Take Home Exam Representation Theory of Groups Deadline for solutions: 19th of august 2008

- 1. Let $G = GL_2(\mathbb{F}_{13})$, the group of 2×2 invertible matrices with coefficients in the field with 13 elements and let $H = D_{26}$ be the dihedral group with 52 elements.
 - (a) Let *B* be the subgroup of *G* of (invertible) upper triangular matrices and let $s = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$. Show that, as sets, $G = B \cup BsB$ so *G* is generated by *B* and *s*. In particular you might need for the following that *G* is generated by *B*, *s* and sBs^{-1} .
 - (b) Let $SL_2(\mathbb{F}_{13})$ be the subgroup of G of matrices of determinant 1 and let $B_1 = B \cap SL_2(\mathbb{F}_{13})$. Show that, as sets, $SL_2(\mathbb{F}_{13}) = B_1 \cup B_1 s B_1$ so it is generated by B_1 and s.
 - (c) Show that $[G, G] = SL_2(\mathbb{F}_{13})$.
 - (d) List all degree 1 representations of G over the following fields: $k = \mathbb{C}$; $k = \mathbb{R}$; $k = \mathbb{Q}(i, \zeta)$ for ζ a primitive 3-rd root of 1; \mathbb{F}_2 .
 - (e) List all 1-dimensional representations of H over k = C; k = R; k = Q(ζ) for ζ a primitive 3-rd root of 1; F₂.
 - (f) Determine which of the fields: k = C; k = R; k = Q(ν) for ν a primitive 13-th root of 1; F₂(ξ), where ξ is a primitive 13-th root of 1 is a splitting field for H, motivating your answer.
- 2. Let G be a group, let $\gamma = \frac{1}{2}(-1 + i\sqrt{7})$ and let the table below be part of its (complex) character table, where one or more irreducible characters are missing.

	1	a	b	c	d	e
χ_1	1	1	1	1	1	1
χ_2	3	-1	γ	$\overline{\gamma}$	1	0
χ_3	3	-1	$\overline{\gamma}$	γ	1	0
χ_4	6	2	-1	$^{-1}$	0	0
χ_5	8	0	1	1	0	-1

with |Cl(a)| = 21; |Cl(b)| = |Cl(c)| = 24, |Cl(d)| = 42 and |Cl(e)| = 56 for fixed $a, b, c, d, e \in G$. Here Cl(g) denotes the conjugacy class of $g \in G$.

- (a) Determine the order of G, the number and the dimension of each irreducible character of G.
- (b) Complete the character table of G.
- (c) Determine all normal subgroups of G and for each of them determine the character table of the quotient group.
- (d) Determine [G, G] and Z(G).
- (e) Determine whether G is solvable or not;

- (f) Determine whether G is nilpotent or not;
- (g) Show that a is conjugate to its inverse and that b^{-1} is conjugate to c.
- (h) Consider the product of the characters χ_4 and χ_3 . Decompose it as a sum of irreducible characters.
- 3. Let $G = C_6 \ltimes C_{13} = \langle g, h | g^6 = h^{13} = 1$, $gh = h^4g \rangle$ be a semi-direct product of the cyclic group of order 6 with the cyclic group of order 13, with the above presentation.
 - (a) Provide the (complex) character table of G in terms of characters induced by subgroups containing ⟨h⟩ ≅ C₁₃.
 - (b) Let $C = \langle g \rangle$ be the subgroup of G generated by g. For every irreducible character χ of G verify whether its restriction to C is irreducible or not.
- 4. Let $G = S_n$, the symmetric group on n letters. Let λ be a partition of n with associated standard tableau T_{λ} . Let P_{λ} and a_{λ} be as in Fulton-Harris.
 - (a) Show that the natural S_n-representation on C[S_n]a_λ given by left multiplication is isomorphic to Ind^{S_n}_{P_λ}(ρ₀) where ρ₀ is the trivial representation of P_λ.
 - (b) Determine the degree of the representations in the previous question, for n = 3, 4 and every partition of n.
- 5. Let $G = GL_n(k)$ for a finite field k of characteristic p.
 - (a) Show that $g \in G$ is a *p*-element if and only if all its eigenvalues are equal to 1.
 - (b) Show that $g \in G$ is a *p*-regular element if and only if it is *semisimple*, that is, diagonalizable over a finite extension of k.
 - (c) Provide an explicit example of a 3-element and of a 3-regular element in GL₃(𝔽₉).
 - (d) Provide an example of an element g ∈ GL₃(F₉) which is neither 3-regular nor a 3-element and decompose it as g = g₁g₂ with g₁ a 3-regular element and g₂ a 3-element commuting with g₁.
- 6. Let G and H be finite groups and let ρ be a complex representation of G and σ be a complex representation of H, of character χ_{ρ} and χ_{σ} , respectively. Consider the representation $\rho \otimes \sigma$ of $G \times H$, with character χ .
 - (a) Show that $Z(\chi) = Z(\chi_{\rho}) \times Z(\chi_{\sigma})$.
 - (b) Let ρ and σ be irreducible and faithful. Show that $\rho \otimes \sigma$ is irreducible and faithful if and only if gcd(|Z(G)|, |Z(H)|) = 1.
- 7. Let $G = C_{11}$, the cyclic group of order 11.

- (a) Let W be a non-trivial irreducible C-representation of G and let χ be its character. Find an irreducible Q-representation V of G such that W is a composition factor of V^C. (Hints: all irreducible representations are components of the regular representation. Splitting a representation of a finite cyclic group is equivalent to putting the image of a generator in block diagonal form. Over the complex field this is equivalent to putting the image of a generator in diagonal form).
- (b) Compute $m_{\mathbb{Q}}(\chi)$, the Schur index of χ over \mathbb{Q} using the definition in Isaacs.
- (c) Determine Hom_{Q[G]}(V, V), Hom_{C[G]}(W, W), Hom_{C[G]}(V^C, V^C). Compute the characters of V, W and V^C.
- (d) Compute the Schur index m_V of V using the definition in Serre.