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Introduction

Main aim of the present thesis is a constructive investigation of some logical
notions, namely non-deducibility and satisfiability, which are usually studied by
means of non-effective methods. We use (pointfree) topology to characterize these
notions semantically and apply these studies to first order intuitionistic logic as
formalized in Gentzen’s LJ sequent calculus.

When adopting a classical metatheory, a soundness and completeness theorem
is all one needs to study a specific logical system. Indeed non-deducibility be-
comes equivalent to validity in not all interpretations and hence, under a classical
reading, to the existence of a counter-model. Constructively, a negative assertion
cannot generally be given a positive value instead. So non-deducibility needs an
independent treatment and a direct semantics specific for it. Similar motivations
arise when dealing with satisfiability, which is classically defined as either a nega-
tive (non-deducibility of the negation) or an impredicative (existence of a model)
notion.

In chapter 1, after having recalled the LJ system, we give a short introduction
to pointfree topology, following Sambin’s approach (see [23]), together with a few
new concepts needed in the following.

Chapter 2 presents a slight modification of a constructive soundness and com-
pleteness theorem for LJ firstly appeared in [22]; here is given in a form more
similar to that of [9] (also see [7]).

The problem of doing a constructive analysis of non-deducibility is solved in
chapter 3, where we follows some suggestions from Mostowski’s works (see [15]).

Chapter 4 is devoted to a constructive and positive semantic definition of
satisfiability which is independent from deducibility, in the sense that satisfiability
of a formula is not defined as non deducibility of its negation. Then we propose
a syntactic counterpart for satisfiability, that is a “co-inductive” calculus which
is dual to that for deducibility in several aspects. For instance the notion of
refutation of an hypothesis of satisfiability corresponds to that of proof of the
sequent expressing that the set of formulae under consideration is inconsistent.

Finally, chapter 5 gives an application to modal logic: a logical system for
tense logic is studied which seems minimal among the constructive ones.
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Of course, the choice for a constructive setting needs some motivations too,
as well as some explanations on the meaning we attributes to the adjective “con-
structive”. Here “constructive” is a synonym for “that can be formalized in
Maietti-Sambin’s Minimal Type Theory” (see [13]). This foundational theory is
characterized as the common core of (all?) other known ones. In other words,
all the proofs we give hold whatever the foundational standpoint from which one
looks at them is. On the contrary, not every statement one could expect, e.g.
from a classical point of view, actually has got a constructive proof; thus some
deductions which are standard in other foundations are never performed here. Of
course, if one wants, one can start from our results and managing all transforma-
tions which are possible in some particular stronger foundation. Compatibility
with other foundations is not the only advantage of being constructive, of course;
another one is the possibility to read every proof as an algorithm (at least in
principle). Compatibility with other foundations implies that in order to be able
to read the present thesis, it is not needed at all to know Maietti-Sambin’s Min-
imal Type Theory in its details. In fact, in order to understand what we mean
by “constructive” it is enough to keep in mind some simple facts:

• we use the word “set” only when we are able to give inductive rules for con-
structing its elements; otherwise we use the word “collection”; for instance,
natural numbers form a set whose powerset is only a collection; similarly,
a quotient of a set trough an equivalence relation is generally no longer a
set itself, but only a collection;

• quantification over a set (or over a subset) is allowed; on the contrary,
impredicative quantifications over collection (like the totality of the subsets
of a set) are never used;

• the underlying logic is intuitionistic; so no proof by contradiction or by
cases is present.
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Chapter 1

Basic notions and definitions

1.1 Gentzen’s LJ sequent calculus

In order to investigate metatheoretical properties of a logic, a formal system for
that logic is needed. The one we use for first order intuitionistic logic is Gentzen’s
LJ sequent calculus. Because of our constructive standpoint, languages we will
consider will be countable (effectively enumerable in fact); thus we will use the
word “language” for a list

&,∨,→,⊥, ∀,∃; (, ); x1, . . . , xn, . . . ; f1, . . . , fm; R1, . . . , Rt

where the xi’s are variables, the fi’s are function symbols (possibly of arity 0, i.e.
constants) and the Ri’s are relation symbols. Of course, & is the conjunction, ∨
the disjunction, → the implication, ⊥ the false proposition, ∀ and ∃ the universal
and existential quantifiers, respectively. Negation is not primitive: ¬ϕ is defined
as ϕ → ⊥, for each formula ϕ. The set of all terms, written Trm, and the set of
formulae, written Frm, are constructed in the usual inductive way. We will use
ϕ, ψ and γ for formulae, Γ and Γ′ for (possibly empty) finite lists of formulae.
An object like Γ ` ϕ (read “Γ yields ϕ”) is called a “sequent” and its intended
meaning is: “if all the formulae in Γ are true then so is ϕ”. Here is the list of
rules of LJ .

ϕ ` ϕ

Γ ` ϕ Γ ` ψ

Γ ` ϕ & ψ

Γ, ϕ ` γ

Γ, ϕ & ψ ` γ

Γ, ψ ` γ

Γ, ϕ & ψ ` γ
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Γ, ϕ ` γ Γ, ψ ` γ

Γ, ϕ ∨ ψ ` γ

Γ ` ϕ

Γ ` ϕ ∨ ψ

Γ ` ψ

Γ ` ϕ ∨ ψ

Γ, ϕ ` ψ

Γ ` ϕ → ψ

Γ ` ϕ ψ, Γ′ ` γ

Γ, ϕ → ψ, Γ′ ` γ

Γ ` ϕ(x)

Γ ` ∀xϕ(x)
(x not free in Γ) Γ, ϕ(t) ` ψ

Γ,∀xϕ(x) ` ψ
(t ∈ Trm)

Γ, ϕ(x) ` ψ

Γ, ∃xϕ(x) ` ψ
(x not free in Γ, ψ) Γ ` ϕ(t)

Γ ` ∃xϕ(x)
(t ∈ Trm)

Γ ` ⊥
Γ ` ϕ

Γ ` ϕ

Γ, ψ ` ϕ

Γ, ϕ, ϕ ` ψ

Γ, ϕ ` ψ

Γ, ϕ, ψ, Γ′ ` γ

Γ, ψ, ϕ, Γ′ ` γ

Γ ` ϕ ϕ, Γ′ ` ψ

Γ, Γ′ ` ψ
cut

As usual, the set of provable sequents is the smallest one that is closed under
applications of the rules. In other words, that set is defined by induction. On
the contrary, we will see that a notion of a co-inductive calculus is possible and,
in fact, necessary to deal with satisfiability.

Here below we state some fundamental proof-theoretical results we need in
the following chapters. A constructive soundness and completeness theorem for
LJ is proved in the next chapter.

Theorem 1.1.1 (cut-elimination) If a sequent Γ ` ϕ is provable in LJ then

it can be proved without any use of the cut rule.

We will not prove neither this theorem nor the following corollaries whose
proofs can be found in [27]; we just want to stress that their proofs actually yield
effective methods.

Corollary 1.1.2 (disjunction and existence properties) If ` ϕ∨ψ is prov-

able then either ` ϕ is provable or ` ψ is provable.

If ` ∃x ϕ(x) is provable then there exists a term t such that ` ϕ(t) is provable.

Corollary 1.1.3 (consistency) The sequent ` ⊥ is not provable.
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1.2 A constructive theory for topology

In this section we present a constructive approach to topology; most definitions
we adopt have recently been proposed by Giovanni Sambin as an outcome of a
wider theory (namely the Basic Picture; see [23]). Our notions surely belong
to the field of Formal Topology; very informally, Formal Topology is point-free
topology seen through intuitionistic and predicative glasses. With respect to the
usual notion of formal topology, the greatest novelty in the theory developed by
Sambin is the introduction of a binary positivity relation, written n, needed for a
primitive treatment of the topological notion of closure (see [23] for explanations
and philosophical justifications). This relation plays the main part in the present
thesis; our main discovery is that n can be used to give a constructive semantics
for both non-deducibility and satisfiability.

1.2.1 Subset theory

It is a fact that several foundational approaches towards mathematics exist. The
most common one is based upon classical logic and Zermelo-Fraenkel set theory; in
particular, the following principles are used: the principle of excluded middle, the
power-set axiom and the axiom of choice. We refer to this foundational viewpoint
as the classical (and impredicative) one. Besides this, there exist a lot of weaker
foundational theories which refute classical logic and accept intuitionistic one
instead. Maybe the most used ones are: Topos Theory, which allows the power-
set axiom (thus it is impredicative) and Martin-Löf Type Theory, which refutes
that axiom but accepts the axiom of choice. It is shown in [13] that Topos Theory
and Martin-Löf Type Theory are constructively incompatible in the sense that
accepting the principles of both theories leads to classical logic.

We want our work to be valid whatever the foundational standpoint of the
reader is; hence we need our mathematics to be formalizable in a “minimalistic”
theory which is contained in the intersection of all the other ones. Such a theory
exists and has recently been proposed by Sambin and Maietti in [13] where it
is called “Minimal Type Theory” (mTT in what follows). This theory can be
described as Martin-Löf’s theory deprived of the axiom of choice. Hence all
definitions and proofs in the present thesis are predicative and make no use of
the axiom of choice (and, of course, are based on intuitistically valid arguments).

In this paragraph we give some basic definitions and results about subsets
which will be useful for the rest of the thesis. Moreover this paragraph is a
concrete example which shows our way of working. The reader should check that
all the facts listed below are true with respect to his (her) own foundation. Also
we suggest very informally how the formalization in mTT can be done.

Let S be a collection of objects. We say that S is a set when we are able to
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give rules to generate its elements. A subset U ⊆ S is represented formally by a
propositional function, say U(x), with (at most) one free variable ranging over S.
Provided U ⊆ S and a ∈ S, we say that a belongs to U , written a ε U , if U(a) is
true. As usual, we use the standard notation

{a ∈ S : U(a)}
for the subset which formally is represented by U(x). We define inclusion between
two subsets, say U and V , of the same set S as the validity of the formula:

(∀x ∈ S)(U(x) → V (x)).

Equality is defined by two-sided inclusion (extensional equality) and each set-the-
oretical operation is obtained by reflecting the corresponding logical connective.
As an example, U∩V simply is the propositional function U(x) & V (x); moreover
∅ is just ⊥. In particular, we put

U → V = {a ∈ S : U(a) → V (a)}
and write −U instead of U → ∅. Finally, following Sambin, we write

U G V

to express the existence of an element in U ∩V . Note that, from a classical point
of view, U G V is just the same as U ∩ V 6= ∅ but intuitionistically the former is
stronger than the latter.

It should be clear that the collection of all subsets of a set S, written PS,
is accepted as a set only by impredicative foundations; hence we will never use
quantification over it.

Obviously, the ones described above are not the only admissible operations
on subsets. As an example, provided I is a set and {Vi : i ∈ I} is a set-indexed
family of subsets of a set S, one can put
⋃
i∈I

Vi = {a ∈ S : (∃i ∈ I)(a ε Vi)} and
⋂
i∈I

Vi = {a ∈ S : (∀i ∈ I)(a ε Vi)} .

Of course, from the point of view of a reader who accepts the power-set axiom, the
equations above define just arbitrary unions and intersection, all families being
trivially set-based.

All the properties we need about subsets are summarized in the following
statement each reader can verify on his own mind.

Proposition 1.2.1 For any set S, the structure

(PS,⊆,∩,
⋃

,→, ∅, S)
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is a complete (distributive) Heyting algebra.

Moreover, the relation G satisfies the following items:

1. U G V ⇐⇒ V G U

2. U G V =⇒ (U ∩ V ) G V

3. (
⋃

i∈I Wi) G V ⇐⇒ there exists i ∈ I such that Wi G V

for any U, V, Wi ⊆ S and any set I.

Here distributivity is thought in the form:
⋃
i∈I

(W ∩ Vi) = W ∩ (
⋃
i∈I

Vi)

for any W ⊆ S and Vi as before. On the contrary, we cannot accept distributivity
of union with respect to infinite intersections, because it is not intuitionistically
valid as we will show in corollary 3.3.3 (see also [10] p. 204).

1.2.2 Basic topologies and convergent basic topologies

What here is called “convergent basic topology” is just Sambin’s new definition of
formal topology. On the contrary, a “basic topology” is a natural and very elegant
generalization which is susceptible of several, also non topological, interpretations.

Definition 1.2.2 (basic topology) A basic topology is a triple (S, ¢,n) where

S is a set and ¢ and n are two relations between elements and subsets of S such

that the following rules hold:

a ε U
a ¢ U

reflexivity a ¢ U U ¢ V
a ¢ V

transitivity

where U ¢ V stands for (∀a ε U)(a ¢ V );

an U
a ε U

co− reflexivity
an U

[bn U ]
|

b ε V
an V

co− transitivity

a ¢ U an V
U n V

compatibility

where U n V is (∃b ε U)(bn V ).
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A basic topology has got an intended topological interpretation: the set S
is thought as a collection of names for particular open subsets of a topology
(typically, S is a basis for the topology); a¢U is read as “each point belonging to
the open named a actually lies in some open whose name is in U”; lastly, an U
means that there exists a point “in” a whose basic neighbourhoods are all in U .
Note that in some important cases, as that of the real line, the topology can
be presented by a (constructively acceptable) set, while the collection of points
cannot.

In a quite natural way, it is possible to define two operators on PS by
AU = {a ∈ S : a ¢ U} and JU = {a ∈ S : a n U}. These are a satura-
tion (i.e. closure) operator and a reduction (i.e. interior) operator, respectively,
according to the following.

Definition 1.2.3 A is a saturation operator on PS if

U ⊆ V
AU ⊆ AV U ⊆ AU AAU ⊆ AU

for any U, V ⊆ S.

J is a reduction operator on PS if

U ⊆ V
JU ⊆ J V JU ⊆ U JU ⊆ JJU

for any U, V ⊆ S.

Fixed points for A and J are called formal open and formal closed subsets,
respectively; their collections are written Sat(A) and Red(J ).

Obviously the definition of basic topology can be reformulated in terms of
operators. As an example, compatibility becomes

U G J V ⇐⇒ AU G J V.

A basic topology does not satisfy any property corresponding to the usual fact
that the intersection of two opens has to be open too. Instead, this is achieved
in a convergent basic topology whose definition is given below.

In every basic topology a preorder can be defined by restricting the cover on
singletons; that is:

a ≤ b ≡ a ¢ {b}.
As usual we write ↑ a for {b ∈ S : a ≤ b} and put:

↓U = {a ∈ S : ↑ a G U} and U↓V = (↓U) ∩ (↓V )

8



(note that U↓V can be seen as the union of all a↓b for a ε U and b ε V , where
a↓b is a shorthand for {a}↓{b}). If one requests S to be a basis for the intended
topology then one quite naturally reaches the following definition.

Definition 1.2.4 (topology) A convergent basic topology (“topology” in what

follows) is a basic topology which satisfies the following additional rule:

a ¢ U a ¢ V
a ¢ U↓V ↓

or, in an equivalent way,

(AU) ∩ (AV ) = A(U↓V ).

If one uses an impredicative foundation then it is possible to reconstruct points
through completely prime filters; this idea is followed in the definition of formal
point given below (for a clearer explanation of all the definitions given in this
section see paragraph 1.2.4).

Definition 1.2.5 (formal point) A subset α ⊆ S is a formal point if it is

(formal) closed, inhabited and satisfies:

a ε α b ε α
a↓b G α

convergency

for any a, b ∈ S.

When one is only interested in the cover relation, as it happens in the case
of the completeness theorem for LJ , it is quite natural to look at PS modulus
A in the following sense. For any U, V ⊆ S, write U =A V for AU = AV . It is
easily seen that =A is an equivalence relation; moreover, both the relation ¢ and
the operations ↓ and

⋃
respect =A. The collection PS/ =A is what we have just

called Sat(A); if we endow it with the preorder ¢ and the operations ↓ and
⋃

what we get is a complete distributive lattice.1 In an impredicative foundation,
it is easily proved that a complete distributive lattice is in fact a Heyting algebra,

1Note that, because of our foundational standpoint, the only way to give an infinite family

of subsets is to present it as indexed by a set. Thus, completeness of Sat(A) means that the

join of a set-indexed family always exists. In particular, implication cannot be defined in the

usual impredicative way.
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that is, it can be endowed with an implication. Constructively speaking, it is not
so easy. However, in the case of Sat(A) one can put:

U →A V ≡ {a ∈ S : a↓U ¢ V }

and then prove the expected adjunction between meet (i.e. ↓) and implication.
Summing up we get the following.

Proposition 1.2.6 If A is the saturation operator of a topology then Sat(A) is

a complete Heyting algebra. In other words, the following hold:

1. U ¢ U ;

2. (U ¢ V ) & (V ¢ W ) −→ (U ¢ W );

3. (U ¢ V ) & (V ¢ U) −→ (U =A V );

4. (U ¢ V ) & (U ¢ W ) ←→ (U ¢ V ↓W );

5. (
⋃

i∈I Vi) ¢ W ←→ (∀i ∈ I)(Vi ¢ W );

6. U↓(⋃i∈I Vi) =A
⋃

i∈I(U↓Vi);

7. (U↓V ¢ W ) ←→ (U ¢ V →A W ).

Lastly, it is easily checked that the infinite meet of a set-indexed family {Vi}i∈I

is given by

{a ∈ S : (∀i ∈ I)(a ¢ Vi)} =
⋂
i∈I

AVi.

1.2.3 Generated basic topologies

There exists a general procedure for “generating” basic topologies, as described
by Martin-Löf and Sambin in [23]. Let S be a set, I(a) be a set for each a ∈ S and
C(a, i) ⊆ S for each a ∈ S and i ∈ I(a). Think of C(a, i) as a subset covering a.
We want to generate the smallest cover relation satisfying a ¢ C(a, i) and, at the
same time, we want to characterize the largest positivity relation compatible with
that cover. All this is possible by means of the following inductive generation of
¢ and co-inductive generation of n.

10



a ε U
a ¢ U

i ∈ I(a) C(a, i) ¢ U

a ¢ U
a ¢ U

[b ε U ]
....

b ε P

[i ∈ I(b), C(b, i) ⊆ P ]
....

b ε P
a ε P

an U
a ε U

i ∈ I(a) an U

C(a, i)n U

a ε P

[b ε P ]
....

b ε U

[i ∈ I(b), b ε P ]
....

C(b, i) G P

an U

A very important example of generated topology will be given in the next
chapter and will be used both in the completeness theorem and in the semantical
treatments of non-deducibility and satisfiability: it is Coquand’s topology on the
set of formulae, actually a canonical model for intuitionistic logic.

Surely, the most important topological space is the real line. Of course, the
collection of all the classical real numbers does not form a (constructive) set.
On the contrary, its natural topology can be presented via a small basis, namely
the set of all open intervals with rational endpoints. Thus, let S = Q × Q and
consider the axiom set

I((a, b)) = {((q1, q2), (q3, q4)) ∈ S × S : q1 < a < q3 < q2 < b < q4} ∪ {∗}

C((a, b), ((q1, q2), (q3, q4))) = {(q1, q2), (q3, q4)}
C((a, b), ∗) = {(q, p) ∈ S : a < q < p < b}.

The resulting basic topology (actually a convergent one), written R, is the con-
structive version of the real line, in the sense that its formal points correspond
to the real numbers (see [7]).2

1.2.4 Representable basic topologies

Let X and S be two sets and r a binary relation between them. We call (X, r, S)
a basic pair. Put:

rx = {a ∈ S : xra} and r−a = {x ∈ X : xra}.

Next define four operators on subsets by:

a ε rD ≡ r−a G D x ε r−U ≡ rx G U

2The ideas underlying this inductive generation of the real line are due to A. Joyal.
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x ε r∗U ≡ rx ⊆ U a ε r−∗D ≡ r−a ⊆ D

for any D ⊆ X and U ⊆ S. The following characterizing properties can be
proved:

• r is left adjoint of r∗ (r∗ is right adjoint of r), written r a r∗, that is:

rD ⊆ U ≡ D ⊆ r∗U

for any D ⊆ X and U ⊆ S;

• r− a r−∗;

• r and r− are symmetric, written r ·|· r−, that is:

rD G U ≡ D G r−U

for any D and U as before.

As a consequence of the above items, several simple facts hold. Here we list some
of the more interesting ones:

• r, r−, r∗ and r−∗ are monotonic;

• rr∗r = r , r∗rr∗ = r∗ , r−r−∗r− = r− , r−∗r−r−∗ = r−∗ ;

• r and r− distribute over (arbitrary) unions;

• r∗ and r−∗ distribute over (arbitrary) intersections;

• (X, r∗r, r−r−∗) and (S, r−∗r−, rr∗) are basic topologies.

In order to see the link with topology, think of X as the set of points of a
topological space and S as a set of names for (basic) open subsets. Read xra
as “the point x lies in the basic open whose name is a”; thus r−a is just the
open subsets whose name is a. It is easy to see that r−r−∗ and r∗r read just
like the standard topological interior and closure operators, written int and cl,
respectively. By symmetry, A = r−∗r− and J = rr∗ also are a saturation and a
reduction operator respectively and they are linked by compatibility. It is quite
surprising to find out that there is a lattice isomorphism between Red(int) (that
is the lattice of open subsets) and Sat(A); this is why the elements of Sat(A)
are called “formal open subsets”. Similarly, for cl and J . Moreover, the functors
providing the two isomorphisms (and their inverses) are just the four operators
r−∗, r−, r and r∗ defined above. The basic topology (S,A,J ) is said to be
represented by the basic pair (X, r, S).
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What we have briefly described just above is the beginning of a wider theory
by Giovanni Sambin called “The Basic Picture”. For a complete treatment such
as for mathematical and philosophical implications of this theory see [23]. Repre-
sentable basic topologies are taken as a paradigm every time one wants to give a
definition on the formal side. As an example, the best way for describing a point,
say x, from the viewpoint of S is to look at the collection of its basic neighbour-
hoods, i.e. rx. Thus, the properties defining a formal points are simply those
characterizing a subset of the form rx. As another example, we want to describe
the genesis of the definition of convergent basic topology. Let {r−a : a ∈ S} be
a basis; thus, for any a, b ∈ S, r−a ∩ r−b is an open subset. It is an easy exercise
in topology to verify that every open subset is the union of all basic open subsets
contained in it. Thus

r−a ∩ r−b =
⋃

r−c⊆r−a∩r−b

r−c.

Now, r−c ⊆ r−a ∩ r−b is the same as (r−c ⊆ r−a) & (r−c ⊆ r−b), i.e. (c ¢

a) & (c ¢ b); but this means exactly that c belongs to a↓b. So

r−a ∩ r−b = r−(a↓b)

(remember that r− distributes over unions). As a consequence, the intersection
of two open subsets is open too:

r−U ∩ r−V = (r−
⋃

aεU{a}) ∩ (r−
⋃

bεV {b}) =
= (

⋃
aεU r−a) ∩ (

⋃
bεV r−b) =

=
⋃

aεU, bεV (r−a ∩ r−b) =

=
⋃

aεU, bεV r−(a↓b) =

= r−
⋃

aεU, bεV (a↓b) = r−(U↓V ).

Finally, we can apply the isomorphism between Red(int) and Sat(A), namely
the operator r−∗, to obtain

AU ∩ AV = A(U↓V ).

An important example of representable topology, which we will use in several
cases in what follows, is given by the rational line. Let Q be the basic pair where
X = Q is the set of rationals, S is Q×Q and

q r (a, b) ≡ a < q < b

for any q, a, b ∈ Q (< is the standard order on the rationals). Write Q for the
basic topology induced on S. It is possible to prove that Q is convergent and,
moreover, its formal points are exactly all the subsets of the kind rq, q ∈ Q. Thus
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Q is exactly the topology of the rational numbers. Note that ¢Q strictly contains
¢R, in the sense that

(a, b) ¢R U =⇒ (a, b) ¢Q U

but the contrary generally fails.3

1.3 Additional topological topics

1.3.1 Bi-convergent basic topologies

Much of the novelty in Sambin’s approach stands in the primitive treatment of the
topological notion of closure; closed subsets are defined in terms of the positivity
relation and not as complement of the open ones. We said that the ↓-rule arises
when one wants the intersection of two open subsets to be open too; similarly,
one could want Sat(cl) to be closed under binary union (note that closure under
arbitrary intersection always holds). Here we show how to express this property
without mentioning points. In order to find the right definition, let us consider
a topological space (X, r, S) and use classical reasonings. It is easy to prove
that every (concrete) closed subset is the image under r∗ of some subset of S;
moreover, r∗ is classically equivalent to −r−−. A bit of calculation is needed:

r∗U ∪ r∗V = (−r− − U) ∪ (−r− − V ) =
= −((r− − U) ∩ (r− − V )) =
= −r−((−U)↓(−V )) = r∗ − ((−U)↓(−V )).

Classically speaking, −((−U)↓(−V )) is the same as U⇓V if one puts:

U⇓V = (⇓U) ∪ (⇓V ) and ⇓U = {a ∈ S : ↑ a ⊆ U}.
Now we have only to transport the above equation on the formal side. In other
words, we can apply the isomorphism between Sat(cl) and Red(J ), namely r, to
obtain

(JU) ∪ (J V ) = J (U⇓V )

which can be rewritten as

an U⇓V

(an U) ∨ (an V )
⇓

(the other direction always holds). Finally, we can give the following.

3Let i be a fixed irrational number in (a, b), rq a rational number s.t. 0 < rq < |i−q| for any

q ∈ (a, b)∩Q and Iq = (q− rq, q + rq). Thus, (a, b)∩Q ⊆ ⋃
Iq so (a, b) ¢Q {Iq : q ∈ (a, b)∩Q},

but the same does not hold for ¢R because i does not belong to anyone of the Iq’s.
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Definition 1.3.1 A convergent basic topology is called a bi-convergent basic

topology if it satisfies the ⇓-rule.
An example of bi-convergent basic topology is given by Q, the topology of the

rational numbers. Because Q is representable, it is enough to prove that

rq ⊆ (⇓U ∪ ⇓V ) =⇒ (rq ⊆ U) ∨ (rq ⊆ V )

(to obtain bi-convergency use the adjunction r a r∗ and then apply the operator
r).

Firstly, we prove that any couple of basic neighbourhoods of q is contained
either in U or in V . In fact, let (a, b) and (c, d) be two elements belonging to rq
and consider (max{a, c}, min{b, d}). This surely is one of the neighbourhoods of
q so it belongs to either ⇓U or ⇓V ; in other words either any element covering it
is in U or in V . Thus either both (a, b) and (c, d) are in U or both of them are in
V .

Secondly, we want to prove that either all basic neighbourhoods of q belong
to U or all of them belong to V . Let I0, I1, . . . , In, . . . be an enumeration of
all elements in rq and suppose, by inductive hypothesis, that {I0, . . . , In−1} is
contained in either U or V . For instance let {I0, . . . , In−1} ⊆ U . Now consider In

and use the previous step: if {In, I0} ⊆ U then {I0, . . . , In−1, In} ⊆ U and we are
done; instead, if {In, I0} ⊆ V then consider {In, I1}; if this is contained in U then
we are done, otherwise repeat the same argument with I2 and so on. Eventually,
if {In, Ij} ⊆ V for any 0 ≤ j < n then {I0, . . . , In−1, In} ⊆ V , of course.

1.3.2 About further topological operators

We have already seen how to define interior and closure (and their formal coun-
terparts) as suitable compositions of two of the four operators r, r−, r∗ and r−∗

arising from a relation (X, r, S). Of course, other four objects can be obtained in
this way:

r−r r∗r−∗ rr− r−∗r∗

the first two operators being on PX the others on PS. Our claim is that they
are definable in terms of int, cl, A and J , provided (X, cl, int) and (S,A,J ) are
convergent. As we are more interested in the formal side, we only give the explicit
definitions in that context only. Let us put

EU = {a ∈ S : a↓U n S} and UU = {a ∈ S : Ea ⊆ JU}
(Ea stands for E{a}, as usual). It is possible to prove that E = rr− and U = r−∗r∗

provided the topology is definable. For instance:

a↓U n S ≡ r−(a↓U) G r∗S ≡ (r−a) ∩ (r−U) G X ≡ r−a G r−U ≡ a ε rr−U.
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We will see that the operator E is just needed to study satisfiability (see
chapter 4). For this reason we anticipate a brief list of properties about it.

1. U G EV ≡ U↓V n S;

2. U G EV ≡ EU G V ;

3. U ⊆ V =⇒ EU ⊆ EV ;

4. E ⋃
i∈I Vi =

⋃
i∈I EVi;

5. EA = E , hence E respects =A;

6. U G EV ≡ AU G EV .

1.4 Overlap algebras

In this section we give an algebraic description of the collection of all subsets of
a set. The idea we follow is essentially the same that brought to the definition
of Boolean algebra. The difference is that we want to do things constructively.
One could say that the intuitionistic versions of Boolean algebras already exist
and they are just the Heyting algebras. However, we want to axiomatize also the
overlap relation, written G . Note that it cannot be defined in terms of order and
complement unless one uses classical logic. The definitions we give can be found
in [23] where a complete justification is provided.

Definition 1.4.1 (see [19], [20] and [23]) An overlap algebra, or o-algebra,

is a structure (P, =,≤, ><,∧,
∨

,→, 0, 1) where:

• (P, =) is a collection with “equality” (that is, an equivalence relation on P );

• (P, =,≤,∧,
∨

,→, 0, 1) is a complete (and distributive4) Heyting algebra;

• >< is a binary relation on P , called overlap, satisfying:

1. if p >< q then q >< p;

4A complete Heyting algebra always satisfies distributivity of binary meet with respect to

infinite join, i.e. p ∧ (
∨

i∈I gi) =
∨

i∈I(p ∧ qi).
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2. if p >< q then p ∧ q >< q;

3. (
∨

i∈I pi) >< q iff there exists i ∈ I such that pi >< q.

To be precise, the original definition by Sambin requires a complete lattice
instead of a complete Heyting algebra. Moreover, a link between ≤ and >< is
present, namely the following rule (called “density”)

[p >< r]
....

q >< r
p ≤ q

which is not convenient for our purpose.
Of course, if X is a set then the structure PX (with the obvious relations,

operations and constants) is an o-algebra. Conversely, an “atomic” (in the stan-
dard sense) o-algebra turns out to be exactly the powerset of some set; the proof
of this fact is in [23], chapter 10 (also see [20] and [19]). Here we only want to
note that the language of o-algebras allows a very elegant definition of “atom”;
namely, a ∈ P is an atom if

a ≤ p ⇐⇒ a >< p

for all p ∈ P . Note that atomicity of an o-algebra implies “density”; indeed, the
premise of the density rule yields that the family of atoms below p is contained
in that one corresponding to q; so p ≤ q because the algebra is atomic. Hence
Sadocco’s and Sambin’s representation result is true for our modified definition
of o-algebra too. The following are some basic but useful facts about ><.

Proposition 1.4.2 In every o-algebra all the following hold:

1. p ∨ q >< r if and only if p >< r or q >< r;

2. ¬(0 >< p);

3. if p >< q and p ≤ r then r >< q;

4. (p ∧ q = 0) → ¬(p >< q);

5. p >< q → p ∧ q 6= 0.
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Proof: 1. is a special case of the 3rd rule about ><; the same for 2. (0 is the
join of the empty family). Item 3. can be proved as follows: from p ≤ r one has
p ∨ r = r; on the other hand, p >< q yields p ∨ r >< q by 1.; thus r >< q. Finally, 4.
(and then 5., which is logically equivalent to it): from p >< q one gets p ∧ q >< q
and then 0 >< q by hypothesis, contradicting item 2.. q.e.d.

Note that assuming “density” allows the derivation of the converse of item 4,
thus: p ∧ q >< r implies p >< q; this together with ¬(p >< q) yields a contradiction
and hence anything follows; in particular 0 >< r and p ∧ q ≤ 0 by density. If in
addition one uses classical logic then >< becomes definable. Besides, the premises
of the density rule are classically equivalent to −q ≤ −p ; so density, together with
classical logic, implies p = −−p. Summing up, an o-algebra which satisfies density
is exactly a boolean algebra, provided the reader’s metalanguage is classical. On
the contrary, in an o-algebra as defined above, >< does not need to be definable
even if one adopts classical logic. For instance, the set {0, a, 1} linearly ordered
by 0 < a < 1 is a complete Heyting algebra and x ∧ y 6= 0 defines an “overlap”
(which in fact is the only possible one if density is assumed). However we can put
x >< y true if x = 1 = y and false otherwise and obtain another overlap relation
(not satisfying density).

Now we want to simulate a relation; actually, what we really need are the
four operators on subsets induced by r, namely: r, r−, r∗ and r−∗. Again in [23],
chapter 10, it is proved that a relation is exactly the same as a symmetric pair of
adjunctions, in the sense of the following definition.

Definition 1.4.3 For X and S sets, a quadruple of operators F,G′ : PX → PS

and F ′, G : PS → PX is said to form a symmetric pair of adjunctions if:

• F a G (F is left adjoint to G) i.e. F (D) ⊆ U ≡ D ⊆ G(U);

• F ′ a G′ (F ′ is left adjoint to G′) i.e. F ′(U) ⊆ D ≡ U ⊆ G′(D);

• F · | · F ′ (F is symmetric to F ′) i.e. F (D) G U ≡ D G F ′(U);

(for every D ⊆ X and U ⊆ S).

Proposition 1.4.4 For every two sets X, S and every quadruple of operators

F,G′ : PX → PS and F ′, G : PS → PX, the following are equivalent:

• F , G, F ′, G′ form a symmetric pair of adjunctions;
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• F = r, F ′ = r−, G = r∗ and G′ = r−∗ for some relation r between X and

S.

Proof: One direction is by paragraph 1.2.4. As for the other one, define

x r y ≡ y ε F (x)

(see [23], theorem 10.1.13 for details). q.e.d.

Note that for every symmetric pair of adjunctions all the properties listed in
paragraph 1.2.4 are true. Of course, the notion of a symmetric pair of adjunctions
can be reformulated in the language of o-algebras in a natural way. Thus we give
the following.

Definition 1.4.5 An o-relation from an o-algebra P into the o-algebra Q is a

quadruple of functions (F, F ′, G, G′), where F, G′ : P → Q and F ′, G : Q → P,

such that:

1. F a G that is: F (p) ≤ q ≡ p ≤ G(q);

2. F ′ a G′ that is: F ′(q) ≤ p ≡ q ≤ G′(p);

3. F ·|· F ′ that is: F (p) >< q ≡ p >< F ′(q).

1.4.1 Convergent topologies vs o-algebras

Let S = (S, ¢,n, ↓) be a convergent topology. Consider the binary relation on
PS defined by

U >< V ≡ U↓V n S ≡ U G EV

(for the definition of E see paragraph 1.3.2). We want to prove that the structure

PS = (PS, =A,¢, ><, ↓,
⋃

,→A, ∅, S)

(the complete Heyting algebra Sat(A) enriched with the relation ><) is an o-
algebra. In other words, we have to check that >< is an overlap relation ac-
cording to definition 1.4.1. By the very definition, U >< V is the same as
(∃a ε U)(∃b ε V )(a↓bn S) or also, by an easy proof, (∃a ¢ U)(∃b ¢ V )(a↓bn S).
Since a↓b = b↓a item 1 is satisfied. Item 2 follows from a↓b =A (a↓b)↓b which is
easily proved. Lastly, item 3 is true by purely logical arguments.

We say that PS is the o-algebra represented by the topology S.
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Chapter 2

A constructive completeness

theorem for intuitionistic logic

In this chapter we present a slight modification of a soundness and completeness
theorem for LJ given by Sambin in [22]. We also use an idea from Coquand and
Smith (see [9]), namely the inductive generation of the canonical cover. Our aim
is to show that the original proof by Sambin can be adapted to the definition
of topology given above. As usual, the cover relation is enough to give a se-
mantics for LJ-deducibility, thus the binary positivity relation is not used in the
present chapter, apart from paragraph 2.2.1 where it is invoked in order to give
some intuitive explanations. On the contrary, the positivity relation will play a
fundamental role in the rest of the thesis.

2.1 Interpreting formulae in a topology

To interpret terms a set D is needed together with functions corresponding to
the function symbols in the language. The interpretation is carried on as usual
starting from an assignment to the variables. In this way, each term is interpreted
as an element in D.

Let S = (S, ¢,n) be a topology. A valuation in the topology S (corresponding
to a given interpretation of terms) is a function

V : Frm −→ PS

which is recursively defined in the following way. Firstly fix V (p(d1, . . . , dn)), for
each instance of an atomic formula p; then put:
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• V (⊥) = ∅;
• V (ϕ & ψ) = V (ϕ)↓V (ψ);

• V (ϕ ∨ ψ) = V (ϕ) ∪ V (ψ);

• V (ϕ → ψ) = V (ϕ) →A V (ψ);

• V (∀xϕ(x)) = {a ∈ S : (∀d ∈ D)(a ¢ V (ϕ(d)))};
• V (∃xϕ(x)) =

⋃
d∈D V (ϕ(d)).

Finally, if Γ = γ1, . . . , γn is a list of formulae, put

V (Γ) = V (γ1)↓ · · · ↓V (γn)

if n > 0, while V (Γ) = S if Γ is the empty list.

Definition 2.1.1 A sequent Γ ` ϕ is valid in an interpretation if

V (Γ) ¢ V (ϕ)

holds in the corresponding topology.

A sequent is valid, written Γ |= ϕ, if it is valid in all possible interpretations.

Because of the definition of validity, the valuating function respects the equiv-
alence relation =A, thus the valuation of a formula can be read as an element of
Sat(A). In other words, we interpret formulae in (particular) complete Heyting
algebras. Also note that in case the topology is representable, the functor r−

allows to transfer all definitions to the concrete side. Unsurprisingly, what one
gets this way is exactly the usual topological semantics.

Theorem 2.1.2 (soundness) If Γ ` ϕ then Γ |= ϕ.

Proof: The proof is an easy exercise in the theory of complete Heyting alge-
bras. We only give details for some particular cases. For instance, the rule

Γ, ϕ ` γ Γ, ψ ` γ

Γ, ϕ ∨ ψ ` γ

is valid if
Z↓U ¢ W Z↓V ¢ W

Z↓(U ∪ V ) ¢ W
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holds for any U, V, W,Z ⊆ S, which in the abstract algebraic setting can be
proved in the following way:

c ∧ a ≤ d
a ≤ c → d

c ∧ b ≤ d
b ≤ c → d

a ∨ b ≤ c → d

c ∧ (a ∨ b) ≤ d

Similarly, the validity of
Γ ` ϕ ψ, Γ′ ` γ

Γ, ϕ → ψ, Γ′ ` γ

follows from

c ≤ a

a → b ≤ a → b

a ∧ (a → b) ≤ b
b ∧ d ≤ e
b ≤ d → e

a ∧ (a → b) ≤ d → e

a ≤ (a → b) → (d → e)

c ≤ (a → b) → (d → e)

c ∧ (a → b) ≤ d → e

c ∧ (a → b) ∧ d ≤ e

q.e.d.

2.2 Topology on the set of formulae

In order to prove the completeness theorem, we need to construct a canonical (i.e.
syntactical) interpretation. Let C = (Frm,¢,n) be the basic topology generated
by the following recursively defined axiom-set. Here ↑ ϕ stands for the collection
of all ψ such that ϕ ` ψ:

• I(⊥) = {∗}∪ ↑ ⊥ = {∗} ∪ Frm;

• I(ϕ ∨ ψ) = {∗}∪ ↑ (ϕ ∨ ψ);

• I(∃x ϕ(x)) = {∗}∪ ↑ (∃x ϕ(x));

• I(ϕ) =↑ ϕ, otherwise;

where ∗ is a new symbol. Then consider the following basic covers:

• C(ϕ, ψ) = {ψ}, for ψ ∈↑ ϕ;

• C(⊥, ∗) = ∅;
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• C(ϕ ∨ ψ, ∗) = {ϕ, ψ};

• C(∃x ϕ(x), ∗) = {ϕ(t) : t ∈ Trm}.

The general rules for the cover given in paragraph 1.2.3 explicitly become (recall
that U ¢V means that all elements in U are covered by V ; on the contrary, UnV
states the existence of at least one a ε U such that an V ):

ϕ ε U
ϕ ¢ U

refl
ϕ ` ψ ψ ¢ U

ϕ ¢ U
` ⊥¢ U

⊥

ϕ ¢ U ψ ¢ U

ϕ ∨ ψ ¢ U
∨ {ϕ(t) : t ∈ Trm}¢ U

∃xϕ(x) ¢ U
∃

and, in addition, the following principle of proof by induction is fulfilled:

ϕ ¢ U

[ψ ε U ]....
ψ ε P

[ψ ` γ , γ ε P ]....
ψ ε P [⊥ ε P ]

[{ψ, γ} ⊆ P ]....
(ψ ∨ γ) ε P

[{ψ(t) : t ∈ Trm} ⊆ P ]....
(∃x ψ(x)) ε P

ϕ ε P
.

Besides, the relation n satisfies:

ϕn U
ϕ ε U

co− refl
ϕ ` ψ ϕn U

ψ n U
co− ` ⊥n U

co−⊥

ϕ ∨ ψ n U

{ϕ, ψ}n U
co−∨ (∃x ϕ(x))n U

{ϕ(t) : t ∈ Trm}n U
co−∃

ϕ ε P

[ψ ε P ]....
ψ ε U

[ψ ` γ , ψ ε P ]....
γ ε P [¬(⊥ ε P )]

[(ψ ∨ γ) ε P ]....
{ψ, γ} G P

[(∃x ψ(x)) ε P ]....
{ψ(t) : t ∈ Trm} G P

ϕn U

the last one being the co-induction rule.

Lemma 2.2.1 For any ϕ, ψ ∈ Frm, ϕ ¢ ψ ⇐⇒ ϕ ` ψ.
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Proof:
⇐) For any ψ, ψ ¢ ψ holds by reflexivity; so, if ϕ ` ψ then ϕ ¢ ψ by the

`-rule.
⇒) The proof is an easy induction on the deduction of ϕ¢ψ. For instance, if

the last rule in the derivation is ` then there exists γ such that ϕ ` γ and γ ¢ ψ;
by the inductive hypothesis, γ ` ψ holds and then ϕ ` ψ by cut. As another
example, let us suppose that ϕ is ∃x γ(x) and the last rule is the

{γ(t) : t ∈ Trm}¢ ψ

∃xγ(x) ¢ ψ
∃ .

The inductive hypothesis yields γ(t) ` ψ for all t ∈ Trm; thus it is possible to
find a variable which is not free in ψ and ∃xγ(x) ` ψ follows by a suitable rule
of LJ . q.e.d.

Corollary 2.2.2 For any ϕ, ψ ∈ Frm, ϕ↓ψ =A ϕ & ψ.

Proof: Let γ be a formula belonging to ϕ↓ψ; thus it is covered by both ϕ and
ψ. This means that both ϕ and ψ are derivable from γ (previous lemma) that
is, γ ` ϕ & ψ. The previous lemma again forces γ to be covered by ϕ & ψ and
hence we get ϕ↓ψ ¢ ϕ & ψ as γ was generic.

The statement ϕ & ψ ¢ ϕ↓ψ follows by reflexivity from ϕ & ψ ε ϕ↓ψ which is
easily proved by using the previous lemma once again. q.e.d.

Actually, C is a topology, that is, its cover satisfies the ↓ rule. To prove this
fact we need two lemmas.

Lemma 2.2.3 The rule
ϕ ¢ U

ϕ & ψ ¢ U↓ψ ?

holds for any ϕ, ψ ∈ Frm and U ⊆ Frm.

Proof: This lemma can be seen as a theorem of “?-elimination”. The proof
is by induction on the derivation of ϕ ¢ U .

ϕ ε U
ϕ ¢ U

refl

ϕ & ψ ¢ U↓ψ ? Ã

ϕ & ψ ¢ ϕ ϕ & ψ ¢ ψ

ϕ & ψ ε ϕ↓ψ def
ϕ ε U

ϕ↓ψ ⊆ U↓ψ def

ϕ & ψ ε U↓ψ
ϕ & ψ ¢ U↓ψ refl
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ϕ ` γ γ ¢ U
ϕ ¢ U

`
ϕ & ψ ¢ U↓ψ ? Ã

ϕ ` γ

ϕ & ψ ` γ & ψ
logic

γ ¢ U

γ & ψ ¢ U↓ψ ?

ϕ & ψ ¢ U↓ψ `

⊥¢ U
⊥

⊥ & ψ ¢ U↓ψ ? Ã
⊥ & ψ ` ⊥ logic ⊥¢ U↓ψ ⊥

⊥ & ψ ¢ U↓ψ `

ϕ1 ¢ U ϕ2 ¢ U
ϕ1 ∨ ϕ2 ¢ U

∨
(ϕ1 ∨ ϕ2) & ψ ¢ U↓ψ ? Ã

ϕ1 ¢ U

ϕ1 & ψ ¢ U↓ψ ?
ϕ2 ¢ U

ϕ2 & ψ ¢ U↓ψ ?

(ϕ1 & ψ) ∨ (ϕ2 & ψ) ¢ U↓ψ ∨
....

(ϕ1 ∨ ϕ2) & ψ ¢ U↓ψ

ϕ(t) ¢ U (∀t ∈ Trm)

∃xϕ(x) ¢ U
∃

(∃xϕ(x)) & ψ ¢ U↓ψ ? Ã

ϕ(t) ¢ U

ϕ(t) & ψ ¢ U↓ψ ?
(∀t ∈ Trm)

∃x(ϕ(x) & ψ) ¢ U↓ψ ∃
....

(∃xϕ(x)) & ψ ¢ U↓ψ

q.e.d.

Lemma 2.2.4 The rule
ϕ ¢ U

ϕ↓V ¢ U↓V

holds for any ϕ ∈ Frm and U, V ⊆ Frm.

Proof: Let γ be a generic element of ϕ↓V ; then there exists ψ ε V such that
γ ε ϕ↓ψ; as a consequence, γ ` ϕ & ψ. Assume ϕ ¢ U . By the previous lemma,
we have ϕ & ψ ¢ U↓ψ. On the other hand, U↓ψ is contained in U↓V . Thus
ϕ & ψ¢U↓V holds by reflexivity and transitivity; γ ¢U↓V follows by the `-rule.
q.e.d.

Proposition 2.2.5 C is convergent, that is, it satisfies the ↓ rule.
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Proof:

ϕ ` ϕ & ϕ
logic

ϕ ¢ V

ϕ & ϕ ¢ V ↓ϕ lemma 2.2.3

ϕ ¢ V ↓ϕ ` ϕ ¢ U

ϕ↓V ¢ U↓V lemma 2.2.4

ϕ ¢ U↓V transitivity

q.e.d.

2.2.1 Formal points of the canonical topology

Recall that a formal point is a convergent and inhabited closed subset. The
following proposition gives a characterization of formal points in the canonical
topology.

Proposition 2.2.6 Let C be the canonical topology; then α ⊆ Frm is a formal

point if and only if it satisfies the following rules:

> ε α
⊥ ε α a ` b a ε α

b ε α

(a ∨ b) ε α

{a, b} G α

(∃xa(x)) ε α

{a(t) : t ∈ Trm} G α
a ε α b ε α
(a & b) ε α

(where > is ⊥ → ⊥).

Proof: Firstly, let us suppose α ⊆ Frm satisfies the above rules. The first and
the last ones force α to be inhabited and convergent. To see that the other rules
force α to be a formal closed subset argue as follows: consider the co-induction
rule and put P = α = U ; thus the above rules are just what is needed to get
α ⊆ Jα.

Conversely, let α ⊆ Frm be a formal point; in particular Jα = α. Because
α is inhabited, there exists ϕ ∈ Frm such that ϕ n α; but ϕ ` >, so ϕ ¢ > and
> ε α. The last rule is just convergence of α, while the other ones are exactly
co-⊥, co-`, co-∨ and co-∃ respectively because α is closed. q.e.d.

Thus a formal point of the canonical topology is just a Henkin set, that is a
model. Keeping this in mind is helpful to understand why the definitions given
in this thesis actually work.
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2.3 The completeness theorem

Now that the canonical topology has been introduced, in order to complete the
canonical model it remains to define both the interpretation for terms and the
valuation for formulae. Let us use Trm itself as domain and the identity func-
tion as assignment for variables. Finally, for any instance of an atomic formula
different from ⊥, say p, let us put

V (p) = {ϕ ∈ Frm : ϕ ` p}.

Proposition 2.3.1 (Lemma of the canonical valuation) For any ϕ and ψ

in Frm:

ϕ ¢ V (ψ) ⇐⇒ ϕ ` ψ

(that is, AV (ψ) = {ϕ : ϕ ` ψ} = ↓ψ).

Proof: It is enough to prove that ϕ ¢ V (ψ) iff ϕ ¢ ψ, that is ψ =A V (ψ).
The proof is by induction on the complexity of ψ.

If ψ = p is atomic then ψ ε V (ψ), so ψ ¢ V (ψ). Vice versa, ϕ ε V (ψ) means
ϕ ` ψ by definition; thus ϕ ¢ ψ.

If ψ = ⊥ then V (⊥) = ∅; thus V (⊥) ¢ ⊥. On the other hand, ⊥ ¢ ∅ by the
⊥-rule.

If ψ = ψ1 & ψ2 then argue as follows: ϕ ¢ ψ1 & ψ2 iff ϕ ` ψ1 & ψ2 iff both
ϕ ` ψ1 and ϕ ` ψ2 iff both ϕ ¢ ψ1 and ϕ ¢ ψ2 iff (by inductive hypothesis) both
ϕ¢V (ψ1) and ϕ¢V (ψ2) iff ϕ¢V (ψ1)↓V (ψ2) iff (by definition) ϕ¢V (ψ1 & ψ2).

The case ψ = ψ1 ∨ ψ2 is sketched below.

ψ1 ¢ V (ψ1)

ψ1 ¢ V (ψ1) ∪ V (ψ2)

ψ2 ¢ V (ψ2)

ψ2 ¢ V (ψ1) ∪ V (ψ2)

ψ1 ∨ ψ2 ¢ V (ψ1) ∪ V (ψ2)

V (ψi) ¢ ψi ψi ¢ ψ1 ∨ ψ2

V (ψi) ¢ ψ1 ∨ ψ2

V (ψ1) ∪ V (ψ2) ¢ ψ1 ∨ ψ2

Let us consider now the case ψ = ψ1 → ψ2. Thanks to the adjunction between
↓ and →A, we know that ϕ¢V (ψ1) →A V (ψ2) is equivalent to ϕ↓V (ψ1)¢V (ψ2);
thanks to the inductive hypothesis this is equivalent to ϕ↓ψ1 ¢ ψ2, which is the
same as ϕ & ψ1 ¢ ψ2. This is true if and only if ϕ & ψ1 ` ψ2, i.e. ϕ ` ψ1 → ψ2

and then ϕ ¢ ψ1 → ψ2.
The proofs for the cases ψ = ∀x γ(x) and ψ = ∃x γ(x) are similar to those of

ψ = ψ1 & ψ2 and ψ = ψ1 ∨ ψ2, respectively. q.e.d.

At this point, the completeness theorem is obtained as an easy corollary.
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Theorem 2.3.2 (completeness) If Γ |= ϕ then Γ ` ϕ.

Proof: If Γ |= ϕ then, in particular, Γ ` ϕ is valid in the canonical model. In
other words, we have V (γ1)↓ . . . ↓V (γn) ¢ V (ϕ) provided that Γ = {γ1, . . . , γn}.
From the previous proposition we get ψ ¢ V (ψ), for any ψ; so:

γ1 & . . . & γn ¢ V (γ1 & . . . & γn)

V (γ1)↓ . . . ↓V (γn) ¢ V (ϕ)

V (γ1 & . . . & γn) ¢ V (ϕ)
def

γ1 & . . . & γn ¢ V (ϕ)
trans

γ1 & . . . & γn ` ϕ
proposition 2.3.1

Γ ` ϕ
logic

q.e.d.
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Chapter 3

Constructive semantics for

non-deducibility

Because of the completeness theorem, saying that a sequent is non-deducible is
the same as saying that not all topological interpretations validate it. From a
constructive point of view, this statement cannot be immediately transformed
into a positive one. Thus the completeness theorem is not enough to deal with
non-deducibility: some other theorems are needed. The same happens for other
logical notion which are classically defined by means of negation. An example is
the notion of a “satisfiable formula”, which classically is defined as a formula that
does not entail a contradiction. In the next chapter we will see as it is possible
to give a constructive notion of satisfiability; in the present one we give some
constructive results about non-deducibility.

3.1 Co-valuation: the dual of valuation

The first thing one can prove is that non-deducibility is equivalent to the existence
of a counter-model even if we adopt a constructive point of view.

Proposition 3.1.1 Γ 0 ϕ if and only if there exists a topological interpretation

such that ¬(V (Γ) ¢ V (ϕ)).

Proof: If there is a topology such that ¬(V (Γ) ¢ V (ϕ)), then Γ ` ϕ cannot
be provable otherwise V (Γ) ¢ V (ϕ) should be true, a contradiction.
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Vice versa, suppose Γ 0 ϕ. We know that Γ ` ϕ is equivalent to V (Γ) ¢V (ϕ)
in the canonical topology; hence ¬(V (Γ)¢V (ϕ)) holds in the canonical topology
(remember that ϕ ` ψ implies ¬ψ ` ¬ϕ also intuitionistically). q.e.d.

However, we would like to find out a possibly more direct characterization
of non-deducibility. Since a semantics for deducibility is carried out by means
of the open subsets of a topology, one could expect the closed subsets to work
with respect to non-deducibility (see [15]). From the point of view of the classical
topological semantics this is trivial, of course. In order to find the right construc-
tive definition, let us do a bit of classical calculation: Γ 0 ϕ iff there exists a
topology such that ¬(V (Γ) ⊆ AV (ϕ)) iff V (Γ) G −AV (ϕ) iff V (Γ) G J − V (ϕ)
iff V (Γ)n−V (ϕ). Thus Γ 0 ϕ is equivalent to the existence of an interpretation
such that V (Γ)n−V (ϕ) provided − is the classical complement. The notion of
a co-valuation is a constructive way to simulate the complement of a valuation.

Definition 3.1.2 Let V (ϕ) be a valuation of a formula ϕ in a topology. A co-

valuation of ϕ (with respect to the given valuation) is a subset F (ϕ) such that

JF (ϕ) ∩ AV (ϕ) = ∅.

For instance, F (ϕ) = −V (ϕ) and F (ϕ) = −AV (ϕ) are natural examples of
co-valuations. Besides these elementary definitions which do not give much con-
structive information, there exists also a recursive way for defining a co-valuation,
as described below.

For each atomic formula p, different from ⊥, fix a subset F (p) such that
JF (p) ∩ AV (p) = ∅; then consider the following recursive definition.

• F (⊥) = S;

• F (ϕ & ψ) = {a ∈ S : an F (ϕ) ∨ an F (ψ)} = JF (ϕ) ∪ JF (ψ); 1

• F (ϕ ∨ ψ) = F (ϕ) ∩ F (ψ);

• F (ϕ → ψ) = {a ∈ S : a↓V (ϕ)n F (ψ)};

• F (∀x ϕ(x)) = {a ∈ S : (∃d ∈ D)(an F (ϕ(d)))} =
⋃

d∈D JF (ϕ(d));

• F (∃x ϕ(x)) =
⋂

d∈D F (ϕ(d)).

Proposition 3.1.3 The function F defined above is a co-valuation.

1If the topology is a bi-convergent one then put F (ϕ & ψ) = F (ϕ)⇓F (ψ).
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Proof: All cases are quite simple. For instance, let us consider the case of
∃x ϕ(x) and suppose there exists a ε JF (∃xϕ(x)) ∩ AV (∃xϕ(x)). This implies
JF (∃xϕ(x)) G AV (∃xϕ(x)) and then JF (∃xϕ(x)) G V (∃xϕ(x)) by compatibil-
ity. Hence, without loss of generality, we can take a ε JF (∃xϕ(x))∩ V (∃xϕ(x)).
The definition of V (∃xϕ(x)) implies a ε V (ϕ(d)) for some d. On the other hand
anF (∃xϕ(x)) yields a ε F (ϕ(d)) and then anF (ϕ(d)) by co-transitivity. Hence a
should belong to JF (ϕ(d))∩V (ϕ(d)) thus contradicting the inductive hypothesis.

As for another example, let us consider the case of implication. We will be
able to prove a stronger fact, namely F (ϕ → ψ)∩V (ϕ → ψ) = ∅. If there existed
an element, say a, belonging to both the valuation and co-valuation of ϕ → ψ,
then both a↓V (ϕ)¢V (ψ) and a↓V (ϕ)nF (ψ) would be true; hence V (ψ)nF (ψ)
by compatibility. This is exactly V (ψ) G JF (ψ): a contradiction. q.e.d.

In the case of the canonical topology, we need to define a class of particular
co-valuations.

Definition 3.1.4 A canonical co-valuation is a map F : Frm → P(Frm) such

that

ψ n F (ϕ) =⇒ ψ 0 ϕ =⇒ ψ ε F (ϕ)

for any ϕ, ψ ∈ Frm.

Note that a canonical co-valuation is really a co-valuation; indeed, if ψ belongs
to JF (ϕ) ∩ AV (ϕ) then ψ n F (ϕ) and ψ ¢ V (ϕ), thus ψ 0 ϕ and ψ ` ϕ, a
contradiction.

Canonical co-valuations actually exist; for instance

F (ϕ) = −AV (ϕ) = {ψ ∈ Frm : ψ 0 ϕ}

is canonical. Note that neither F (ϕ) = −V (ϕ) nor any recursive co-valuation
work as canonical co-valuation. This is mostly due to the weak foundation we
are using and, in particular, to the underlying logic (if one adopts a classical
metalanguage then both of them work). For instance, let us consider a recursive
co-valuation and suppose it was canonical. Moreover, let us assume γ 0 ϕ & ψ
for some γ, ϕ and ψ in Frm. This would imply γ ε F (ϕ & ψ); hence either
γnF (ϕ) or γnF (ψ) which in turn would yield either γ 0 ϕ or γ 0 ψ. Summing
up, if the recursive co-valuation was canonical then we would be able to choose
wether ¬(γ ` ϕ) or ¬(γ ` ψ) from the assumption ¬((γ ` ϕ) & (γ ` ψ)); this is
constructively unacceptable (see Bishop’s LLPO).
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3.2 Semantics for non-deducibility

To prove the following fundamental lemma two results from proof-theory are
needed, namely the disjunction (and existence) property and the consistency of
the calculus (see section 1.1).

Lemma 3.2.1 A formula ϕ is unprovable, written 0 ϕ, if and only if >n F (ϕ)

for any canonical co-valuation F .

Proof: ⇐) >n F (ϕ) ⇒ > 0 ϕ ⇒0 ϕ because F is a canonical co-valuation.
⇒) Let us consider the subset P ⊆ Frm defined by γ ε P ≡ ` γ, put U = F (ϕ)

and use co-induction on the canonical positivity relation (see section 2.2): from

γ ε P

` γ [γ ` ϕ]′

` ϕ 0 ϕ

⊥
γ 0 ϕ

′

γ ε F (ϕ)

γ ε P

` γ γ ` δ

` δ
δ ε P

0 ⊥ consistency

¬(⊥ ε P )

(γ ∨ δ) ε P

` γ ∨ δ

(` γ) ∨ (` δ)
disjunction

{γ, δ} G P

∃xγ(x) ε P

` ∃xγ(x)

` γ(t) for some t
existence

{γ(t) : t ∈ Trm} G P

>n F (ϕ) follows, as > ε P . q.e.d.

As a corollary one gets the following constructive semantic characterization
of non-deducibility.

Theorem 3.2.2 For any ϕ ∈ Frm, 0 ϕ iff there exists a topology S and a co-

valuation F on it such that S n F (ϕ).

Proof:
⇒) Consider the canonical topology (with a canonical co-valuation) and use

the previous lemma to get >n F (ϕ). Hence Frmn F (ϕ) (since > ε Frm).
⇐) If ϕ was provable then S ¢ V (ϕ) would be true in every topology (by the

soundness theorem). By hypothesis a certain topological interpretation exists
such that SnF (ϕ). In this topology both S ¢V (ϕ) and SnF (ϕ) would be true
contradicting the definition of co-valuation. q.e.d.

Note that if there exists a topology such that V (Γ) n F (ϕ) then Γ 0 ϕ;
otherwise, if Γ ` ϕ was deducible then V (Γ) ¢ V (ϕ), contradicting the requested
condition on the co-valuation of ϕ. The opposite implication is classically true.
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3.3 Some proofs of non-deducibility

From now till the end of the chapter we are giving some concrete applications of
the results above. In all the following examples, the topology we will use is Q, the
(bi-convergent) topology of the rational numbers; moreover, all the co-valuations
we are going to define actually are inductive ones. So a natural question arises:
is Q (with all possible inductive co-valuation on it) enough to give a semantics
for non-deducibility? In other words, is it possible to prove (in a constructive
way) that 0 ϕ is equivalent to the existence of an inductive co-valuation on Q
such that S nQ F (ϕ)? This remains as an open problem.2

SinceQ is a representable topology, we can transfer things on the concrete side.
One has to recall (see paragraph 1.2.4) that the functors r− : Sat(A) → Red(int)
and r∗ : Red(J ) → Sat(cl) are two isomorphisms between the formal and the
concrete objects. So the functions r−V and r∗F are the counterparts of the valu-
ating and co-valuating functions, respectively. Moreover, the conditions defining
an inductive co-valuation can be read in terms of (concrete) closed subsets. For
instance, r∗F (∀x ϕ(x)) results in cl

⋃
d∈D r∗F (ϕ(d)).

Corollary 3.3.1 The formula ϕ ∨ ¬ϕ is generally non-deducible.

Proof: Let ϕ be an atomic formula and put

V (ϕ) = {(a, b) : 0 < a < b} and F (ϕ) = {(a, b) : a < 0}

which correspond to the intervals (0, +∞) and (−∞, 0] respectively. We want to
prove that JF (ϕ)∩AV (ϕ) = ∅; this is equivalent to check r−V (ϕ)∩ r∗F (ϕ) = ∅
which is trivial since it is exactly (0, +∞) ∩ (−∞, 0] = ∅. In order to find out
what the co-valuation of ϕ ∨ ¬ϕ is, let us firstly calculate F (¬ϕ). The basic
open (x, y) is in F (ϕ → ⊥) if and only if (x, y)↓V (ϕ) n S; this is equivalent to
r−(x, y) ∩ r−V (ϕ) G r∗S that in turn is r−(x, y) G r−V (ϕ) because r∗S = Q.
Hence

F (¬ϕ) = {(a, b) : (a < b) & (b > 0)}
which is the formal counterpart of the closed subset [0, +∞); thus

F (ϕ ∨ ¬ϕ) = F (ϕ) ∩ F (¬ϕ) = {(a, b) : a < 0 < b}
2It is well known (see [18]) that intuitionistic propositional logic is complete with respect

to both the real and the rational line. On the contrary, completeness with respect to the reals

fails when first order formulae are considered, as it is shown by some counterexamples we know

from Pawel Urzyczyn. The interesting thing is that the formulae used in those counterexamples

are just valid on the rationals.
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and r∗F (ϕ ∨ ¬ϕ) = {0}. Finally, S n F (ϕ ∨ ¬ϕ) is obvious since it is the same
as Q G {0}. q.e.d.

Corollary 3.3.2 The formula ¬¬ϕ → ϕ is generally non-deducible.

Proof: Let ϕ be an atomic formula and put

r−V (ϕ) = (−∞, 0) ∪ (0,∞) and r∗F (ϕ) = {0}
which, of course, are disjoint subsets. It is easy to check that

r−V (¬ϕ) = ∅ and r−V (¬¬ϕ) = Q.

Remember that Γ 0 ϕ is implied by V (Γ)n F (ϕ) thus it is enough to prove that

V (¬¬ϕ)n F (ϕ)

that is Sn {(a, b) : a < 0 < b}; this is just what is proved in the final part of the
previous proof. q.e.d.

Corollary 3.3.3 (see [10]) In general, ∀x[ϕ ∨ ψ(x)] 0 [ϕ ∨ ∀xψ(x)].

Proof: Let ϕ and ψ(x) be atomic formulae. Let us choose D = N, the set of
natural numbers, as domain for interpreting terms. Finally put:

r−V (ϕ) = (−∞, 0) ∪ (0, +∞), r−V (ψ(n)) = (− 1

n
,
1

n
);

r∗F (ϕ) = {0}, r∗F (ψ(n)) = (−∞,− 1

n
] ∪ [

1

n
, +∞).

A little bit of calculation is needed to check that:

V (∀n(ϕ ∨ ψ(n))) =A S, F (ϕ ∨ ∀xψ(x)) = {(a, b) : a < 0 < b};
then one proceeds as in the previous proofs. q.e.d.

Corollary 3.3.4 ¬∀xϕ(x) 0 ∃x¬ϕ(x)

Proof: [Hint] Let D = {q ∈ Q : q > 0} and put

V (ϕ(q)) = {(a, b) : −q < a < b < q}
that intuitively is the open interval (−q, q) on the rational line. q.e.d.
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Chapter 4

Satisfiability

Usually, a formula, say ϕ, is said to be satisfiable if 0 ¬ϕ. In fact, if this holds then
a classical argument shows how to construct (by using Zorn’s lemma!) a Henkin
set, i.e. a model, containing ϕ. Of course, this argument is not acceptable in our
context. Moreover, we cannot even define a formula to be satisfiable if it belongs
to some Henkin set, because of the impredicative nature this definition would
have. Thus, the only thing we can do is to look for a more abstract definition of
satisfiability which, when adopting a classical metatheory, would turn out to be
equivalent to the usual notion.

4.1 Semantic satisfiability

Condition 0 ¬ϕ, i.e. ϕ 0 ⊥, is equivalent to ¬(ϕ ¢ ∅) in the canonical topology,
as V (⊥) is just ∅. Under a classical reading, ¬(ϕ ¢ ∅) is the same as ϕ n Frm;
indeed, as n and ¢ are generated by the same axiom-set, J is the maximum
reduction operator compatible with A; from a classical point of view −A− is a
reduction operator too and, actually, the maximum compatible one, i.e. it is just
J . So, classically speaking, satisfiability of ϕ can be expressed by the condition:
ϕ n Frm. On the contrary, from our foundational standpoint, this requirement
implies the usual 0 ¬ϕ. Indeed, if ` ¬ϕ then ϕ ¢ ∅; this together with ϕn Frm
gives ∅ n Frm by compatibility, a contradiction. So ϕ n Frm implies 0 ¬ϕ, as
claimed. The above discussion suggests to identify satisfiability of ϕ with the
condition ϕn Frm.1 However, this condition refers to the canonical model only,

1This choice is strengthened by the fact that the intended meaning of ϕnFrm is that there

exists a formal point (i.e. a model) “contained” in ϕ.
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while it could be desirable to use a wider semantic characterization which would
involve the entire class of models.

Theorem 4.1.1 The condition ϕ n Frm holds in the canonical topology if and

only if V (ϕ)n S holds in some topological interpretation.

Proof: ⇒) The interpretation we are looking for is the canonical one. Re-
member that ϕ ¢ V (ϕ) holds in the canonical topology and use compatibility.

⇐) Let (S, ¢S,nS) be the topology which exists by hypothesis. In order to
prove that ϕnFrm let us use the co-induction rule for the canonical n (see page
24). Put ψ ε P ≡ V (ψ)nS S, choose U = Frm and verify all the premises of the
rule.

P ⊆ Frm is obvious.
Suppose ψ ε P and ψ ` γ; then V (ψ)nS S and V (ψ)¢S V (γ) by the soundness

theorem; thus γ ε P by compatibility.
V (⊥)nS S cannot hold, otherwise ∅ G S; so ¬(⊥ ε P ).
Let (ψ ∨ γ) ε P , that is, V (ψ ∨ γ) = (V (ψ) ∪ V (γ)) nS S; in other words,

(V (ψ) ∪ V (γ)) G JSS which is the same as (V (ψ) G JSS) ∨ (V (γ) G JSS), i.e.
{ψ, γ} G P .

In a quite similar way, if (∃x ψ(x)) ε P then (
⋃

t∈Trm V (ψ(t))) G JSS; hence
there exists a term t such that V (ψ(t))nS S, i.e. {ψ(t) : t ∈ Trm} G P .

Since all premises of the co-induction rule are fulfilled, we can derive ϕnFrm
from ϕ ε P (i.e. V (ϕ)nS S). q.e.d.

We know that the canonical topology actually is a canonical model with re-
spect to deducibility. The theorem above asserts that it is a canonical model for
satisfiability too. What we have said till now justifies the following.

Definition 4.1.2 A formula, say ϕ, is satisfiable if V (ϕ) n S holds in some

topological model.

Of course, this definition introduces a semantic notion of satisfiability; a syn-
tactic version will be introduced in the next section. From the previous discussion
also the following fact follows.

Corollary 4.1.3 If a formula is satisfiable then its negation is intuitionistically

non-deducible.

From now till the end of the section, we are giving some simple results about
satisfiability.

38



Corollary 4.1.4 Every atomic formula different from ⊥ is satisfiable.

Proof: Let p be an atomic formula, (S, ¢,n) be a topology such that S n S
and put V (p) = S. q.e.d.

Proposition 4.1.5 If ϕ is provable in classical logic then ϕ is (intuitionistically)

satisfiable.

Proof: Let S = {1} be a set with only one element and let both A and J
be the identity operator. It is easily seen that (S,A,J ) is a convergent basic
topology; moreover, U↓V = U ∩ V . Let us write PωS for the collection of finite
subsets of S (see [4])2; PωS = {∅, S} follows from two facts: it is decidable if a
finite subsets is either empty or inhabited and an inhabited subset of S has to
coincide with S itself.

Let D = S be the domain for interpreting terms and choose V (p) in PωS for
each atomic formula p. Actually V (ϕ) is finite for any formula ϕ. The proof is by
induction and it is quite trivial; as an example, look at the case of implication:
if V (ϕ) = S and V (ψ) = ∅ then

V (ϕ → ψ) = {a : a↓V (ϕ) ¢ V (ψ)} = {a : {a} ∩ S ⊆ ∅} = {a : a ε ∅} = ∅;
otherwise V (ϕ → ψ) = S.

Summing up, the above interpretation is a truth values assignment, in the
classical sense. Since ϕ is classically provable then the soundness theorem for
classical logic forces it to be valid in all assignments. Thus V (ϕ) = S and
V (ϕ)n S because J is the identity operator. q.e.d.

Proposition 4.1.6 There exists a formula which is intuitionistically satisfiable,

but classically refutable.

Proof: Let us consider the formula

ψ = ¬(∀x¬¬ϕ(x) → ¬¬∀xϕ(x))

which, of course, is provably false in classical logic. Let Q be the topology of the
rational numbers and take D = {x ∈ Q : x ≥ 1} as the domain for terms. For
any x ∈ D, let us define V (ϕ(x)) to be

{(a, b) ∈ Q×Q : (b ≤ −x) ∨ (−x ≤ a < b ≤ −1) ∨ (1 ≤ a < b ≤ x) ∨ (x ≤ a)}
2According to [4], a finite subset is {x ∈ S : (x = a1) ∨ . . . ∨ (x = an)} for some finite list

{a1, . . . , an} of elements in S.
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which, informally, is the open subset (−∞,−x) ∪ (−x,−1) ∪ (1, x) ∪ (x, +∞).
After some calculation one finds out that V (ψ) informally corresponds to

(−∞,−1) ∪ (1, +∞)

which surely contains a point; thus V (ψ)nQ S. q.e.d.

Corollary 4.1.7 (see [15] and [12]) The formula

¬¬(∀x¬¬ϕ(x) → ¬¬∀xϕ(x))

is intuitionistically non-deducible.

Proof: Note that this formula is ¬ψ where ψ is as in the previous proof and
apply corollary 4.1.3. q.e.d.

Quite similarly it is possible to prove that

¬∀x(ϕ(x) ∨ ¬ϕ(x))

is intuitionistically satisfiable, although classically false; hence its negation is
intuitionistically non-deducible.

4.2 Syntactic satisfiability

In this section we give a syntactic characterization of the semantic notion of
satisfiability defined in the previous pages. One could expect a sort of calculus
and, in fact, we had been looking for it for a certain time; but, finally, we realized
that the right expectation was to find a “co-inductive calculus”. In other words,
syntactic satisfiability has to be characterized as the largest notion fulfilling some
suitable rules. Provided Γ and ∆ are (possibly empty) finite lists of formulae, we
use the notation

Γ ./ ∆

to intend that & Γ, the conjunction of all the formulae in Γ, is consistent with
the conjunction of those in ∆, i.e. & ∆; in other words, the conjunction of all
formulae in Γ and ∆ is satisfiable. The new symbol ./ is a metalinguistic link,
exactly like ` (by the way, note that the horizontal line in a rule of a calculus is
just a meta-metalinguistic link). Firstly, we want to express the fact that Γ and
∆ must be thought modulo order and repetitions; thus we give the following first
group of rules:
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exchange rules

Γ, ϕ, ϕ′, Γ′ ./ ∆

Γ, ϕ′, ϕ, Γ′ ./ ∆

Γ ./ ∆, ϕ, ϕ′, ∆′

Γ ./ ∆, ϕ′, ϕ, ∆′

contraction rules

Γ, ϕ, Γ′ ./ ∆

Γ, ϕ, ϕ, Γ′ ./ ∆

Γ ./ ∆, ϕ, ∆′

Γ ./ ∆, ϕ, ϕ, ∆′

A second more interesting group of rules is the following:

weakening rules
Γ, ϕ ./ ∆
Γ ./ ∆

Γ ./ ϕ, ∆
Γ ./ ∆

transfer rules
Γ, ϕ ./ ∆
Γ ./ ϕ, ∆

Γ ./ ϕ, ∆
Γ, ϕ ./ ∆

(note that transfer with exchange implies commutativity of ./). These given until
now are the structural rules of the (co-)calculus. They allow one to write ϕ ./ Ω
instead of Γ ./ ∆, provided either Γ or ∆ is non empty. Next we give three rules
involving the connective ∨, the quantifier ∃ and the constant ⊥:

∨ -rule

ϕ ∨ ψ ./ Γ

ϕ ./ Γ ψ ./ Γ

∃ -rule

∃x ϕ(x) ./ Γ

ϕ(t) ./ Γ (some t ∈ Trm)

⊥ -rule ⊥ ./ Γ

where the space in the lower part of the ∨-rule has to be read as an “or” at
the metalanguage; similarly the lower part of the ∃-rule has to be thought as an
infinite disjunction of all ϕ(t) ./ Γ for t ∈ Trm. The empty lower part in the ⊥-
rule stands for a contradiction; hence this rule says that ⊥ cannot be consistent
with anything.3 These three rules are examples of co-inductive rules: in the
upper part is only one object containing the logical constant that disappears in
the objects in the lower part.4 The last rule in the calculus is the following.

` -rule
Γ ./ ∆ Γ ` ϕ

ϕ ./ ∆

This rule could appear clashing with the other ones because it introduces an
inductive element in the calculus, namely the derivation of Γ ` ϕ. Thus it could
be desirable to substitute it in some way, as we will in fact do for the propositional
case at the end of the chapter. However, as we will see in the next chapter, the

3The conventions about the upper and the lower parts of a rule are very similar to the

standard ones about a single sequent.
4The absence of any rule involving &, → and ∀ is justified by Proposition 4.2.3.
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strength of ./ is greatly seen when it is used together with the entailment relation
`; in such a context the `-rule is a necessary link between them.

As ` is the smallest relation satisfying its rules, so ./ has to be thought as the
largest relation fulfilling the above rules; formally this fact can be expressed as

ΓR∆ R is a relation satisfying all the rules
Γ ./ ∆

co− induction.

Of course, if a classical metatheory was adopted then Γ ./ ∆ would become
equivalent to Γ, ∆ 0 ⊥. This is not the case from a constructive point of view.
In fact the rule

ϕ ∨ ψ, Γ 0 ⊥
ϕ, Γ 0 ⊥ ψ, Γ 0 ⊥

cannot be justified. In the end, the reason is that ¬A∨¬B does not follows from
¬(A & B) (see Bishop’s LLPO).

The usual notion of derivation in a calculus has here its dual, namely the
notion of “refutation”, which is formally introduced in the following definition.
To simplify the definition we think of the `-rule as expressed by the following
(non decidable!) scheme:

Γ ./ ∆
ϕ ./ ∆

for any provable Γ ` ϕ.

Definition 4.2.1 A refutation of Γ ./ ∆ is a finite tree whose nodes are instances

of satisfiability such that:

• Γ ./ ∆ is the root (think of it at the top);

• if Γ′′ ./ ∆′′ is an immediate successor of Γ′ ./ ∆′ then there exists a rule in

which the latter is the upper part and the former is one of the lower ones;

• every leaf is empty (that is the knots that are immediately above the leaves

are all of the kind ⊥ ./ Γ and each of them is followed by an application of

the ⊥-rule).

The fact that the calculus is a co-inductive one implies that it can be used
either for refuting an hypothesis of satisfiability or for inferring an instances
of satisfiability from another; on the contrary, the proof that something is just
satisfiable needs a metalinguistic investigation by means of co-induction. Let us
give some examples showing all these cases.
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Proposition 4.2.2 There exists a refutation of ϕ ./ ¬ϕ.

Proof:
ϕ ./ ¬ϕ

ϕ,¬ϕ ./
transfer

ϕ,¬ϕ ` ⊥
⊥ ./

` −rule

⊥−rule

q.e.d.

Proposition 4.2.3 The following derived rules can be proved:

ϕ & ψ ./ Γ
ϕ ./ Γ

ϕ & ψ ./ Γ

ψ ./ Γ

ϕ, ϕ → ψ ./ Γ

ψ ./ Γ

∀xϕ(x) ./ Γ

ϕ(t) ./ Γ
∀ t ∈ Trm.

Proof: By applications of the `-rule. q.e.d.

Proposition 4.2.4 The following instances of satisfiability are valid:

1. > ./ >;

2. p ./ p for any atomic formula p different from ⊥.

Proof: 1) Consider the relation ΓR∆ ≡ ` (& Γ) & (& ∆) and check that all
rules are satisfied (disjunction and existence properties are needed together with
non-deducibility of ⊥); thus > ./ > because >R>.

2) Put ΓR∆ ≡ p ` (& Γ) & (& ∆) and use co-induction again. As p is atomic,
all the requested hypotheses follow by “cut-elimination”. q.e.d.

4.3 Meta-theoretical theorems

In this section we will prove a few metatheoretical facts about satisfiability. The
following theorem states the equivalence between syntactic and semantic satisfi-
ability; this is the analogous of a soundness and completeness theorem.

Theorem 4.3.1 For any Γ and ∆, the assertion Γ ./ ∆ is true if and only if

(& Γ) & (& ∆) is (semantically) satisfiable.
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Proof: Note that the following rules are derivable

ϕ, ψ ./ Γ

ϕ & ψ ./ Γ
ϕ ./ Γ
ϕ ./ ϕ

so Γ ./ ∆ is the same as (& Γ) & (& ∆) ./ (& Γ) & (& ∆). This allows us to
restrict our attention to the case of a single formula. Thanks to theorem 4.1.1,
proving the following statement will be enough:

ϕ ./ is true ⇐⇒ ϕn Frm holds in the canonical topology.

⇒) We prove that ϕnFrm by co-induction on the canonical n. Put U = Frm
and

γ ε P ≡ γ ./

and check that all the hypothesis of the co-induction rule are fulfilled.
⇐) Let R be the relation defined by

ΓR∆ ≡ (& Γ) & (& ∆)n Frm

and check that R satisfies all the rules of the calculus. q.e.d.

The previous theorem can be restated in the following form:

Γ ./ ∆ holds ⇐⇒ V (Γ)↓V (∆)n S for some topological interpretation.

It is natural to look at it as a soundness and completeness theorem. But which im-
plication gives soundness and which one completeness? Classically this question
is easily answered. As Γ ./ ∆ is classically equivalent to Γ, ∆ 0 ⊥, the following
definitions are just a rereading of those regarding `. An object like Γ ./ ∆ is
valid in an interpretation if V (Γ)↓V (∆)n S holds in that interpretation; Γ ./ ∆
is valid if it is valid in some interpretation. The two parts of the soundness and
completeness theorem are:

(soundness) if Γ ./ ∆ is valid then it holds;

(completeness) if Γ ./ ∆ holds then it is valid.

Moreover, one has to consider that completeness is the hardest part in the theo-
rem, as it needs the construction of a canonical model. On the contrary, soundness
is proved by a simple application of the co-inductive definition of ./.

The following proposition shows a duality between the notion of “refutation”
and that of “derivation”.

Proposition 4.3.2 There exists a refutation of Γ ./ ∆ if and only if there exists

a derivation of Γ, ∆ ` ⊥.
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Proof: The “if” part is sketched below.

Γ ./ ∆.... transfers
Γ, ∆ ./

....
Γ, ∆ ` ⊥

⊥ ./
` −rule

⊥−rule

With regard to the other implication, the idea is to reverse the refutation of
Γ ./ ∆ and substitute each rule with a suitable derivation. We write the original
rule on the left-hand side while the corresponding derivation is written on the
right:

ϕ ∨ ψ ./ Γ

ϕ ./ Γ ψ ./ Γ Ã
Γ, ϕ ` ⊥ Γ, ψ ` ⊥

Γ, ϕ ∨ ψ ` ⊥

∃x ϕ(x) ./ Γ

ϕ(t) ./ Γ (some t ∈ Trm) Ã
Γ, ϕ(t) ` ⊥ (for all t ∈ Trm)

Γ,∃x ϕ(x) ` ⊥

⊥ ./ Γ Ã

⊥ ` ⊥
....

Γ,⊥ ` ⊥

Γ ./ ∆ Γ ` ϕ
ϕ ./ ∆ Ã

Γ ` ϕ ∆, ϕ ` ⊥
Γ, ∆ ` ⊥

Moreover, each structural rule is transformed according to the following scheme:

Γ ./ ∆
Γ′ ./ ∆′ Ã

Γ′, ∆′ ` ⊥
Γ, ∆ ` ⊥

(the right-hand side is valid thanks to the corresponding structural rules of the
sequent calculus, apart from the case of transfer which is trivial). q.e.d.

Thanks to this proposition, the existence of a refutation of ϕ ./ is exactly the
same as asserting refutability of ϕ, according to the usual definition of refutability
of a formula.

Note that, in the previous proof, the `-rule corresponds to the cut-rule. Thus a
natural question is whether it is possible to replace the `-rule by a list of “better”
rules in such a way that the collection of refutable objects remains the same. The
answer is affirmative at least in the propositional case. Indeed, it is known that
there exists a Hilbert style formulation for intuitionistic propositional logic. In
other words, the set of all intuitionistically true propositional formulae can be
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characterized as the smallest one that contains some axioms and is closed under
modus ponens. Thus the ` -rule can be substituted by the following (derivable)
rules:

Γ ./ ∆
Γ, A ./ ∆

for any axiom A ,
ϕ, ϕ → ψ ./ Γ

ψ ./ Γ
.

The extension of this argument to the predicative case looks quite diffi-
cult. In fact, one would need something corresponding to the generalization
rule (ϕ(t)/∀xϕ(x)); on the contrary the natural rule

ϕ(t) ./ Γ ∀ t ∈ Trm

∀xϕ(x) ./ Γ

is not valid. In fact, by assuming a classical metalanguage the rule would be
equivalent to the statement: “if Γ ` ¬∀xϕ(x) then Γ ` ¬ϕ(t) for some t ∈ Trm”
which is not true for LJ . The problem could be solved by allowing Γ and ∆ in
the expression Γ ./ ∆ to be infinite and then using the rule:

{ϕ(t) : t ∈ Trm} ./ Γ

∀x ϕ(x) ./ Γ
.

4.4 Deducibility and satisfiability together

Let L̃J be the formal system obtained by enriching LJ with the new meta-
linguistic link ./ and all its rules. Theorems 2.1.2, 2.3.2 and 4.3.1 together can
be seen as a soundness and completeness theorem for L̃J with respect to the
semantics given by topologies.

Semantics for non-deducibility as developed in the previous chapter makes
essential use of the positivity relation in all is strength. On the contrary, semantics
for satisfiability only involves positivity in statements of the form U↓V nS. Thus,
what is really needed to study satisfiability is the existential operator E (see
paragraph 1.3.2). For this reason and in view of paragraph 1.4.1 it seems natural
to extend the semantics to o-algebras.

Definition 4.4.1 Let (P, =,≤, ><,∧,
∨

,→, 0, 1) be an o-algebra and D be a do-

main for interpreting terms. Moreover, let V (p) be an element of P for any

atomic formula p. The valuating function V is extended to arbitrary formulae by

the following recursive clauses:

• V (⊥) = 0;
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• V (ϕ & ψ) = V (ϕ) ∧ V (ψ);

• V (ϕ ∨ ψ) = V (ϕ) ∨ V (ψ);

• V (ϕ → ψ) = V (ϕ) → V (ψ);

• V (∀x ϕ(x)) =
∧

d∈D V (ϕ(d));

• V (∃x ϕ(x)) =
∨

d∈D V (ϕ(d)).

A formula, say ϕ, is valid in P if V (ϕ) = 1 (the top element). Moreover, the

sequent Γ ` ϕ is valid in P if V (Γ) ≤ V (ϕ); while Γ ./ ∆ is valid in P if

V (Γ) >< V (∆). Finally, a rule (either inductive or co-inductive) is valid in P

if the validity in P of all its premises implies the validity in P of some of its

consequences.

Definition 4.4.2 A formula is valid if it is valid in all o-algebras. A sequent is

valid if it is valid in all o-algebras. An assertion like Γ ./ ∆ is valid if it is valid

in some o-algebra. A rule is valid if it is valid in all o-algebras.

Theorem 4.4.3 L̃J is sound and complete with respect to the semantics given

by o-algebras.

Proof: By constructing a canonical o-algebra which, of course, is that
represented (according to paragraph 1.4.1) by the canonical topology. q.e.d.

Remark - Paragraph 1.4.1 suggests to read U >< V as U↓V n Frm, providing
U, V ⊆ Frm. This is equivalent to say that ∃ϕ ∈ U and ∃ψ ∈ U such that ϕ↓ψn
Frm. Thanks to the canonical valuation lemma, this is just V (ϕ)↓V (ψ) n Frm
and hence ϕ ./ ψ. Summing up we have

U >< V ≡ (∃ϕ ∈ U)(∃ψ ∈ V )(ϕ ./ ψ)

thus defining the canonical overlap relation in terms of syntactic satisfiability.
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Chapter 5

An application: constructive

tense logic

The new metalinguistic link, written ./, introduced in the previous chapter is
needed to solve the following problem: to find a complete axiomatization of
the minimal intuitionistic tense logic, provided only constructive reasonings are
allowed at the metalinguistic level.

5.1 The calculus CMT

Consider the L̃J calculus (cut rule included) enriched with the following three
equivalences (six rules) about the four modalities ♦, ¤, ¨ and ¥:

♦ϕ ` ψ ≡ ϕ ` ¥ψ

¨ϕ ` ψ ≡ ϕ ` ¤ψ

♦ϕ ./ ψ ≡ ϕ ./ ¨ψ

(read the four modalities as possibility and necessity in the future and in the
past, respectively). The name we propose for the resulting logic is “constructive
minimal tense logic”, briefly CMT ; justifications for using the word “minimal”
are being given during the chapter.

Of course, if one uses a classical metalanguage, it is possible to read Γ ./ ∆
as standing for Γ, ∆ 0 ⊥ and then the third equation can be changed into

♦ϕ, ψ ` ⊥ ≡ ϕ, ¨ψ ` ⊥
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thus allowing the derivation of the standard equivalence ♦ϕ ≡ ¬¤¬ϕ (and sim-
ilarly for the “black” modalities). Note that, in a classical setting, the third
equation can be rewritten as

` ¤ϕ ∨ ψ ≡ ` ϕ ∨¥ψ

which is exactly the syntactic version of a well known condition about bi-modal
algebras (see [11]). On the contrary, from a constructive point of view, Γ ./ ∆ is
not the same as Γ, ∆ 0 ⊥; actually, the former is stronger than the latter.

Next is a brief list of theorems (and metatheorems) of CMT . Because of the
symmetry of the calculus, the symmetric of any theorem in the following list is
also provable (the symmetric assertion is obtained by simultaneous exchange of
¤ with ¥ and ♦ with ¨).

Proposition 5.1.1 The following facts hold for any ϕ, ψ ∈ Frm:

1.

` ϕ

` ¤ϕ
, ♦ϕ ./

ϕ ./
;

2.

ϕ ` ψ

¤ϕ ` ¤ψ
, ϕ ` ψ

♦ϕ ` ♦ψ
;

3. ¤(ϕ & ψ) ≡ (¤ϕ) & (¤ψ) , ¤∀x ϕ(x) ≡ ∀x ¤ϕ(x) ;

4. ♦(ϕ ∨ ψ) ≡ (♦ϕ) ∨ (♦ψ) , ♦∃x ϕ(x) ≡ ∃x ♦ϕ(x) ;

5. ¤(ϕ → ψ) ` ¤ϕ → ¤ψ ;

6. > ≡ ¤> , ⊥ ≡ ♦⊥ ;

7.

♦ϕ ./ ¤ψ

ϕ ./ ψ .

Proof: 1.
` ϕ

¨> ` ϕ

> ` ¤ϕ

` ¤ϕ

♦ϕ ./ ` >
♦ϕ ./ >
ϕ ./ ¨>
ϕ ./

2.
¤ϕ ` ¤ϕ

¨¤ϕ ` ϕ ϕ ` ψ

¨¤ϕ ` ψ

¤ϕ ` ¤ψ

ϕ ` ψ

♦ψ ` ♦ψ

ψ ` ¥♦ψ

ϕ ` ¥♦ψ

♦ϕ ` ♦ψ
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3.

ϕ & ψ ` ϕ

¤(ϕ & ψ) ` ¤ϕ

ϕ & ψ ` ψ

¤(ϕ & ψ) ` ¤ψ

¤(ϕ & ψ) ` (¤ϕ) & (¤ψ)

¤ϕ & ¤ψ ` ¤ϕ

¨(¤ϕ & ¤ψ) ` ϕ

¤ϕ & ¤ψ ` ¤ψ

¨(¤ϕ & ¤ψ) ` ψ

¨(¤ϕ & ¤ψ) ` ϕ & ψ

(¤ϕ) & (¤ψ) ` ¤(ϕ & ψ)

and similarly for the other equivalence.
4.

♦ϕ ` ♦ϕ ∨ ♦ψ

ϕ ` ¥(♦ϕ ∨ ♦ψ)

♦ψ ` ♦ϕ ∨ ♦ψ

ψ ` ¥(♦ϕ ∨ ♦ψ)

ϕ ∨ ψ ` ¥(♦ϕ ∨ ♦ψ)

♦(ϕ ∨ ψ) ` (♦ϕ) ∨ (♦ψ)

ϕ ` ϕ ∨ ψ

♦ϕ ` ♦(ϕ ∨ ψ)

ψ ` ϕ ∨ ψ

♦ψ ` ♦(ϕ ∨ ψ)

(♦ϕ) ∨ (♦ψ) ` ♦(ϕ ∨ ψ)

and similarly for the case of ∃.
5.

ϕ & (ϕ → ψ) ` ψ

¤(ϕ & (ϕ → ψ)) ` ¤ψ

¤ϕ & ¤(ϕ → ψ) ` ¤ψ

¤(ϕ → ψ) ` ¤ϕ → ¤ψ

6.
¨> ` >
> ` ¤>

⊥ ` ¥⊥
♦⊥ ` ⊥

7.
♦ϕ ./ ¤ψ

ϕ ./ ¨¤ψ

¤ψ ` ¤ψ

¨¤ψ ` ψ

ϕ ./ ψ

q.e.d.

Item 7. can be used to prove the following two facts

¬(♦ϕ ./ ¤¬ϕ) ¬(♦¬ϕ ./ ¤ϕ)

which can be read as the constructive counterparts of the following (maybe ex-
pected) ones:

♦ϕ ` ¬¤¬ϕ , ¤ϕ ` ¬♦¬ϕ , ♦¬ϕ ` ¬¤ϕ , ¤¬ϕ ` ¬♦ϕ .

If one wants to explicitly obtain the latter group from the former, the extension
to CMT of proposition 4.3.2 is needed. To make its proof work it is enough to
enrich the calculus with: ♦ϕ, ψ ` ⊥ ≡ ϕ, ¨ψ ` ⊥. This enriched CMT allows
the proof of ¬♦ϕ ` ¤¬ϕ and hence ¤¬ϕ becomes equivalent to ¬♦ϕ. Note,
however, that ¬¤ϕ ` ♦¬ϕ does not hold in the enriched CMT either; in fact it
need classical reasonings to be proved.
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5.2 Soundness theorem for CMT

We would like to show that CMT is the minimal tense logic in the sense that it
is valid in all Kripke frames. Actually, because of the constructive foundation we
want to use, we will be able to characterize CMT as the logic of more abstract
algebraic structures, namely o-Kripke frames. So there exist some statements
which hold in all Kripke frames but are not true in CMT , e.g. Fisher-Servi’s
axioms. In this precise sense, CMT is even more basic than the other tense
logics. We start with the soundness theorem with respect to Kripke frames.

Definition 5.2.1 Let (X, r) be a Kripke frame and think of it as the basic pair

(X, r,X) (see paragraph 1.2.4). Let V (p) be a subset of X for each atomic formula

p in the language of CMT . Finally let D be a domain for interpreting terms, as

usual. The valuating function V is extended to non atomic formulae by using the

following inductive clauses:

• V (⊥) = ∅;

• V (ϕ & ψ) = V (ϕ) ∩ V (ψ);

• V (ϕ ∨ ψ) = V (ϕ) ∪ V (ψ);

• V (ϕ → ψ) = {x : x ε V (ϕ) → x ε V (ψ)};

• V (∀x ϕ(x)) =
⋂

d∈D V (ϕ(d));

• V (∃x ϕ(x)) =
⋃

d∈D V (ϕ(d));

• V (¤ϕ) = r∗V (ϕ) = {x : rx ⊆ V (ϕ)};

• V (♦ϕ) = r−V (ϕ) = {x : rx G V (ϕ)};

• V (¥ϕ) = r−∗V (ϕ);

• V (¨ϕ) = rV (ϕ).
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A formula, say ϕ, is valid in (X, r) (under the valuation V ) if V (ϕ) = X. More-

over, the sequent Γ ` ϕ is valid in (X, r) if V (Γ) ⊆ V (ϕ); while Γ ./ ∆ is valid in

(X, r) if V (Γ) G V (∆). Finally, a rule (either inductive or co-inductive) is valid

in that frame if the validity in the frame of all its premises implies the validity in

the frame of some of its consequences.

Definition 5.2.2 A formula is valid if it is valid in all interpretations. A sequent

is valid if it is valid in all interpretations. An assertion like Γ ./ ∆ is valid if it

is valid in some interpretation. A rule is valid if it is valid in all interpretations.

Lemma 5.2.3 All the rules of CMT are valid.

Proof: The proof is quite trivial. As an example let us consider the following:

♦ϕ ./ ψ

ϕ ./ ¨ψ
.

Let (X, r) be an arbitrary Kripke frame and suppose that the upper part of the
rule is valid in X, i. e. r−V (ϕ) G V (ψ). Because r ·|·r− (r and r− are symmetric;
see paragraph 1.2.4) one gets V (ϕ) G rV (ψ) which exactly is validity in (X, r) of
the lower part of the rule. So the rule is valid in (X, r) and then it is valid. q.e.d.

Proposition 5.2.4 (Soundness of CMT with respect to Kripke frames)

If a sequent is provable in CMT then it is valid. If Γ ./ ∆ is valid then it is true

in CMT .

Proof: The first part follows from the previous lemma by using induction on
the derivation of the sequent. As for the second part, remember that ./ is the
greatest relation which satisfies all the given rules. In other words, we can use
co-induction to prove that Γ ./ ∆ holds in CMT . By hypothesis, Γ ./ ∆ is valid;
this means it is valid in at least one interpretation. Thus, there exists a Kripke
frame (X, r) and a valuating function V : Frm → PX such that V (Γ) G V (∆)
holds. Let R be the relation defined by

Γ R ∆ ≡ V (Γ) G V (∆)

and note that the previous lemma forces R to satisfy all rules for ./. q.e.d.

As we have already said, we would like to consider a generalization of the
notion of a Kripke frame.
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Definition 5.2.5 An o-Kripke frame is an o-algebra, say P, endowed with an

o-relation (F, F ′, G,G′) : P → P (see definition 1.4.5).

By reading F , F ′, G and G′ instead of r, r−, r∗ and r−∗ respectively, it is easy
to note that both the notion of validity and the soundness theorem for CMT can
be extended to o-Kripke frames in a natural way. This theorem is the tool we are
going to use in the following corollary in order to establish some non-deducibility
results.

Corollary 5.2.6 The following sequents are not provable in CMT :

1. ♦(ϕ → ψ) ` ¤ϕ → ♦ψ ;

2. ♦ϕ → ¤ψ ` ¤(ϕ → ψ) ;

3. ¤(ϕ → ψ) ` ♦ϕ → ♦ψ .

Moreover the equivalence ♦ϕ, ψ ` ⊥ ≡ ϕ, ¨ψ ` ⊥ is not valid.

Proof: Let P = {0, a, 1} be a linear order and consider the corresponding
(complete) Heyting algebra. The adjunction

z ∧ x ≤ y ≡ z ≤ x → y

forces → to satisfy the following items:

x → 1 = 1 , 0 → x = 1 , x → x = 1 ,

1 → 0 = 0 , a → 0 = 0 , 1 → a = a .

1). Let x >< y be x ∧ y 6= 0. Hence x >< y fails if either x or y is 0 and is true
otherwise. This makes P an o-algebra. In order to obtain an o-frame we need to
define an o-relation. Let F ′ = id = G′ and put:

F (0) = 0 , F (a) = a , F (1) = a ,

G(0) = 0 , G(a) = 1 , G(1) = 1 .

Checking they form a symmetric pair of adjunctions is a straightforward calcula-
tion. Now put

V (ϕ) = a = V (ψ)
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and compute the valuation of the compound formulae to get 1 ≤ a as the valuation
of the sequent. This is false, of course.

2). Use the same o-algebra as before but exchange F and G with F ′ and G′

respectively. Then put V (ϕ) = 1 and V (ψ) = a; what one eventually gets is
1 ≤ a again.

3). Item 3 implies ¤¬ϕ ` ¬♦ϕ since ♦⊥ ≡ ⊥. So, in order to obtain non-
deducibility of 3, it is enough to prove non-deducibility of the latter. Let us
consider the same Heyting algebra as before but a different overlap relation,
namely let x >< y be always false apart from 1 >< 1 which we ask to be true.
Again let us choose F ′ and G′ to be the identity map and put:

F (0) = 0 , F (a) = 0 , F (1) = 1 ,

G(0) = a , G(a) = a , G(1) = 1 .

Finally let V (ϕ) be equal to a and eventually get a ≤ 0. q.e.d.

5.3 The completeness theorem for CMT

Now we want to prove that the semantics given by o-Kripke frames is also com-
plete. The proof is by constructing a canonical o-Kripke frame from the syntax.

5.3.1 The canonical o-Kripke frame

Let Frm be the set of all formulae in the language of CMT and let ¢ be the
cover on Frm generated like in section 2.2 provided that ` is now read as the
entailment relation in CMT . Of course the proof of lemma 2.2.1, corollary 2.2.2,
lemma 2.2.3, lemma 2.2.4 and proposition 2.2.5 work in the CMT case as well.
Like for the case of LJ , the structure

(PFrm, =A,¢, ↓,
⋃

,→A, ∅, Frm)

is a complete Heyting algebra. In order to obtain an o-algebra, we need to define
an overlap relation. The remark at the very end of the previous chapter suggests
to put:

U >< V ≡ (∃ϕ ε U)(∃ψ ε V )(ϕ ./ ψ) .

First of all we have to prove that it respects =A. For this purpose, it is enough
to prove the following fact:

ϕ ./ ψ ϕ ¢ U

(∃γ ε U)(γ ./ ψ)
.
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The argument is an induction on the proof of ϕ ¢ U . The case ϕ ε U is trivial. If
ϕ ` ⊥, then from ϕ ./ ψ one gets ⊥ ./ ψ which is a contradiction; so everything
follows. If, instead, ϕ ` γ and γ ¢ U then γ ./ ψ and one can use the inductive
hypothesis. Moreover, if ϕ = ϕ1 ∨ ϕ2 and ϕi ¢ U then either ϕ1 ./ ψ or ϕ2 ./ ψ
by the ∨-rule for ./. In both case the thesis follows by the inductive hypothesis.
Similarly if ϕ = ∃x γ(x).

The other facts needed to obtain an o-algebra are quite easy to check. As an
example, we want to prove the 2nd rule for ><, namely

U >< V
U↓V >< V

.

The premise means there exist ϕ ε U and ψ ε V such that ϕ ./ ψ; this implies
ϕ & ψ ./ ψ. Trivially ϕ & ψ ¢ ϕ and ϕ & ψ ¢ ψ; thus ϕ & ψ belongs to ϕ↓ψ and
then to U↓V too.

In order to obtain an o-Kripke frame, let us consider the four operators defined
by:

F ′(U) = {♦ϕ : ϕ ¢ U}, G′(U) = {ϕ : ♦ϕ ¢ U},
F (U) = {¨ϕ : ϕ ¢ U}, G(U) = {ϕ : ¨ϕ ¢ U}.

The ideas underlying these definitions should be clear after the following lemma.

Lemma 5.3.1 For every ϕ ∈ Frm and U ⊆ Frm the following hold:

1. F ′(ϕ) =A ♦ϕ, F (ϕ) =A ¨ϕ;

2. G(ϕ) =A ¤ϕ, G′(ϕ) =A ¥ϕ;

3. ϕ ¢ G′(U) ⇒ ϕ ε G′(U), ϕ ¢ G(U) ⇒ ϕ ε G(U).

Proof: To prove 1. it is enough to check that F ′(ϕ) ¢ ♦ϕ. So let ♦ψ be an
element of F ′(ϕ), that is ψ ¢ ϕ. This is the same as ψ ` ϕ that entails ♦ψ ` ♦ϕ,
i.e. ♦ψ ¢ ♦ϕ.

In order to prove 2., take ψ ε G(ϕ); then ¨ψ ¢ ϕ and so ¨ψ ` ϕ. In CMT
this is the same as ψ ` ¤ϕ, i.e. ψ ¢ ¤ϕ; so G(ϕ) ¢ ¤ϕ. Vice versa, ¤ϕ ε G(ϕ)
because ¤ϕ ` ¤ϕ yields ¨¤ϕ ` ϕ and then ¨¤ϕ ¢ ϕ.

As regarding 3., let us check that ϕ ¢ G′(U) ⇒ ♦ϕ ¢ U by induction on the
last rule used in the proof of ϕ ¢ G′(U). If it is the reflexivity rule then all is
trivial. If ϕ ` ⊥ then ♦ϕ ` ♦⊥ and the ♦ϕ ` ⊥ as ♦⊥ ≡ ⊥; thus ♦ϕ ¢ U by the
⊥-rule. If, instead, ϕ ` ψ and ψ ¢G′(U) then ♦ϕ ` ♦ψ and ♦ψ ¢U by inductive
hypothesis; the thesis follows by the `-rule. If the last step is an application of

56



the ∨-rule then ϕ = ϕ1 ∨ ϕ2 and ♦ϕi ¢ U by inductive hypothesis; on the other
hand, ♦ϕ ≡ ♦ϕ1 ∨ ♦ϕ2, so ∨-rule can be applied. Similarly for the last case
involving ∃. q.e.d.

So F ′ is the same of ♦ when it is restricted to single formulae. This is exactly
what we want since F ′ must be used to model ♦. Moreover, as G′ must be the
right adjoint of F ′, then G′(ϕ) must correspond to ¥.

Proposition 5.3.2 The operators F , G, F ′ and G′ defined above form a sym-

metric pair of adjunctions.

Proof: Firstly, let us prove F ′ a G′. Suppose F ′(U) ¢ V ; this means ♦ϕ ¢ V
for every ϕ ¢ U . Take ϕ ε U , then ϕ ¢ U and so ♦ϕ ¢ V by hypothesis. This is
just ϕ ε G′(V ); so U ⊆ G′(V ) and U ¢ G′(V ). Now start from U ¢ G′(V ) and
take ♦ϕ ε F ′(U) i.e. ϕ ¢ U . Transitivity implies ϕ ¢ G′(V ) and then ϕ ε G′(V )
by item 3. of the previous lemma. So ♦ϕ ¢ V by definition and then F ′(U) ¢ V .

The proof of F a G is symmetric. Lastly, we must prove F · | · F ′. Suppose
F ′(U) >< V ; so there exist ϕ ¢ U and ψ ε V such that ♦ϕ ./ ψ. In CMT this
is just the same as ϕ ./ ¨ψ. Since ψ ¢ V (by reflexivity) one gets ϕ >< F (V ).
Thanks to the properties of an o-algebra, from ϕ >< F (V ) and ϕ ¢ U it follows
that U >< F (V ). The other direction of F · | · F ′ has a symmetric proof. q.e.d.

5.3.2 The completeness proof

As usual, the canonical valuation is obtained by considering the set Trm as domain
for interpreting terms and by putting

V (p) = {ϕ ∈ Frm : ϕ ` p}

for each instance p of an atomic formula. As before, the following lemma is
fundamental.

Lemma 5.3.3 (of the canonical valuation) For every ϕ, ψ ∈ Frm,

ϕ ¢ V (ψ) ≡ ϕ ` ψ.

Proof: Since ϕ ` ψ is the same as ϕ ¢ ψ, the lemma will be proved if we
check that V (ψ) =A ψ. The proof is by induction on the structure of ψ. Thanks
to the proof of proposition 2.3.1, we only have to analyze the case involving ♦,
¤, ¨ and ¥. By symmetry the proofs for ♦ and ¤ will be enough.
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Let ψ be ♦γ for some formula γ. By inductive hypothesis γ =A V (γ) and
hence F ′γ =A F ′V (γ). From item 1. of lemma 5.3.1 and the definition of V (♦γ),
it follows that ♦γ =A V (♦γ).

If ψ = ¤γ the proof is similar. From γ =A V (γ) one gets Gγ =A GV (γ) that
is ¤γ =A V (¤γ) by item 2. of lemma 5.3.1. q.e.d.

Proposition 5.3.4 (Completeness theorem for CMT ) If a sequent is valid

then it holds in CMT . If an assertion like Γ ./ ∆ holds in CMT then it is valid.

Proof: The proof of the first assertion in the theorem is exactly the same
as in theorem 2.3.2. For what regards the second part, we have to prove that if
Γ ./ ∆ holds in the calculus CMT then it is valid in some interpretation, namely
the canonical one. So suppose Γ ./ ∆; by the rules for ./ this is equivalent to
(& Γ) ./ (& ∆) and hence to (& Γ) >< (& ∆). By the canonical valuation lemma
and by the fact that >< respects =A, one can get V (& Γ) >< V (& ∆), that is,
V (Γ) >< V (∆); so Γ ./ ∆ is valid in the canonical interpretation. q.e.d.

As a by-product of the above discussions one has that a sequent holds in CMT
if and only if it is valid in the canonical interpretation. Similarly, Γ ./ ∆ holds
in CMT if and only if V (Γ) >< V (∆) in the canonical o-Kripke frame.
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