Regular opens in formal topology and representation theorem for overlap algebras

Francesco Ciraulo

Dipartimento di Matematica ed Applicazioni Università degli Studi di PALERMO ciraulo@math.unipa.it www.math.unipa.it/~ciraulo

Leeds Symposium on Proof Theory and Constructivism Leeds, 3 - 16 July 2009

PALERMO (IT)

・ロト ・四ト ・ヨト ・ヨト

Overview

1 OVERLAP ALGEBRAS and open locales

Key words: <u>positivity</u> (Formal Topology), <u>openness</u> (locale theory), <u>inhabitedness</u> (set-theory).

Main notion involved: Overlap Algebras (Sambin)

Overview

1 OVERLAP ALGEBRAS and open locales

Key words: positivity (Formal Topology), openness (locale theory), inhabitedness (set-theory).

Main notion involved: Overlap Algebras (Sambin)

2 REGULAR open subsets

Problem: improve the usual definition of REGULAR elements in point-free topology

Result: a NEW definition of REGULAR OPEN subset for Formal Topologies and open locales

• • = • • = •

Overview

1 OVERLAP ALGEBRAS and open locales

Key words: positivity (Formal Topology), openness (locale theory), inhabitedness (set-theory).

Main notion involved: Overlap Algebras (Sambin)

2 REGULAR open subsets

Problem: improve the usual definition of REGULAR elements in point-free topology

Result: a NEW definition of REGULAR OPEN subset for Formal Topologies and open locales

Representation theorem for Overlap Algebras

(via Regular elements)

Connections between parts 1 and 2

Part I

Overlap Algebras

and open locales

Francesco Ciraulo

PALERMO (IT)

Regular opens and Overlap algebras

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

complete the following table:

(fill in the appropriate ALGEBRAIC COUNTERPART of the notions on the first row according to the UNDERLYING LOGIC (first column))

	ALL SUBSET	OPEN SUBSETS
	of a given set	of a topological space
CLASSICAL		
INTUITIONISTIC		

▲圖▶ ▲ 国▶ ▲ 国▶

complete the following table:

(fill in the appropriate ALGEBRAIC COUNTERPART of the notions on the first row according to the UNDERLYING LOGIC (first column))

	ALL SUBSET	OPEN SUBSETS
	of a given set	of a topological space
CLASSICAL	cBa	
INTUITIONISTIC		

▲圖▶ ▲ 国▶ ▲ 国▶

complete the following table:

(fill in the appropriate ALGEBRAIC COUNTERPART of the notions on the first row according to the UNDERLYING LOGIC (first column))

	ALL SUBSET	OPEN SUBSETS
	of a given set	of a topological space
CLASSICAL	cBa	Locales (Frames, cHa)
INTUITIONISTIC		

★御★ ★注★ ★注★

complete the following table:

(fill in the appropriate ALGEBRAIC COUNTERPART of the notions on the first row according to the UNDERLYING LOGIC (first column))

	ALL SUBSET	OPEN SUBSETS
	of a given set	of a topological space
CLASSICAL	cBa	Locales (Frames, cHa)
INTUITIONISTIC		Formal Topologies (Open Locales)

complete the following table:

(fill in the appropriate ALGEBRAIC COUNTERPART of the notions on the first row according to the UNDERLYING LOGIC (first column))

	ALL SUBSET	OPEN SUBSETS
	of a given set	of a topological space
CLASSICAL	cBa	Locales (Frames, cHa)
INTUITIONISTIC	?	Formal Topologies (Open Locales)

Attempt 1: cHa (Locale)

We need the notion of INHABITED subset.

How do you define INHABITED (POSITIVE) elements in a cHa?

 $x \neq 0$ does not work, because:

PALERMO (IT)

Add a **positivity** predicate Pos

→ □ ▶ ★ 三 ▶ ★ 三 ▶ ○ 三 ● ○ ○ ○ ○

Add a **positivity** predicate Pos

•
$$\mathsf{Pos}(x)$$
 & $x \le y \Longrightarrow \mathsf{Pos}(y)$

→ □ ▶ ★ 三 ▶ ★ 三 ▶ ○ 三 ● ○ ○ ○ ○

Add a **positivity** predicate Pos

■
$$\mathsf{Pos}(x)$$
 & $x \le y \Longrightarrow \mathsf{Pos}(y)$
■ $\mathsf{Pos}(\bigvee_{i \in I} x_i) \Longrightarrow (\exists i \in I) \mathsf{Pos}(x_i)$

ション ・ 日本 ・ 日本 ・ 日本 ・ ション

Add a **positivity** predicate Pos

■
$$\operatorname{Pos}(x) \& x \le y \Longrightarrow \operatorname{Pos}(y)$$

■ $\operatorname{Pos}(\bigvee_{i \in I} x_i) \Longrightarrow (\exists i \in I) \operatorname{Pos}(x_i)$
■ $(\operatorname{Pos}(x) \Rightarrow x \le y) \Longrightarrow x \le y$ (positivity axiom)

Francesco Ciraulo

PALERMO (IT)

▲ ■ ▶ ▲ ■ ▶ ▲ ■ ▶ ● ■ ● の Q @

Add a **positivity** predicate Pos

■
$$Pos(x) \& x \le y \implies Pos(y)$$

■ $Pos(\bigvee_{i \in I} x_i) \implies (\exists i \in I) Pos(x_i)$
■ $(Pos(x) \Rightarrow x \le y) \implies x \le y$ (positivity axiom)
Perfect for Topology
BUT
NOT satisfactory for arbitrary subsets!

Francesco Ciraulo

→ □ ▶ ★ 三 ▶ ★ 三 ▶ ○ 三 ● ○ ○ ○ ○

The overlap relation

(between two subsets)

Definition:

$$U \ \Diamond V \qquad \stackrel{def}{\Longleftrightarrow} \qquad U \cap V \text{ is inhabited}$$

Consequently:

 $U \text{ is inhabited} \quad \iff \quad U \circlearrowright U$

PALERMO (IT)

Regular opens and Overlap algebras

Overlap relation and Positivity: (V vs Pos The "density" property

There exists a strict analogy between $U \ (V \land V)$ and $Pos(U \land V)$

Overlap relation and Positivity: () vs Pos

There exists a strict analogy between $U \ \downarrow V$ and $Pos(U \land V)$

$\mathsf{BUT}\)$ is STRONGER than Pos

because it satisfies:

DENSITY

which implies: $(U \ \ U \Rightarrow U \subseteq V) \Rightarrow U \subseteq V$

(positivity axiom).

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● ● ● ●

PALERMO (IT)

Definition (Overlap Algebra)

PALERMO (IT)

Regular opens and Overlap algebras

Definition (Overlap Algebra)

•
$$x \approx (\bigvee_{i \in I} y_i) \iff (\exists i \in I) (x \approx y_i)$$

Definition (Overlap Algebra)

$$x \approx (\bigvee_{i \in I} y_i) \iff (\exists i \in I) \ (x \approx y_i)$$
$$x \approx (y \land z) \iff (x \land y) \approx z$$

Definition (Overlap Algebra)

$$x \approx (\bigvee_{i \in I} y_i) \iff (\exists i \in I) \ (x \approx y_i)$$
$$x \approx (y \land z) \iff (x \land y) \approx z$$

$$\forall z \ (x \otimes z \Rightarrow y \otimes z) \Longrightarrow x \leq y$$

◆ロ ▶ ◆母 ▶ ◆ 臣 ▶ ◆ 臣 ● の � @

Overlap Algebras vs Locales and cBa

Proposition

 $\begin{array}{l} \textit{Overlap algebra} \\ = \\ \textit{open locale} \\ + \\ \forall z (\mathsf{Pos}(x \land z) \Rightarrow \mathsf{Pos}(y \land z)) \Longrightarrow x \leq y \end{array}$

PALERMO (IT)

Regular opens and Overlap algebras

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ●

Overlap Algebras vs Locales and cBa

Proposition

 $\begin{array}{l} \textit{Overlap algebra} \\ = \\ \textit{open locale} \\ + \\ \forall z \big(\mathsf{Pos}(x \land z) \Rightarrow \mathsf{Pos}(y \land z) \big) \Longrightarrow x \leq y \end{array}$

Classically (Vickers):

 $\mathsf{Overlap} \ \mathsf{algebra} = \mathsf{cBa}$

where:

$$x \ge y \quad \iff \quad x \wedge y \neq 0$$

Francesco Ciraulo

PALERMO (IT)

Regular opens and Overlap algebras

・ロン (雪) (日) (日) - 日

Solution to problem 1: (Sambin)

	ALL SUBSET	OPEN SUBSETS
	of a given set	of a topological space
CLASSICAL	cBa	Locales (Frames, cHa)
INTUITIONISTIC	OVERLAP ALGEBRAS	Formal Topologies (Open Locales)

Francesco Ciraulo

PALERMO (IT)

Regular opens and Overlap algebras

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Solution to problem 1: (Sambin)

	ALL SUBSET	OPEN SUBSETS
	of a given set	of a topological space
CLASSICAL	cBa	Locales (Frames, cHa)
INTUITIONISTIC	OVERLAP ALGEBRAS	Formal Topologies (Open Locales)

(**o-algebras**) : (cBa) = (intuitionistic logic) : (classical logic)

|▲□ ▶ ▲ 国 ▶ ▲ 国 ▶ ● ④ ● ●

Part II

Regular elements

A problem, a known solution, a new result.

Francesco Ciraulo

PALERMO (IT)

Regular opens and Overlap algebras

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Problem 2

In classical topology:

a(n open) set is REGULAR if it equals the interior of its closure

D is $REGULAR \iff D = \operatorname{int} \operatorname{cl} D$

▶ ★ E ▶ ★ E ▶ E

Problem 2

In classical topology:

a(n open) set is REGULAR if it equals the interior of its closure

D is $REGULAR \iff D = \operatorname{int} \operatorname{cl} D$

Problem:

define the notion of *REGULAR open subset* constructively (i.e. in formal topology / locale theory).

▲開入 ▲ 国人 ▲ 国人 三 国

Known solution to problem 2

Stable elements

where: (int -) is the PSEUDO-COMPLEMENT in {open sets}

PALERMO (IT)

Known solution to problem 2

Classically: D is regular $\iff D = \operatorname{int} - \underbrace{\operatorname{int}}_{\sim} D$

where: (int -) is the PSEUDO-COMPLEMENT in {open sets}

Usual definition of *stable* (regular) element in a Heyting algebra:

 $x = \sim \sim x$

where \sim is the pseudo-complement.

- 小田 ト イヨト 一旦

A new solution

(see: FC - *Regular opens in formal topology and representation theorem for overlap algebras* - in preparation)

 ${\cal L}$ open (or overt) locale with positivity predicate Pos

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

A new solution

(see: FC - *Regular opens in formal topology and representation theorem for overlap algebras* - in preparation)

 $\ensuremath{\mathcal{L}}$ open (or overt) locale with positivity predicate Pos

Definition (of the operator $\mathcal{R}: \mathcal{L} \longrightarrow \mathcal{L}$)

$$y \leq \mathcal{R}(x) \qquad \stackrel{\text{def}}{\Longleftrightarrow} \qquad (\forall z \in \mathcal{L}) (\operatorname{\textit{Pos}}(y \land z) \Rightarrow \operatorname{\textit{Pos}}(x \land z))$$

which gives:

$$\mathcal{R}(x) = \bigvee \{y \in \mathcal{L} \mid y \leq \mathcal{R}(x)\}$$

A new solution

(see: FC - *Regular opens in formal topology and representation theorem for overlap algebras* - in preparation)

 $\ensuremath{\mathcal{L}}$ open (or overt) locale with positivity predicate Pos

Definition (of the operator $\mathcal{R}: \mathcal{L} \longrightarrow \mathcal{L}$)

$$y \leq \mathcal{R}(x) \qquad \stackrel{def}{\Longleftrightarrow} \qquad (\forall z \in \mathcal{L}) \big(\mathsf{Pos}(y \land z) \Rightarrow \mathsf{Pos}(x \land z) \big)$$

which gives:

$$\mathcal{R}(x) = \bigvee \{y \in \mathcal{L} \mid y \leq \mathcal{R}(x)\}$$

New definition of REGULAR elements

x is REGULAR $\stackrel{def}{\iff} x = \mathcal{R}(x)$

Francesco Ciraulo

PALERMO (IT)

Regular opens and Overlap algebras

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ○ ○ ○

Justification of the new def.

Remember:

$$x \text{ regular} \quad \stackrel{\text{def}}{\longleftrightarrow} \quad x = \mathcal{R}(x) \stackrel{\text{def}}{=} \bigvee \{ y \mid \forall z \big(\mathsf{Pos}(y \land z) \Rightarrow \mathsf{Pos}(x \land z) \big) \}$$

What happens if the formal topology (open locale) is *spatial*?

= {open subsets} of a topological space

•
$$\mathcal{L} = \{ \mathsf{opens} \}, \leq = \subseteq, \land = \cap, \ldots$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで
Remember:

$$x \text{ regular} \quad \stackrel{\text{def}}{\longleftrightarrow} \quad x = \mathcal{R}(x) \stackrel{\text{def}}{=} \bigvee \{ y \mid \forall z \big(\mathsf{Pos}(y \land z) \Rightarrow \mathsf{Pos}(x \land z) \big) \}$$

What happens if the formal topology (open locale) is *spatial*?

= {open subsets} of a topological space

•
$$\mathcal{L} = \{\text{opens}\}, \leq = \subseteq, \land = \cap, \ldots$$

• $\mathsf{Pos}(x \land y)$

Remember:

$$x \text{ regular} \quad \stackrel{\text{def}}{\longleftrightarrow} \quad x = \mathcal{R}(x) \stackrel{\text{def}}{=} \bigvee \{ y \mid \forall z \big(\mathsf{Pos}(y \land z) \Rightarrow \mathsf{Pos}(x \land z) \big) \}$$

What happens if the formal topology (open locale) is *spatial*?

= {open subsets} of a topological space

Remember:

$$x \text{ regular} \quad \stackrel{\text{def}}{\longleftrightarrow} \quad x = \mathcal{R}(x) \stackrel{\text{def}}{=} \bigvee \{ y \mid \forall z \big(\mathsf{Pos}(y \land z) \Rightarrow \mathsf{Pos}(x \land z) \big) \}$$

What happens if the formal topology (open locale) is *spatial*? = {open subsets} of a topological space

•
$$\mathcal{L} = \{\text{opens}\}, \leq = \subseteq, \land = \cap, \ldots$$

• $\text{Pos}(x \land y)$ iff there exists a point in $x \cap y$ iff $x \notin y$

Remember:

$$x \text{ regular} \quad \stackrel{\text{def}}{\longleftrightarrow} \quad x = \mathcal{R}(x) \stackrel{\text{def}}{=} \bigvee \{ y \mid \forall z \big(\mathsf{Pos}(y \land z) \Rightarrow \mathsf{Pos}(x \land z) \big) \}$$

What happens if the formal topology (open locale) is *spatial*? = {open subsets} of a topological space

•
$$\mathcal{L} = \{\text{opens}\}, \leq = \subseteq, \land = \cap, \ldots$$

• $\text{Pos}(x \land y)$ iff there exists a point in $x \cap y$ iff $x \notin y$
• $y \leq \mathcal{R}(x)$

Remember:

x regular
$$\stackrel{\text{def}}{\longleftrightarrow}$$
 $x = \mathcal{R}(x) \stackrel{\text{def}}{=} \bigvee \{ y \mid \forall z (Pos(y \land z) \Rightarrow Pos(x \land z)) \}$

What happens if the formal topology (open locale) is *spatial*? = {open subsets} of a topological space

■
$$\mathcal{L} = \{\text{opens}\}, \leq = \subseteq, \land = \cap, \ldots$$

■ $\text{Pos}(x \land y)$ iff there exists a point in $x \cap y$ iff $x \notin y$
■ $y \leq \mathcal{R}(x)$ iff $\forall z (y \notin z \Rightarrow x \notin z)$

Remember:

x regular
$$\stackrel{\text{def}}{\longleftrightarrow}$$
 $x = \mathcal{R}(x) \stackrel{\text{def}}{=} \bigvee \{ y \mid \forall z (Pos(y \land z) \Rightarrow Pos(x \land z)) \}$

What happens if the formal topology (open locale) is *spatial*? = {open subsets} of a topological space

•
$$\mathcal{L} = \{\text{opens}\}, \leq = \subseteq, \land = \cap, \ldots$$

• $\text{Pos}(x \land y)$ iff there exists a point in $x \cap y$ iff $x \notin y$
• $y \leq \mathcal{R}(x)$ iff $\forall z (y \notin z \Rightarrow x \notin z)$ iff $y \subseteq cl x$

Remember:

x regular
$$\stackrel{\text{def}}{\longleftrightarrow}$$
 $x = \mathcal{R}(x) \stackrel{\text{def}}{=} \bigvee \{ y \mid \forall z (Pos(y \land z) \Rightarrow Pos(x \land z)) \}$

What happens if the formal topology (open locale) is *spatial*? = {open subsets} of a topological space

•
$$\mathcal{L} = \{\text{opens}\}, \leq z \in \subseteq, \land z \in \cap, \ldots$$

• $\text{Pos}(x \land y)$ iff there exists a point in $x \cap y$ iff $x \notin y$
• $y \leq \mathcal{R}(x)$ iff $\forall z (y \notin z \Rightarrow x \notin z)$ iff $y \subseteq clx$
• $\mathcal{R}(x)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Remember:

x regular
$$\stackrel{\text{def}}{\longleftrightarrow}$$
 $x = \mathcal{R}(x) \stackrel{\text{def}}{=} \bigvee \{ y \mid \forall z (Pos(y \land z) \Rightarrow Pos(x \land z)) \}$

What happens if the formal topology (open locale) is *spatial*? = {open subsets} of a topological space

•
$$\mathcal{L} = \{\text{opens}\}, \leq z = \subseteq, \land z = \cap, \ldots$$

• $\text{Pos}(x \land y)$ iff there exists a point in $x \cap y$ iff $x \notin y$
• $y \leq \mathcal{R}(x)$ iff $\forall z (y \notin z \Rightarrow x \notin z)$ iff $y \subseteq clx$
• $\mathcal{R}(x) = \bigcup \{y : y \subseteq clx\}$

Remember:

x regular
$$\stackrel{\text{def}}{\longleftrightarrow}$$
 $x = \mathcal{R}(x) \stackrel{\text{def}}{=} \bigvee \{ y \mid \forall z (Pos(y \land z) \Rightarrow Pos(x \land z)) \}$

What happens if the formal topology (open locale) is *spatial*? = {open subsets} of a topological space

•
$$\mathcal{L} = \{\text{opens}\}, \leq z = \subseteq, \land z = \cap, \ldots$$

• $\text{Pos}(x \land y)$ iff there exists a point in $x \cap y$ iff $x \notin y$
• $y \leq \mathcal{R}(x)$ iff $\forall z (y \notin z \Rightarrow x \notin z)$ iff $y \subseteq clx$
• $\mathcal{R}(x) = \bigcup \{y : y \subseteq clx\} = int clx$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Remember:

x regular
$$\stackrel{\text{def}}{\longleftrightarrow}$$
 $x = \mathcal{R}(x) \stackrel{\text{def}}{=} \bigvee \{ y \mid \forall z (Pos(y \land z) \Rightarrow Pos(x \land z)) \}$

What happens if the formal topology (open locale) is *spatial*? = {open subsets} of a topological space

•
$$\mathcal{L} = \{\text{opens}\}, \leq = \subseteq, \land = \cap, \ldots$$

• $\text{Pos}(x \land y)$ iff there exists a point in $x \cap y$ iff $x \notin y$
• $y \leq \mathcal{R}(x)$ iff $\forall z (y \notin z \Rightarrow x \notin z)$ iff $y \subseteq clx$
• $\mathcal{R}(x) = \bigcup \{y : y \subseteq clx\} = \text{ int } clx$
• $x = \mathcal{R}(x)$

Remember:

x regular
$$\stackrel{\text{def}}{\longleftrightarrow}$$
 $x = \mathcal{R}(x) \stackrel{\text{def}}{=} \bigvee \{ y \mid \forall z (Pos(y \land z) \Rightarrow Pos(x \land z)) \}$

What happens if the formal topology (open locale) is *spatial*? = {open subsets} of a topological space

•
$$\mathcal{L} = \{\text{opens}\}, \leq = \subseteq, \land = \cap, \ldots$$

• $\text{Pos}(x \land y)$ iff there exists a point in $x \cap y$ iff $x \notin y$
• $y \leq \mathcal{R}(x)$ iff $\forall z (y \notin z \Rightarrow x \notin z)$ iff $y \subseteq clx$
• $\mathcal{R}(x) = \bigcup \{y : y \subseteq clx\} = \text{ int } clx$
• $x = \mathcal{R}(x)$ iff $x = \text{ int } clx$

Remember:

x regular
$$\stackrel{\text{def}}{\longleftrightarrow}$$
 $x = \mathcal{R}(x) \stackrel{\text{def}}{=} \bigvee \{ y \mid \forall z (Pos(y \land z) \Rightarrow Pos(x \land z)) \}$

What happens if the formal topology (open locale) is *spatial*? = {open subsets} of a topological space

•
$$\mathcal{L} = \{\text{opens}\}, \leq = \subseteq, \land = \cap, \ldots$$

• $\text{Pos}(x \land y)$ iff there exists a point in $x \cap y$ iff $x \notin y$
• $y \leq \mathcal{R}(x)$ iff $\forall z (y \notin z \Rightarrow x \notin z)$ iff $y \subseteq clx$
• $\mathcal{R}(x) = \bigcup \{y : y \subseteq clx\} = \text{ int } clx$
• $x = \mathcal{R}(x)$ iff $x = \text{ int } clx$ iff x is regular in the usual sense.

Remember:

x regular
$$\stackrel{\text{def}}{\iff} x = \mathcal{R}(x) \stackrel{\text{def}}{=} \bigvee \{ y \mid \forall z (Pos(y \land z) \Rightarrow Pos(x \land z)) \}$$

Francesco Ciraulo

PALERMO (IT)

Regular opens and Overlap algebras

◆ロ ▶ ◆母 ▶ ◆ 臣 ▶ ◆ 臣 ● の � @

$\blacksquare \ \mathcal{R}$ is a NUCLEUS

Remember:

x regular
$$\stackrel{\text{def}}{\longleftrightarrow} x = \mathcal{R}(x) \stackrel{\text{def}}{=} \bigvee \{ y \mid \forall z (Pos(y \land z) \Rightarrow Pos(x \land z)) \}$$

Francesco Ciraulo

PALERMO (IT)

Regular opens and Overlap algebras

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ●

$\blacksquare \ \mathcal{R}$ is a NUCLEUS

•
$$\{x : x = \mathcal{R}(x)\} = \{\text{regular elements}\}\$$
 is an OPEN LOCALE

Remember:

$$x \text{ regular} \quad \stackrel{\text{def}}{\longleftrightarrow} \quad x = \mathcal{R}(x) \stackrel{\text{def}}{=} \bigvee \{ y \mid \forall z (Pos(y \land z) \Rightarrow Pos(x \land z)) \}$$

Francesco Ciraulo

PALERMO (IT)

Regular opens and Overlap algebras

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ●

• \mathcal{R} is a NUCLEUS

•
$$\{x : x = \mathcal{R}(x)\} = \{\text{regular elements}\}\$$
 is an OPEN LOCALE
• $\mathsf{Pos}(\mathcal{R}(p)) \iff \mathsf{Pos}(p)$

Remember:

х

regular
$$\stackrel{\text{def}}{\longleftrightarrow} x = \mathcal{R}(x) \stackrel{\text{def}}{=} \bigvee \{ y \mid \forall z (\mathsf{Pos}(y \land z) \Rightarrow \mathsf{Pos}(x \land z)) \}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ●

- *R* is a NUCLEUS
- {x : x = R(x)} = {regular elements} is an OPEN LOCALE
 Pos(R(p)) ⇐⇒ Pos(p)
- { $x : x = \mathcal{R}(x)$ } = {regular elements} is an OVERLAP ALGEBRA where: $\mathcal{R}(x) \times \mathcal{R}(y) \xrightarrow{def} \operatorname{Por}(x \wedge y)$

$$\mathcal{R}(x) times \mathcal{R}(y) \qquad \stackrel{aer}{\Longleftrightarrow} \qquad \mathsf{Pos}(x \wedge y)$$

Remember:

$$x \text{ regular } \quad \stackrel{def}{\Longleftrightarrow} \quad x = \mathcal{R}(x) \stackrel{def}{=} \bigvee \{ y \mid \forall z \big(\mathsf{Pos}(y \land z) \Rightarrow \mathsf{Pos}(x \land z) \big) \}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● ○ ○ ○

(\mathcal{R}) : $(\sim \sim) = (\text{overlap algebra})$: (cBa)

Francesco Ciraulo

PALERMO (IT)

Regular opens and Overlap algebras

◆ロト ◆母 ▶ ◆ 臣 ▶ ◆ 臣 ▶ ● 臣 ● の Q @

 (\mathcal{R}) : $(\sim \sim) = (\text{overlap algebra})$: (cBa)

- $\{x : x = \mathcal{R}(x)\}$ is an Overlap Algebra
- $\{x : x = \sim \sim x\}$ is a complete Boolean algebra

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

 (\mathcal{R}) : $(\sim\sim) = ($ overlap algebra) : (cBa)

- $\{x : x = \mathcal{R}(x)\}$ is an Overlap Algebra
- $\{x : x = \sim \sim x\}$ is a complete Boolean algebra

■
$$\mathsf{Pos}(\mathcal{R}(p)) \iff \mathsf{Pos}(x)$$

■ $\mathsf{Pos}(x) \Rightarrow \mathsf{Pos}(\sim x)$ **BUT** $\mathsf{Pos}(\sim x) \Rightarrow \mathsf{Pos}(x)$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● ○ ○ ○

 (\mathcal{R}) : $(\sim \sim) = (\text{overlap algebra})$: (cBa)

- $\{x : x = \mathcal{R}(x)\}$ is an Overlap Algebra
- $\{x : x = \sim \sim x\}$ is a complete Boolean algebra

■
$$\mathsf{Pos}(\mathcal{R}(p)) \iff \mathsf{Pos}(x)$$

■ $\mathsf{Pos}(x) \Rightarrow \mathsf{Pos}(\sim x)$ **BUT** $\mathsf{Pos}(\sim x) \Rightarrow \mathsf{Pos}(x)$

•
$$x \leq \mathcal{R}(x) \leq \sim \sim x$$

• $\sim \mathcal{R}(x) = \sim x$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● ○ ○ ○ ○

 (\mathcal{R}) : $(\sim\sim) = ($ overlap algebra) : (cBa)

- $\{x : x = \mathcal{R}(x)\}$ is an Overlap Algebra
- $\{x : x = \sim \sim x\}$ is a complete Boolean algebra

■
$$Pos(\mathcal{R}(p)) \iff Pos(x)$$

■ $Pos(x) \Rightarrow Pos(\sim x)$ BUT $Pos(\sim x) \Rightarrow Pos(x)$
■ $x \le \mathcal{R}(x) \le \sim \sim x$
■ $\sim \mathcal{R}(x) = \sim x$
 $\begin{array}{c} & & \\ & &$

Francesco Ciraulo

PALERMO (IT)

Regular opens and Overlap algebras

Digression: apply the same idea to the logic itself

Problem:

define a unary connective (modality) \mathcal{R} on formulae such that:

 $\varphi \vdash \mathcal{R}(\varphi) \vdash \neg \neg \varphi$

PALERMO (IT)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

Digression: apply the same idea to the logic itself

Problem:

define a unary connective (modality) \mathcal{R} on formulae such that:

 $\varphi \vdash \mathcal{R}(\varphi) \vdash \neg \neg \varphi$

Hint: you need some sort of OVERLAP RELATION on formulae.

Digression: apply the same idea to the logic itself

Problem:

define a unary connective (modality) \mathcal{R} on formulae such that:

 $\varphi \vdash \mathcal{R}(\varphi) \vdash \neg \neg \varphi$

Hint: you need some sort of OVERLAP RELATION on formulae.

Solution:

take the (constructive) SATISFIABILITY relation (see: FC, *Constructive Satisfiability*, PhD Thesis)

Part III

Representation of Overlap Algebras

PALERMO (IT)

Regular opens and Overlap algebras

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Let ${\mathcal L}$ be an open locale and ${\mathcal R}$ the operator defined above.

Theorem

1
$$\{x \in \mathcal{L} : x = \mathcal{R}(x)\}$$
 is an OVERLAP ALGEBRA

Proof.

1 where: $Pos(\mathcal{R}(x)) = Pos(x)$ and $\mathcal{R}(x) \rtimes \mathcal{R}(y) \Leftrightarrow Pos(x \land y)$

PALERMO (IT)

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● ○ ○ ○ ○

Let ${\mathcal L}$ be an open locale and ${\mathcal R}$ the operator defined above.

Theorem

- 1 { $x \in \mathcal{L} : x = \mathcal{R}(x)$ } is an OVERLAP ALGEBRA
- 2 every overlap algebra can be represented in this way

Proof.

- 1 where: $\mathsf{Pos}(\mathcal{R}(x)) = \mathsf{Pos}(x)$ and $\mathcal{R}(x) \rtimes \mathcal{R}(y) \Leftrightarrow \mathsf{Pos}(x \land y)$
- **2** overlap algebra = open locale + all elements are regular

(each overlap algebra coincides with the overlap algebra of its regular elements)

(本間) (本語) (本語) 三語

 $\forall x (x = \mathcal{R}(x))$

Incidentally, compare:

The regular elements of an open locale form an Overlap Algebra.

with the classical result:

The regular open sets of a topological space form a complete Boolean algebra.

which is so basic for the classical theory of Boolean valued models!

・ 同 ト ・ ヨ ト ・ ヨ ト

Incidentally, compare:

The regular elements of an open locale form an Overlap Algebra.

with the classical result:

The regular open sets of a topological space form a complete Boolean algebra.

which is so basic for the classical theory of Boolean valued models!

Se also: FC, G. Sambin - *The overlap algebra of regular opens* - submitted, where another constructive version of this theorem is given even if in a concrete (as opposed to formal) topological framework. See also my talk in Padua last October.

伺下 イヨト イヨト

About morphisms (j.w.w. Milly Maietti and Paola Toto)

◆□ > ◆□ > ◆□ > ◆□ > ◆□ >

PALERMO (IT)

Regular opens and Overlap algebras

About morphisms (j.w.w. Milly Maietti and Paola Toto)

Sambin's Basic Picture needs the category Rel of sets and relations.

イロト 不良 とくほう 不良 とうせい

About morphisms (j.w.w. Milly Maietti and Paola Toto)

- Sambin's Basic Picture needs the category Rel of sets and relations.
- Overlap algebras were introduced by Sambin as an algebraic counterpart of Rel.

- 4 同下 4 日下 4 日下 - 日

About morphisms

(j.w.w. Milly Maietti and Paola Toto)

- Sambin's Basic Picture needs the category Rel of sets and relations.
- Overlap algebras were introduced by Sambin as an algebraic counterpart of Rel.
- Consequently, he introduced morphisms (*o-relations*) which are reminiscent of the four operators ext, rest, □ and ◊ of its Basic Picture.

・ 同 ト ・ 三 ト ・ 三 ト

About morphisms

(j.w.w. Milly Maietti and Paola Toto)

- Sambin's Basic Picture needs the category Rel of sets and relations.
- Overlap algebras were introduced by Sambin as an algebraic counterpart of Rel.
- Consequently, he introduced morphisms (*o-relations*) which are reminiscent of the four operators ext, rest, □ and ◊ of its Basic Picture.

Proposition

Study the following categories:

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Study the following categories:

- Overlap algebras & morphisms of locales (+ some natural condition for \approx)
- and relate it to the category of Locales

通 とう きょう うま とう しょう

Study the following categories:

- Overlap algebras & morphisms of locales (+ some natural condition for \approx)
- and relate it to the category of Locales
- Overlap algebras & ... (some suitable notion) ...
- and relate it to the category of complete Boolean algebras

御 と くき と くき と しき

Study the following categories:

- Overlap algebras & morphisms of locales (+ some natural condition for \approx)
- and relate it to the category of Locales
- Overlap algebras & ... (some suitable notion) ...
- and relate it to the category of complete Boolean algebras

御 と くき と くき と しき

Point-free set-theory (?!)

 $\begin{array}{ll} x \subseteq y & \Longleftrightarrow & \forall z \big(z \in x \Rightarrow z \in y \big) & (\text{POINT-WISE definition}) \\ x \subseteq y & \Longleftrightarrow & \forall z \big(z \ \ \ x \Rightarrow z \ \ \ y \big) & (\text{POINT-FREE definition}) \end{array}$

Questions:

- Is it possible to develop set-theory in a "point-free" way?
- (That is, in a language with () instead of \in .)
- Would it be "more constructive"?
- Would it allow for new constructive versions of classical set-theoretical results?
- (As for point-free topology with respect to point-wise topology.)

Regular opens in formal topology and representation theorem for **overlap algebras**

Francesco Ciraulo

Dipartimento di Matematica ed Applicazioni Università degli Studi di PALERMO ciraulo@math.unipa.it www.math.unipa.it/~ciraulo

Leeds Symposium on Proof Theory and Constructivism Leeds, 3 - 16 July 2009

THANK YOU!

Francesco Ciraulo

PALERMO (IT)

Regular opens and Overlap algebras