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Part I

Overlap Algebras & Locales

In which the definition of overlap algebra is recalled
as well as some well and less well known facts

connecting overlap algebras, overt locales and regular open sets.
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Problem:

fill in the blank with a suitable ALGEBRAIC STRUCTURE

in such a way that THE DIAGRAM COMMUTES.
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Overlap Algebras =
'
&

$
%

'
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%

·

complete lattice + ><
binary relation s.t.:

x >< y
y >< x

symmetry
x >< y y ≤ z

x >< z
monotonicity

x >< y

x >< (x ∧ y)
refinement

x >< (
∨

i∈I yi )

(∃i ∈ I )(x >< yi )
splitting

[z >< x ]
....

z >< y

x ≤ y
“density”
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Overlap Algebras as Overt Locales
A characterization

'
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$

%
'
&

$
%o-algebras

overt locales

Idea: read x >< y as Pos(x ∧ y) .1

Overlap algebras

=

overt locales +

[Pos(z ∧ x)]
....

Pos(z ∧ y)

x ≤ y
density2

1Vice versa, Pos(x) ≡ (x >< x).
2Not to be confused with the notion of a dense sublocale.
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Overlap Algebras as a solution to the starting problem: Powersets
classically //

algebraize

��

Powersets

algebraize

��
?

classically

// cBa′s

1 O-algebras are an algebraic version of powersets:

P(S) is an o-algebra (the motivating example).

P(S) is atomic| {z }
(see below)

.

Every atomic o-algebra is a powerset (Sambin).

2 Classically:

Overlap algebras = complete Boolean algebras (Vickers)
(where: x >< y ⇐⇒ x ∧ y 6= 0).
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Atoms and points (I)

(1) A minimal NON-ZERO element.

What is an ATOM?

33ggggggggggggggggggggg

++WWWWWWWWWWWWWWWWWWWWW

(2) A minimal “POSITIVE” element.

(1) is too weak: one cannot even prove that a singleton is an atom
in a powerset!

(2) works well (but one needs Pos or >< to define “positive” for elements).
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Atoms and points (II)

TFAE

(in any overt locale)

1 a is a minimal positive element

i.e.: Pos(a) and Pos(x) & (x ≤ a) =⇒ (x = a)

2 a >< x︸ ︷︷ ︸
Pos(a∧x)

⇐⇒ a ≤ x (for any x);
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Atoms and points (III)

TFAE

(in any o-algebra)

1 a is an atom;

2 {x | a >< x︸ ︷︷ ︸
Pos(a∧x)

} is a completely prime filter

(in that case {x | a >< x} = {x | a ≤ x}).

In other words: the mapping x 7−→ Pos(a ∧ x) is a frame homomorphism
if and only if a is an atom.
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Atoms and points (IV)

{atoms of an o − algebra} ⊆ {points of an o − algebra}

{atomic o − algebras} ⊆ {spatial o − algebras}

Open questions:

What is a spatial o-algebra like?

What is the relationship between o-algebras and discrete locales3?

3Discrete locale = overt + the diagonal map is open.
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Regular elements (I)

[Pos(z ∧ x)]
....

Pos(z ∧ y)

x ≤ y
density

Even if Sambin’s “density” does not hold
for an overt locale, in general,
nevertheless:

(in any overt locale)

there exists a unique nucleus r s.t.:

[Pos(z ∧ x)]
....

Pos(z ∧ y)

x ≤ r(y)
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Regular elements (II)
For L overt, let: Lr

def
= {x ∈ L | x = r(x)}

1 Lr is a o-algebra

(hence an overt locale (w.r.t. the same Pos of L))

2 L−− = {x ∈ L | x = −− x} ⊆ Lr

(the least dense sublocale of L) (classically L−− = Lr )

3 Lr is the least positively dense︸ ︷︷ ︸
Pos(r(x))⇒Pos(x)

sublocale of L

(this notion has been studied by Bas Spitters)

4 Lr = L iff L is an o-algebra

(in particular, every o-algebra is of the kind Lr )
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Regular elements (III)

REGULAR open sets = the interior of its closure.

(1) complement of the interior of the complement.
↗

Topological closure:
↘

(2) set of adherent points.

(1) x = −− x
↗

Regular elements:
↘

(2) x = r(x)
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Part II

Overlap Algebras & Dedekind-MacNeille
completion

In which a new approach to
the Dedekind-MacNeille completion

is presented (which works for posets with overlap).
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Posets with overlap

Idea: modify the definition of an overlap relation
in such a way that it would make sense
for arbitrary posets.

x >< y

x >< (x ∧ y)
refinement

 

x >< y

∃z(x >< z & z ≤ x & z ≤ y)

x >< (
∨

i∈I yi )

(∃i ∈ I )(x >< yi )
splitting

 

∨
i∈I yi exists x >< (

∨
i∈I yi )

(∃i ∈ I )(x >< yi )
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N.B.:
usually, the addition of an overlap relation greatly enrich the underlying
structure.

For instance, any lattice with overlap is automatically distributive.

Moreover (classically):

bounded lattice +
pseudo-complement +

overlap =
Boolean algebra
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Example: Heyting algebras with overlap
What happens if one adds an overlap relation to a Heyting algebra?

Classically:

Heyting algebra + overlap relation = Boolean algebra .

Not surprisingly:

many classical examples of Boolean algebras (which are no longer so
intuitionistically) become Heyting algebras with overlap!

Example:

a suitable version of the classical Boolean algebra of

finite-cofinite subsets.

Francesco Ciraulo - Palermo (IT) - The overlap relation in constructive mathematics - (CMPC 2010) 18/25



Towards a new kind of completion
The case of a Boolean algebra (classically).

The Dedekind-MacNeille completion DMN(S) of a poset (S ,≤) can be
presented as the complete lattice of all formal open subsets associated to
a (basic) cover relation on S , namely:

a � U
def⇐⇒ (∀b ∈ S)

(
(∀u ∈ U)(u ≤ b) ⇒ a ≤ b

)
.

If S is a Boolean algebra AND we adopt a classical metalanguage, then:

a � U ⇔ (∀b ∈ S)
(

(∀u ∈ U)(u ≤ −b) ⇒ a ≤ −b
)

⇔ (∀b ∈ S)
(

(∀u ∈ U)(u ∧ b = 0) ⇒ a ∧ b = 0
)

⇔ (∀b ∈ S)
(

a ∧ b 6= 0︸ ︷︷ ︸
a><b

⇒ (∃u ∈ U)(u ∧ b 6= 0︸ ︷︷ ︸
u><b

)
)
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Completion via overlap (I)

In any poset with overlap:

a �DMN U
def⇐⇒ (∀b ∈ S)

(
a >< b ⇒ (∃u ∈ U)(u >< b)

)
“Accidentally” (!?), this is the (basic) cover represented by the basic pair (S , ><, S).

If S is already complete:

a �DMN U ⇔ (∀b ∈ S)
`

a >< b ⇒ (∃u ∈ U)(u >< b)| {z }
(
W

U)><b

´
| {z }

a≤
W

U
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Completion via overlap (II)

DMN(S) : usual Dedekind-MacNeille completion.

DMN><(S) : completion via overlap.

When S is a Boolean algebra:

1 DMN(S) is a complete Boolean algebra;

(actually, the “least” cBa which “contains” S)

2 DMN><(S) is an overlap algebra;

(actually, the “least” o-algebra which “contains” S)4

4(w.r.t. a suitable notion of morphism)
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Completion via overlap (III)

For any poset with overlap:

1 DMN><(S) is an overlap algebra;

2 there exists an embedding S ↪→ DMN(S) which preserves all
existing joins (and meets);

3 DMN><(S) embeds in any other o-algebra satisfying 2.

Classically:

the completion via overlap of a poset with overlap is always a cBa!

Actually, DMC(S) ⊆ DMN><(S).
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Future work

Spatial o-algebras & Discrete locales

Completions via overlap

Inductive-Coinductive generation5

5For inductively generated formal topologies, a positivity relation n, hence the
positivity predicate Pos, can be defined co-inductively.
This suggests that the overlap relation >< can probably be defined by co-induction
every time ≤ is defined by induction.
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Thank you!
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