Binary positivity in the language of locales

Francesco Ciraulo

DEGLI STUDI DI PADOVA

Department of Mathematics University of Padua

4th Workshop on Formal Topology June 15-20 2012, Ljubljana

Francesco Ciraulo (Padua)

Binary positivity in the language of locales

4WFTop - Ljubljana, June 15-20 2012 1 / 29

イロト イポト イヨト イヨト

About this talk

What does a binary positivity predicate correspond to in the languages of locales?

a formal topology IS TO a locale AS a POSITIVE topology IS TO a locale + ...?!?

> Answer: a suitable system of overt, weakly closed sublocales

Francesco Ciraulo (Padua)

Binary positivity in the language of locales

◆□ ▶ < 団 ▶ < 重 ▶ < 重 ▶ 至 の Q @ 4WFTop - Ljubljana, June 15-20 2012 2 / 29

Locales with bases

A base for a locale
$$\mathcal{L}$$
 is a subset $S \subseteq \mathcal{L}$ s.t.
 $x = \bigvee \{a \in S \mid a \leq x\}$
(for every x in \mathcal{L})
Put
 $a \triangleleft U \quad \stackrel{\text{def.}}{\longleftrightarrow} a \leq \bigvee U$
(for $a \in S$ and $U \subseteq S$)
so that
 $\{a \in S \mid a \triangleleft U\} \cong \bigvee U$
(formal open subset)
 $(any \text{ element of } \mathcal{L})$
Formal topology corresponding to $\mathcal{L} \implies (S, \triangleleft)$
Formal topology = axiomatization of (S, \triangleleft)
Overt locale = formal topology + unary positivity predicate
 $= (S, \triangleleft, Pos)$
 $\succeq Pos(a) \iff ``\exists_{\mathcal{L}}(a) = 1"$

Francesco Ciraulo (Padua)

Binary positivity in the language of locales

4WFTop - Ljubljana, June 15-20 2012 3 / 29

locales Positive topologies (*formal topologies* + binary positivity) locale $(\overbrace{S,\triangleleft}, \ltimes)$ *←* binary positivity $\ltimes \subset S \times Pow(S)$ $\frac{a \ltimes U}{a \in U} + \frac{a \ltimes U \quad U \subseteq V}{a \ltimes V} + \frac{a \ltimes U}{a \ltimes V} + \frac{a \ltimes U}{a \ltimes \{b \in S \mid b \ltimes U\}} + \frac{a \ltimes U}{a \ltimes \{b \in S \mid b \ltimes U\}} + \frac{a \ltimes U}{a \ltimes \{b \in S \mid b \ltimes U\}} + \frac{a \ltimes U}{a \ltimes \{b \in S \mid b \ltimes U\}} + \frac{a \ltimes U}{a \ltimes \{b \in S \mid b \ltimes U\}} + \frac{a \ltimes U}{a \ltimes \{b \in S \mid b \ltimes U\}} + \frac{a \ltimes U}{a \ltimes \{b \in S \mid b \ltimes U\}} + \frac{a \ltimes U}{a \ltimes \{b \in S \mid b \ltimes U\}} + \frac{a \ltimes U}{a \ltimes \{b \in S \mid b \coloneqq U\}} + \frac{a \ltimes U}{a \ltimes \{b \in S \mid b \coloneqq U\}} + \frac{a \ltimes U}{a \ltimes \{b \in S \mid b \coloneqq U\}} + \frac{a \ltimes U}{a \ltimes \{b \in S \mid b \coloneqq U\}} + \frac{a \ltimes U}{a \ltimes \{b \in S \mid b \coloneqq U\}} + \frac{a \ltimes U}{a \ltimes \{b \in S \mid b \coloneqq U\}} + \frac{a \ltimes U}{a \ltimes \{b \in S \mid b \coloneqq U\}} + \frac{a \ltimes U}{a \ltimes \{b \in S \mid b \coloneqq U\}} + \frac{a \ltimes U}{a \ltimes \{b \in S \mid b \coloneqq U\}} + \frac{a \ltimes U}{a \ltimes \{b \in S \mid b \in U\}} + \frac{a \ltimes U}{a \ltimes \{b \in S \mid b \in U\}} + \frac{a \ltimes U}{a \ltimes \{b \in S \mid b \in U\}} + \frac{a \ltimes U}{a \ltimes \{b \in S \mid b \in U\}} + \frac{a \ltimes U}{a \ltimes \{b \in S \mid b \in U\}} + \frac{a \ltimes U}{a \coloneqq \{b \in S \mid b \in U\}} + \frac{a \ltimes U}{a \coloneqq \{b \in S \mid b \in U\}} + \frac{a \ltimes U}{a \coloneqq \{b \in S \mid b \in U\}} + \frac{a \ltimes U}{a \coloneqq \{b \in S \mid b \in U\}} + \frac{a \ltimes U}{a \coloneqq \{b \in S \mid b \in U\}} + \frac{a \ltimes U}{a \coloneqq \{b \in S \mid b \in U\}} + \frac{a \ltimes U}{a \coloneqq \{b \in S \mid b \in U\}} + \frac{a \ltimes U}{a \coloneqq \{b \in S \mid b \in U\}} + \frac{a \ltimes U}{a \coloneqq \{b \in S \mid b \in U\}} + \frac{a \ltimes U}{a \coloneqq \{b \in S \mid b \in U\}} + \frac{a \ltimes U}{a \coloneqq \{b \in S \mid b \in U\}} + \frac{a \ltimes U}{a \coloneqq \{b \in S \mid b \in U\}} + \frac{a \ltimes U}{a \coloneqq \{b \in S \mid b \in U\}} + \frac{a \ltimes U}{a \coloneqq \{b \in S \mid b \in U\}} + \frac{a \coloneqq U}{a \coloneqq \{b \in S \mid b \in U\}} + \frac{a \coloneqq U}{a \vdash \{b \in S \mid b \in U\}} + \frac{a \coloneqq U}{a \vdash \{b \in S \mid b \in U\}} + \frac{a \coloneqq U}{a \vdash \{b \in S \mid b \in U\}} + \frac{a \coloneqq U}{a \vdash \{b \in S \mid b \in U\}} + \frac{a \coloneqq U}{a \vdash \{b \in S \mid b \in U\}} + \frac{a \vdash U}{a \vdash \{b \in S \mid b \in U\}} + \frac{a \vdash U}{a \vdash \{b \in S \mid b \in U\}} + \frac{a \vdash U}{a \vdash \{b \in S \mid b \in U\}} + \frac{a \vdash U}{a \vdash \{b \in S \mid b \in U\}} + \frac{a \vdash U}{a \vdash \{b \in S \mid b \in U\}} + \frac{a \vdash U}{a \vdash \{b \in S \mid b \in U\}} + \frac{a \vdash U}{a \vdash \{b \in S \mid b \in U\}} + \frac{a \vdash U}{a \vdash U} +$ a < V U $\overbrace{(\exists u \in U)(u \ltimes V)}^{a \ltimes U} (compatibility)$ $\{a \in S \mid a \ltimes U\} \mid \leftarrow$ "formal closed" subset FormalClosed(\ltimes) $\stackrel{def}{=}$ {formal closed subsets w.r.t. \ltimes }

Francesco Ciraulo (Padua)

Binary positivity in the language of locales

< □ ▶ < □ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ ○ Q ○ 4WFTop - Ljubljana, June 15-20 2012 4 / 29

Two notions of closure

Intuitionistically, TWO different ways of defining *closure* for a subspace Y of a topological space:

-int(-Y) = the complement of the interior of the complement of X cl(Y) = the set of adherent points of X $cl(Y) \subseteq -int(-Y)$ and so $Y = -int(-Y) \implies Y = cl(Y)$

but NOT the other way round (counterexample: discrete topology).

Francesco Ciraulo (Padua)

Binary positivity in the language of locales

Example: positivities on a topological space

 (X, τ) topological space $S \subseteq \tau$ base

For x a point, $\Diamond x \stackrel{def}{=} \{a \in S \mid x \in a\} =$ basic open neighbourhoods of x.

$$a \ltimes_X U \stackrel{def}{\Longrightarrow} (\exists x \in a) (\Diamond x \subseteq U) \iff (\exists x \in X) (a \in \Diamond x \subseteq U)$$

$$\begin{array}{rcl} \textit{FormalClosed}(\ltimes_X) &\cong & \{D \subseteq X \mid D = cl(D)\} \\ & U &\longmapsto & \{x \in X \mid \Diamond x \subseteq U\} \\ & \{a \in S \mid a \ \emptyset \ D\} & \longleftarrow & D \end{array}$$

└─ Sambin's notation for inhabited intersection

More generally:

For every subset $Y \subseteq X$, the relation $a \ltimes_Y U \stackrel{def}{\iff} (\exists y \in Y) (a \in \Diamond y \subseteq U)$ is a *positivity* and *FormalClosed*(\ltimes_Y) \cong {*closed sets in the subspace topology on* Y}.

Francesco Ciraulo (Padua)

Binary positivity in the language of locales

4 日本 4 周本 4 国本 4 国本

On the lattice of positivities

 \mathcal{L} locale S base

$$\frac{Posty(\mathcal{L})}{=} \stackrel{\text{def}}{=} \text{all positivities on } \mathcal{L} \text{ (w.r.t. } S\text{)}.$$

• *Posty*(*L*) is ordered by INCLUSION:

$$imes_1 \leq \ltimes_2 \stackrel{def}{\Longleftrightarrow} (orall a \in S, \, orall U \subseteq S)(a \ltimes_1 U \Rightarrow a \ltimes_2 U)$$

• *Posty*(\mathcal{L}) is a SUPLATTICE with: $a(\bigvee_i \ltimes_i) U \iff \exists i (a \ltimes_i U)$

So $Posty(\mathcal{L})$ has:

 $\mathsf{MINIMUM} \quad a \ltimes_{\min} U \iff \mathsf{falsum}$

MAXIMUM $a \ltimes_{max} U \iff a \ltimes U$ for some positivity \ltimes (a more explicit characterization below)

Francesco Ciraulo (Padua)

Binary positivity in the language of locales

4WFTop - Ljubljana, June 15-20 2012 7 / 29

イロト 不得 とくき とくき とうき

Splitting subsets & suplattice morphisms

(completely-prime up-sets & sup-preserving maps)

$$Z \subseteq \mathcal{L}$$
 is splitting if $\begin{array}{c} x \leq \bigvee Y \quad x \in Z \\ Y \searrow Z \end{array}$, that is, $(\bigvee Y) \in Z \iff Y \oslash Z$

for every $\{x\} \cup Y \subseteq \mathcal{L}$. Let us put $Split(\mathcal{L}) \stackrel{def}{=} \{splitting \ subsets \ of \ \mathcal{L}\}$.

Facts:

• $(Split(\mathcal{L}), \bigcup)$ is a suplattice;

there exists an isomorphism of suplattices

$$\begin{array}{rcl} Split(\mathcal{L}) &\cong & \mathsf{SupLat}(\mathcal{L}, \Omega) \\ Z &\mapsto & [x \mapsto \{* \mid x \in Z\}] \\ \varphi^{-1}(\{*\}) & \leftarrow & \varphi \end{array}$$

where $\Omega = Pow(\{*\})$ is the frame of truth values.

Examples: points, Pos.

Francesco Ciraulo (Padua)

$FormalClosed(\ltimes) \hookrightarrow Split(\mathcal{L}) \cong \mathbf{SupLat}(\mathcal{L}, \Omega)$

Thanks to *compatibility*...

$$\begin{array}{rcl} \textit{FormalClosed}(\ltimes) & \hookrightarrow & \textit{Split}(\mathcal{L}) \\ & U & \mapsto & \uparrow U = \{x \in \mathcal{L} \mid u \leq x \text{ for some } u \in U\} \\ \{a \in S \mid a \ltimes U\} & \mapsto & \{x \in \mathcal{L} \mid (\exists a \in S) (a \leq x \text{ and } a \ltimes U)\} \end{array}$$

 \sim is a sub-suplattice of $Split(\mathcal{L})$ (w.r.t. union)

Francesco Ciraulo (Padua)

Binary positivity in the language of locales

4WFTop - Ljubljana, June 15-20 2012 9 / 29

イロト 不得下 イヨト イヨト 二日

Positivities AS sub-suplattices of $Split(\mathcal{L})$

A base-independent description of positivities

 $\mathcal L$ locale

For each base S of \mathcal{L} , the following defines a BIJECTION between

 $Posty(\mathcal{L})$ w.r.t. *S* and {sub-suplattices of $Split(\mathcal{L})$ }

 $\ltimes \quad \longmapsto \quad \{\uparrow \ U \mid U \in FormalClosed(\ltimes)\}$

$$\left(a\ltimes_F U \stackrel{def}{\Longleftrightarrow} (\exists Z \in F)(a \in Z \cap S \subseteq U)\right) \quad \longleftarrow \quad F$$

Note: FormalClosed(\ltimes_F) = { $Z \cap S \mid Z \in F$ } \cong F

Corollaries

• For
$$S_1, S_2$$
 bases of \mathcal{L} : Posty(\mathcal{L}) w.r.t. $S_1 \cong Posty(\mathcal{L})$ w.r.t. S_2

• For every \ltimes one has: $\ltimes = \ltimes_{FormalClosed(\ltimes)}$, that is, $a \ltimes U \iff a \in Z \subseteq U$ for some $Z \in FormalClosed(\ltimes)$ Francesco Gravio (Padua) Binary positivity in the language of locale 4WF for - Linkhana, June 15-20 2012 10 / 2 The greatest positivity \ltimes_{max} in terms of splitting subsets

In the previous isomorphism

 $Posty(\mathcal{L}) \cong \{ sub-suplattices of Split(\mathcal{L}) \}$

 \ltimes_{max} corresponds to $Split(\mathcal{L})$

so
$$\Big[a \ltimes_{max} U \iff (\exists Z \in Split(\mathcal{L})) (a \in Z \cap S \subseteq U) \Big]$$

and
$$(FormalClosed(\ltimes_{max})) = \{Z \cap S \mid Z \in Split(\mathcal{L})\} \cong Split(\mathcal{L})$$

Constructively...

If $\mathcal{L} = (S, \triangleleft)$ is **inductively generated**, then \ltimes_{max} is generated by **coinduction**. (Martin-Löf & Sambin - *Generating Positivity by Coinduction*)

Francesco Ciraulo (Padua)

イロト 不得下 イヨト イヨト 二日

Formal closed subsets AS

Bunge & Funk, Constructive Theory of the Lower Power Locale, MSCS 6 (1996)

Points of the lower powerlocale \cong

- \cong overt, weakly closed sublocales of $\mathcal L$
- \cong suplattice morphisms $\mathcal{L} \to \Omega = Pow(\{*\})$
- \cong splitting subsets of \mathcal{L}
- $\cong \bigcup_{\kappa \in Posty(\mathcal{L})} FormalClosed(\kappa)$

 $FormalClosed(\ltimes_{max})$

See also Spitters, *Locatedness and overt sublocales*, **APAL** 162 (2010) and Vickers, *Constructive points of powerlocales*, **Math. Proc. Cambridge Philos. Soc.** 122 (1997)

=

Francesco Ciraulo (Padua)

Binary positivity in the language of locales

Weakly closed sublocales

See Vickers, Sublocales in Formal Topology, JSL 72 (2007) and Johnstone's Elephant for the more general notion of <u>fibrewise closed</u>.

A weakly closed sublocale of (S, \triangleleft) is one generated as follows

- **9** for each $a \in S$ fix a (possibly empty) set I(a) of PROPOSITIONS;
- **(a)** for $a \in S$ and $P \in I(a)$ impose the EXTRA condition $a \triangleleft \{x \in S \mid P\}$.

CLASSICALLY: this is just a <u>closed</u> sublocale.

Warning

In the spatial case, cl(Y) need not be weakly closed!

- Weakly closed sublocales are closed under binary joins. (Johnstone)
- If $\{Y \subseteq X \mid cl(Y) = Y\}$ is closed under binary unions, then LLPO. (Bridges)

Francesco Ciraulo (Padua)

Binary positivity in the language of locales

4WFTop - Ljubljana, June 15-20 2012 13 / 29

イロト イポト イヨト イヨト

Overt, weakly closed sublocales

 $(S, \lhd') \hookrightarrow (S, \lhd)$ is <u>weakly closed</u> AND overt

there exists $P \in \mathbf{SupLat}(\mathcal{L}, \Omega) \cong Split(\mathcal{L})$ s.t.

 \lhd' can be generated by imposing the EXTRA axioms

 $a \triangleleft' \{x \in S \mid P(a) = 1\}$, or equivalently $a \triangleleft' \{a\} \cap P$, for all $a \in S$.

P is the unary positivity predicate of (S, \lhd') .

Fact:

point of (S, \triangleleft') = point of (S, \triangleleft) s.t. all its basic neighbourhoods are in P

Formal closed subsets AS overt weakly-closed sublocales

Given (S, \lhd, \ltimes)	positive topology
and $U = \{x \in S \mid x \ltimes U\}$	(formal closed subset)

↑ <i>U</i>	splitting subset
$x\mapsto \{*\mid x\in (\uparrow U)\}$	suplattice morphism $\mathcal{L} \to \Omega$

overt, weakly closed sublocale generated by imposing $a \triangleleft \{a\} \cap U$ with UNARY positivity given by $(_) \ltimes U$.

This is the smallest sublocale for which $(_) \ltimes U$ is a unary positivity predicate. Its points are the points of (S, \triangleleft) which are "contained" in U.

Francesco Ciraulo (Padua)

◆□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ > ○ Q ○
4WFTop - Ljubljana, June 15-20 2012
15 / 29

Positivities AS . . .

A positivity on a locale \mathcal{L} is...

a suplattice of $\left\{ \begin{array}{l} \text{splitting subsets of } \mathcal{L} \\ \text{suplattice morphisms from } \mathcal{L} \text{ to } \Omega \\ \text{overt, weakly closed sublocales of } \mathcal{L} \end{array} \right.$

and $\ltimes_{max} \cong Split(\mathcal{L}) \cong SupLat(\mathcal{L}, \Omega) \cong \{ overt, weakly closed sublocales of \mathcal{L} \}$

4 D b 4 B b 4 B b 4 B b

Morphisms between positive topologies

A morphism
$$f: (\overbrace{S_1, \triangleleft_1}^{\mathcal{L}_1}, \ltimes_1) \longrightarrow (\overbrace{S_2, \triangleleft_2}^{\mathcal{L}_2}, \ltimes_2)$$
 is

- a morphism f : L₁ → L₂ of locales
 (with Ωf the corresponding morphism of frames in the opposite direction)
- such that:

$$\begin{array}{c} a \leq \Omega f(b) \\ a \ltimes_1 U \end{array} \right\} \quad \Longrightarrow \quad b \ltimes_2 \left\{ y \in S_2 \mid \underbrace{\exists u \in U.u \leq \Omega f(y)}_{\Omega f(y) \in \uparrow U} \right\}$$

for all $a \in U \subseteq S_1$ and $b \in S_2$.

?!?

Francesco Ciraulo (Padua)

 Positive topology = (\mathcal{L}, Φ) , with \mathcal{L} a locale and $\Phi \hookrightarrow \text{SupLat}(\mathcal{L}, \Omega)$

Given (\mathcal{L}_1, Φ_1) , (\mathcal{L}_2, Φ_2) and $f : \mathcal{L}_1 \longrightarrow \mathcal{L}_2$ in **Loc**

TFAE

If is a morphism of positive topologies;

- e the map U → S₂ ∩ (Ωf)⁻¹(↑ U) maps formal closed of (L₂, Φ₂) to formal closed of (L₁, Φ₁);
- (Ωf)⁻¹ maps elements of Split(L₁) corresponding to Φ₁ to elements of Split(L₂) corresponding to Φ₂;
- $(\forall \varphi \in \Phi_1)(\varphi \circ \Omega f \in \Phi_2), \text{ that is, } \Phi_1 \circ \Omega f \subseteq \Phi_2.$

$$\frac{[\Omega \xleftarrow{\varphi} \mathcal{L}_1] \in \Phi_1}{[\Omega \xleftarrow{\varphi} \mathcal{L}_1 \xleftarrow{\Omega f} \mathcal{L}_2] \in \Phi_2}$$

Francesco Ciraulo (Padua)

Binary positivity in the language of locales

The category **PTop** of Positive Topologies

Objects	(\mathcal{L}, F)	(\mathcal{L}, Φ)
	${\cal L} \ { m locale} \ \ +$	
binary positivity	$F \hookrightarrow {\it Split}({\cal L})$	$\Phi \hookrightarrow SupLat(\mathcal{L}, \Omega)$

Morphisms	$f: \mathcal{L}_1 \to \mathcal{L}_2$ of locales s.t.	
	$(\Omega f)^{-1}[F_1] \subseteq F_2$	$\Phi_1\circ\Omega f\subseteq \Phi_2$

Francesco Ciraulo (Padua)

Binary positivity in the language of locales

4WFTop - Ljubljana, June 15-20 2012 19 / 29

- 2

イロト イヨト イヨト イヨト

Embedding Loc into PTop

 $\mathsf{PTop}\big((\mathcal{L}_1, \Phi_1), (\mathcal{L}_2, \Phi_2)\big) = \{f \in \mathsf{Loc}(\mathcal{L}_1, \mathcal{L}_2) \mid \Phi_1 \circ \Omega f \subseteq \Phi_2\}$

$$\begin{array}{rcl} \mathsf{Loc}(\mathcal{L},\mathcal{L}') &\cong & \mathsf{PTop}\big((\mathcal{L},\Phi),(\mathcal{L}',\Phi_{max})\big) & \text{for every} & \Phi \hookrightarrow \mathsf{SupLat}(\mathcal{L},\Omega) \\ & & \sim & \mathsf{SupLat}(\mathcal{L}',\Omega) \end{array}$$

By identifying
$$\mathcal{L}$$
 with $(\mathcal{L}, \overbrace{\operatorname{SupLat}(\mathcal{L}, \Omega)}^{\Phi_{max}})$, we get: $\operatorname{Loc} \hookrightarrow \mathsf{PTop}$.

Fact: Loc is a reflective subcategory of PTop .

Francesco Ciraulo (Padua)

Binary positivity in the language of locales

Points of a positive topologies

Def: a point of (S, \lhd, \ltimes) is...

...a point of (S, \triangleleft) which "belongs" to *FormalClosed*(\ltimes)

i.e. a point whose set of basic neighbourhoods belongs to $FormalClosed(\ltimes)$.

$$\begin{array}{rcl} \textit{Points}(\mathcal{L}, \Phi) &\cong &\textit{Points}(\mathcal{L}) \cap \Phi \\ &\cong &\textit{Frame}(\mathcal{L}, \Omega) \cap \Phi \\ &\cong & \{\varphi \in \Phi \mid \varphi \text{ preserves finite meets}\} \\ &\cong &\textit{PTop}(\mathbf{1}, (\mathcal{L}, \Phi)) \end{array}$$

where 1= terminal object of PTop= terminal locale + $\Phi_{\textit{max}}$

Idea: a positivity is a way for selecting points. Sambin & Trentinaglia, On the meaning of positivity relations..., J.UCS 11 (2005)

Note that: $Points(\mathcal{L}, \Phi_{max}) = Points(\mathcal{L}, SupLat(\mathcal{L}, \Omega)) = Points(\mathcal{L})$.

Francesco Ciraulo (Padua)

One formal closed subset, three positive topologies

Let (S, \lhd, \ltimes) be a positive topology.

For any $H \in FormalClosed(\ltimes)$ one can construct:

- an overt, weakly closed sublocale (S, ⊲_H)
 by adding the extra axiom schema a ⊲ {a} ∩ H
 (H acts as the unary positivity predicate)
- another positivity \ltimes_H defined by: a $\ltimes_H U \stackrel{\text{def}}{\iff} a \ltimes H \cap U$ (j.w.w. G. Sambin and M. Maietti)

And one can show that:

$$Pt(S, \triangleleft_H) = Pt(S, \triangleleft_H, \ltimes_H) = \{ \alpha \in Pt(S, \triangleleft) \mid \alpha^{-1}(\top) \cap S \subseteq H \}$$

= $Pt(S, \triangleleft, \ltimes_H)$

m au this is PREDICATIVE (even when ⊲ is not generated)

Francesco Ciraulo (Padua)

イロト 不得下 イヨト イヨト 二日

Two adjunctions between **Top** and **PTop**

Extending the usual adjunction between Top and Loc:

TopLocPTop
$$X$$
 \mapsto ΩX \mapsto $(\Omega X, \ltimes_{max})$ $Pt(\mathcal{L})$ \leftrightarrow \mathcal{L} \leftrightarrow (\mathcal{L}, Φ)

A new adjunction:

Top I		РТ	ор	
Х	\mapsto	(Ω <i>X</i> ,	\ltimes_X)
$Pt(\mathcal{L}, \Phi)$	\leftarrow	$(\mathcal{L},$	Φ)	

Recall that $a \ltimes_X U \iff (\exists x \in X) (a \in \Diamond x \subseteq U)$ where $\Diamond x =$ basic neighbourhoods of x.

CLASSICALLY: $\ltimes_X = \ltimes_{max}$ and so $Pt(\Omega X, \ltimes_X) = Pt(\Omega X, \ltimes_{max}) \cong Pt(\Omega X)$.

Francesco Ciraulo (Padua)

Two notions of sobriety

4

points =
$$Pt(\Omega X) = Pt(\Omega X, \ltimes_{max})$$

strong" points = $Pt(\Omega X, \ltimes_X)$

 $\alpha \in Pt(\Omega X)$ is "strong" if for all $a \in \alpha$, there exists $x \in X$ s.t. $a \in \Diamond x \subseteq \alpha$.

sober $X = Pt(\Omega X, \ltimes_{max})$ weak sober $X = Pt(\Omega X, \ltimes_X)$

If X is T_2 , then X is weakly sober.

On the contrary, if " $T2 \Rightarrow sober$ " were true, then LPO would hold.

Fourman & Scott, Sheaves and Logic, in Applications of sheaves, LNM 753 (1979) Aczel & Fox, Separation properties in constructive topology, OLG 48 (2005)

Francesco Ciraulo (Padua)

イロト イポト イラト イラト

Spatiality for positive topologies

A positive topology (\mathcal{L},\ltimes) is (bi-)spatial if

$$(\mathcal{L},\ltimes) = (\Omega Pt(\mathcal{L},\ltimes),\ltimes_{Pt(\mathcal{L},\ltimes)})$$

that requires TWO things:

By unfolding definitions:

- $x \leq y \text{ IFF } (\forall \alpha \in Pt(\mathcal{L}) \cap \Phi)(\alpha(x) \leq \alpha(y))$
- $a \ltimes U \mathsf{IFF} (\exists \alpha \in \mathsf{Pt}(\mathcal{L}, \ltimes)) (a \in \alpha^{-1}(\top) \cap S \subseteq U)$

i.e. Φ coincides with its sub-suplattice spanned by $Pt(\mathcal{L}) \cap \Phi$.

¹Rinaldi, Sambin and Schuster have a joint work in progress about reducibility in Ring Theory. Francesco Ciraulo (Padua) Binary positivity in the language of locales 4WFTop - Ljubljana, June 15-20 2012 25 / 29

Positivity relations on suplattices

The notion of a *binary positivity predicate* makes sense also for the category **SupLat** of suplattices and sup-preserving maps.

 $\frac{\text{basic topology}}{\text{positivity } \Phi \hookrightarrow \mathbf{SupLat}(\mathcal{L}, \Omega) }$

See C. & Sambin, A constructive Galois connection between closure and interior, JSL, to appear and my talk in Kanazawa 2010.

As before, every suplattice \mathcal{L} can be identified with the basic topology $(\mathcal{L}, \Phi_{max})$.

イロト 不得下 イヨト イヨト 二日

```
Positivity on topoi (?)
Future work (?)
```

By adopting the view of TOPOI as generalized spaces...

${\cal L}$ locale	\rightsquigarrow	${\mathcal E}$ topos
Ω	$\sim \rightarrow$	Set
$arphi \in SupLat(\mathcal{L}, \Omega)$	\rightsquigarrow	functor from ${\mathcal E}$ to ${\it Set}$ that preserves colimits
	$\sim \rightarrow$	

<u>Aim:</u> to obtain a PREDICATIVE account of some Topos Theory (e.g. of *closed* subtopoi).

イロト 不得下 イヨト イヨト 二日

References

- P. Aczel and C. Fox, Separation properties in constructive topology, in From sets and types to topology and analysis, Oxford Logic Guides 48 (2005), pp. 176-192.
- M. Bunge and J. Funk, Constructive Theory of the Lower Power Locale, Mathematical Structures in Computer Science 6 (1996), pp. 69-83.
- F. Ciraulo and G. Sambin, A constructive Galois connection between closure and interior, Journal of Symbolic Logic, to appear (arXiv:1101.5896v2).
- M. P. Fourman and D. S. Scott, Sheaves and Logic, in Applications of sheaves, Lecture Notes in Mathematics 753 (1979), pp. 302-401.
- P. T. Johnstone, Sketches of an elephant: a topos theory compendium, Oxford Logic Guides 43-44 (2002).
- **O** P. Martin-Löf and G. Sambin, *Generating Positivity by Coinduction*, in Sambin's book.
- G. Sambin and G. Trentinaglia, On the meaning of positivity relations for regular formal spaces, Journal of Universal Computer Science 11 (2005), pp. 2056-2062.
- B. Spitters, Locatedness and overt sublocales, Annals of Pure and Applied Logic 162 (2010), pp. 36-54.
- S. Vickers, Constructive points of powerlocales, Mathematical Proceedings of the Cambridge Philosophical Society 122 (1997), pp. 207-222.
- S. Vickers, Sublocales in Formal Topology, Journal of Symbolic Logic 72 (2007), pp. 463-482.

Francesco Ciraulo (Padua)

Najlepša hvala!

Thank you very much!

Francesco Ciraulo (Padua)

Binary positivity in the language of locales

< □ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ = ■ ○ Q ○ 4WFTop - Ljubljana, June 15-20 2012 29 / 29