What is a *binary positivity* for a locale?

Francesco Ciraulo

Department of Mathematics and Computer Science University of Palermo

Workshop on Constructive Topology Palermo, 6 - 7 September 2010

(日) (同) (三) (三)

Prologue

1987 G. Sambin - Intuitionistic formal spaces

- a formal topology = predicative version of a(n overt) locale
 - a presentation of a locale
 "by generators and relations"
 - = a locale with "base"

"today" G. Sambin - *The Basic Picture* a binary positivity predicate is added.

- What is a binary positivity predicate (a.k.a. "fish")?
- What is its meaning for a locale (i.e. with no reference to the base)?

Covers

A COVER relation over a set S is $\triangleleft \subseteq S \times \mathcal{P}(S)$, s. t.:

$$\frac{a \in U}{a \lhd U} \qquad \frac{a \lhd U \quad \forall u(u \in U \Rightarrow u \lhd V)}{a \lhd V} \qquad \frac{a \lhd U \quad a \lhd V}{a \lhd \downarrow U \cap \downarrow V}$$
where $\downarrow U = \{x \mid (\exists u \in U)(\underbrace{x \leq u}_{x \lhd \{u\}})\}$
were is essentially a Grothendieck topology on a pre-ordered set

A <u>cover</u> is essentially Grothendieck topology on a pre-ordered set

A formal open subset is $\{a \in S \mid a \triangleleft U\}$ (for any $U \subseteq S$).

The collection { *formal open subsets*} is a frame.

Note: we can assume $S \subseteq \{ formal open subsets \}$ without loss of generality (identify $a \in S$ with $\{x \in S \mid x \triangleleft \{a\}\}$).

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● ○ ○ ○

Covers = locales with bases

 \mathcal{L} (locale)

A base for
$$\mathcal{L}$$
 is a subset $S \subseteq \mathcal{L}$ s.t.
 $x = \bigvee \{a \in S \mid a \leq x\}$
(for any x in \mathcal{L})

$$a \triangleleft U \quad \stackrel{def.}{\Longleftrightarrow} \quad a \leq \bigvee U$$
 (for $a \in S$ and $U \subseteq S$)

 \lhd is a cover relation on the set S

 $\mathcal{L} \cong \{ \text{formal open subsets} \}$

ヘロン 人間 とくほと くほとう

-31

Formal topologies with binary positivity

Formal closed subsets

 $\{x \in S \mid x \triangleleft U\} \qquad \{x \in S \mid x \ltimes U\}$ formal open subset
(is an element of the locale ??

presented by the cover)

Questions:

What is the meaning of ×?
What is a formal closed subset?

Note: 1 and 2 are essentially the same question:

 $F \text{ formal closed } \iff \{a \mid a \ltimes F\} = F$ $a \ltimes U \iff (\exists F \text{ formal closed })(a \in F \subseteq U)$ $(\exists F \text{ formal closed })(a \in F \subseteq U)$

?

Subsets which *split* the cover

F splits the cover if

$$\underbrace{\substack{a \lhd U \quad a \in F}}_{(\exists u \in U)(u \in F)} \text{ (for any } U\text{)}$$

Examples:

■ {a ∈ S | Pos(a)} if the locale is overt and Pos is its (unary) positivity predicate;

•
$$S \cap \alpha^{-1}(\top)$$
 where $\alpha : \mathcal{L} \to \Omega$ is a point;

every formal closed subset (recall that: $\frac{a \triangleleft U \quad a \ltimes V}{(\exists u \in U)(u \ltimes V)}$).

Problem:

characterize splitting subsets.

Splitting subsets as morphisms of sup-lattices

$$\varphi_{(-)} : \{ subsets \ splitting \lhd \} \longrightarrow \mathbf{SupLat}(\mathcal{L}, \Omega)$$

is a bijection with inverse $\varphi \mapsto S \cap \varphi^{-1}(\top).$

{subsets of S splitting \triangleleft } \iff SupLat(\mathcal{L}, Ω)

イロト 人間ト イヨト イヨト

\ltimes as a <u>sub</u>-suplattice of **SupLat**(\mathcal{L}, Ω)

Fact: an arbitrary union of formal closed subsets is formal closed.

Given a locale
$$\mathcal{L}$$
 and a base S (and the corresponding \lhd)
a \ltimes (compatible with \lhd)
is the same thing as
a sub-suplattice of **SupLat**(\mathcal{L}, Ω).

 $\ltimes \nleftrightarrow \{\textit{formal closed subsets}\} \hookrightarrow \{\textit{splitting subsets}\} \nleftrightarrow \textsf{SupLat}(\mathcal{L}, \Omega)$

$$\underbrace{\{\varphi_i\}_{i\in I}}_{\bigcap} \quad \iff \quad a \ltimes V \iff (\exists i \in I) \left(a \in \underbrace{S \cap \varphi^{-1}(\top)}_{(splitting)} \subseteq V\right)$$
$$\operatorname{SupLat}(\mathcal{L}, \Omega)$$

・ コ ト ・ 雪 ト ・ 目 ト ・ 日 ト

The greatest positivity relation

For any cover \lhd , there exists (impredicatively) the greatest positivity compatible with \lhd

(it is the one corresponding to the whole of $SupLat(\mathcal{L}, \Omega)$):

$$a \ltimes_{great} U \qquad \Longleftrightarrow \qquad \left(\exists \varphi \in \mathbf{SupLat}(\mathcal{L}, \Omega) \right) \left(a \in S \cap \varphi^{-1}(\top) \subseteq U \right)$$

Note: if \lhd is inductively generated (site, coverage, ...), then \ltimes_{great} is defined by <u>co-induction</u> on the same axioms.

・ロト ・ 一日 ト ・ 日 ト

Positivities as inclusions in Loc (1)

Given (S, \lhd, \ltimes) , we know that:

- I there exist a unique (up to iso.) locale L such that S is a base of L and a ⊲ U iff a ≤ V U;
- **2** \ltimes can be identified with a sub-suplattice of **SupLat**(\mathcal{L}, Ω).

Now consider:

This set of points can be used to construct a spatial locale \mathcal{L}' s.t. $\mathcal{L}' \hookrightarrow \mathcal{L}$.

Positivities as inclusions in Loc (2)

Vice versa, given $\mathcal{L}' \hookrightarrow \mathcal{L}$ (\mathcal{L}' not necessarily spatial), note that: $\mathbf{Frm}(\mathcal{L}', \Omega)$ generates a sub-suplattice of $\mathbf{SupLat}(\mathcal{L}, \Omega)$

```
hence a \ltimes on \mathcal{L}.
```

(Positivities obtained in this way are called reduced.)

Summing up:given \mathcal{L} (locale), S (base) and \lhd (corresponding cover relation): (S, \lhd, \ltimes) (S, \lhd, \ltimes) (S, \lhd, \ltimes) $(with \mathcal{L}' spatial)$ (S, \lhd, \ltimes) $(with \ltimes reduced)$ reduced positivity \Leftrightarrow spatial sublocale

Examples

Spatialization

$$(S, \lhd, \ltimes_{great}) \iff \underbrace{\Omega(Pt(\mathcal{L}))}_{(spatialization)} \hookrightarrow \mathcal{L}$$

Spatial locales

Recall that $\mathcal{L} \hookrightarrow Low(S)$ (lower subsets).

Low(S) can be presented by the cover: $a \leq U \Leftrightarrow (\exists u \in U)(a \leq u)$.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● ○ ○ ○

Application: locales presented by a positivity

Recall from the previous slide: any spatial locale can be presented by a structure of the form (S, \leq, \ltimes) with \ltimes reduced.

1 $Low(S)_j$ is not necessarily spatial;

2 classically, any locale can be presented in this way;

3 intuitionistically, this is not the case (by a counterexample of Coquand).

・ロト ・四ト ・ヨト ・ヨト ・ヨ

Thank you!

Francesco Ciraulo - What is a binary positivity for a locale? - Palermo, 6-7 Sept. '10

■ のへへ 15/15

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・