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Abstract

Let G be a simple algebraic group over an algebraically closed field of characteristic zero
or positive odd, good characteristic. LetB be a Borel subgroup ofG. We show that the
spherical conjugacy classes ofG intersect only the double cosets ofB in G corresponding to
involutions in the Weyl group ofG. This result is used in order to prove that for a spherical
conjugacy classO with denseB-orbit v0 ⊂ BwB there holds̀ (w) + rk(1 − w) = dimO
extending to the case of groups over fields of odd, good characteristic a characterization of
spherical conjugacy classes obtained by Cantarini, Costantini and the author. It is also shown
that the weights occurring in theG-module decomposition of the ring of regular functions on
O are self-adjoint and they lie in the−1-eigenspace of the elementw.

Introduction

If an algebraic group acts with finitely many orbits, a natural way to understand the action is given
by the combinatorics of the Zariski closures of such orbits. In [25], [29], a detailed description of
the combinatorics of the closures of orbits for a Borel subgroupB in a symmetric spaceG/K is
given. The description is provided in terms of an action, on the set of these orbits, of a monoid
M(W ) related to the Weyl groupW of G. This action is best understood considering the decom-
position intoB-orbits of an orbit of a minimal parabolic subgroup. Through this approach several
invariants of theB-orbits can be determined, including their dimension. To eachB-orbit it is pos-
sible to associate a Weyl group element and the Weyl group element corresponding to the (unique)
denseB-orbit in the symmetric space can be described in combinatorial terms. A formula for the
dimension of eachB-orbit v is provided in terms of its associated Weyl group element and the
sequence of elements in the monoid that are necessary to reachv from a closedB-orbit. When
the symmetric space corresponds to an inner involution, that is, if it corresponds to a conjugacy
class inG, the attached Weyl group element is just the element corresponding to the Bruhat cell
containing theB-orbit.

The monoid action can be carried over to homogeneous spaces of algebraic groups for which
the action of the Borel subgroup has finitely many orbits, i.e., the spherical homogeneous spaces
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([28]) and it can be used to define representations of the Hecke algebra ([18]). When the homoge-
neous space is a conjugacy class the natural map from the set ofB-orbits to the Weyl group given
in terms of the Bruhat decomposition is still defined. A more geometric approach to a Bruhat order
on spherical varieties has been addressed in [7]. Besides, a genuine Weyl group action on the set
of B-orbits on a spherical homogeneous space was defined in [17].

The action ofM(W ) on a spherical homogeneous space does not afford all nice properties
that it had in the symmetric case (see [8] for some key counterexamples) and it is natural to ask
which properties still hold for spherical conjugacy classes. One of the main differences between
the general spherical case and the symmetric case is that there areB-orbits that do not lie in the
M(W )-orbit of a closed one. However, everyB-orbit can be reached from a closedB-orbit through
a sequence of moves involving either theM(W )-action or theW -action ([28]).

A natural question is whether we can provide formulas for the dimension of eachB-orbit in
a spherical conjugacy class in terms of the actions ofM(W ) andW . Although not all results in
[25] hold at this level of generality, there are properties that hold true in general. For instance, the
dimension of the denseB-orbit in a spherical conjugacy class is governed by a formula analogous
to the formula for the dimension of the denseB-orbit in a symmetric conjugacy class. This result,
when the base field isC, was achieved in [10], leading to a characterization of spherical conjugacy
classes in complex simple algebraic groups. The interest in this formula lied in the verification
of De Concini-Kac-Procesi conjecture on the dimension of irreducible representations of quantum
groups at the roots of unity ([11]) in the case of spherical conjugacy classes. For this reason, the
analysis was restriced to the case of an algebraic group over an algebraically closed field of char-
acteristic zero. In order to obtain the characterization, a classification of all spherical conjugacy
classes in a simple algebraic group was needed, and part of the results were obtained through a
case-by-case analysis involving this classification.

In the present paper we apply the combinatorics ofM(W )-action andW -action on the set of
B-orbits of a spherical conjugacy class in a simple algebraic group to retrieve the formula in [10].
This will show that the characterization of spherical conjugacy classes can be achieved without
using their classification and without drastic restrictions on the characteristic of the base field.

A first question to be answered concerns which Bruhat cell may contain aB-orbit of a spher-
ical conjugacy class. In the case of a symmetric conjugacy class it is immediate to see that the
corresponding Weyl group elements are involutions. An analysis of the actions ofM(W ) andW
allows us to generalize this result to all spherical conjugacy classes.

Theorem 1 All B-orbits in a spherical conjugacy class lie in Bruhat cells corresponding to invo-
lutions in the Weyl group.

In order to understand the Weyl group elements associated with the denseB-orbit we analyze
the variation of the Weyl group element with respect to the action of the monoidM(W ). This
analysis leads to a description of the stationary points, i.e., of thoseB-orbits for which the asso-
ciated Weyl group element does not change under the action of all standard generators ofM(W ).
Stationary points other than the denseB-orbit do not exist in symmetric conjugacy classes but they
exist, for instance, in spherical unipotent conjugacy classes.

The results in [29] allow us to describe the Weyl group element corresponding to a stationary
point, and more precisely, the one associated with the denseB-orbit.

Combining the analysis of representatives of the denseB-orbit with Theorem 1 yields a new
proof of the formula in [10], that holds now in almost all characteristcs and does not require the
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classification of spherical conjugacy classes:

Theorem 2LetO be a spherical conjugacy class in a simple algebraic groupG, let v0 be its dense
B-orbit and letBwB ⊃ v0. ThendimO = `(w) + rk(1− w).

It is proved in [10] with a characteristic-free argument that if a conjugacy classO intersects
someBwB with `(w) + rk(1 − w) = dimO thenO is spherical, hence the results in the present
paper provide a characteristic-free proof of the characterization of spherical conjugacy class given
in [10].

The elementw corresponding to the denseB-orbit plays a role in theG-module decomposition
of the ringk[O] of regular functions onO, which is multiplicity-free ([9],[15]). Indeed,w = w0wΠ,
the product of the longest element inW and the longest element of a suitable parabolic subgroup
WΠ of W . All weights of eigenvectors of theB-action on the function fieldk(O) are orthogonal
to the root subsystemΦ(Π) and we have:

Theorem 3LetO be a spherical conjugacy class in a simple algebraic groupG, let v0 be its dense
B-orbit and letBwB ⊃ v0. The weights occurring in theG-module decomposition ofk[O] are
self-adjoint and lie inP+ ∩Q ∩Ker(1 + w).

Explicit examples of theG-module decomposition ofk[O] can be found in [1], [20], [23], [32].
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1 Preliminaries

Let G be a simple algebraic group over an algebraically closed fieldk of characteristic0 or odd
and good ([30,§4.3]). LetB be a Borel subgroup ofG, let T be a maximal torus contained inB
andB− the Borel subgroup opposite toB. LetU (respectivelyU−) be the unipotent radical ofB
(respectivelyB−). For an algebraic groupK we shall denote byK◦ its identity component.

We shall denote byΦ the set of roots relative to(B, T ); by Φ+ the corresponding positive roots;
by ∆ = {α1, . . . , αn} the corresponding set of simple roots. We shall use the numbering of the
simple roots in [4, Planches I-IX]. The height of a rootα will be indicated byht(α). We shall
indicate byP+ andQ, respectively, the set of dominant weights and the root lattice associated
with Φ and(B, T ). For a co-characterα∨ : k· → G and a nonzero scalarh ∈ k we shall denote by
α∨(h) ∈ T the image ofh throughα∨.

We shall denote byW the Weyl group associated withG and bysα the reflection corresponding
to the rootα. By `(w) we shall denote the length of the elementw ∈ W and byrk(1−w) we shall
mean the rank of1−w in the standard representation of the Weyl group. Byw0 we shall denote the
longest element inW and byϑ we shall denote the automorphism ofΦ given by−w0. By Π we
shall always denote a subset of∆ andΦ(Π) will indicate the corresponding root subsystem. We
shall denote byWΠ the parabolic subgroup ofW generated by the simple reflections inΠ. Given
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an elementw ∈ W we shall denote bẏw a representative ofw in the normalizerN(T ) of T . For
any rootα in Φ we shall denote byxα(t) the elements of the corresponding root subgroupXα of
G.

We assume that we have fixed an ordering of the positive roots so that everyu ∈ U is written
uniquely as an ordered product of elements of the formxα(l), for l ∈ k andα ∈ Φ+. Given
an elementu ∈ U by abuse of language we will say that a rootγ ∈ Φ+ occurs inu if for the
expression ofu as an ordered product ofxα(lα)’s we havelγ 6= 0. If α ∈ ∆ we shall indicate by
Pα the minimal non solvable parabolic subgroup containingX−α and byP u

α its unipotent radical.
For w ∈ W , we shall denote byUw (respectively,Uw) the subgroup generated by the root

subgroupsXα corresponding to thoseα ∈ Φ+ for whichw−1(α) ∈ −Φ+ (respectively,Φ+). We
shall denote byTw the subgroup of the torus that is centralized by any representativeẇ of w.

Given an elementx ∈ G we shall denote byOx the conjugacy class ofx in G and byGx (resp.
Bx, resp.Tx) the centralizer ofx inG (resp.B, resp.T ). The center of a groupH will be indicated
by Z(H). For a conjugacy classO = Ox we shall denote byV the set ofB-orbits into whichO
can be decomposed.

Definition 1.1 LetK be a connected algebraic group overk. A homogeneousK-space is called
spherical if it has a dense orbit for some Borel subgroup ofK.

It is well-known ([6], [31] in characteristic0, [12], [17] in positive characteristic) thatX is a
spherical homogeneousG-space if and only if the set ofB-orbits inX is finite.

2 B-orbits and Bruhat decomposition

Let O be a conjugacy class ofG and letV be the set ofB-orbits inO. There is a natural map
φ : V → W associating tov ∈ V the elementw in the Weyl group ofG for whichv ⊂ BwB. The
setV carries a partial order given by:v ≤ v′ if v ⊂ v′. If O is spherical the minimalB-orbits are
the closed ones and there is a unique maximal orbit, namely the denseB-orbit v0 in O.

Lemma 2.1 LetO be a conjugacy class and letv, v′ ∈ V. If v ≤ v′ thenφ(v) ≤ φ(v′) in the
Bruhat order inW .

Proof. We have:v ⊂ v ⊂ v′ ⊂ Bφ(v′)B = ∪̇σ≤φ(v′)BσB soφ(v) ≤ φ(v′). �

Lemma 2.2 Let x ∈ G be either semisimple or unipotent and letOx be a spherical conjugacy
class. The image throughφ of a closedB-orbit in O is 1.

Proof. If O = Ox andH = Gx, theB-orbit of gxg−1 corresponds to the double cosetBgH
through the natural morphism fromG to Ox mappingg to gxg−1. Borrowing an argument from
[28, §3.4 (b)] we see that the closedB-orbits correspond to closed double cosetsBgH so that
BH = (H ∩ g−1Bg) is a Borel subgroup ofH and ofH◦. Let x be semisimple. Since it is not
restrictive to assume thatG is simply connected, we haveH = H◦ andx ∈ Z(H) = Z(BH) by
[27, Corollary 6.2.9]. Hence, the representativegxg−1 of the closedB-orbit lies inB.

Let x be unipotent. By [30,§3.15] withS = {x} we havex ∈ H◦, hencex ∈ Z(H◦) ⊂ BH

and the statement follows. �
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Remark 2.3 All closedB-orbits in a spherical conjugacy classOx have the same dimension ([28,
§3.4 (b)]) namelydimB − dimB◦

Gx
whereBGx denotes a Borel subgroup in the centralizer ofx.

Remark 2.4 The converse of Lemma 2.2 does not hold for spherical unipotent elements. For
instance, ifO is a spherical unipotent conjugacy class inG = SLn(C) the combinatorics of the
closures of theB-orbits that are contained inB is described in [19]: ifO is the minimal unipotent
orbit in G theB-orbits that are contained inB are in bijection with the transpositions inSn, and
onlyB.xβ(1) = Xβ \ {1}, for β the highest root inΦ, is closed.

Remark 2.5 In a spherical semisimple conjugacy class,v being closed is equivalent toφ(B.x) = 1
and tov∩T 6= ∅. Indeed ifv is closed thenv is contained inB so a representativex ∈ v is conjugate
in B to some element inT . Viceversa, ifv = B.t for somet ∈ T thent normalizesB and by [3,
Theorem 9.2] the conjugacy classB.t is closed.

Let M = M(W ) be the monoid with elementsm(w) indexed by the elementsw ∈ W with
relations

m(s)m(w) = m(sw), if `(sw) > `(w), m(s)m(w) = m(w), if `(sw) < `(w).

The monoidM(W ) is generated by the elementsm(s) corresponding to simple reflections, subject
to the braid relations and to the relationm(s)2 = m(s). In [25] an action of the monoidM(W ) on
the set ofB-orbits of a symmetric space is defined. This action can be generalized to an action of
M(W ) on the setV of B-orbits of a spherical homogeneous space (see, for instance, [28,§3.6]).
The action ofm(s), for a simple reflections = sα is given as follows. IfPα is the minimal
parabolic subgroup corresponding toα andv ∈ V thenm(s).v is the denseB-orbit in Pαv. This
action is analyzed in [8], [17],[18,§4.1], [25]. We provide an account of the information we will
need.

Given v ∈ V, choosey ∈ v with stabilizer(Pα)y in Pα. Then(Pα)y acts onPα/B ∼= P1

with finitely many orbits. Letψ : (Pα)y → PGL2(k) be the corresponding group morphism. The
kernel ofψ is Ker(α)P u

α . The imageH of (Pα)y in PGL2(k) is either:PGL2(k); or solvable and
contains a nontrivial unipotent subgroup; or a torus; or the normalizer of a torus. Here is a list of
the possibilities that may occur.

I Pαv = v soH = PGL2(k);

IIa Pαv = v ∪m(s)v, with dim v = dimPαv − 1. We may choosey ∈ v such thatψ(Xα) ⊂
H ⊂ ψ(B).

IIb Pαv = v ∪ v′, with dim v′ = dim v − 1 andv is open inPαv som(s)v = v. We may choose
y ∈ v such thatψ(X−α) ⊂ H ⊂ ψ(B−).

IIIa Pαv = v ∪ v′ ∪m(s)v, with dim v = dim v′ = dimPαv − 1 andv 6= v′. We may choose
y ∈ v such thatH = ψ(T ).

IIIb Pv = v ∪ v′ ∪ v′′, with dim v − 1 = dim v′ = dim v′′ andv is open inPαv som(s)v = v.
We may choosey ∈ v such thatH = ψ(ṡαxα(−1)Txα(1)ṡ−1

α ).
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IVa Pv = v∪m(s)v, with dim v = dimPαv−1. We may choosey ∈ v such thatH = ψ(N(T )).

IVb Pv = v ∪ v′, with dim v = dim v′ + 1, andv is open inPαv som(s)v = v. We may choose
y ∈ v such thatH = ψ(N(ṡαT ṡ

−1
α )).

Based on the structure ofH, cases II, III, and IV are also called typeU , type T and typeN ,
respectively.

A W -action onV can be defined ([17], [18,§4.2.5, Remark]) as follows: in case II the two
B-orbits are interchanged; in case III the two non-dense orbits are interchanged, in all other cases
theB-orbits are fixed. The image ofv ∈ V through the action of a simple reflections ∈ W will
be denoted bys.v.

We recall ([28,§3.6]) that areduced decompositionof v ∈ V is a pair (v, s) with v =
(v(0), v(1), . . . , v(r)) a sequence of distinct elements inV and s = (si1 , . . . , sir) a sequence
of simple reflections such that:v(0) is closed;v(j) = m(sij).(v(j − 1)) for 1 ≤ j ≤ r − 1;
dim(v(j)) = dim(v(j − 1)) + 1 andv(r) = v.

All B-orbits in a symmetric homogeneous space admit a reduced decomposition ([25,§7]).
This is still the case for the denseB-orbit in spherical homogeneous spaces but it is not always the
case for generalB-orbits. The reader can refer to [8] for a series of counterexamples. We will use
a weaker notion of decomposition that exists for everyv ∈ V.

Given a reduced decomposition(v, s) = ((v(0), . . . , v(r)), (si1 , . . . , sir)) of v ∈ V a subex-
pressionof (v, s) ([28, §3.6]) is a sequencex = (v′(0), v′(1), . . . , v′(r)) of elements inV with
v′(0) = v(0) and such that for1 ≤ i ≤ r only one of the following alternatives occurs:

(a) v′(j − 1) = v′(j);

(b) v′(j − 1) 6= v′(j), dim v′(j − 1) = dim v′(j) andv′(j) = sij .v
′(j − 1);

(c) dim v′(j − 1) = dim v′(j)− 1 andv′(j) = m(sij).(v
′(j − 1)).

The elementv′(r) is called thefinal termof the subexpression. Even though someB-orbits in a
spherical homogeneous space might not have a reduced decomposition, everyv ∈ V is the final
term of a subexpression of a reduced decomposition of the denseB-orbit v0. This is to be found in
[28, §3.6 Proposition 2] and it holds also in positive odd characteristic.

Lemma 2.6 LetO be a spherical conjugacy class, letv ∈ V and lets = sα be a simple reflection.
If w = φ(v) is an involution thenw′ = φ(m(s).v) is an involution.

Proof. We considerPαv = v ∪ (BsB).v. If m(s)v = v there is nothing to prove. Let us assume
thatm(s)v ⊂ (Bs).v. Thenm(s).v ⊂ BsBwBsB. The following four possibilities may occur.

1. `(sws) = `(w) + 2. By [27, Lemma 8.3.7] we havew′ = sws and the statement holds.

2. `(sw) > `(w) and`(sws) = `(w). Sincew is an involution, by [29, Lemma 3.2 (ii)] with
θ = id we havesw = ws. Besides, by [27, Lemma 8.3.7] we have

m(s).v ⊂ BswBsB = BswB ∪BswsB

hencew′ ∈ {sw,w} is an involution.
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3. `(sw) < `(w) and`(sws) = `(w). Again by [29, Lemma 3.2 (i)] withθ = id we have
sw = ws. Then

m(s).v ⊂ BsBwBsB ⊂ BswsB ∪BswB
sow′ ∈ {w,ws} is an involution.

4. `(sws) = `(w)− 2. We have

m(s).v ⊂ BsBwBsB ⊂ BswB ∪BswsB ∪BwsB ∪BwB.

By [28, §3.6 Proposition 1 (a)] we havev ≤ m(s).v so by Lemma 2.1 there holdsw ≤ w′

hencew′ 6= sw,ws, sws andw′ = w is an involution. �

Theorem 2.7 LetO be a spherical conjugacy class, and letφ : V → W be the natural map. Then
the image ofφ consists of involutions.

Proof. We first consider a spherical semisimple conjugacy class. Letv ∈ V and letx be a
subexpression of a reduced decomposition of the denseB-orbit v0 with initial term a closedB-
orbit v(0) and final termv. We proceed by induction ondim v. If v has minimal dimension then
it is closed, otherwise it would contain in its closure aB-orbit of strictly smaller dimension. It
follows from Lemma 2.2 thatφ(v) = 1.

Let us assume then thatdim v(r) > dim v(0). If v(r) = v(r− 1) we may shorten the sequence
replacingr by r−1. Hence we may assume thatv(r) = m(s)v(r−1) or v(r) = s.v(r−1) for some
simple reflections = sα. If v(r) = m(s)v(r− 1) thendim v(r) is strictly larger thandim v(r− 1)
so we may use the induction hypothesis and Lemma 2.6. Let us assume thatv(r) = s.v(r − 1).
Thendim(v(r − 1)) = dim v(r). If we proceed downwards along the terms of the subexpression
we might have a sequence of steps in which either theB-orbit does not change or it changes
through theW -action, but we will eventually reach a step at whichv(j) = m(s′)(v(j − 1)) with
dim(v(j)) > dim v(j − 1), where we can apply Lemma 2.6. Hence there is aB-orbit v′ 6= v in
the sequence withdim v′ = dim v andφ(v′) = w an involution. Therefore we may reduce to the
case in whichv′ = v(r − 1) andv = v(r) = s.v(r − 1) with v(r − 1) 6= v(r). The analysis of
the decomposition intoB-orbits ofPαv shows that we are in case IIIa. Thenv ⊂ Bṡv′ṡ−1B ⊂
BsBwBsB.
If `(sws) = `(w) + 2 thenv ⊂ BswsB and we have the statement.
If sw > w and`(sws) = `(w) thensw = ws andv ⊂ BswB ∪BswsB soφ(v) is an involution.
If sw < w and`(w) = `(sws) thensw = ws andv ⊂ BwB ∪BswB soφ(v) is an involution.
Let us assume that`(sws) = `(w) − 2. It follows from the proof of Lemma 2.1 in this case that
φ(m(s)v) = φ(m(s)v′) = w = φ(v′). By [14, Lemma 1.6] we havew−1α = wα ∈ −Φ+. Thus
Xα lies inUw and we may choose representativesx = uxẇvx andy = uyẇvy of the sameB-orbit
v′ with ux, uy ∈ Uw andvx, vy ∈ U for whichux, vy ∈ P u

α .
Conjugation byṡ mapsx in BswB ∪ BswsB, henceṡxṡ−1 ∈ v andφ(v) ∈ {sw, sws}.

On the other hand, conjugation byṡ mapsy in BswsB ∪ BwsB, henceṡyṡ−1 ∈ v andφ(v) ∈
{sw, sws} ∩ {ws, sws} is an involution. Thus we have the statement for spherical semisimple
conjugacy classes.

Let us consider the spherical conjugacy class of an elementx ∈ G with Jordan decomposition
su. The proof will follow by induction as in the previous case once we show that the image
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throughφ of a closedB-orbit is an involution. As in the proof of Lemma 2.2, ify = gxg−1 is a
representative of a closedB-orbit then(Gx ∩ g−1Bg)◦ is a Borel subgroup ofG◦

x andu ∈ Z(G◦
x)

by [30, §3.15]. Thus the unipotent partgug−1 of y lies in B andφ(B.y) = φ(B.gsg−1). The
conjugacy classOs is spherical because ifBgGx = Bg(Gs ∩ Gu) is dense inG thenBgGs is
dense inG. By the first part of the proofφ(B.y) is an involution. �

Remark 2.8 The reader is referred to [10,§1.4, Remark 4] for a different proof, in characteristic
zero, that the image throughφ of the denseB-orbit v0, denoted byz(O), is an involution. In
the same paperφ(v0) for all spherical conjugacy classes of a simple algebraic group overC is
explicitely computed.

3 Stationary points

In this Section we shall analyze those elements inv ∈ V for whichφ(m(s)v) = φ(v) for all simple
reflectionss ∈ W .

Definition 3.1 Let v ∈ V, letw = φ(v) and letα be a simple root. We say thatv is a stationary
point with respect toα if φ(v) = φ(m(sα)v). We say thatv is astationary pointif it is a stationary
point with respect to all simple roots.

It follows from the results in [25] that stationary points different from the denseB-orbit do not
exist in symmetric conjugacy classes. They do exist in unipotent spherical conjugacy classes.

Example 3.2 Let Omin be the minimal nontrivial unipotent conjugacy class in a groupG of
semisimple rank at least2. It is well-known thatOmin is spherical. Ifβ denotes the highest root in
Φ thenB.xβ(1) = Xβ \ {1} is a stationary point. Indeed, ifα is a simple root,Pα = BsαXα ∪ B
andPα.xβ(t) ⊂ B.Xsα(β) ∪B.xβ(1) ⊂ B soφ(B.xβ(1)) = φ(m(sα)(B.xβ(1)) = 1.

The following lemmas describe stationary points with respect to a simple root.

Lemma 3.3 Let v ∈ V with w = φ(v). Letα be a simple root such thatsαw < w in the Bruhat
order. Thenv is a stationary point with respect toα.

Proof. Let us puts = sα. If sw < w thenφ(m(s)v) ∈ {sws, sw,ws, w} andφ(m(s)v) ≥ φ(v).
If sw = ws the statement follows becausews < w andsws = w. Otherwise it follows because
sw,ws, sws < w. �

Lemma 3.4 Let v ∈ V with w = φ(v). Letα be a simple root such thatsαw > w in the Bruhat
order. Letx = uẇv ∈ v with u ∈ Uw, ẇ ∈ N(T ) andv ∈ U . Thenv is a stationary point with
respect toα if and only if the following conditions hold:

1. sαw = wsα;

2. v ∈ P u
α , the unipotent radical ofPα;

3. X±α commutes witḣw.
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Proof. Let v be a stationary point with respect toα. Theorem 2.7 ensures thatw is an involution.
We have eithersαwsα > sαw or sαwsα = w. If the first case were possible, we would have
ṡαxṡ

−1
α ∈ BsαwsαB andv would not be a stationary point. Hence 1 holds,wα = α andα does

not occur inu ∈ Uw.
Let us considery = ṡαxṡ

−1
α . The element

y = (ṡαuṡ
−1
α )(ṡαẇṡ

−1
α )(ṡαvṡ−1

α ) ∈ Bẇ(ṡαvṡ−1
α ).

If α would occur inv then by [27, Lemmas 8.1.4, 8.3.7] we would havey ∈ BwsαB ∩ Pαv with
wsα = sαw > φ(m(sα)v), a contradiction. Hence 2 holds for any representativex.

Let thenx ∈ v, let l ∈ k· and letx1 = xα(l)xxα(−l) = u1ẇ1v1. Sinceα ∈ ∆ andu, v ∈ P u
α

we have
ẇ1 = ẇ and v1 = (ẇ−1xα(l)ẇ)vxα(−l) ∈ P u

α .

By Chevalley’s commutator formulav1 ∈ P u
α only if ẇ−1xα(l)ẇ = xα(l), that is, only if 3 holds

for Xα.
Let l ∈ k· and letx2 = x−α(l)xx−α(−l). Sinceα ∈ ∆ andu, v ∈ P u

α the elementx−α(l)ux−α(−l)
lies inU so

x2 ∈ Uẇ(ẇ−1x−α(l)ẇ)vx−α(−l).

If (ẇ−1x−α(l)ẇ)vx−α(−l) would not lie inU we would haveφ(B.x2) = wsα > w, a contradic-
tion. Hence(ẇ−1x−α(l)ẇ)vx−α(−l) ∈ U . By Chevalley’s commutator formula this is possible
only if ẇ−1x−α(l)ẇ = x−α(l), that is, only if 3 holds forX−α.

Let x satisfy 2, and 3. ThenPαv = Pαx ⊂ BṡαXα.x ∪ v. Properties 2 and 3 imply that
BṡαXα.x ⊂ BwB sov is stationary. �

Lemma 3.5 LetO be a spherical conjugacy class, letv ∈ V be a stationary point and letw =
φ(v). LetΠ = {α ∈ ∆ | w(α) = α} andwΠ be the longest element inWΠ. Thenw = wΠw0.

Proof. By Theorem 2.7 the elementw ∈ W is an involution. By Lemma 3.4 ifα ∈ ∆ and
wα ∈ Φ+ thenwα = α. The statement follows from [29, Proposition 3.5]. �

Example 3.6 Let G be of typeAn and letO be a spherical conjugacy class. Then the image
throughφ of the denseB-orbit isw = w0wΠ for someΠ ⊂ ∆. The setΠ must be stabilized by
ϑ = −w0 because forα ∈ Π we have

α = wα = w0wΠα ∈ −w0Π.

Besides, ifαj lies in Π thenαj = w(αj) = −wΠ(αn−j+1) soαj andαn−j+1 must lie in the same
connected component ofΠ. Hence,Π = {αt, αt+1, · · · , αn−t+1} for somet and

w = (sβt · · · sβ[ n
2 ]

)w0 = sβ1 · · · sβt−1

whereβ1, · · · , β[n
2
] is the sequence given by the highest root, the highest root of the root system

orthogonal toβ1, and so further.

9



The argument in the example above shows that, for any stationary point,Π has to be invariant
with respect toϑ = −w0. Besides, the restriction ofw0 to Φ(Π) always coincides withwΠ.

If w = φ(v) for some stationary pointv ∈ V, the involutionw may be written as a product
of reflections with respect tork(1 − w) mutually orthogonal rootsγ1, . . . , γm ([24, Page 910]).
Thus,Uw (notation as in Section 1) is the subgroup generated by the root subgroupsXγ with
(γ, γj) = 0 for everyj. In other words,Uw is the subgroup generated byXγ for γ ∈ Φ(Π) andUw

is normalized byUw.

4 The denseB-orbit

We shall turn our attention to the special stationary point given by the denseB-orbit v0. We will
first analyze the possibleΠ for which φ(v0) = w0wΠ. These are subsets of∆ for which the
restriction ofw0 to Φ(Π) coincides with the longest elementwΠ of the parabolic subgroupWΠ of
W . Next step will be to show which connected components ofΠ may not consist of isolated roots.

Lemma 4.1 LetO be a spherical conjugacy class, letv0 be its denseB-orbit and letw = w0wΠ =
φ(v0). Letα andβ be simple roots with the following properties:

• (β, β) = (α, α);

• w0(β) = −β;

• β 6⊥ α;

• β ⊥ α′ for everyα′ ∈ Π \ {α}.

Then{α} cannot be a connected component ofΠ.

Proof. Let us assume that, in the hypothesis of the Lemma,{α} is a connected component ofΠ
so thatw is the product ofw0sα with the longest elementwΠ′ of the parabolic subgroupWΠ′ of
W associated with the complementΠ′ of α in Π. Let us choose a representative ofv0 of the form
x = ẇv. We claim thatv ∈ P u

β . Otherwise, given a representativeṡβ of sβ in N(T ), we consider
y = ṡβẇvṡ−1

β . Then, assβ commutes withw0 andwΠ′ by assumption, we would have, for some
l ∈ k·:

y = ẇ0ṡα+βẇΠ′v1x−β(l)v2 ∈ Bw0sα+βwΠ′BsβB; with v1, v2 ∈ P u
β .

Besidesw0sα+βwΠ′(β) is positive and different fromβ. Thus,w0sα+βwΠ′sβ > w0sα+βwΠ′ and in
this caseφ(B.y) = w0sα+βwΠ′sβ would not be an involution contradicting Lemma 2.7. Hence,
v ∈ P u

β andv′ = ṡβvṡ−1
β ∈ U .

Let us consider a representativeṡα of sα in N(T ) and the element:

z = ṡαṡβẇvṡ−1
β ṡ−1

α = (ẇ0ṡβẇΠ′)(ṡαṡβvṡ−1
β ṡ−1

α ) ∈ Bw0sβwΠ′B(ṡαv′ṡ−1
α )B.

Here we have used thatw0(α) = −α becauseα is an isolated root inΠ. If v′ lies in P u
α then

φ(B.z) = w0sβwΠ′. If v′ does not lie inP u
α then

z ∈ Bw0sβwΠ′B(ṡαv′ṡ−1
α )B ⊂ Bw0sβwΠ′B ∪Bw0sβsαwΠ′B.
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It follows from Theorem 2.7 that also in this caseφ(B.z) = w0sβwΠ′ because(w0sβsαwΠ′)2 =
sαsβ 6= 1. On the other hand,̀(φ(B.z)) = `(w0sαwΠ′) = `(φ(v0)) with φ(B.z) 6= φ(v0),
contradictingφ(B.z) ≤ φ(v0). �

Corollary 4.2 LetO be a noncentral spherical conjugacy class, letv0 be its denseB-orbit and let
w = w0wΠ = φ(v0). ThenΠ is either empty or it is one of the following subsets of∆:
TypeAn

◦ · · · ◦ − − • · · · • − − ◦ · · · ◦ Π = {αl, · · · , αn−l+1}, 2 ≤ l ≤
[n
2

]
TypeBn

◦ · · · ◦ − − • · · · • =>= • Π1 = {αl, · · · , αn}, 2 ≤ l ≤ n

• − − ◦ · · · • − − ◦ − − • · · · • =>= •
Π2 = {α1, α3, · · · , α2l−1, α2l+1, α2l+2, · · · , αn}, 1 ≤ l ≤ n

2
TypeCn

◦ · · · ◦ − − • · · · • =<= • Π1 = {αl, · · · , αn}, 2 ≤ l ≤ n

• − − ◦ · · · • − − ◦ − − • · · · • =<= •
Π2 = {α1, α3, · · · , α2l−1, α2l+1, α2l+2, · · · , αn}, 1 ≤ l ≤ n

2
TypeDn

◦ · · · ◦ − − • · · · • − − •
|
•

Π1 = {α2l+1, · · · , αn}, 2 ≤ l ≤ n

2
− 1

• − − ◦ − − • − − ◦ · · · ◦ − − • · · · • − − •
|
•

Π2 = {α1, α3, · · · , α2l−1, α2l+1, α2l+2, · · · , αn}, 1 ≤ l <
n

2
D2m+1

• − − ◦ − − · · · • − − ◦ − − • − − ◦ Π3 = {α1, α3, · · · , α2m−1}
|
◦

D2m

• − − ◦ − − · · · − − • −− ◦ − − • Π4 = {α1, α3, · · · , α2m−3, α2m−1}
|
◦

• − − ◦ − − · · · − − • −− ◦ − − ◦ Π5 = {α1, α3, · · · , α2m−3, α2m}
|
•

11



TypeE6

• − − • −− • − − • − − • Π1 = {α1, α3, α4, α5, α6}
|
◦

◦ − − • −− • − − • − − ◦ Π2 = {α3, α4, α5}
|
◦

TypeE7

◦ − − • −− • − − • − − • − − • Π1 = {α2, α3, α4, α5, α6, α7}
|
•

◦ − − • −− • − − • − − ◦ − − ◦ Π2 = {α2, α3, α4, α5}
|
•

◦ − − • −− • − − • − − ◦ − − • Π2 ∪ {α7}
|
•

◦ − − ◦ −− ◦ − − • − − ◦ − − • Π3 = {α2, α5, α7}
|
•

TypeE8

• − − • −− • − − • − − • − − • − −◦
|
•

Π0 = {α1, α2, α3, α4, α5, α6, α7}

◦ − − • −− • − − • − − • − − • − − ◦ Π1 = {α2, α3, α4, α5, α6, α7}
|
•

◦ − − • −− • − − • − − ◦ − − ◦ − − ◦ Π2 = {α2, α3, α4, α5}
|
•

TypeF4

• − −• =>= • − − ◦ Π1 = {α1, α2, α3}

◦ − −• =>= • − − • Π2 = {α2, α3, α4}
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◦ − −• =>= • − − ◦ Π3 = {α2, α3}
TypeG2

• ≡<≡ ◦ Π1 = {α1}

◦ ≡<≡ • Π2 = {α2}.

Proof. Most of the restrictions are due to the fact thatwΠ = w0|Φ(Π). The isolated roots occurring
as connected components ofΠ are necessarily alternating, or differ by a node, or their length is
different from the length of all adjacent roots, as it happens to{αn} in typeCn. �

Remark 4.3 All the above diagrams actually occur whenk = C (cfr. [10]). They are strictly more
than the Araki-Satake diagrams for symmetric conjugacy classes (see [2], [13], [26, Table 1]).

Theorem 4.4 Let O be a spherical conjugacy class, letv0 be its denseB-orbit and letw =
φ(v0) = w0wΠ. Then

dim(O) = `(w) + rk(1− w).

Proof. Let π0 be the restriction tov0 of the natural mapπ : G→ G/B = ∪σ∈WBσB/B. Its image
is precisely the Bruhat cellCw = BwB/B and the image ofO throughπ lies in the corresponding
Schubert varietyCw = ∪σ≤w∈WBσB/B. By [27, Theorem 5.1.6 (ii)] for a generic pointgB ∈ Cw

and for every irreducible componentC of the fiberπ−1
0 (gB) we have:

dim(O) = dim(v0) = dim(Cw) + dim(C) = `(w) + dim(C).

Let g = uẇv ∈ v0 with u ∈ Uw, ẇ ∈ N(T ) andv ∈ U . Then

π−1
0 (gB) = {x ∈ v0 | x = uẇb, for some b ∈ B}.

Let us considerg′ = u−1gu = ẇvu ∈ v0. Thenx lies in π−1
0 (gB) if and only if x = ag′a−1 =

uẇb for somea, b ∈ B. Moreover, ifa = awawt ∈ UwUwT we necessarily haveaw = u so
π−1

0 (gB) = uπ−1
0 (g′B)u−1. Besides,π−1

0 (g′B) is theTUw-orbit of g′ so it is irreducible and
dimC = dim(TUw.g

′).
Let φw : T → T be the group morphismt 7→ ẇ−1tẇt−1 so thatTw = Ker(φw). For tuw ∈

TUw we havetuwg
′u−1

w t−1 = ẇφw(t)tuwvuu−1
w t−1 by Lemma 3.4 andv0 ∩ ẇU is precisely the

TwUw-orbit of g′. Then,π−1
0 (g′B) is parametrized by pairs(tTw, ẇv′) in T/Tw × (v0 ∩ ẇU) so

dim(C) = rk(1− w) + dim(v0 ∩ ẇU).
The theorem follows if we show thatdim(v0 ∩ ẇU) = 0, or, equivalently, that the identity

component(Tw)◦ of Tw andUw centralize an element inv0 ∩ ẇU . We shall provide a description
of the elements inO ∩ ẇB that will lead to the knowledge ofv0 ∩ ẇU .

ForΠ as above we shall denote byPΠ the standard parabolic subgroup corresponding toΠ and
by LΠ its standard Levi factor generated byT and the one-parameter subgroupsX±β with β ∈ Π.
SinceUw = 〈Xα, α ∈ Π〉, the unipotent radical ofPΠ isUw.

Let us recall that the depthdp(β) of a positive rootβ is the minimal length of aσ in W for
which σβ ∈ −Φ+ ([5]). Thendp(β) − 1 is the minimal length of aσ′ ∈ W for which σ′β is a
simple root.
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Lemma 4.5 LetO, v0, w = φ(v0) andΠ be as in Theorem 4.4 and letx = ẇtv ∈ O ∩ ẇB. Then
v ∈ Uw. In particular, this holds forx ∈ v0 ∩ ẇB.

Proof. Let us assume that for a fixed ordering of the positive roots some rootγ in Φ+(Π) occurs
in the expression ofv and let us assume thatγ is of minimal depth inΦ(Π) with this property. By
Lemma 3.4 the rootγ is not simple. Then, there existsσ ∈ WΠ such thatσ(γ) = α ∈ Π and
we chooseσ of minimal length with this property. Minimality of depth implies that for every root
γ′ ∈ Φ+(Π) occurring inv we haveσγ′ ∈ Φ+ whileσ ∈ WΠ implies that for everyβ ∈ Φ+ \Φ(Π)
occurring inv we haveσγ′ ∈ Φ+. Then, forσ̇ ∈ N(T ) we would have:

σ̇xσ̇−1 = ẇt′σ̇vσ̇−1 ∈ O ∩BwΠw0B for somet′ ∈ T.

TheB-orbit represented bẏσxσ̇−1 would be stationary withα ∈ Π andσ̇vσ̇−1 6∈ P u
α contradicting

Lemma 3.4. �

Let us consider the action ofTw by conjugation onx = ẇv ∈ v0 ∩ ẇU . A necessary condition
for dim(v0 ∩ ẇU) = 0 to hold is that(Tw)◦ commutes withv.

If w0 = −1, sincewΠ(β) is positive for all rootsβ ∈ Φ+ \ Φ(Π) we have

dimTw = n− rk(1− w) = n− rk(1 + wΠ) = |Π|

so(Tw)◦ is generated byIm(α∨) for α ∈ Π.
If w0 = −ϑ 6= −1 an analysis of the diagrams in Corollary 4.2 shows that(Tw)◦ is generated

by Im(α∨) for α ∈ Π andIm((α∨)(ϑα∨)−1) for α ∈ ∆ \ Π. Therefore we need to show that the
roots occurring inv are orthogonal toΠ and, if Φ is of typeAn, D2n+1 or E6, that that they are
ϑ-invariant.

Lemma 4.6 Let Φ be simply-laced. LetO, v0, w, Π, be as in Theorem 4.4 and letx = ẇtv ∈
O ∩ ẇB. Then all roots occurring inv are orthogonal toΠ.

Proof. If Π = ∅ there is nothing to prove. IfΠ = ∆ thenw = w0wΠ = 1 = φ(v0) soO is central
and the statement is evident. We shall assume for the rest of the proof thatΠ 6= ∅,∆.

The basic idea of the proof is to show that if someγ 6⊥ Π would occur inv there would exist
v ∈ V such thatφ(v) is not an involution contradicting Theorem 2.7. The proof consists in the
construction of an elementτ ∈ W such that:

1. τγ = α is a simple root;

2. no root occurring inv is made negative byτ ;

3. τwγ is negative.

Puttingσ = sατ = τsγ, conditions 1 and 2 guarantee that, forσ̇ = ṡατ̇ ∈ N(T ) we would have:

σ̇xσ̇−1 ∈ σ̇ẇσ̇−1BX−αB ∈ Bσw0wΠσ
−1BsαB.

Then, we would have:
σw0wΠσ

−1α = sατws
−1
γ τ−1α = −sατwγ.
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Moreover, if γ ∈ Φ+ is not orthogonal toΠ, thenwγ is negative and different from−γ for if
wγ = −γ then for everyα ∈ Π we have:(γ, α) = (γ, wα) = (w−1γ, α) = −(γ, α) = 0.

Thus, condition 3 guarantees thatσw0wΠσ
−1α is positive and different fromα soσw0wΠσ

−1 <
σw0wΠσ

−1sα. Then ifγ occurred inv we would haveφ(B.σ̇xσ̇−1) = σw0wΠσ
−1sα which is not

an involution.

We shall deal with the different possibilities forΦ andΠ separately, using the labeling ofΠ in
Corollary 4.2. We will rule out roots inductively so that the preceding steps will ensure condition
2 to hold. We shall also make use of the following three observations.

I. Let Φ′ = Φ(∆′) be a subsystem ofΦ on which the actions ofw0 andw∆′ coincide and let
Π ⊂ ∆′. If the occurrence of aγ ∈ Φ′ that is not orthogonal toΠ has been excluded for
Φ′ andΠ, then the occurrence ofγ is excluded forΦ andΠ. Indeed, ifτ ∈ W∆′ satisfies
conditions 1, 2 and 3 forγ ∈ Φ′, regardingτ as an element ofW we see that conditions 1
and 3 are immediate and condition 2 follows from condition 2 inΦ′ because an element in
W∆′ cannot make negative a root inΦ+ \ Φ′. Thus, ifΦ′ andΠ have already been handled,
the analysis forΦ andΠ will reduce to roots inΦ+ \ Φ′.

II. If someγ may not occur inv for everyx = ẇtv ∈ O∩ẇB then the wholeWΠ-orbit ofγ may
not occur inv′ for everyx′ = ẇt′v′ ∈ O∩ẇB because Lemma 4.5 givesω̇ẇtvω̇−1 ∈ O∩ẇB
for everyω ∈ WΠ. In particular, ifγ 6⊥ αi for someαi ∈ Π then alsosiγ 6⊥ αi and it is
enough to show that one of the two roots may not occur inv.

III. Let γ 6⊥ Π. If we can findτ with `(τ) = ht(γ) − 1 satisfying condition 1, then condition
3 holds automatically for those rootsγ for which wΠγ 6< γ. Indeed, if we decompose
wΠ = sγ1 · · · sγr as a product of reflections with respect to mutually orthogonal roots in
Φ(Π), for everyγ ∈ Φ we havewΠγ = γ−

∑
i(γ, γi)γi and we may writewΠγ = γ−σ1+σ2

whereσ1 andσ2 are sums of roots inΠ with disjoint support. The condition onwΠγ is
equivalent toσ2 6= 0. The condition oǹ (τ) means that we are takingτ = sip · · · si1

for a sequence of simple rootsα, αip , . . . , αi1 such thatαij + · · · + αip + α ∈ Φ+ and
γ = αi1 + · · ·+ αip + α.

Moreover, theγj and theσi areϑ-invariant because−γj = wΠγj = w0γj. If τwγ =
−τ(ϑγ− σ1 + σ2) were positive,τ would makeϑγ− σ1 + σ2 negative soϑγ− σ1 + σ2 ≤ γ
and, by symmetry, we would have:

γ − 2σ1 + 2σ2 ≤ ϑγ − σ1 + σ2 ≤ γ.

Thus,2(σ1−σ2) would be a sum of positive roots, contradicting our assumption on the their
supports unlessσ2 = 0.

Up to replacingγ by wΠγ applying observation II, we may always make sure thatwΠγ 6< γ.
For this reason in most of the cases we will be able to findγ andτ satisfying both condition 2 and
the assumptions needed for observation III. In the remaining cases, condition 3 will be verified by
direct computation.

TypeAn. In this caseΠ = {αl, αl+1, . . . , αn−l+1} for 1 ≤ l ≤
[

n+1
2

]
. Let γ 6⊥ Π occur inv. Then

γ = γt,i−1 = αt+· · ·+αi−1 for 1 ≤ t ≤ l−1 ≤ i−1 ≤ n−l+1 or l ≤ t ≤ n−l+2 ≤ i−1 ≤ n−1.
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Observation II implies that it is enough to show thatγt,l−1 for everyt ≤ l−1 andγn−l+2,i−1 for
i− 1 ≥ n− l + 2 may not occur inv. Let γt,l−1 be of minimal height among theγs,l−1 occurring
in v. We considerτ = st+1st+2 · · · sl−1 with τ = 1 if t = l − 1. Thenτγ = αt so condition 1
is satisfied. The roots made negative byτ are all of the formγp,l−1 for p > t, so minimality of
the height ensures condition 2, andwΠγt,l−1 > γ with `(τ) = ht(γt,l−1) − 1. The roots of type
γn−l+2,i−1 are handled symmetrically.

TypeDn. Let us considerΠ1. The positive roots outsideΦ(Π1) that are not orthogonal toΠ1 are:

γt,i−1 = αt + · · ·+ αi−1 for 1 ≤ t ≤ l − 1 ≤ i− 1 ≤ n− 1;
snγt,n−2 = αt + · · ·+ αn−2 + αn for 1 ≤ t ≤ l − 1;

snγt,n−1 = snsn−1γt,n−2 = αt + · · ·+ αn−1 + αn for t ≤ l − 1;
ωt,i = αt + · · ·+ αi−1 + 2(αi + · · ·+ αn−2) + αn−1 + αn, for 1 ≤ t ≤ l − 1 ≤ i− 1 ≤ n− 3.

Let γt,l−1 be the root of minimal height among theγs,l−1 occurring inv. Thenτ = si+1 · · · sl−1

satisfies condition 1 by construction, condition 2 by minimality of the height and condition 3
by observation III. Observation II rules out all other roots, sinceγi,j−1 = sj−1 · · · slγi,l−1 and
ωt,i = si · · · sn−2snγt,n−1.

Let us assume now thatΠ = Π2. The above argument shows that all roots occurring inv are
orthogonal toΠ1. Indeed, conditions 1 and 2 onτ are independent ofΠ while for condition 3 a
direct computation shows thatτwγt,l−1 = τsαw0wΠ1(γt,l−1) with α = αt or αt−1 is a negative
root. Then the roots that might occur inv and are not orthogonal to isolated roots are:

γt,i−1 = αt + · · ·+ αi−1 for 1 ≤ t ≤ i− 1 ≤ l − 2;
ωt,i = αt + · · ·+ αi−1 + 2(αi + · · ·+ αn−2) + αn−1 + αn

for 1 ≤ t ≤ i− 1 ≤ l − 2 andi > t+ 1 if αt ∈ Π.

For the first set of roots we might use observation II and assume thatαt 6∈ Π so thatwΠγt,i−1 6≤
γt,i−1. Thenτ = st+1 · · · si−1 together with a minimality argument for fixedi rules it out. For
the second set of roots we might assume thatαi 6∈ Π so thatwΠωt,i 6≤ ωt,i and we might use
τ = snsn−1(sn−3 · · · si−1)(sn−2 · · · si)(si−2 · · · st). Condition 1 holds by construction, condition 2
follows from the inductive procedure and condition 3 follows from observation III.

If Π = Π3 the roots that are not orthogonal toΠ that might occur inv are:

γt,i−1 = αt + · · ·+ αi−1 for 1 ≤ t ≤ i− 1 ≤ n− 1;
snγt,n−2 for 1 ≤ t ≤ n− 1;

αn;
sn−1snγt,n−2 for t ≤ n− 2;

ωt,i = αt + · · ·+ αi−1 + 2(αi + · · ·+ αn−2) + αn−1 + αn

for 1 ≤ t ≤ i− 1 ≤ n− 3 with i > t+ 1 if αt ∈ Π.

For theγt,i−1 we might assume thatαt 6∈ Π and useτ = st+1 · · · si−1 together a minimality
argument for fixedi. For the second set of roots we might useτ = sn−2 · · · st. Forαn we useτ = 1.
For thesnsn−1γt,n−2 we might assume thatαt 6∈ Π and useτ = st+1 · · · sn−2sn−1sn. For the last set
of roots we might assume thatαt 6∈ Π and takeτ = sn−1sn(sn−3 · · · si−1)(sn−2 · · · si)(si−2 · · · st).

If Π = Π4 the roots that are not orthogonal toΠ are those listed for the previous case, except
fromαn. We need to consider the first, second and last set of roots. The above arguments and Weyl
group elements work also in this case. The caseΠ = Π5 is handled symmetrically.
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TypeE6. In this caseΠ is eitherΠ1 or Π2 as in Corollary 4.2 and we will apply observation I to
∆′ = Π1.

Let Π = Π1. The positive rootsγ that are not orthogonal toα6 and that might occur inv are:
µ1 = α2 + α4 + α5; s3µ1; s4s3µ1; s1s3µ1; s4s1s3µ1; s3s4s1s3µ1 and their images throughs6. By
observation II it is enough to rule outµ1 and this is achieved by usingτ = s4s5, where condition 2
holds becauseτ ∈ WΠ andv ∈ Uw. Therefore all roots occurring inv are orthogonal toα6. The
rootα1 is handled symmetrically.

The admissible rootsγ that are orthogonal toα1 andα6 and are not orthogonal toα4 are:α2;
γ = α1 + α2 + 2α3 + 2α4 + 2α5 + α6 and their images throughs4. We rule outα2 with τ = 1
while the remaining roots are ruled out using observation II sinces3γ 6⊥ α1 may not occur inv.

The only root inΦ+ \Φ(Π1) that is orthogonal toα1, α4 andα6 is the highest root inΦ, which
is orthogonal toΠ, whence the statement in this case.

Let Π = Π2. The roots that might occur inv and are not orthogonal toα3 are:ν1 = α2 + α4;
s5ν1; ν2 = s6s5ν1; ν3 = α1 + α2 + α3 + 2α4 + α5; ν4 = s6ν3; s5ν4 and their images through
s3. We only need to considerν1, ν2, ν3 andν4. We may use, respectively,τ1 = s4; τ2 = s4s5s6;
τ3 = s4s3s1s5s4 andτ4 = s1s4s2s5s4s6, where the conditions are easily verified. Thus, all roots
occurring inv are orthogonal toα3 and, by symmetry, toα5. The roots inΦ+ \Φ+(Π1) that are not
orthogonal toα4 are:s4ν1; s4s5s3ν1; s4s3s5ν4 ands4ν4 and they may not occur inv by observation
II.

TypeE7. In this caseΠ is eitherΠ1 of typeD6; Π2 of typeD4; the union ofΠ2 with {α7}; or
Π3 = {α2, α5, α7}. We shall make frequent use of observation I with∆′ = Π1.
Let Π = Π1. The roots inΦ+ \ Φ(Π1) that are not orthogonal toα3 are:α1; µ1 = s4s5s2s4s3α1;
µ2 = s6µ1; µ3 = s5µ2; µ4 = s7µ2; µ5 = s5µ4; µ6 = s6µ5; µ7 = s4s5s2s4s3µ6 and their images
throughs3. As they all lie in theWΠ-orbit ofα1, which is erased byτ = 1, all roots occurring inv
are orthogonal toα3.

The possibilities forγ 6⊥ α2 are: γ1 = s4s3α1; γ2 = s5γ1; γ3 = s6γ2; γ4 = s7γ3; γ5 =
s4s5s3s4s2γ3; γ6 = s4s5s3s4s2γ4; γ7 = s6γ6; γ8 = s5γ7 and their images throughs2. They all lie
in theWΠ-orbit of α1, hence these roots may not occur inv.

The only positive root that is orthogonal toα2 andα3 and lies isΦ \ Φ(Π1) is the highest root
in Φ(E7), whence the statement forΠ = Π1.

Let Π be eitherΠ2 or Π2 ∪ {α7}. The possible occurring roots that are not orthogonal toα3

are those listed when analyzingΠ = Π1. We need to considerα1; µ2; µ6 andµ4 (the last one only
if α7 6∈ Π). They are excluded by usingτ = 1; τ2 = s4s5s6s2s4s1; τ6 = s4s2s5s6s7s4s5s6s1 and
τ4 = s6s5s4s3s2s1s4 where conditions are easily checked making use of observations I, II and III.

The possible roots not orthogonal toα2 are those listed when discussing the caseΠ = Π1. We
only need to considerγ3; γ4 (only if α7 6∈ Π) andγ7. We rule outγ3 with σ3 = s3s4s5s6; γ4 with
σ4 = s6s5s4s3s1 andγ7 with σ7 = s1s4s2s5s4s3s6s5s7s6s4.

The only root inΦ+ \ Φ+(Π1) that is orthogonal to bothα2 andα3 is the highest root, whence
the statement in this case.

Let Π = Π3. The possible occurring roots that are not orthogonal toα7 are:β1 = α1 + α3 +
α4 + α5 + α6; β2 = s2β1; β3 = s4β2; β4 = s3β3; β5 = s5β3; β6 = s5β4; β7 = s4β6; β8 = s2β7

and their images throughs7 so it is enough to considerβi for i = 1, 3, 4, 7. They are ruled out by
usingω1 = s3s4s5s6; ω3 = ω1s2s4; ω4 = ω3s3 andω7 = s4s3s1s5s6s4s5s3s4. In order to verify
condition 2 forω7 we need to show thatα1 + α3 + α4 may not occur inv and this is achieved by
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usingτ = s3s4. The remaining verifications are standard.
The possible rootsν that are not orthogonal toα2, are: ν1 = α1 + α3 + α4; ν2 = s5ν1;

ν3 = s6s7β7; ν4 = s5ν3 and their images throughs2. The rootν1 has already been ruled out,ν3 is
ruled out by usingτ = s3s2s1s5s4s6s5s7s6s3s4, whereas for the other roots we use observation II.

The positive roots inΦ \ Φ(Π1) that are orthogonal toα2 andα7 are also orthogonal toα5,
concluding the proof for typeE7.

TypeE8. In this caseΠ is eitherΠ0 of typeE7, Π1 of typeD6 or Π2 of typeD4. We shall make
use of observation I applied to∆′ = Π0.
Let Π = Π0. The possible roots occurring inv that are not orthogonal toα3 are:γ1 = α4 + α5 +
α6 +α7 +α8; γ2 = s2γ1; γ3 = s4s1s3γ2; γ4 = s5γ3; γ5 = s6γ4; γ6 = s7γ5; γ7 = s4s5s6s2s4s3s5γ3;
γ8 = s7γ7; γ9 = s6γ8; γ10 = s5γ9; γ11 = s1s4s3γ10; γ12 = s2γ11 and their images throughs3. The
rootγ1 is excluded byτ = s7s6s5s4 and for the remaining ones we use observation II.

The possible occurring roots that are not orthogonal toα2 are:β1 = s1s3γ1; β2 = s4s5s3s4s2β1

β3 = s6β2; β4 = s7β3; β5 = s5β4; β6 = s6β5; β7 = s5β3; β8 = s4s5s6s7s3γ7 and their images
throughs2. All these roots lie in theWΠ-orbit of γ1 so they might not occur inv.

Next we consider occurrence of roots that are not orthogonal toα5. They are:ν1 = s5s4γ1;
ν2 = s4s2s3γ1; ν3 = s1s3s6s7γ7; ν4 = s4s2s3s4s5ν3 and their images throughs5. They all lie in
theWΠ-orbit of γ1 so they might not occur inv.

The possible occurring roots that are not orthogonal toα6 areπ1 = s6ν1; π2 = s6ν3 and they
cannot occur. The possible roots that are not orthogonal toα7 are thenα8 andπ3 = s7π2 and using
τ = 1 for α8 and observation II forπ3 we see that they cannot occur inv.

Thus the roots occurring inv are orthogonal toαj for j = 2, 3, 5, 6, 7. The only positive root
that does not lie inΦ(E7) and that is orthogonal to these simple roots is the highest root inΦ,
whence the statement forΠ = Π0.

Let Π = Π1 and let us consider the occurrence inv of roots that are not orthogonal toα3.
They have been listed when dealing withΠ = Π0 and we need to consider onlyγ1, γ3 and
γ11. We exclude them by using, respectivelyτ = s7s6s5s4; τ = s7s6s5s4s3s2s1s4 and τ =
s8s6s5s4s3s2s1s4s3s5s4s6s5s2s4s3s1s7s6s5s4.

The possible occurring roots that are not orthogonal toα2 have been listed when dealing with
Π = Π0 and we only have to considerβ1. This root is ruled out by usingτ = s7s6s5s4s3s1.
Similarly, in order to show that all roots occurring inv are orthogonal toα5 we only need to
excludeν3. However,ν3 = s5s4γ11 so it may not occur inv. Observation II together with the
discussion forΠ = Π0 imply that all roots occurring inv are also orthogonal toα6 andα7. As
before, it follows that all roots occurring inv are orthogonal toΠ1.

Let Π = Π2. In order to show that all roots occurring inv are orthogonal toα3 we have to rule
out: γ1; γ3; γ5; γ6; γ9 andγ11 with notation as before. We may use, respectively:τ1 = s7s6s5s4;
τ3 = s6s5s4s3s2s1s4; τ5 = s7s6s5s4s3s2s1s4s5s6; τ6 = s4s5s6s7s8s2s4s3s1s5s4s6s5s7s6; τ9 =
s5s6s7s8s3s4s5s1s3s4s6s5s2s4s7s6 andτ11 = s8s6s5s4s3s2s4s1s3s5s6s4s5s2s4s3s7s6s5s4s1. Even
if wΠγ6 = γ6 + α2 + 2α3 + 2α4 + α5 > γ6 we cannot apply observation III in this case because
there is noτ with `(τ) = ht(γ6)− 1 satisfying condition 2. For this case we verify condition 3 by
direct computation.

Since all roots that might occur inv and that are not orthogonal toα2 lie in theWΠ-orbit of
someγi, they are excluded. Similarly, the possible occurring roots that are not orthogonal toα5 all
lie in theWΠ-orbit of some previously excluded root.
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No rootγ in Φ+ \ Φ(Π0) for which γ 6⊥ α4 is orthogonal toα2, α3 andα5, thus we have the
statement in typeE8, concluding the proof. �

Lemmas 3.4 and 4.6 together with Chevalley’s commutator formula ([27, Proposition 9.5.3])
imply that the elements inUw and inIm(α∨) for α ∈ Π commute withx = ẇv ∈ v0 ∩ ẇU . The
descriptions of(Tw)◦ and of the fiberπ−1

0 (uẇB) yield thus Theorem 4.4 in typeA1, D2n, E7 and
E8. For the remaining simply-laced cases there is some extra work to be done.

Lemma 4.7 LetΦ be of typeAn, for n ≥ 2,D2m+1, orE6. LetO, v0, w, x = ẇtv andΠ be as in
Lemma 4.6. Then all roots occurring inv areϑ-invariant.

Proof. By Lemma 4.6 we haveγ ⊥ Π but for this analysis we shall consider the caseΠ = ∅. In
any casewΠγ = γ for everyγ occurring inv. We will use the same strategy and notation as in
the proof of Lemma 4.6. We may use that ifϑγ 6= γ thenwγ = −ϑwΠγ = −ϑγ 6= −γ and that
observation I still applies. Moreover, aswΠγ = γ we modify the argument in observation 3 in
order to obtainγ ≤ ϑγ ≤ γ for a contradiction.

TypeAn. Let γ be a root occurring inv which is notϑ-invariant. Thenγj,t = αj + · · · + αt with
either: j ≤ t ≤ l − 2 or n − l + 3 ≤ j ≤ t or j ≤ l − 1 ≤ n − l + 2 ≤ t. For all ranges fort
andj we may chooseγj,t of minimal height among theγs,t occurring inv and useτ = sj+1 · · · st

together with observation III. This argument works also ifΠ = ∅.
TypeD2m+1. The positive roots that are notϑ-invariant areα2m, α2m+1, or of the formγj,q =∑n−2

p=j αp + αq for 1 ≤ j ≤ 2m − 1 andq = 2m, 2m + 1. None of these roots is orthogonal to
Π1, Π2 norΠ3. If Π = ∅ we excludeα2m andα2m+1 with τ = 1. Then we considerγ of minimal
height among theγj,q occurring inv and we rule it out by usingτ = sj+1 · · · s2m−1sq.

TypeE6. If γ is a positive root occurring inv which is notϑ-invariant, observation I with∆′ = Π1

shows that eitherγ or ϑγ is one of the following roots:β1 = α2 + α3 + α4; β2 = s1β1; β3 = s5β2;
β4 = s4β3; β5 = s3β4 andβ6 = s6β5. We may rule out the listed roots by usingτ1 = s4s3;
τ2 = τ1s1; τ3 = τ2s5; τ4 = s4s2s5s4s3s1; τ5 = s4s2s3s1s4s3 andτ6 = τ5s6, respectively. The root
β4 needs to be considered only whenΠ = ∅. In this case condition 2 is not compatible with the
assumption oǹ(τ4) introduced in observation III so condition 3 has to be verified directly. The
image of these roots throughϑ can be handled symmetrically. �

Combining Lemmas 3.4, 4.6 and 4.7, the descriptions of(Tw)◦ andπ−1
0 (ẇB), and Chevalley’s

commutator formula we obtain the proof of Theorem 4.4 ifΦ is simply-laced. We will deal now
with the multiply-laced types.

Lemma 4.8 Let Φ be multiply-laced. LetO, v0, w, Π be as in Theorem 4.4 and letx = ẇtv ∈
ẇB ∩ O. Then the roots occurring inv are orthogonal toΠ.

Proof. As in Lemma 4.6 we need only to considerΠ 6= ∅,∆. We shall use the same strategy and
observations I and II will still be of use. The labeling of the possibleΠ is as in Corollary 4.2.

TypeBn. In this caseΠ is eitherΠ1 or Π2 andwΠ is eitherwΠ1 or the product of the reflections
corresponding to those isolated simple roots withwΠ1.

Let Π = Π1. The rootsγ in Φ+ \ Φ+(Π1) that are not orthogonal toΠ1 are the following:
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µt,i−1 = αt + · · ·+ αi−1 with t < l andi ≥ l;
νt,i = αt + · · ·+ αi−1 + 2(αi + · · ·+ αn) with t < l andi ≤ l.

Observation II implies that it is enough to excludeµt,l−1 for every t ≤ l − 1. Let µt,l−1 be of
minimal height among theµs,l−1 occurring inv. Thenτ = st+1 · · · sl−1 rules it out. Condition 3 is
easily verified and it holds also ifΠ = Π2.

Let nowΠ = Π2 and let us assume thatγ occurs inv and is not orthogonal to some root in
Π \ Π1. Thenγ is one of the following roots:

βt,i−1 = αt + · · ·+ αi−1 with 1 ≤ t ≤ i− 1 < l − 1 andt 6= i− 1 for t odd;
δt = αt + · · ·+ αn for t < l;

γt,i = αt + · · ·+ αi−1 + 2(αi + · · ·+ αn) with 1 ≤ t ≤ i− 1 < l − 1 andt 6= i− 1 for t odd.

In order to rule outβt,i−1 we apply observation II and assume thatαi ∈ Π. Then we con-
siderβt,i−1 of minimal height among the roots of typeβs,i−1 occurring inv and we rule it out
by using τ = st+1 · · · si−1. We rule out the roots of typeδt by using τ = sn−1 · · · st. For
the last set of roots we may assume thatαi 6∈ Π by observation II and thenγt,i is ruled out by
τ = (sn−2 · · · si−1)(sn · · · si)(si−1 · · · st), concluding the proof in typeBn.

TypeCn. In this caseΠ is eitherΠ1 or Π2. The roots inΦ+ \ Φ(Π1) that are not orthogonal toΠ1

are of the form:

µt,i−1 = αt + · · ·+ αi−1 with t < l andi ≥ l;
νt,i = αt + · · ·+ αi−1 + 2(αi + · · ·+ αn−1) + αn with t < l andi ≤ l.

It is enough to rule out theµt,l−1. This is achieved by using the usual minimality argument and
τ = st+1 · · · sl−1. The required conditions hold for both choices ofΠ hence all roots occurring in
v are orthogonal toΠ1.

If Π = Π2 the possible occurring roots that are not orthogonal toΠ are of the following form:

µt,i−1 = αt + · · ·+ αi−1 with 1 ≤ t ≤ i− 1 ≤ l − 1;
ωi = 2(αi + · · ·+ αn−1) + αn for 1 ≤ i ≤ l − 1;
νt,i = αt + · · ·+ αi−1 + 2(αi + · · ·+ αn−1) + αn

with 1 ≤ t ≤ i− 1 ≤ l − 1 andt < i− 1 for t odd.

Let us consider the first set of roots. We consider the root of minimal height of typeµt,i−1. By
observation II we might assume thatαt 6∈ Π. Then we may useτ = st+1 · · · si−1 in order to rule
it out. For the second set of roots, by observation II we may assume thatαi 6∈ Π and we may use
τ = sn−1 · · · si. The last set of roots is ruled out by usingτ = (sn−1 · · · st)(sn−1 · · · si).

TypeF4. In this caseΠ is eitherΠ1 of typeB3, Π2 of typeC3 or Π3 of typeB2. We shall apply
observation I with∆′ = Π1 or Π2.

If Π = Π1 a direct computation shows that the roots that might occur inv and are not orthogonal
to Π lie either in theWΠ-orbit of α4 or in theWΠ-orbit of α2 + 2α3 + 2α4. The first one is ruled
out by usingτ = 1 whereas for the second one we may useτ = s3s4.

If Π = Π2 the roots that might occur inv and are not orthogonal toΠ lie in theWΠ-orbit of
α1 or in theWΠ-orbit of α1 + α2 + α3. We rule out these roots by usingτ = 1 andτ = s2s1,
respectively.
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If Π = Π3 the roots that might occur inv and are not orthogonal toΠ lie in theWΠ-orbit of
α1 +α2 +α3 +α4 or in theWΠ-orbit ofα1 +α2 + 2α3 + 2α4. We show that these roots might not
occur by usingτ = s3s2s1 andτ = s1s3s4, respectively.
TypeG2. In this caseΠ consists of a simple root.

If Π = {α1} the positive roots that do not lie inΠ and are not orthogonal toα1 areα2; s1α2;
α1 + α2 ands1(α1 + α2). We rule outα2 by usingτ = 1 andα1 + α2 by usingτ = s2.

If Π = {α2} the positive roots that do not lie inΠ and are not orthogonal toα2 areα1; s2α1;
3α1 + α2 ands2(3α1 + α2). We rule outα1 by usingτ = 1 and3α1 + α2 by usingτ = s1. �

If Φ is multiply-laced thenw0 = −1 so(Tw)◦ = 〈Im(α∨), α ∈ Π〉 commutes withx = ẇv ∈
v0. However, there might be mutually orthogonal rootsα andγ ∈ Φ+ for which α + γ ∈ Φ so
thatxα(h) andxγ(h

′) do not commute. By [4, Chapitre VI,§1.3] this might happen only ifΦ is
doubly-laced andα andγ are short roots. Therefore ifΦ is of typeG2, Lemma 4.8 implies that
(Tw)◦Uw commutes withx = ẇv ∈ v0 and Theorem 4.4 is proved. For the doubly-laced types
there is still some work to be done.

Lemma 4.9 Let Φ be doubly-laced. LetO, v0, w, andΠ be as in Theorem 4.4. Letx = ẇv ∈
ẇB ∩ O. Thenx is centralized by(Tw)◦Uw.

Proof. If Π = ∅ thenUw = Uw0 is trivial and so is(Tw) = (Tw0)◦ thus there is nothing to prove.
Similarly, the statement is clear ifΠ = ∆ so thatw = 1 andx is central.

By Lemmas 3.4 and 4.8 it is enough to show thatXα centralizesv for everyα ∈ Π. This is true
unlessα is short and there occurs a short rootγ in v, orthogonal toα and such thatα+ γ ∈ Φ. We
shall analyze the different cases separately using terminology and notation introduced in Corollary
4.2 and Lemma 4.8.
TypeBn. The only short root inΠ is α = αn. If there occursγ in v with γ ⊥ αn andγ + αn ∈ Φ
then γ is one of the rootsγi = αi + · · · + αn for 1 ≤ i ≤ l − 1 and we necessarily have
Π = Π1. Let us choose an ordering of the positive roots which is non-decreasing with respect to
the height and let us writev as a product of elements in root subgroups taken in this order. Then
x = ẇtv1xγl−1

(al−1)v2 · · · vl−1xγ1(a1)vl for someaj ∈ k and somevj ∈ U commuting withXαn.
Conjugation byxαn(1), Lemma 3.4 and Chevalley’s commutator formula give

xαn(1)xxαn(−1) = ẇtv1xγl−1
(al−1)xγl−1+αn(a′l−1)v2 · · · vl−1xγ1(a1)xγ1+αn(a′1)vl ∈ O ∩ ẇB.

If aj 6= 0 for somej we would havea′j 6= 0, contradicting Lemma 4.8.

TypeCn. Let α ∈ Π1 be a short root. There is only one positive rootγ such thatγ ⊥ α and
α+ γ ∈ Φ and it is not orthogonal toΠ1 so the statement holds forΠ = Π1.

Let Π = Π2 and letαi ∈ Π2 \Π1. The only positive rootγ such thatγ ⊥ αi andαi + γ ∈ Φ is
αi+2(αi+1+· · ·+αn−1)+αn. If such a root would occur inv we would havex = ẇtv1xγ(a)v2 with
v1, v2 ∈ U commuting withXαi

anda ∈ k·. Conjugation byxαi
(1), Lemma 3.4 and Chevalley’s

commutator formula give:

xαi
(1)xxα3(−1) = ẇtv1xγ(a)xγ+αi

(a′)v2 ∈ O ∩ ẇB

with a′ 6= 0, contradicting Lemma 4.8.
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TypeF4. Let Π = Π1. The only short root inΠ1 is α3 and the only positive root orthogonal toΠ1

for whichα3 + γ ∈ Φ is γ = α1 + 2α2 + 3α3 + 2α4. If x = ẇtv could be written aṡwtv1xγ(a)v2

for somea ∈ k· and for somevi ∈ U commuting withXα3, conjugation withxα3(1) arguing as in
typeCn would lead to a contradiction.

Let Π = Π2. There are no positive rootsγ orthogonal toΠ for whichγ + α3 or γ + α4 lies in
Φ so the result holds in this case.

Let Π = Π3. The only short root inΠ3 is α3 and the rootsγ orthogonal toΠ for which
γ + α3 ∈ Φ are:α1 + α2 + α3 andα1 + 2α2 + 3α3 + 2α4. Conjugation byxα3(1) and Lemma 4.8
show that none might occur inv. �

Lemma 4.9 implies thatdim(v0 ∩ ẇU) = 0 for Φ doubly-laced, conlcuding the proof of Theo-
rem 4.4 �

Corollary 4.10 Let O be a conjugacy class in a simple algebraic group over an algebraically
closed fieldk of good odd characteristic. ThenO is spherical if and only if there is aB-orbit v in
O for whichdimO = `(φ(v)) + rk(1− φ(v)).

Proof. One direction is Theorem 4.4, the other direction is [10, Theorem 5] whose proof holds
also in positive characteristic. �

Corollary 4.11 LetO, v0, w be as in Lemma 4.8. Thenv0 = O ∩BwB.

Proof. Let v ∈ V be such thatφ(v) = φ(v0) = w. By [10, Theorem 5] we havedim v = dimO
thereforev = v0. �

Remark 4.12 If O is a symmetric conjugacy class over an algebraically closed field of odd or
zero characteristic Theorem 4.4 follows from [25, Proposition 3.9, Theorem 4.6, Theorem 7.1]
and Corollary 4.11 follows from [25, Theorem 7.11, Lemma 7.12, Theorem 7.13]. IfO is a
spherical conjugacy class over an algebraically closed field of characteristic zero Theorem 4.4 is
[10, Theorem 1] and Corollary 4.11 is [10, Corollary 26].

Corollary 4.13 LetO, v0, w be as in Theorem 4.4. For everyx ∈ v0∩ ẇB we haveU ∩Gx = Uw

andT ◦
x = (Tw)◦ so thatdimU.x = `(w) anddimT.x = rk(1− w).

Proof. By Lemmas 4.6, 4.7, 4.8 and 4.9 for everyx ∈ ẇU ∩ v0 we haveU ∩ Gx ⊃ Uw and
T ◦

x ⊃ (Tw)◦ so thatB◦
x ⊃ (Tw)◦Uw. For dimensional reasons all inclusions are equalities. �

Remark 4.14 Another direct consequence of Theorem 4.4 is a generalization of [22, Proposition
6.3]. Letk0 be the number of even exponents ofLie(G). Then for every spherical conjugacy class
we have

dimO ≤ `(w0) + rk(1− w0) = dimB − (n− rk(1− w0)) = dimB − k0.

We end this section with some further consequences of the above results.

Let us recall that a standard parabolic subgroup can be naturally attached tov ∈ V ([16, §2]):

P (v) = {g ∈ G | g.v = v} .

Let L(v) denote its Levi component containingT and let∆(v) be the corresponding subset of∆:
this is the so-called set of simple roots ofv.
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Proposition 4.15 LetO, v0, w andΠ be as in Theorem 4.4. Then∆(v0) = Π.

Proof. Let α ∈ Π and letx ∈ v0 ∩ ẇB. Arguing as in Lemmas 4.6, 4.8 and 4.9 we see thatX−α

commutes withx. Then

X−α.v0 = X−αB.x ⊂ P u
α .(X−α.(Xα.x)) = P u

α .x = v0

soα ∈ ∆(v0) andΠ ⊂ ∆(v0).
By [8, Lemma 1(ii)] whose the argument works also in positive characteristic the derived sub-

group[L(v0), L(v0)] of L(v0) fixes a point inv0. Thus, ifα lies in ∆(v0) there isy = uẇv ∈ v0

for whichXα ∈ U ∩Gy and thereforeu−1Xαu ∈ U ∩Gx for x ∈ ẇU ∩ v0. By Corollary 4.13 we
haveu−1Xαu ⊂ Uw = 〈Xγ | γ ∈ Φ(Π)〉. This is possible only ifα ∈ Π. �

Remark 4.16 In characteristic zero Proposition 4.15 follows from [8, Page 289] and [21, Corol-
lary 3].

We shall consider an application of the above results to the analysis of theG-module decom-
position of the ringk[O] of regular functions on a spherical conjugacy classO. It is well-known
that such aG-module is multiplicity-free ([15], [9]).

Theorem 4.17 LetO, v0, w, Π as in Theorem 4.4. The weights occurring in theG-module de-
composition ofk[O] are self-adjoint and lie inP+ ∩Q ∩Ker(1 + w).

Proof. By Corollary 4.13 for everyx ∈ v0 ∩ ẇB we have(Bx)
◦ = (Tx)

◦Ux. Besides, a conjugacy
classO is locally closed inG so we may apply the arguments in the proof of [21, Corollary 2
(iii)] and [21, §6] to see that weights occurring in theG-module decomposition ofk[O] lie in
Ann(Tx) = {λ ∈ P | λ(t) = 1, ∀t ∈ Tx} ⊂ Ann(T ◦

x ) = Ann((Tw)◦). It follows from Lemmas
4.6, 4.7, 4.8 and the description of(Tw)◦ that for λ ∈ Ann(Tx) we have(λ, α) = (λ, ϑα) for
α ∈ ∆ \ Π and0 = (λ, α) = (λ,−ϑα) = (λ, ϑα) for α ∈ Π. Henceϑλ = λ and we have the
first statement. For the second statement the inclusion inP+ is obvious, the inclusion inQ follows
from the fact that the ring of regular functions onO is aGad-module. Moreover,∆(v0) = Π
by Proposition 4.15 andλ ⊥ ∆(v0) by [8, Lemma 1(ii)], where the proof holds also in positive
characteristic. Then the first statement implies that−λ = w0λ = wwΠλ = wλ. �

Remark 4.18 The problem of theG-module decomposition of spherical nilpotent orbits has been
already addressed in [1], [20] and [23]. The analysis ofk[G/K] for a symmetric variety is to be
found in [32].
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Birkhäuser (1998).

[28] T.A. SPRINGER, Schubert varieties and generalizations,Representation theories and alge-
braic geometry (Montreal, PQ, 1997), 413-440, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci.,
514, Kluwer Acad. Publ., Dordrecht, (1998).

[29] T.A. SPRINGER, Some results on algebraic groups with involutions,Algebraic groups and
related topics (Kyoto/Nagoya, 1983), 525–543, Adv. Stud. Pure Math., 6, North-Holland, Am-
sterdam, (1985).

[30] T.A. SPRINGER, R. STEINBERG Conjugacy classes,In: “Seminar on algebraic groups
and related finite groups”. LNM 131, 167–266, Springer-Verlag, Berlin Heidelberg New York
(1970).

[31] E. VINBERG, Complexity of action of reductive groups,Func. Anal. Appl. 20, 1–11 (1986).
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