Representation Theory of groups

Giovanna Carnovale

june 23, 2009

Abstract

It is not necessary to solve all the exercises to pass the exam but Exercise 4 is mandatory. **All answers have to be motivated.**

- 1. Let G be a finite group and let $g, h \in G$. Show that g is conjugate to h if and only if $\chi(g) = \chi(h)$ for every irreducible complex character of G.
- 2. Let Q be the following Dynkin quiver of type D_4

- (a) Give a labeling of the nodes so that if there is a path from i to j then i < j.
- (b) Let $V = V_{\alpha_1}$ be the irreducible representation of dimension vector α_1 , according to your labeling. Verify that V is surjective at 4.
- (c) Verify that F_4^+V is surjective at 3, that $F_3^+F_4^+V$ is surjective at 2, that $F_2^+F_3^+F_4^+V$ is surjective at 1.
- (d) Provide an explicit description of the representation $W = F_1^+ F_2^+ F_3^+ F_4^+ V$ of Q (i.e., dimension vector and linear maps between the vector spaces).
- (e) Prove that W is indecomposable but not irreducible.
- 3. Let k be an algebraically closed field. Let A be a finite dimensional semisimple algebra over k and let Z(A) be the center of A

- (a) Show that a ∈ A acts as a scalar on every irreducible representation of A if and only if a ∈ Z(A) (Hint: use map ⊕_{i∈I}ρ_i: A → End(⊕_{i∈I}V_i) where the ρ_i: A → End(V_i) for i ∈ I are all the irreducible representations of A).
- (b) Let G be a finite group and assume in addition that $k = \mathbb{C}$. For the character χ of a representation ρ of G, let

$$Z(\chi) = \{ g \in G \mid |\chi(g)| = \chi(1) \}.$$

Show that $g \in Z(\chi)$ if and only if $\rho(g)$ is a scalar matrix.

- (c) Show that $Z(G) = \bigcap_{i \in I} Z(\chi_i)$ where the χ_i are all the complex irreducible characters of G.
- 4. Let the following table be part of the character table of a finite group G:

G	Cl(1)	Cl(a)	Cl(b)	Cl(c)	Cl(d)	Cl(e)	Cl(f)
χ_1		1	1	1	1	1	1
χ_2	1		1	ζ	ζ^2	ζ	ζ^2
χ_3	1	1		ζ^2	ζ	ζ^2	ζ
χ_4	2	-2	0		-1		1
χ_5	2	-2	0	$-\zeta$		ζ	ζ^2
χ_6	2	-2	0	$-\zeta^2$	$-\zeta$		ζ
χ_7	3	3	-1	0	0	0	

where ζ is a primitive third root of unity, Cl(g) denotes the conjugacy class of $g \in G$ and a, b, c, d, e, f are nontrivial elements of G.

- (a) Determine $\chi_1(1)$ and the order of G.
- (b) Complete the character table of G.
- (c) Determine the order of each conjugacy class.
- (d) Determine the order of [G, G] and the order of Z(G).
- (e) Is G a solvable group?
- (f) Show that c cannot be conjugate to its inverse whereas b is conjugate to its inverse.
- (g) Let ρ_i for i = 1, ..., 7 be the representation of G whose character is χ_i . Decompose $\rho_7 \otimes \rho_4$, $\rho_7 \otimes \rho_5$ and $\rho_7 \otimes \rho_6$ into irreducibles.