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About this talk

1987 G. Sambin & P. Martin-Löf
formal topology = predicative version of a locale

= “locale with base”
today G. Sambin

POSITIVE topology = formal topology +
a BINARY POSITIVITY PREDICATE

What does a binary positivity predicate correspond to in the languages of locales?

a formal topology IS TO a locale
AS

a POSITIVE topology IS TO a locale + . . . ?!?

Answer:
a suitable system of overt, weakly closed sublocales
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Locales with bases

A base for a locale L is a subset S ⊆ L s.t.
x =

∨
{a ∈ S | a ≤ x}

(for every x in L)

Put aC U
def .⇐⇒ a ≤

∨
U

(for a ∈ S and U ⊆ S)

so that {a ∈ S | aC U} ∼=
∨
U

(formal open subset) (any element of L)

Formal topology corresponding to L  (S ,C)

Formal topology = axiomatization of (S ,C)

Overt locale = formal topology + unary positivity predicate
= (S ,C,Pos)

� Pos(a) ⇐⇒ “∃L(a) = 1”
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Positive topologies (
locales︷ ︸︸ ︷

formal topologies + binary positivity)

(

locale︷ ︸︸ ︷
S , C , n )

� binary positivity

n ⊆ S × Pow(S)

an U
a ∈ U

+
an U U ⊆ V

an V
+

an U

an {b ∈ S | b n U}
+

a≤
∨

U︷ ︸︸ ︷
aC U an V

(∃u ∈ U)(u n V )
(compatibility)

{a ∈ S | an U} ← “formal closed ” subset

FormalClosed(n)
def
= {formal closed subsets w .r .t. n}
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Two notions of closure

Intuitionistically, TWO different ways of defining closure
for a subspace Y of a topological space:

−int(−Y ) = the complement of the interior of the complement of X

cl(Y ) = the set of adherent points of X

cl(Y ) ⊆ −int(−Y ) and so Y = −int(−Y ) =⇒ Y = cl(Y )

but NOT the other way round (counterexample: discrete topology).
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Example: positivities on a topological space
(X , τ) topological space

S ⊆ τ base

For x a point, ♦x
def
= {a ∈ S | x ∈ a} = basic open neighbourhoods of x .

anX U
def⇐⇒ (∃x ∈ a)(♦x ⊆ U)⇐⇒ (∃x ∈ X )(a ∈ ♦x ⊆ U)

FormalClosed(nX ) ∼= {D ⊆ X | D = cl(D)}
U 7−→ {x ∈ X | ♦x ⊆ U}

{a ∈ S | a G D} ←− [ D
� Sambin′s notation for inhabited intersection

More generally:

For every subset Y ⊆ X , the relation

anY U
def⇐⇒ (∃ y ∈ Y )(a ∈ ♦y ⊆ U)

is a positivity and
FormalClosed(nY ) ∼= {closed sets in the subspace topology on Y }.
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On the lattice of positivities

L locale
S base

Posty(L)
def
= all positivities on L (w.r.t. S).

Posty(L) is ordered by INCLUSION:

n1 ≤ n2
def⇐⇒ (∀a ∈ S , ∀U ⊆ S)(an1 U ⇒ an2 U)

Posty(L) is a SUPLATTICE with: a
(∨

i ni

)
U ⇐⇒ ∃i(ani U)

So Posty(L) has:

MINIMUM anmin U ⇐⇒ falsum

MAXIMUM anmax U ⇐⇒ an U for some positivity n

� (a more explicit characterization below)
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Splitting subsets & suplattice morphisms
(completely-prime up-sets & sup-preserving maps)

Z ⊆ L is splitting if
x ≤

∨
Y x ∈ Z

Y G Z
, that is, (

∨
Y ) ∈ Z ⇐⇒ Y G Z

for every {x} ∪ Y ⊆ L. Let us put Split(L)
def
= {splitting subsets of L} .

Facts:
1

(
Split(L),

⋃)
is a suplattice;

2 there exists an isomorphism of suplattices

Split(L) ∼= SupLat(L,Ω)
Z 7→ [x 7→ {∗ | x ∈ Z}]

ϕ−1({∗}) ←[ ϕ

where Ω = Pow({∗}) is the frame of truth values.

Examples: points, Pos.
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FormalClosed(n) ↪→ Split(L) ∼= SupLat(L,Ω)

Thanks to compatibility. . .

FormalClosed(n) ↪→ Split(L)
U 7→ ↑ U = {x ∈ L | u ≤ x for some u ∈ U}

{a ∈ S | an U} 7→ {x ∈ L | (∃a ∈ S)(a ≤ x and an U)}

� is a sub-suplattice of Split(L) (w.r.t. union)

FormalClosed(n) ↪→ SupLat(L,Ω)
{a ∈ S | an U} 7→ [x 7→ {∗ | (∃a ∈ S)(a ≤ x and an U)}]

� is a sub-suplattice of SupLat(L,Ω)
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Positivities AS sub-suplattices of Split(L)
A base-independent description of positivities

L locale

For each base S of L, the following defines a BIJECTION between

Posty(L) w.r.t. S and {sub-suplattices of Split(L)}

n 7−→ {↑ U | U ∈ FormalClosed(n)}�
�

�
�anF U

def⇐⇒ (∃Z ∈ F )(a ∈ Z ∩ S ⊆ U) ←− [ F

Note: FormalClosed(nF ) = {Z ∩ S | Z ∈ F} ∼= F

Corollaries

For S1,S2 bases of L: Posty(L) w.r.t. S1
∼= Posty(L) w.r.t. S2.

For every n one has: n = nFormalClosed(n) , that is,

an U ⇐⇒ a ∈ Z ⊆ U for some Z ∈ FormalClosed(n)
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The greatest positivity nmax in terms of splitting subsets

In the previous isomorphism

Posty(L) ∼= {sub-suplattices of Split(L)}

nmax corresponds to Split(L)

so
�� ��anmax U ⇐⇒

(
∃Z ∈ Split(L)

)(
a ∈ Z ∩ S ⊆ U

)
and

�� ��FormalClosed(nmax) = {Z ∩ S | Z ∈ Split(L)} ∼= Split(L)

Constructively. . .

If L = (S ,C) is inductively generated, then nmax is generated by coinduction.

(Martin-Löf & Sambin - Generating Positivity by Coinduction)
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Formal closed subsets AS . . .
Bunge & Funk, Constructive Theory of the Lower Power Locale, MSCS 6 (1996)

Points of the lower powerlocale ∼=

∼= overt, weakly closed sublocales of L

∼= suplattice morphisms L → Ω=Pow({∗})

∼= splitting subsets of L

∼=
⋃

n∈Posty(L)

FormalClosed(n)

= FormalClosed(nmax)

See also Spitters, Locatedness and overt sublocales, APAL 162 (2010) and

Vickers, Constructive points of powerlocales, Math. Proc. Cambridge Philos. Soc. 122 (1997)
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Weakly closed sublocales

See Vickers, Sublocales in Formal Topology, JSL 72 (2007)
and Johnstone’s Elephant for the more general notion of fibrewise closed.

A weakly closed sublocale of (S ,C) is one generated as follows

1 for each a ∈ S fix a (possibly empty) set I (a) of PROPOSITIONS;

2 for a ∈ S and P ∈ I (a) impose the EXTRA condition aC {x ∈ S | P} .

CLASSICALLY: this is just a closed sublocale.

Warning
In the spatial case, cl(Y ) need not be weakly closed!

Weakly closed sublocales are closed under binary joins. (Johnstone)

If {Y ⊆ X | cl(Y ) = Y } is closed under binary unions, then LLPO. (Bridges)
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Overt, weakly closed sublocales

(S ,C′) ↪→ (S ,C) is weakly closed AND overt

IFF

there exists P ∈ SupLat(L,Ω) ∼= Split(L) s.t.

C′ can be generated by imposing the EXTRA axioms

aC′ {x ∈ S | P(a) = 1} , or equivalently aC′ {a} ∩ P , for all a ∈ S .

P is the unary positivity predicate of (S ,C′).

Fact:

point of (S ,C′) = point of (S ,C) s.t. all its basic neighbourhoods are in P
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Formal closed subsets AS overt weakly-closed sublocales

Given (S ,C,n) positive topology
and U = {x ∈ S | x n U} (formal closed subset)

↑ U splitting subset

x 7→ {∗ | x ∈ (↑ U)} suplattice morphism L → Ω

overt, weakly closed sublocale
generated by imposing aC {a} ∩ U

with UNARY positivity given by ( ) n U.

This is the smallest sublocale for which ( ) n U is a unary positivity predicate.
Its points are the points of (S ,C) which are “contained” in U.
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Positivities AS . . .

A formal closed subset of L = (S ,C) is. . .

. . . {a ∈ S | an U} for some U ⊆ S and some n ∈ Posty(L)

. . . {a ∈ S | anmax U} for some U ⊆ S

. . . S ∩ Z for some Z ∈ Split(L)

. . . S ∩ ϕ−1(1) for some ϕ ∈ SupLat(L,Ω)

. . . {a ∈ S | Pos(a)} for some (S ,C′,Pos) ↪→ (S ,C)︸ ︷︷ ︸
overt and weakly closed

A positivity on a locale L is. . .

. . . a suplattice of

 splitting subsets of L
suplattice morphisms from L to Ω
overt, weakly closed sublocales of L

and
�� ��nmax

∼= Split(L) ∼= SupLat(L,Ω) ∼= {overt, weakly closed sublocales of L}
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Morphisms between positive topologies

A morphism f : (

L1︷ ︸︸ ︷
S1,C1,n1) −→ (

L2︷ ︸︸ ︷
S2,C2,n2) is

a morphism f : L1 −→ L2 of locales

(with Ωf the corresponding morphism of frames in the opposite direction)

such that:

a ≤ Ωf (b)
an1 U

}
=⇒ b n2

{
y ∈ S2 | ∃u ∈ U.u ≤ Ωf (y)︸ ︷︷ ︸

Ωf (y)∈↑U

}

for all a ∈ U ⊆ S1 and b ∈ S2.

?!?
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Positive topology = (L,Φ), with
�� ��L a locale and

�� ��Φ ↪→ SupLat(L,Ω)

Given (L1,Φ1), (L2,Φ2) and f : L1 −→ L2 in Loc

TFAE

1 f is a morphism of positive topologies;

2 the map U 7→ S2 ∩ (Ωf )−1(↑ U)
maps formal closed of (L2,Φ2) to formal closed of (L1,Φ1);

3 (Ωf )−1 maps elements of Split(L1) corresponding to Φ1

to elements of Split(L2) corresponding to Φ2;

4 (∀ϕ ∈ Φ1)(ϕ ◦ Ωf ∈ Φ2), that is, Φ1 ◦ Ωf ⊆ Φ2.

[Ω
ϕ←− L1] ∈ Φ1

[Ω
ϕ←− L1

Ωf←− L2] ∈ Φ2
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The category PTop of Positive Topologies

Objects (L,F ) (L,Φ)

L locale +

binary positivity F ↪→ Split(L) Φ ↪→ SupLat(L,Ω)

Morphisms f : L1 → L2 of locales s.t.

(Ωf )−1[F1] ⊆ F2 Φ1 ◦ Ωf ⊆ Φ2

Francesco Ciraulo (Padua) Binary positivity in the language of locales 4WFTop - Ljubljana, June 15-20 2012 19 / 29



Embedding Loc into PTop

PTop
(
(L1,Φ1), (L2,Φ2)

)
= {f ∈ Loc(L1,L2) | Φ1 ◦ Ωf ⊆ Φ2}

Loc(L,L′) ∼= PTop
(
(L,Φ), (L′,Φmax)

)
for every Φ ↪→ SupLat(L,Ω)

� SupLat(L′,Ω)

By identifying L with
(
L,

Φmax︷ ︸︸ ︷
SupLat(L,Ω)

)
, we get: Loc ↪→ PTop .

Fact: Loc is a reflective subcategory of PTop .
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Points of a positive topologies

Def: a point of (S ,C,n) is. . .
. . . a point of (S ,C) which “belongs” to FormalClosed(n)

i.e. a point whose set of basic neighbourhoods belongs to FormalClosed(n).

Points(L,Φ) ∼= Points(L) ∩ Φ
∼= Frame(L,Ω) ∩ Φ
∼= {ϕ ∈ Φ | ϕ preserves finite meets}

∼= PTop
(
1, (L,Φ)

)
where 1 = terminal object of PTop = terminal locale + Φmax

Idea: a positivity is a way for selecting points.
Sambin & Trentinaglia, On the meaning of positivity relations. . . , J.UCS 11 (2005)

Note that: Points(L,Φmax) = Points
(
L,SupLat(L,Ω)

)
= Points(L) .
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One formal closed subset, three positive topologies

Let (S ,C,n) be a positive topology.

For any H ∈ FormalClosed(n) one can construct:

1 an overt, weakly closed sublocale (S ,CH)

by adding the extra axiom schema aC {a} ∩ H

(H acts as the unary positivity predicate)

2 another positivity nH defined by: anH U
def⇐⇒ an H ∩ U

(j.w.w. G. Sambin and M. Maietti)

And one can show that:

Pt(S ,CH) = Pt(S ,CH ,nH) = {α ∈ Pt(S ,C) | α−1(>) ∩ S ⊆ H}
= Pt (S ,C,nH)

� this is PREDICATIVE (even when C is not generated)
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Two adjunctions between Top and PTop

1 Extending the usual adjunction between Top and Loc:

Top Loc PTop
X 7→ ΩX 7→ (ΩX , nmax )

Pt(L) ← [ L ← [ (L,Φ)

2 A new adjunction:
Top PTop
X 7→ (ΩX , nX )

Pt(L,Φ) ← [ (L,Φ)

Recall that a nX U ⇐⇒ (∃x ∈ X )(a ∈ ♦x ⊆ U) where ♦x = basic neighbourhoods of x .

CLASSICALLY : nX = nmax and so Pt(ΩX ,nX ) = Pt(ΩX ,nmax) ∼= Pt(ΩX ).
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Two notions of sobriety

points = Pt(ΩX ) = Pt(ΩX ,nmax)

“strong” points = Pt(ΩX ,nX )

α ∈ Pt(ΩX ) is “strong” if for all a ∈ α, there exists x ∈ X s.t. a ∈ ♦x ⊆ α.

sober X = Pt(ΩX ,nmax)

weak sober X = Pt(ΩX ,nX )

If X is T2, then X is weakly sober.

On the contrary, if “ T2⇒ sober ” were true, then LPO would hold.

Fourman & Scott, Sheaves and Logic, in Applications of sheaves, LNM 753 (1979)

Aczel & Fox, Separation properties in constructive topology, OLG 48 (2005)
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Spatiality for positive topologies

A positive topology (L,n) is (bi-)spatial if

(L,n) =
(
ΩPt(L,n),nPt(L,n)

)
that requires TWO things:

1 L = ΩPt(L,n) (stronger than usual spatiality)

2 n = nPt(L,n) (“reducibility”)1

By unfolding definitions:

1 x ≤ y IFF
(
∀α ∈ Pt(L) ∩ Φ

)(
α(x) ≤ α(y)

)
2 an U IFF

(
∃α ∈ Pt(L,n)

)(
a ∈ α−1(>) ∩ S ⊆ U

)
i.e. Φ coincides with its sub-suplattice spanned by Pt(L) ∩ Φ.

1Rinaldi, Sambin and Schuster have a joint work in progress about reducibility in Ring Theory.
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Positivity relations on suplattices

The notion of a binary positivity predicate makes sense also for the category
SupLat of suplattices and sup-preserving maps.

basic topology = suplattice L +
positivity Φ ↪→ SupLat(L,Ω)

See C. & Sambin, A constructive Galois connection between closure and interior, JSL, to appear

and my talk in Kanazawa 2010.

As before, every suplattice L can be identified with the basic topology (L,Φmax).
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Positivity on topoi (?)
Future work (?)

By adopting the view of TOPOI as generalized spaces. . .

L locale  E topos
Ω  Set

ϕ ∈ SupLat(L,Ω)  functor from E to Set that preserves colimits
. . .  . . .

Aim: to obtain a PREDICATIVE account of some Topos Theory
(e.g. of closed subtopoi).
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Najlepša hvala! Thank you very much!
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