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Abstract

Let G be a simple algebraic group over an algebraically closed field of characteristic zero
or positive odd, good characteristic. LBtbe a Borel subgroup off. We show that the
spherical conjugacy classes@fintersect only the double cosets Bfin G corresponding to
involutions in the Weyl group ofs. This result is used in order to prove that for a spherical
conjugacy clas® with denseB-orbit vg C BwB there hold¥(w) + rk(1 — w) = dim O
extending to the case of groups over fields of odd, good characteristic a characterization of
spherical conjugacy classes obtained by Cantarini, Costantini and the author. It is also shown
that the weights occurring in th@-module decomposition of the ring of regular functions on
O are self-adjoint and they lie in thel-eigenspace of the elemeint

Introduction

If an algebraic group acts with finitely many orbits, a natural way to understand the action is given
by the combinatorics of the Zariski closures of such orbits. In [25], [29], a detailed description of
the combinatorics of the closures of orbits for a Borel subgrBup a symmetric spac&’/ K is
given. The description is provided in terms of an action, on the set of these orbits, of a monoid
M (W) related to the Weyl groupl” of GG. This action is best understood considering the decom-
position into B-orbits of an orbit of a minimal parabolic subgroup. Through this approach several
invariants of theB-orbits can be determined, including their dimension. To dadrbit it is pos-
sible to associate a Weyl group element and the Weyl group element corresponding to the (unique)
denseB-orbit in the symmetric space can be described in combinatorial terms. A formula for the
dimension of eaclB-orbit v is provided in terms of its associated Weyl group element and the
sequence of elements in the monoid that are necessary to wdemm a closedB-orbit. When
the symmetric space corresponds to an inner involution, that is, if it corresponds to a conjugacy
class inG, the attached Weyl group element is just the element corresponding to the Bruhat cell
containing theB-orbit.

The monoid action can be carried over to homogeneous spaces of algebraic groups for which
the action of the Borel subgroup has finitely many orbits, i.e., the spherical homogeneous spaces



([28]) and it can be used to define representations of the Hecke algebra ([18]). When the homoge-
neous space is a conjugacy class the natural map from the Bebddits to the Weyl group given

in terms of the Bruhat decomposition is still defined. A more geometric approach to a Bruhat order
on spherical varieties has been addressed in [7]. Besides, a genuine Weyl group action on the set
of B-orbits on a spherical homogeneous space was defined in [17].

The action of M (W) on a spherical homogeneous space does not afford all nice properties
that it had in the symmetric case (see [8] for some key counterexamples) and it is natural to ask
which properties still hold for spherical conjugacy classes. One of the main differences between
the general spherical case and the symmetric case is that thebBealsts that do not lie in the
M (W)-orbit of a closed one. However, eveBrorbit can be reached from a closBeorbit through
a sequence of moves involving either thE11)-action or thel -action ([28]).

A natural question is whether we can provide formulas for the dimension of Bamtibit in
a spherical conjugacy class in terms of the action8/di}’) andV. Although not all results in
[25] hold at this level of generality, there are properties that hold true in general. For instance, the
dimension of the densB-orbit in a spherical conjugacy class is governed by a formula analogous
to the formula for the dimension of the denBeorbit in a symmetric conjugacy class. This result,
when the base field i€, was achieved in [10], leading to a characterization of spherical conjugacy
classes in complex simple algebraic groups. The interest in this formula lied in the verification
of De Concini-Kac-Procesi conjecture on the dimension of irreducible representations of quantum
groups at the roots of unity ([11]) in the case of spherical conjugacy classes. For this reason, the
analysis was restriced to the case of an algebraic group over an algebraically closed field of char-
acteristic zero. In order to obtain the characterization, a classification of all spherical conjugacy
classes in a simple algebraic group was needed, and part of the results were obtained through a
case-by-case analysis involving this classification.

In the present paper we apply the combinatoricd/f1)-action andi/’-action on the set of
B-orbits of a spherical conjugacy class in a simple algebraic group to retrieve the formula in [10].
This will show that the characterization of spherical conjugacy classes can be achieved without
using their classification and without drastic restrictions on the characteristic of the base field.

A first question to be answered concerns which Bruhat cell may contBhowbit of a spher-
ical conjugacy class. In the case of a symmetric conjugacy class it is immediate to see that the
corresponding Weyl group elements are involutions. An analysis of the actiangiéf) and V'
allows us to generalize this result to all spherical conjugacy classes.

Theorem 1 All B-orbits in a spherical conjugacy class lie in Bruhat cells corresponding to invo-
lutions in the Weyl group

In order to understand the Weyl group elements associated with the Beoid®t we analyze
the variation of the Weyl group element with respect to the action of the man@id’). This
analysis leads to a description of the stationary points, i.e., of tBesgbits for which the asso-
ciated Weyl group element does not change under the action of all standard generafgi¥ nf
Stationary points other than the ders@rbit do not exist in symmetric conjugacy classes but they
exist, for instance, in spherical unipotent conjugacy classes.

The results in [29] allow us to describe the Weyl group element corresponding to a stationary
point, and more precisely, the one associated with the dBrmdit.

Combining the analysis of representatives of the dessebit with Theorem 1 yields a new
proof of the formula in [10], that holds now in almost all characteristcs and does not require the
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classification of spherical conjugacy classes:

Theorem 2LetO be a spherical conjugacy class in a simple algebraic groipet vy be its dense
B-orbit and letBwB D v. Thendim O = ¢(w) + rk(1 — w).

It is proved in [10] with a characteristic-free argument that if a conjugacy dhasgersects
someBwB with /(w) + 1k(1 — w) = dim O thenO is spherical, hence the results in the present
paper provide a characteristic-free proof of the characterization of spherical conjugacy class given
in [10].

The elementv corresponding to the denggorbit plays a role in thé&/-module decomposition
of the ringk[O] of regular functions o®, which is multiplicity-free ([9],[15]). Indeedy = wowry,
the product of the longest elementlih and the longest element of a suitable parabolic subgroup
W of W. All weights of eigenvectors of th8-action on the function field(O) are orthogonal
to the root subsyster(I1) and we have:

Theorem 3LetO be a spherical conjugacy class in a simple algebraic grolpet vy be its dense
B-orbit and let BwB D v,. The weights occurring in th&-module decomposition &fO] are
self-adjoint and lie inP* N @ N Ker(1 + w).

Explicit examples of thé&-module decomposition df{O] can be found in [1], [20], [23], [32].
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1 Preliminaries

Let G be a simple algebraic group over an algebraically closed fialticharacteristi®) or odd
and good ([30£4.3]). Let B be a Borel subgroup af, let 7" be a maximal torus contained
and B~ the Borel subgroup opposite 1. Let U (respectivelyU ) be the unipotent radical of
(respectivelyB~). For an algebraic groufi” we shall denote by<® its identity component.

We shall denote b the set of roots relative ta3, T'); by ®* the corresponding positive roots;
by A = {ay,...,a,} the corresponding set of simple roots. We shall use the numbering of the
simple roots in [4, Planches I-1X]. The height of a raowill be indicated byht(«). We shall
indicate by Pt and @, respectively, the set of dominant weights and the root lattice associated
with ® and(B, T'). For a co-character”: k& — G and a nonzero scalare k we shall denote by
aV(h) € T the image ofi througha”.

We shall denote b}l the Weyl group associated withand bys,, the reflection corresponding
to the rootw. By ¢(w) we shall denote the length of the elemen& W and byrk(1 —w) we shall
mean the rank of — w in the standard representation of the Weyl group«Byve shall denote the
longest element inl” and by we shall denote the automorphism®fgiven by —w,. By I we
shall always denote a subset&fand®(II) will indicate the corresponding root subsystem. We
shall denote byl; the parabolic subgroup @7 generated by the simple reflectionslin Given



an elementv € W we shall denote by a representative af in the normalizetV (7") of T'. For
any roota in @ we shall denote by, (¢) the elements of the corresponding root subgraiypof
G.

We assume that we have fixed an ordering of the positive roots so thatiewery is written
uniquely as an ordered product of elements of the faytl), for [ € k anda € ®*. Given
an elementu € U by abuse of language we will say that a reote ®* occurs inu if for the
expression of: as an ordered product of,(l,)'s we havel, # 0. If « € A we shall indicate by
P, the minimal non solvable parabolic subgroup containing, and by P its unipotent radical.

Forw € W, we shall denote by/* (respectively,U,) the subgroup generated by the root
subgroupsX,, corresponding to those € ®* for whichw™!(a) € —®* (respectively®'). We
shall denote by/™ the subgroup of the torus that is centralized by any representaiieo.

Given an element € G we shall denote by, the conjugacy class af in G and byG,, (resp.
B,, resp.T},) the centralizer of in G (resp.B, resp.T). The center of a groufy will be indicated
by Z(H). For a conjugacy clas® = O, we shall denote by the set ofB-orbits into whichO
can be decomposed.

Definition 1.1 Let K be a connected algebraic group over A homogeneou& -space is called
spherical if it has a dense orbit for some Borel subgrougxof

It is well-known ([6], [31] in characteristi©, [12], [17] in positive characteristic) tha¥ is a
spherical homogeneous-space if and only if the set dB-orbits in X is finite.

2 B-orbits and Bruhat decomposition

Let O be a conjugacy class @f and let) be the set ofB-orbits in O. There is a natural map
¢:V — W associating to € V the elementv in the Weyl group of& for whichv C BwB. The
setV carries a partial order given by: < v’ if v C v'. If O is spherical the minimaB-orbits are
the closed ones and there is a unique maximal orbit, namely the deodait v, in O.

Lemma 2.1 Let O be a conjugacy class and letv’ € V. If v < o' theng(v) < ¢(¢') in the
Bruhat order in\V/.

Proof. We have:w C © C v/ C B¢(v') B = Uy<y(yBoB s0¢(v) < ¢(v'). O

Lemma 2.2 Letx € G be either semisimple or unipotent and &f be a spherical conjugacy
class. The image throughof a closedB-orbitin O is 1.

Proof. If O = O, andH = @G,, the B-orbit of gz¢g~! corresponds to the double codey{
through the natural morphism fro to O, mappingg to gzg~*. Borrowing an argument from
[28, §3.4 (b)] we see that the closdsl-orbits correspond to closed double cosBigH so that
By = (H N g~'Byg) is a Borel subgroup off and of H°. Letx be semisimple. Since it is not
restrictive to assume that is simply connected, we havé = H° andz € Z(H) = Z(By) by
[27, Corollary 6.2.9]. Hence, the representatjug ' of the closed3-orbit lies in 5.

Let « be unipotent. By [30§3.15] with S = {x} we haver € H°, hencer € Z(H°) C By
and the statement follows. OJ



Remark 2.3 All closed B-orbits in a spherical conjugacy cla®s have the same dimension ([28,
§3.4 (b)]) namelydim B — dim B¢, whereB, denotes a Borel subgroup in the centralizer of

Remark 2.4 The converse of Lemma 2.2 does not hold for spherical unipotent elements. For
instance, ifO is a spherical unipotent conjugacy clasgin= SL,(C) the combinatorics of the
closures of the3-orbits that are contained i is described in [19]: i10 is the minimal unipotent

orbit in G the B-orbits that are contained iB are in bijection with the transpositions #),, and

only B.xzg(1) = X\ {1}, for § the highest root irp, is closed.

Remark 2.5 In a spherical semisimple conjugacy clasbeing closed is equivalent{g B.x) = 1
and tovNT # (). Indeed ifv is closed themw is contained inB so a representativec v is conjugate
in B to some element iff’. Viceversa, ifv = B.t for somet € T thent normalizesB and by [3,
Theorem 9.2] the conjugacy classt is closed.

Let M = M (W) be the monoid with elements(w) indexed by the elements € W with
relations

m(s)m(w) = m(sw), if {(sw) > L(w), m(s)m(w) = m(w), if {(sw) < {(w).

The monoidM (W) is generated by the elementgs) corresponding to simple reflections, subject
to the braid relations and to the relatior{s)? = m(s). In [25] an action of the monoid/ (V) on
the set ofB-orbits of a symmetric space is defined. This action can be generalized to an action of
M (W) on the set of B-orbits of a spherical homogeneous space (see, for instanc&3J53).
The action ofm(s), for a simple reflections = s, is given as follows. IfP, is the minimal
parabolic subgroup correspondingd@ndv € V thenm(s).v is the densé3-orbit in P,v. This
action is analyzed in [8], [17],[184.1], [25]. We provide an account of the information we will
need.

Givenv € V, choosey € v with stabilizer(P,), in P,. Then(P,), acts onP,/B = P!
with finitely many orbits. Let): (P,), — PGLs(k) be the corresponding group morphism. The
kernel ofy is Ker(«) PY. The imageH of (P,), in PGLy(k) is either: PG L, (k); or solvable and
contains a nontrivial unipotent subgroup; or a torus; or the normalizer of a torus. Here is a list of
the possibilities that may occur.

| P,v=vs0H = PGLy(k);

lla P,v = vUm(s)v, with dimv = dim P,v — 1. We may choose € v such that)(X,) C
H C y(B).

llb P,v=vUv, withdimv = dimv — 1 andv is open inP,v som(s)v = v. We may choose
y € vsuch that)(X_,) C H C ¢(B7).

Ma P,v =vUv Um(s)v, with dimv = dimv’ = dim P,v — 1 andv # v’. We may choose
y € v such thatd = (7).

b Pv =vUv UV, withdimv — 1 = dimv" = dimv” andv is open inP,v som(s)v = v.
We may choos@ € v such thatd = ¢ ($,24(—1)Tx,(1)s1).



IVa Pv =vUm(s)v, withdimv = dim P,v—1. We may chooseg € v such thatd = (N(T)).

Vb Pv =wv U/, withdimv = dimv" + 1, andv is open inP,v som(s)v = v. We may choose
y € vsuch thatd = ¢(N(5,75;1)).

Based on the structure df, cases Il, lll, and IV are also called ty@é, type T and typeN,
respectively.

A W-action onV can be defined ([17], [184.2.5, Remark]) as follows: in case Il the two
B-orbits are interchanged; in case lll the two non-dense orbits are interchanged, in all other cases
the B-orbits are fixed. The image of € V through the action of a simple reflectienc W will
be denoted by.v.

We recall ([28,53.6]) that areduced decompositioof v € V is a pair(v,s) with v =
(v(0),v(1),...,v(r)) a sequence of distinct elements)¥hands = (s;,...,s;.) a sequence
of simple reflections such that(0) is closed;v(j) = m(s;;).(v(j —1)) for1 < j < r —1;
dim(v(y)) = dim(v(j — 1)) + 1 andv(r) = v.

All B-orbits in a symmetric homogeneous space admit a reduced decompositiof7(25,
This is still the case for the denggorbit in spherical homogeneous spaces but it is not always the
case for generaB-orbits. The reader can refer to [8] for a series of counterexamples. We will use
a weaker notion of decomposition that exists for every V.

Given a reduced decompositiom,s) = ((v(0),...,v(r)),(Si,---,s;,)) of v € V asubex-
pressionof (v,s) ([28, §3.6]) is a sequence = (v'(0),v'(1),..., v'(r)) of elements inV with
v'(0) = v(0) and such that fot < i < r only one of the following alternatives occurs:

@ v'(j —1) =)
(b) v'(j — 1) # v/(j), dimv/(j — 1) = dimv/(j) andv'(j) = s, v'(j — 1);
(€) dim?'(j — 1) = dimv'(j) — L andv'(j) = m(s;;).(v'(j — 1)).

The element/(r) is called thefinal termof the subexpression. Even though soBerbits in a
spherical homogeneous space might not have a reduced decomposition, evétyis the final
term of a subexpression of a reduced decomposition of the desbit vo. This is to be found in
[28, §3.6 Proposition 2] and it holds also in positive odd characteristic.

Lemma 2.6 Let O be a spherical conjugacy class, ke V and lets = s, be a simple reflection.
If w = ¢(v) is an involution theny” = ¢(m(s).v) is an involution.

Proof. We considerP,v = v U (BsB).v. If m(s)v = v there is nothing to prove. Let us assume
thatm(s)v C (Bs).v. Thenm(s).v C BsBwBsB. The following four possibilities may occur.

1. {(sws) = {(w) + 2. By [27, Lemma 8.3.7] we have’ = sws and the statement holds.

2. ((sw) > ((w) andl(sws) = {(w). Sincew is an involution, by [29, Lemma 3.2 (ii)] with
6 = id we havesw = ws. Besides, by [27, Lemma 8.3.7] we have

m(s).v C BswBsB = BswB U BswsB

hencew’ € {sw,w} is an involution.



3. {(sw) < l(w) and{l(sws) = ((w). Again by [29, Lemma 3.2 (i)] witld = id we have
sw = ws. Then
m(s).v C BsBwBsB C BswsB U BswB

sow’ € {w,ws} is an involution.
4. l(sws) = L(w) — 2. We have
m(s).v C BsBwBsB C BswB U BswsB U BwsB U BwB.

By [28, §3.6 Proposition 1 (a)] we have < m(s).v so by Lemma 2.1 there holds < w’
hencew’ # sw,ws, sws andw’ = w is an involution. O

Theorem 2.7 Let O be a spherical conjugacy class, and etV — W be the natural map. Then
the image of» consists of involutions.

Proof. We first consider a spherical semisimple conjugacy class. vLet V and letx be a
subexpression of a reduced decomposition of the déheebit v, with initial term a closedB-
orbit v(0) and final termv. We proceed by induction odim v. If v has minimal dimension then
it is closed, otherwise it would contain in its closurdsaorbit of strictly smaller dimension. It
follows from Lemma 2.2 thap(v) = 1.

Let us assume then thditm v(r) > dim v(0). If v(r) = v(r — 1) we may shorten the sequence
replacingr by r—1. Hence we may assume thdt) = m(s)v(r—1) orv(r) = s.v(r—1) for some
simple reflectiors = s,. If v(r) = m(s)v(r — 1) thendim v(r) is strictly larger tharlim v(r — 1)
so we may use the induction hypothesis and Lemma 2.6. Let us assumerthat s.v(r — 1).
Thendim(v(r — 1)) = dimv(r). If we proceed downwards along the terms of the subexpression
we might have a sequence of steps in which either Bherbit does not change or it changes
through thell’-action, but we will eventually reach a step at whigh) = m(s")(v(j — 1)) with
dim(v(y)) > dimwv(j — 1), where we can apply Lemma 2.6. Hence there i$-arbit v’ # v in
the sequence withim v" = dim v and¢(v’) = w an involution. Therefore we may reduce to the
case in which’ = v(r — 1) andv = v(r) = s.v(r — 1) with v(r — 1) # v(r). The analysis of
the decomposition intd-orbits of P,v shows that we are in case llla. Thenc Bsv's™'B C
BsBwBsB.

If {(sws) = ¢(w) + 2 thenv C BswsB and we have the statement.

If sw > w and/(sws) = {(w) thensw = ws andv C BswB U BswsB so¢(v) is an involution.

If sw < wandl{(w) = {(sws) thensw = ws andv C BwB U BswB so¢(v) is an involution.

Let us assume thdtsws) = ¢(w) — 2. It follows from the proof of Lemma 2.1 in this case that
d(m(s)v) = ¢(m(s)v') = w = ¢(v'). By [14, Lemma 1.6] we have 'a = wa € —d*. Thus
X, liesinU" and we may choose representatives u,wv, andy = u,wv, of the same3-orbit

v" with u,, v, € U* andv,, v, € U for whichu,, v, € P

Conjugation bys mapsz in BswB U BswsB, henceszs™! € v and¢(v) € {sw, sws}.
On the other hand, conjugation Bymapsy in BswsB U BwsB, hencesys~! € v and¢(v) €
{sw, sws} N {ws, sws} is an involution. Thus we have the statement for spherical semisimple
conjugacy classes.

Let us consider the spherical conjugacy class of an elemeng with Jordan decompaosition
su. The proof will follow by induction as in the previous case once we show that the image

7



througho of a closedB-orbit is an involution. As in the proof of Lemma 2.2,ijjf= gzg~ ' is a
representative of a closdghorbit then(G, N g~' Bg)® is a Borel subgroup off andu € Z(G?)
by [30, §3.15]. Thus the unipotent pagtig~* of y lies in B and¢(B.y) = ¢(B.gsg™'). The
conjugacy clas®); is spherical because B¢G, = Bg(Gs N G,) is dense inG then BgG, is
dense inG. By the first part of the proof(B.y) is an involution. O

Remark 2.8 The reader is referred to [181.4, Remark 4] for a different proof, in characteristic
zero, that the image through of the denseB-orbit vy, denoted byz(O), is an involution. In
the same papep(v,) for all spherical conjugacy classes of a simple algebraic group ©visr
explicitely computed.

3 Stationary points

In this Section we shall analyze those elements @) for which ¢(m(s)v) = ¢(v) for all simple
reflectionss € .

Definition 3.1 Letv € V, letw = ¢(v) and leta be a simple root. We say thatis a stationary
point with respect tav if p(v) = ¢(m(s,)v). We say that is astationary pointf it is a stationary
point with respect to all simple roots.

It follows from the results in [25] that stationary points different from the degsebit do not
exist in symmetric conjugacy classes. They do exist in unipotent spherical conjugacy classes.

Example 3.2 Let O,,;, be the minimal nontrivial unipotent conjugacy class in a gréumf
semisimple rank at lea8t It is well-known that®O,,;,, is spherical. 1f5 denotes the highest root in
¢ thenB.xs(1) = X3 \ {1} is a stationary point. Indeed, df is a simple rootP, = Bs,X, U B
andPa.xg(t) C B-Xsa(ﬂ) U B.%g(l) CcB SO¢(B.Q}ﬁ(1)) = ¢(m(3a)(B.:L‘5(1)) =1.

The following lemmas describe stationary points with respect to a simple root.

Lemma 3.3 Letv € V with w = ¢(v). Leta be a simple root such that,w < w in the Bruhat
order. Therw is a stationary point with respect to.

Proof. Let us puts = s,. If sw < wtheng(m(s)v) € {sws, sw,ws,w} andp(m(s)v) > ¢(v).
If sw = ws the statement follows because < w andsws = w. Otherwise it follows because
SW, WS, SWs < w. O

Lemma 3.4 Letv € V withw = ¢(v). Leta be a simple root such that,w > w in the Bruhat
order. Letr = wuwv € v withu € U%,w € N(T)andv € U. Thenv is a stationary point with
respect tax if and only if the following conditions hold:

1. s,w = wsy;
2. v € P¥, the unipotent radical oF,;

3. X, commutes witho.



Proof. Let v be a stationary point with respectdo Theorem 2.7 ensures thatis an involution.
We have eithes, ws, > s,w or s,ws, = w. If the first case were possible, we would have
so18;' € Bsaws, B andv would not be a stationary point. Hence 1 holdgy = o anda does
not occur inu € UY.

Let us considey = s,x5,'. The element

Y = ($qus ) (5aws ") (54v551) € Buir(4v5.0).

If o would occur inv then by [27, Lemmas 8.1.4, 8.3.7] we would have Bws,B N P,v with
wsa = Saw > ¢(m(sq)v), a contradiction. Hence 2 holds for any representative
Let thenz € v, letl € k" and letr; = z,()xx,(—1) = ujunvy. Sincea € A andu,v € P
we have
iy = and vy = (0w (Di)va(—1) € P

By Chevalley’s commutator formule, € P only if vz, (l)w = z,(1), that is, only if 3 holds
for X,.
Let! € k" andletry = z_,(l)xz_,(—1). Sincea € A andu,v € P* the element_,, (l)ux_,(—1)
liesinU so

Ty € Uni( ™'z _o(D)i)va_o(—1).

If (w™x_o()w)ve_,(—1) would not lie inU we would haves(B.z,) = ws, > w, a contradic-
tion. Hence(wtz_,(l)w)vz_,(—1) € U. By Chevalley’'s commutator formula this is possible
only if w™z_,()w = z_,(1), thatis, only if 3 holds forX _,,.

Let x satisfy 2, and 3. The®,v = P, C Bs$,X,.z Uv. Properties 2 and 3 imply that
Bs,X,.x C BwB sov is stationary. O

Lemma 3.5 Let O be a spherical conjugacy class, letc V be a stationary point and leb =
o(v). Letll = {a € A | w(a) = a} andwy be the longest element ;. Thenw = wrwy.

Proof. By Theorem 2.7 the element € W is an involution. By Lemma 3.4 it € A and
wa € T thenwa = a. The statement follows from [29, Proposition 3.5]. O

Example 3.6 Let G be of type A,, and letO be a spherical conjugacy class. Then the image
through¢ of the denseB-orbit isw = wowy for somell C A. The setll must be stabilized by
¥ = —wy because for € II we have

a = wa = wowna € —wpll.

Besides, ife; lies in Il thena; = w(a;) = —wn(a,—j11) SOa; anda,_;+1 must lie in the same
connected component &f. Hence Il = {ay, ayy1,- -+, 441} fOr somet and

w = (88, 84 ) W0 = S, -+ 5,

wheref,, - - -, Bz) is the sequence given by the highest root, the highest root of the root system
orthogonal tg3;, and so further.



The argument in the example above shows that, for any stationary ploats to be invariant
with respect ta) = —w,. Besides, the restriction af, to ®(II) always coincides withuy;.

If w = ¢(v) for some stationary point € V, the involutionw may be written as a product
of reflections with respect tek(1 — w) mutually orthogonal rootsy, . .., v, ([24, Page 910]).
Thus, U,, (notation as in Section 1) is the subgroup generated by the root subgkoupsth
(v,7;) = 0 for everyj. In other words[J,, is the subgroup generated &y, for v € ®(II) andU™
is normalized byU,,.

4 The denseB-orbit

We shall turn our attention to the special stationary point given by the deradit v,. We will
first analyze the possiblE for which ¢(vg) = wewn. These are subsets df for which the
restriction ofw, to ®(II) coincides with the longest elememnt; of the parabolic subgroui’y; of
W. Next step will be to show which connected componentd aiay not consist of isolated roots.

Lemma 4.1 LetO be a spherical conjugacy class, lgtbe its densé3-orbit and letw = wowy =
¢(vp). Letaw and 3 be simple roots with the following properties:

o (8, 0) = (a, a);
o wy(B) = -0,
o 3 La;

e 31 o foreverya € T\ {a}.
Then{a} cannot be a connected componentiof

Proof. Let us assume that, in the hypothesis of the Lem{ng, is a connected component Gf
so thatw is the product ofwys, with the longest elementy;, of the parabolic subgroud’;; of

W associated with the complemdiit of « in II. Let us choose a representativevgfof the form

r = wv. We claim thaty € Pj. Otherwise, given a representatiygof s in N(T'), we consider

Yy = sﬁwvsgl. Then, assz commutes withw, andwy by assumption, we would have, for some
lek:

Yy = w05a+5wH/V1$_g(l)V2 S BwosaJrng/BsﬁB; with Vi, Vg € Pg
Besideswys,+gwmr () is positive and different fron®. Thus,wos,+swirss > woSa+gwir and in
this casep(B.y) = wosa+swirsg would not be an involution contradicting Lemma 2.7. Hence,
v € Pyandv’ = sgvsg' € U.

Let us consider a representatigof s, in N(7') and the element:

z = Sa8vs; 5,0 = (wospi)($a$sviy s,") € Buwpssw B(sav's,")B.

Here we have used thaty(ov) = —« becausex is an isolated root idl. If v’ lies in P* then
¢(B.z) = wosgwry. If v/ does not lie inP? then

z € BwosﬁwH/B(sav’égl)B C Bwysgwir B U Bwgsgsqwm B.
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It follows from Theorem 2.7 that also in this ca$€B.z) = wysgwyy becaus€wgsgsawir)? =
saS3 # 1. On the other hand((¢(B.z)) = {(wosqawr) = ((¢p(vg)) With ¢(B.z) # ¢(vg),
contradictings(B.z) < ¢(uvp). O

Corollary 4.2 LetO be a noncentral spherical conjugacy class,lgbe its densé3-orbit and let
w = wowr = ¢(vg). Thenll is either empty or it is one of the following subsets\of
TypeA,

n
o-ro——e---e——o---0 Il={a, 0,141}, 2§l§[§}
TypeB,
00— —@---0=>— o le{ozl,--~,ozn}, 2<<n
®e— —0:---@0— —0— —@0---@=>—0
n
II, = {041,0437 ce g1, Qg4 1, 2142, " "t 704n}7 1< < 5
TypeC,
00— —@-- -0 =<=—2eo le{al,~~,an}, 2<i<n
e — —0--0——0— —@0---0=<=2e0
n
II, = {&1,a37"' y Q21—1, Q214 1, 2142, * *° 704n}; 1<I< 5
TypeD,,
O O— —e: e — — 0 n
Iy = {1, o}, 2§l§§—1
[ J
e ——0——@——0:+-0— —@0::- @ — — @
[ ]
n
II, = {0417043, T, Qgl1, 009141, Q4 2, " 0t ,an}, I=i< §
Dyyya
e——0——.--8——0—— @ ——0 ng{al,ag,-~~,a2m_1}
O
D2m
e —-0——++-——@—— 0 ——@e H4:{a1,a3,-~-,&Qm,g,agm,l}
(@]
e — —0— — i — — o—— o ——o Ily={aj,as, - ,00m 3,02}
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TypeFEs

o— — 06— o ——0——o le{&l,Oég,Oé4,0é5,C(6}
o
o——e—— o ——e——o Il)={as a4a5}
o
TypeE,
Oo——e—— 6 ——e0e— — 06— — o le{&g,ag,a4,a5,@6,&7}
°
o——e—— o ——e——o——o0 Ily={as, a3 asas}
°
o——e—— o ——e——o0o——e ILU{ar}
°
o——o0o—— o ——e——o——e Il3={ay a5 ar}
°
TypeFs
e—— 00— 6 ——0— —0— —@— —0
:
Iy = {1, a2, a3, a4, as, o, a7}
o——e—— o ——e——o——eo——o I} ={ay, a3 a4, a5, a6 a7}
°
o——e—— o ——e——o——o——o Il)={ag, a3 a4,a5}
°
TypeF,
e— —eoe—>—e— —0 le{al,ag,ag}
O——e=>—0e— — o Il = {a, a3, a4}

12



O— —e@=>—@ — — O H3:{Oé2,a3}

TypeG,
e=<=o0 I, ={a}

o=<=e I, = {Oég}.

Proof. Most of the restrictions are due to the fact that = w|s(r). The isolated roots occurring
as connected componentslafare necessarily alternating, or differ by a node, or their length is
different from the length of all adjacent roots, as it happensig in typeC,,. O

Remark 4.3 All the above diagrams actually occur whier= C (cfr. [10]). They are strictly more
than the Araki-Satake diagrams for symmetric conjugacy classes (see [2], [13], [26, Table 1]).

Theorem 4.4 Let O be a spherical conjugacy class, leg be its denseB-orbit and letw =
Qb(?]o) = WoWri- Then
dim(0) = f(w) + rk(1 — w).

Proof. Let my be the restriction te, of the natural mag: G — G/B = U,ew Bo B/ B. Its image
is precisely the Bruhat cell', = BwB/B and the image o throughr lies in the corresponding
Schubert variety”,, = U,<wew BoB/B. By [27, Theorem 5.1.6 (ii)] for a generic poipB3 € C,,
and for every irreducible compone@tof the fiberr; ' (gB) we have:

dim(0) = dim(vy) = dim(C,,) + dim(C') = {(w) + dim(C).
Let g = wwv € vy Withw € U¥,w € N(T) andv € U. Then
7o (gB) = {z € vy | z = wb, for some b € B}.

Let us consider’ = u~'gu = wvu € vo. Thenz liesinw;'(¢gB) if and only if z = ag'a™" =
uwb for somea, b € B. Moreover, ifa = a%a,t € U*U,T we necessarily have” = u SO
T, (gB) = umy'(¢'B)u~!. Besides,t;'(¢'B) is the TU,-orbit of ¢’ so it is irreducible and
dim C = dim(7U,.q).

Let ¢,,: T — T be the group morphism — w1t~ so thatT” = Ker(¢,,). Fortu, €
TU, we havetu,g'u 't = i, (t)tu,vuu,'t=r by Lemma 3.4 andy, N wU is precisely the
T*U,-orbit of ¢’. Then,x;'(¢'B) is parametrized by paifgT™, wv') in T/T* x (vo N wU) SO
dim(C) = rk(1 — w) + dim(vy N wWU).

The theorem follows if we show thaltim (v, N wU) = 0, or, equivalently, that the identity
component7™)° of T* andU,, centralize an element iy N wU. We shall provide a description
of the elements il¥ N w B that will lead to the knowledge af, N wU.

ForII as above we shall denote 5 the standard parabolic subgroup correspondirid &md
by Ly its standard Levi factor generated Byand the one-parameter subgroupss with 3 € II.
SincelU,, = (X,, « € II), the unipotent radical aPyy is U™.

Let us recall that the deptdip(3) of a positive roots is the minimal length of a in W for
which o € —®7* ([5]). Thendp(5) — 1 is the minimal length of &’ € W for which ¢/ is a
simple root.
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Lemma 4.5 LetO, vy, w = ¢(vy) andIl be as in Theorem 4.4 and let= wtv € O NwB. Then
v € U". In particular, this holds forr € vg N wB.

Proof. Let us assume that for a fixed ordering of the positive roots someyrwo®* (I1) occurs

in the expression of and let us assume thatis of minimal depth ind(II) with this property. By
Lemma 3.4 the root is not simple. Then, there exists € Wy such thatr(v) = a € II and
we chooser of minimal length with this property. Minimality of depth implies that for every root
v € ®*(II) occurring inv we havery’ € ®* while o € Wy implies that for everys € &\ ®(II)
occurring inv we havesy’ € ®*. Then, fore € N(T') we would have:

oot = wt'ove! € O N BwgweB for somet’ € T.

The B-orbit represented byzs~! would be stationary withv € IT andovs~! ¢ P“ contradicting
Lemma 3.4. 0

Let us consider the action @ by conjugation on: = wv € vy NwU. A necessary condition
for dim(vy N wU) = 0 to hold is that(7™)° commutes withy.
If wy = —1, sincewy; () is positive for all rootss € &\ ®(I1) we have

dimT" =n —1k(1 —w) =n —rk(1 +wn) = |1

so(7T™)° is generated bym(a") for a € II.

If wg = —1 # —1 an analysis of the diagrams in Corollary 4.2 shows {l#&t)° is generated
by Im(a") for a € IT andIm((a")(da")~!) for « € A\ II. Therefore we need to show that the
roots occurring inv are orthogonal tdl and, if ® is of type A,,, D, .1 Or Eg, that that they are
J-invariant.

Lemma 4.6 Let  be simply-laced. Le®, vy, w, II, be as in Theorem 4.4 and let= wtv €
O NwB. Then all roots occurring irv are orthogonal td.

Proof. If IT = () there is nothing to prove. Il = A thenw = wown = 1 = ¢(vy) 0O is central
and the statement is evident. We shall assume for the rest of the prodff fhdt A.
The basic idea of the proof is to show that if som¢’ IT would occur inv there would exist
v € V such thatp(v) is not an involution contradicting Theorem 2.7. The proof consists in the
construction of an elemente W such that:

1. 7y = «ais a simple root;
2. no root occurring irv is made negative by;
3. Twry is negative.
Puttinge = s, = 7s,, conditions 1 and 2 guarantee that, for= 5,7 € N(T') we would have:
oxe~! € 6o ' BX_oB € Bowywno ' Bs,B.

Then, we would have:
awowna_loz = saTwsng_la = =S8, TWY.
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Moreover, ify € ®* is not orthogonal tdI, thenw~ is negative and different from-~ for if
wry = — then for everyr € IT we havei(v, a) = (v,wa) = (wy,a) = —(7,a) = 0.

Thus, condition 3 guarantees that,wo '« is positive and different from socwywro™ <
cwowro~'s,. Then ify occurred inv we would haves(B.oxo~!) = cwywno s, which is not
an involution.

We shall deal with the different possibilities férandIl separately, using the labeling Gfin
Corollary 4.2. We will rule out roots inductively so that the preceding steps will ensure condition
2 to hold. We shall also make use of the following three observations.

l. Let &' = ®(A’) be a subsystem &b on which the actions ofyy andw,, coincide and let
IT ¢ A'. If the occurrence of € @’ that is not orthogonal tél has been excluded for
¢’ andII, then the occurrence of is excluded ford andIl. Indeed, ifr € W, satisfies
conditions 1, 2 and 3 foy € ®’, regardingr as an element ofi we see that conditions 1
and 3 are immediate and condition 2 follows from condition @irbecause an element in
W cannot make negative a rootdn” \ ®’. Thus, if®" andII have already been handled,
the analysis fo andII will reduce to roots inb™* \ @’

II. If some~ may not occur irv for everyz = wtv € ONwB then the wholéV;-orbit of v may
not occur inv’ for everyz’ = wt'v' € OMi B because Lemma 4.5 givesitvw ! € ONwB
for everyw € Wy. In particular, ify f «; for somea; € II then alsos;y Y «; and itis
enough to show that one of the two roots may not occut. in

lll. Let v £ II. If we can findr with ¢(7) = ht(y) — 1 satisfying condition 1, then condition
3 holds automatically for those rootsfor which wyy £ ~. Indeed, if we decompose
wn = S, -S4, as a product of reflections with respect to mutually orthogonal roots in
$(II), for everyy € ® we havewny = v—> (v, 7:)v: and we may writevry = v—o01 402
whereo; ando, are sums of roots il with disjoint support. The condition oy is
equivalent too, # 0. The condition or¢(7) means that we are taking = s;, ---s;,
for a sequence of simple roots «;,, ..., a; such thato,;, + - + a;, + o € o+ and
Y= s+ oy, o

Moreover, they; and theo; ared-invariant because-v; = wpy; = woy,. If Twy =
—7(9v — o1 + 09) Were positives would makedy — o, + 05 negative sy — oy + oy < «y
and, by symmetry, we would have:

v =201+ 209 <9y —01+ 09 < 7.

Thus,2(0; — 05) would be a sum of positive roots, contradicting our assumption on the their
supports unless, = 0.

Up to replacingy by wry applying observation I, we may always make sure thgt £ .
For this reason in most of the cases we will be able tofirmehdr satisfying both condition 2 and
the assumptions needed for observation Ill. In the remaining cases, condition 3 will be verified by

direct computation.
TypeA,,. In this casdl = {a;, ayy1,. .., apy1}forl <1< [”T“ . Lety / IT occurinv. Then
vY=Yic1 =+ Fa g forl <t <l-1<i—1<n—-l+lorl <t<n—-[4+2<i-1<n-1.
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Observation Il implies that it is enough to show that_, for everyt <[ —1and~,_;;2,_1 for
i —1>mn—1+2may notoccurin. Lety,;_, be of minimal height among the,;_; occurring
in v. We considetr = s;,18412--- s,y With =11if t =1 — 1. Thenty = «; so condition 1
is satisfied. The roots made negativeswre all of the fornry,;_; for p > ¢, so minimality of
the height ensures condition 2, angvy; ;1 > ~ with ¢(7) = ht(y:,-1) — 1. The roots of type
Tn-i+2,i—1 are handled symmetrically.

TypeD, . Let us considefl;. The positive roots outside(I1;) that are not orthogonal fd, are:

vtvi_lzat+---+ai_1f0r1§t§l—1§i—1§n—1;
SpVim—2 =04+ -+ a0 t+a,forl <t <[-1,
SnVtn—1 = SnSn-1Vim—2 =0 + -+, +a, fort <1 —1;
wi =+t 200+ Fapg) oo, forl <t <i—-1<i—1<n-3.

Letv,,—, be the root of minimal height among the,_; occurring inv. Thent = s;4; -+ 5,1
satisfies condition 1 by construction, condition 2 by minimality of the height and condition 3
by observation Ill. Observation Il rules out all other roots, singe ; = s;_;---s;v;;-1 and

Wti = Si " Sn—25nYt,n—1-

Let us assume now th@l = II,. The above argument shows that all roots occurring are
orthogonal toll;. Indeed, conditions 1 and 2 anare independent dil while for condition 3 a
direct computation shows thatvy,;—1 = Ts,wowr, (11,-1) With o = a4 or a;_; iS a negative
root. Then the roots that might occurirand are not orthogonal to isolated roots are:

")/tﬂ',l:@t+"‘+@i,1f0r1Stgi—lgl—2;
W=+t a2t ) g1+,
foril<t<i—1<[—-2andi>¢+1if o €1l

For the first set of roots we might use observation Il and assumevthatll so thatwyy ;-1 £
Yeio1. Thent = s -+ 5,1 together with a minimality argument for fixedrules it out. For
the second set of roots we might assume thatZ II so thatwpw:; £ w;;, and we might use
T = S$pSn—1(Sn—3 - Si—1)(Sn—2 -+ 8;)(si—2 - - - s¢). Condition 1 holds by construction, condition 2
follows from the inductive procedure and condition 3 follows from observation IIl.

If TT = II5 the roots that are not orthogonalliothat might occur inv are:

’}/t,i_l:O(t+"‘+04i_1f0r1Stéi—lfn—l;
SnVt,n—2 for 1 §t§n—1,
O,
Sp—15nYem—2 fOrt <n —2;
Wei =+t + 2+ apg) o g
forl<t<i—1<n-3withi>t+1if oy €1l.

For thev;,_; we might assume that, ¢ II and user = s, --- s;_; together a minimality
argument for fixed. For the second set of roots we might use s,,_» - - - s;. Fora,, we user = 1.
For thes,,s,—17:.n—2 We mightassume tha; ¢ [Iand user = s;41 - - - S,—25,—15,. FOr the last set
of roots we might assume that ¢ 11T and taker = s, _15,(Sn—3 - $i—1)(Sn_2+ - 8i)(Si—2 " S¢).

If IT = I1,4 the roots that are not orthogonalltfbare those listed for the previous case, except
from «,,. We need to consider the first, second and last set of roots. The above arguments and Weyl
group elements work also in this case. The dase 115 is handled symmetrically.
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TypeFEs. In this casdl is eitherIl; or Il, as in Corollary 4.2 and we will apply observation | to
A/ == Hl.

LetII = II;. The positive roots that are not orthogonal tes and that might occur in are:
1 = Qg + Quq + Qs S3i1; S4S3fi1; S1S3/41; S4S183441; S3S45183/41 and their images througdy. By
observation Il it is enough to rule opt and this is achieved by using= s,s5, where condition 2
holds because € Wy andv € U". Therefore all roots occurring in are orthogonal tay. The
root«; is handled symmetrically.

The admissible roots that are orthogonal ta; andag and are not orthogonal @, are: as;
v = ai + as + 2a3 + 2a4 + 2a5 + ag and their images througdy. We rule outa, with 7 = 1
while the remaining roots are ruled out using observation Il sigge/ «; may not occur irv.

The only root ind* \ ®(II,) that is orthogonal ta;, «y andag is the highest root ib, which
is orthogonal td1, whence the statement in this case.

Let IT = II,. The roots that might occur inand are not orthogonal t@; are: v, = ay + ay;
S5, Vo = SgSsV1; V3 = aq + ao + as + 2a4 + as; vy = Sgl3; Ssvq and their images through
s3. We only need to consider, v», v3 andr,. We may use, respectively, = s4; 7 = 545556,
T3 = $4838185584 @nd Ty = $1548285545¢, Where the conditions are easily verified. Thus, all roots
occurring inv are orthogonal tei; and, by symmetry, ta;. The roots inb™\ ®*(II; ) that are not
orthogonal tay, are: s,v1; s4858311; S48385v4 ands,v, and they may not occur inby observation
I.

TypeE;. In this casdl is eitherIl; of type Dg; 11, of type Dy; the union ofll, with {«a7}; or
I3 = {aw, a5, ar}. We shall make frequent use of observation | with= T1T;.

LetIT = TI;. The roots ind™ \ ®(II;) that are not orthogonal te; are: a;; 11 = $485828483011;
Mo = Sgll1; i3 = Ssflo; fla = S7lia; [s = Ssila; [le = Sclls; [b7 = S455525453146 @nd their images
throughss. As they all lie in thell/;-orbit of o1, which is erased by = 1, all roots occurring ins
are orthogonal tovs.

The possibilities fory f g are: v; = s483001; Y2 = Ss71) V3 = SeV2, Va4 = S7Y3; V5 =
845553545273, V6 = S455535452V4, V7 = S67V6: Y8 = S57V7 and their imageS througﬁ. They all lie
in the W-orbit of a4, hence these roots may not occuwin

The only positive root that is orthogonal 4@ andas and lies isd \ ®(II;) is the highest root
in (E7), whence the statement for = I1;.

Let IT be eitherIl, or I1, U {«;}. The possible occurring roots that are not orthogonaisto
are those listed when analyzihg= I1;. We need to consider;; u.; pg andyuy (the last one only
if (a7 € H) They are excluded by USin?g: 1; 9 = S455565954S1;, T6 = S452S556S754555651 and
T4 = S6S5S453825154 Where conditions are easily checked making use of observations I, Il and Ill.

The possible roots not orthogonaldg are those listed when discussing the cdse I1;. We
only need to consideys; 74 (only if a; ¢ II) and~;. We rule outyz with o3 = s3545556; 74 With
04 = S§S5545351 and’}/7 with 07 = S154525554535655575654-

The only root in®d* \ ®*(II, ) that is orthogonal to both, andas is the highest root, whence
the statement in this case.

Let IT = II5. The possible occurring roots that are not orthogonal-tare: 5, = o1 + as +
g+ a5 + ag; Po = safh; B3 = safa; Ba = s303; Bs = 85035 B6 = 5043 Br = safs; Pz = s27
and their images througd so it is enough to considet; for i = 1,3,4,7. They are ruled out by
USingwl = 853545586, W3 = W18254, W4 = W3S3 andw7 = 545351555654555354. IN order to Verify
condition 2 forw; we need to show that; + a3 + a4 may not occur inv and this is achieved by
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usingT = s3s4. The remaining verifications are standard.
The possible rootg that are not orthogonal ta,, are: v; = a1 + as + a4} Vo = S5,
v3 = s¢S7[37; vy = Sy and their images throughy. The rooty; has already been ruled out, is
ruled out by using = s352515554865557565354, Whereas for the other roots we use observation II.
The positive roots inb \ ®(II;) that are orthogonal ta, anda; are also orthogonal tas,
concluding the proof for typé.;.

TypeEs. In this casdl is eitherlIl, of type E~, I1; of type Dg or I1, of type D,. We shall make
use of observation | applied &' = II,.

Let IT = II,. The possible roots occurring inthat are not orthogonal to; are: v, = a4 + a5 +
Qg+ a7+ Qg; Yo = S271; V3 = S451537Y2; V4 = S573: V5 = S6V4y V6 = S7V5, V7 = 5455565254535573;
Y8 = ST Yo = S67V8 Y10 = 57905 V11 = S18483710; Y12 = S2y11 @nd their images through. The
root~, is excluded byr = s;sgs5s4 and for the remaining ones we use observation Il.

The possible occurring roots that are not orthogonahtare: 3; = s15371; B2 = S4555354521
B3 = 8602, Ba = 5703, B5 = 85054 Bs = s60s; Br = s53s; Bz = 548556575377 and their images
throughs,. All these roots lie in thél-orbit of 7, so they might not occur ir.

Next we consider occurrence of roots that are not orthogona} torhey are:v; = s5s471;
Uy = S4898371; V3 = S$1S35¢S77Y7; Va4 = 84528384553 and their images throughy. They all lie in
the Wy-orbit of ~; so they might not occur in.

The possible occurring roots that are not orthogonalgarer; = sgv1; m = sgr3 and they
cannot occur. The possible roots that are not orthogonal toe themg andrs; = s;m5 and using
7 = 1 for ag and observation Il fofr; we see that they cannot occursin

Thus the roots occurring in are orthogonal tey; for j = 2,3,5,6,7. The only positive root
that does not lie inb(E;) and that is orthogonal to these simple roots is the highest rodt in
whence the statement foir = I1,.

Let [T = II; and let us consider the occurrencevirof roots that are not orthogonal te;.
They have been listed when dealing with = II, and we need to consider onty, ~; and
v11. We exclude them by using, respectively= s;s¢s554; T = S786555453825184 and T =
5856555453595158453555456555254535157565554.

The possible occurring roots that are not orthogonaltbave been listed when dealing with
IT = II, and we only have to considet. This root is ruled out by using = s7sgs5545351.
Similarly, in order to show that all roots occurring inare orthogonal tavs; we only need to
excluders. However,i3 = s5s4711 SO it may not occur in. Observation |l together with the
discussion foll = Il imply that all roots occurring irv are also orthogonal tag anda;. As
before, it follows that all roots occurring inare orthogonal tal;.

Let IT = IlI,. In order to show that all roots occurring ynare orthogonal tex; we have to rule
out: v1; v¥s; 55 V6; 7o @andyp; with notation as before. We may use, respectively= s;s45554;
T3 = 86555453525154; Ts = S7565554535251545556; T6 = S455565758525453515554586555756;, Tg =
S5556575853545551535456555254575¢6 andr; = 5856S5545352545153555654555254535756S55451. Even
if wnye = Y6 + a2 + 23 + 204 + a5 > 6 We cannot apply observation Il in this case because
there is nor with ¢(7) = ht(vs) — 1 satisfying condition 2. For this case we verify condition 3 by
direct computation.

Since all roots that might occur i and that are not orthogonal tg lie in the W;-orbit of
somevy;, they are excluded. Similarly, the possible occurring roots that are not orthoganahtio
lie in the W-orbit of some previously excluded root.
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No rooty in ®* \ ®(II,) for whichy [ «4 is orthogonal tav,, a3 andas, thus we have the
statement in typé’s, concluding the proof. 0J

Lemmas 3.4 and 4.6 together with Chevalley’s commutator formula ([27, Proposition 9.5.3])
imply that the elements ify,, and inIm(a) for o € II commute withe = wv € vy NwU. The
descriptions of 7)° and of the fiberr, ! (v B) yield thus Theorem 4.4 in typé,, D-,,, E; and
Eg. For the remaining simply-laced cases there is some extra work to be done.

Lemma 4.7 Let® be of typeA,,, forn > 2, Dy, 11, OF Eg. LetO, vy, w, x = wtv andll be as in
Lemma 4.6. Then all roots occurring inare ¥-invariant.

Proof. By Lemma 4.6 we have L II but for this analysis we shall consider the céke- (). In
any casewry = - for every~ occurring inv. We will use the same strategy and notation as in
the proof of Lemma 4.6. We may use thatif £ v thenwy = —dwpy = —vvy # —~ and that
observation | still applies. Moreover, ag;y = v we modify the argument in observation 3 in
order to obtainy < ¥~ < ~ for a contradiction.

TypeA,,. Lety be a root occurring i which is notd-invariant. Theny;; = o + - - - + o, With
either:j <t <l—-2o0orn—-I1+3<j<torj<Il—1<n-—1+2<t. Forallranges fot
and;j we may choose;, of minimal height among the, ; occurring inv and user = s ---s;
together with observation Ill. This argument works alstl if= ().

Type Dy,,+1. The positive roots that are ndtinvariant areas,,, as,,+1, or of the form~;, =
Zz;f a, +a,forl < j <2m —1andqg = 2m,2m + 1. None of these roots is orthogonal to
I1,, IT, norII3. If IT = () we excludes,,, andas,,, 1 with 7 = 1. Then we consider of minimal

height among the; , occurring inv and we rule it out by using = s;.41 - - - S2;,—154.

TypeLs. If v is a positive root occurring in which is notJ-invariant, observation | with\" = II,
shows that eithey or 9 is one of the following rootsg3; = as + as + ay; Bo = s161; B3 = 8502

By = s403; B5 = s304 andfBg = sg5. We may rule out the listed roots by using = sys3;

To = T1S51, T3 = T2S5, T4 = S45255545351, Ts = S452535154S3 andTﬁ = T5S56, reSpeCtively. The root

(4 needs to be considered only whEn= (). In this case condition 2 is not compatible with the
assumption or(7,) introduced in observation Il so condition 3 has to be verified directly. The
image of these roots throughcan be handled symmetrically. O

Combining Lemmas 3.4, 4.6 and 4.7, the descriptiong®f)° andr, ' (1 B), and Chevalley’s
commutator formula we obtain the proof of Theorem 4. ils simply-laced. We will deal nhow
with the multiply-laced types.

Lemma 4.8 Let & be multiply-laced. LeO, vy, w, Il be as in Theorem 4.4 and let= witv €
wB N O. Then the roots occurring in are orthogonal tdl.

Proof. As in Lemma 4.6 we need only to considér# (), A. We shall use the same strategy and
observations | and Il will still be of use. The labeling of the possliblis as in Corollary 4.2.
TypeB,. In this casdl is eitherIl; or I, andwy; is eitherwy, or the product of the reflections
corresponding to those isolated simple roots witf).

LetIT = II;. The rootsy in ®* \ ®*(II;) that are not orthogonal fd, are the following:
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feic1 =0y + -+ a1 With ¢t < landi > [;
vi=oqp+ - +a1+2(+ -+ a,) witht < landi <.

Observation Il implies that it is enough to excludg,_, for everyt < [ — 1. Let y;;—1 be of
minimal height among thg,;_; occurring inv. Thent = s, - - - 5, rules it out. Condition 3 is
easily verified and it holds also i = II,.

Let nowIIl = II, and let us assume thatoccurs inv and is not orthogonal to some root in
IT\ I1;. Then is one of the following roots:

ﬁtﬂ',l:Oét—l-"'—l-Oéi,lWithlStﬁi—l<l—1andt7éi—1f0rt0dd;
(St:Oét+“'+Oénf0rt<l;
Yi=0or+ -+ + 20+ +a,)withl <t <i—1<[—1andt#:— 1fort¢odd.

In order to rule out3,;_; we apply observation Il and assume that € II. Then we con-
sider 3, ;,—, of minimal height among the roots of tyge ;_; occurring inv and we rule it out
by usingr = s;.1---s;_1. We rule out the roots of typé, by usingr = s,_1---s;. For
the last set of roots we may assume thatZ II by observation Il and then,; is ruled out by
T = (Sp—o- - Si—1)(Sn - 8)(si_1 - 8), concluding the proof in type,,.

TypeC,,. In this casdl is eitherIl; or IT,. The roots ind* \ ®(II;) that are not orthogonal td,

are of the form:

ftio1 = ¢ + -+ o, With ¢ < landi > [;
Vi=o+- -+ +2(+ -+ a,) o, Witht < landi <.

It is enough to rule out the,; ;. This is achieved by using the usual minimality argument and
T = s41 - S-1. The required conditions hold for both choiceslbhence all roots occurring in
v are orthogonal tal;.

If TT = II, the possible occurring roots that are not orthogonal tre of the following form:

frici =+ o Withl <t <:i-1<1[-1,
wi =2+ Fa,1)ta,forl <i<l—1;

Vi=op+ o+ 2+ o) +ay

withl1 <¢<i—-1<[-—1and¢ < — 1for¢odd.

Let us consider the first set of roots. We consider the root of minimal height ofitype. By
observation 1l we might assume that ¢ II. Then we may use = s;,1---s;,_1 in order to rule
it out. For the second set of roots, by observation Il we may assumetlgail and we may use
T = 8,15 The last set of roots is ruled out by using= (s,_1 - s¢)(Sp_1- - 8;)-

TypeF}. In this casdl is eitherIl; of type B3, 11, of type C5 or 115 of type B,. We shall apply
observation | withA’ = II; orII,.

If IT = II; a direct computation shows that the roots that might occuiind are not orthogonal
to II lie either in thel/-orbit of oy or in theWp-orbit of as + 23 + 2a4. The first one is ruled
out by usingr = 1 whereas for the second one we may use s3s;.

If IT = II, the roots that might occur im and are not orthogonal td lie in the W-orbit of
oy or in the Wr-orbit of a; + a3 + a3. We rule out these roots by using= 1 andr = s3s1,
respectively.
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If IT = II3 the roots that might occur in and are not orthogonal td lie in the W-orbit of
a1 + as + az + ay or in theWp-orbit of oy + s + 2a3 + 2a4. We show that these roots might not
occur by using: = s3s98; andr = s18384, respectively.

TypeG,. In this casdl consists of a simple root.

If IT = {«;} the positive roots that do not lie ifi and are not orthogonal @, areas; s;as;
ay + ag ands; (o + as). We rule outo; by usingr = 1 anday + a by usingr = s,.

If IT = {«»} the positive roots that do not lie il and are not orthogonal @, area;; ssay;
3aq + az andss(3ay + ay). We rule outr; by usingr = 1 and3ay + a; by usingr = s;. O

If @ is multiply-laced thenvy = —1 so(7")° = (Im(a"), a € II) commutes withe = wv €
vo. However, there might be mutually orthogonal roatand~ € ®* for whicha +~v € ® so
thatz,(h) andz, (k') do not commute. By [4, Chapitre V§1.3] this might happen only i is
doubly-laced andv and~ are short roots. Therefore @ is of type G2, Lemma 4.8 implies that
(T)°U,, commutes withr = wv € vy and Theorem 4.4 is proved. For the doubly-laced types
there is still some work to be done.

Lemma 4.9 Let ® be doubly-laced. LeD, vy, w, and Il be as in Theorem 4.4. Let= wv €
wB N O. Thenz is centralized by 7")°U.,,.

Proof. If II = () thenU,, = U, is trivial and so igT™) = (T*°)° thus there is nothing to prove.
Similarly, the statement is clearlif = A so thatw = 1 andz is central.

By Lemmas 3.4 and 4.8 it is enough to show thgtcentralizess for everya € I1. This is true
unlessx is short and there occurs a short reah v, orthogonal tax and such thad + v € . We
shall analyze the different cases separately using terminology and notation introduced in Corollary
4.2 and Lemma 4.8.
TypeB,,. The only short root il is & = «,. If there occursy in v with v 1L «,, andy + a,, € ®
then~ is one of the rootsy;, = a; + -+ «, for 1 < ¢ < [ — 1 and we necessarily have
IT = II;. Let us choose an ordering of the positive roots which is non-decreasing with respect to
the height and let us write as a product of elements in root subgroups taken in this order. Then
T = Wtviy,_, (@_1)ve - - - vi_12, (a1)v; fOr somea; € k and somer; € U commuting with.X,,,.
Conjugation byr,,, (1), Lemma 3.4 and Chevalley’'s commutator formula give

[Ean(l)xl‘an(—l) = wtv1x71—1(al—1)x“ﬂ—1+an (aE—I)VQ T Vi-1Ty, (a/l)x'Yl‘f'Oln (a/1>vl e O0nuwB.

If a; # 0 for some; we would have:; # 0, contradicting Lemma 4.8.

TypeC,. Let o € II; be a short root. There is only one positive rgosuch thaty 1 « and
a+ v € ¢ and itis not orthogonal tbl; so the statement holds for = II;.

LetII = II, and leta; € 11, \ II;. The only positive rooty such thaty L «; anda; +v € ®is
a;+2(ajp1+- - -+a,_1)+a,. If such aroot would occur in we would haver = wtvz.,(a)vy with
vy, vy € U commuting withX,,, anda € k. Conjugation byz,, (1), Lemma 3.4 and Chevalley’s
commutator formula give:

To; (1) 20y (—1) = Wtviz (@) Ty 40,(a")v2 € ONWB

with a’ # 0, contradicting Lemma 4.8.
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TypeFy. LetIl = II;. The only short root ifil; is a3 and the only positive root orthogonal I
for whicha; ++v € ®isy = ag + 205 + 3as + 2a4. If x = wtv could be written asitv,z.,(a)vs
for somea € k" and for somer; € U commuting withX,,,, conjugation withz,, (1) arguing as in
type C',, would lead to a contradiction.

LetII = II,. There are no positive rootsorthogonal tdl for which~ + a3 or v + a4 lies in
® so the result holds in this case.

Let IT = II3. The only short root inl; is as and the rootsy orthogonal toll for which
v+ as € ®areia; + as + ag anda; + 2ay + 3a3 + 2a4. Conjugation bye,, (1) and Lemma 4.8

show that none might occur n O
Lemma 4.9 implies thatim(vy N wU) = 0 for ® doubly-laced, conlcuding the proof of Theo-
rem 4.4 U

Corollary 4.10 Let O be a conjugacy class in a simple algebraic group over an algebraically
closed fieldk of good odd characteristic. Thefl is spherical if and only if there is &-orbit v in
O for whichdim O = ¢(¢(v)) + rk(1 — ¢(v)).

Proof. One direction is Theorem 4.4, the other direction is [10, Theorem 5] whose proof holds
also in positive characteristic. O

Corollary 4.11 LetO, vy, w be asin Lemma 4.8. Thep = O N BwB.

Proof. Letv € V be such that/(v) = ¢(vy) = w. By [10, Theorem 5] we havéim v = dim O
thereforev = vy. O

Remark 4.12 If O is a symmetric conjugacy class over an algebraically closed field of odd or
zero characteristic Theorem 4.4 follows from [25, Proposition 3.9, Theorem 4.6, Theorem 7.1]
and Corollary 4.11 follows from [25, Theorem 7.11, Lemma 7.12, Theorem 7.13p i a
spherical conjugacy class over an algebraically closed field of characteristic zero Theorem 4.4 is
[10, Theorem 1] and Corollary 4.11 is [10, Corollary 26].

Corollary 4.13 LetO, vy, w be as in Theorem 4.4. For everye vy NwB we havel NG, = U,
and7y = (T%)° so thatdim U.z = ¢(w) anddim T".z = rk(1 — w).

Proof. By Lemmas 4.6, 4.7, 4.8 and 4.9 for everye wU N vy we havelU N G, D U, and
T2 O (T*)° so thatB: D (Tv)°U,. For dimensional reasons all inclusions are equalities. [J

Remark 4.14 Another direct consequence of Theorem 4.4 is a generalization of [22, Proposition
6.3]. Letk, be the number of even exponentdo#(G). Then for every spherical conjugacy class
we have

dim O < l(wp) +rk(1 —wp) = dim B — (n — rk(1 — wy)) = dim B — k.
We end this section with some further consequences of the above results.
Let us recall that a standard parabolic subgroup can be naturally attached¥q[16, §2]):
Pv)={geG|gv=nu}.
Let L(v) denote its Levi component containifigand letA(v) be the corresponding subsetf

this is the so-called set of simple roots:of
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Proposition 4.15 Let O, vy, w andIl be as in Theorem 4.4. Thex(v,) = II.

Proof. Leta € 1T and letz € vg N wB. Arguing as in Lemmas 4.6, 4.8 and 4.9 we see faf
commutes withe. Then

X qvog=X_oBax CPL(X o (Xax))=Plax=n1

soa € A(vg) andIl C A(vy).

By [8, Lemma 1(ii)] whose the argument works also in positive characteristic the derived sub-
group|[L(vg), L(vg)] of L(vp) fixes a point invy. Thus, ifa lies in A(v) there isy = wwv € vy
for which X,, € U NG, and therefore. ' X,,u € UN G, for z € wU Nv,. By Corollary 4.13 we
haveu™'X,u C U, = (X, | v € ®(II)). This is possible only ifv € II. O

Remark 4.16 In characteristic zero Proposition 4.15 follows from [8, Page 289] and [21, Corol-
lary 3].

We shall consider an application of the above results to the analysis 6fthedule decom-
position of the ringk[O] of regular functions on a spherical conjugacy clésslt is well-known
that such a’-module is multiplicity-free ([15], [9]).

Theorem 4.17 Let O, vy, w, II as in Theorem 4.4. The weights occurring in thenodule de-
composition ok[O] are self-adjoint and lie irP™ N Q N Ker(1 + w).

Proof. By Corollary 4.13 for every € v, N wB we have(B,)° = (1,)°U,. Besides, a conjugacy
classO is locally closed inG so we may apply the arguments in the proof of [21, Corollary 2
(iii)] and [21, §6] to see that weights occurring in tii&module decomposition of[O] lie in
Ann(T,) ={A € P | \(t) =1, Vt € T} C Ann(T7) = Ann((7T")°). It follows from Lemmas
4.6, 4.7, 4.8 and the description @f*)° that for \ € Ann(7,) we have(\, a) = (A, Ya) for

a e A\Iland0 = (A, a) = (A, —va) = (A, Ya) for a € II. Henced\ = X and we have the
first statement. For the second statement the inclusidttirs obvious, the inclusion if) follows
from the fact that the ring of regular functions éhis a G,4-module. MoreoverA(vg) = II

by Proposition 4.15 and L A(v,) by [8, Lemma 1(ii)], where the proof holds also in positive
characteristic. Then the first statement implies that= wo\ = wwpA = wA. O

Remark 4.18 The problem of th&z-module decomposition of spherical nilpotent orbits has been
already addressed in [1], [20] and [23]. The analysi&|6f/ K] for a symmetric variety is to be
found in [32].
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