if a homogeneous G-space G/H is spherical then dimHom $(V(\lambda), k[G/H]) \leq 1$. In particular, since $L(\lambda)$ is a quotient of $V(\lambda)$, we have an injection Hom $(L(\lambda), k[G/H]) \rightarrow$ Hom $(V(\lambda), k[G/H])$, so dim Hom $(L(\lambda), k[G/H]) \leq 1$ and the multiplicity of $L(\lambda)$ in the socle of the G-module k[G/H] is at most 1. For this reason we called k[G/H] multiplicity-free. The reader should be warned that the same term is used in [1] with a different meaning. We add some details to the statement and the proof of Theorem 4.17 when the characteristic of k is positive.

Theorem 0.1 Let \mathcal{O}, v_0, w, Π be as in Theorem 4.4. If $\operatorname{Hom}(V(\lambda), k[\mathcal{O}]) \neq 0$ then $-w_0\lambda = \lambda$ and $\lambda \in P^+ \cap Q \cap \operatorname{Ker}(1+w)$. In particular, this happens for the weights for which $L(\lambda)$ occurs in the socle of $k[\mathcal{O}]$.

Proof. If $\operatorname{Hom}(V(\lambda), k[\mathcal{O}]) \neq 0$ there exists $0 \neq f \in k[\mathcal{O}]$ such that $t.f(x) = f(t^{-1}.x) = \lambda(t)f(x)$ for all x in an open subset of \mathcal{O} . In particular, for $x \in \dot{w}U$ and every $t \in (T^w)^\circ$ we have $\lambda(t) = 1$. We proceed as in Theorem 4.7. \Box

References

- [1] J. BRUNDAN, *Multiplicity-free subgroups of reductive algebraic groups*, J. Algebra 188(1) 310–330 (1997).
- [2] J. BRUNDAN, Dense orbits and double cosets, In: Algebraic groups and their representations (Cambridge, 1997), 259–274, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 517, Kluwer Acad. Publ., Dordrecht (1998).