The Kuratowski's Problem in Pointfree Topology

Francesco CIRAULO University of Padua

TACL2024

Barcelona 5 July 2024 This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 731143

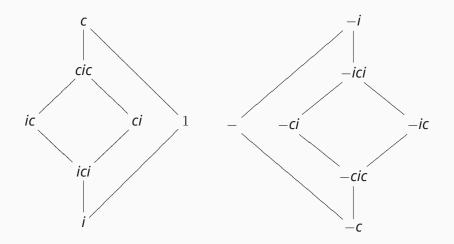
Kuratowski's theorem (1922)

Let *i* and *c* be the interior and closure operators on the subsets of a topological space.

Then there are at most 14 possible combinations of i, c, -(where – is the set-theoretic complement).

Application: number of modalities in S4

The general Kuratowski's ordered monoid

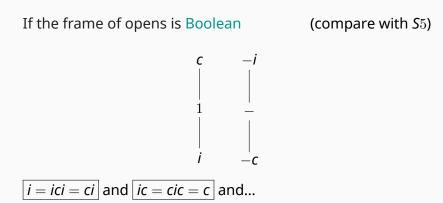


4

A 14-set of reals

$\begin{array}{cccc} -2 & -1 & 0 & 1 & 2 & ... & 3 \\ \hline \{-2\} \cup (-1,0) \cup (0,1) \cup ((2,3) \cap \mathbb{Q}) \end{array}$

Kuratowski's monoids: an example



[Gardner & MJackson, The Kuratowski closure-complement theorem, New Zealand J. Math. 38 (2008)] Kuratowski's result is far more general: it holds for operators on a Boolean algebra, and even further... *i* and *c* need not be topological

closure operator:

 $x \leq c(y)$ iff $c(x) \leq c(y)$

that is, monotone and $1 \le c = cc$ (need not distribute over finite joins)

interior operator:

$$i(x) \leq y$$
 iff $i(x) \leq i(y)$

that is, monotone and $ii = i \le 1$ (need not distribute over finite meets) The classical closure-complement problem

Let $(X, \leq, -)$ be a poset with an antitone involution (complement)

let c be a closure operator on X

put i = -c - i (the corresponding interior operator)

then

there are at most 14 possible combinations of c, i, -

What happens if we replace the complement with a pseudocomplement?

From complement to pseudocomplement: why?

MOTIVATIONS

- Greater generality
- Meaningful for constructive (intuitionistic, topos-valid) mathematics
- Application to pointfree topology / locale theory (the sublocales form a co-frame...)

What happens CONSTRUCTIVELY (no LEM)

i = -c - does not make sense(c = 1 gives i = -- which is an interior operator iff LEM)

so we keep *i* as primitive

and we have 3 possibilities for c

• treat *c* as primitive too (no pseudocomplement, no link between *i* and *c*)

• define *c* in terms of adherent points (no pseudocomplement, need extra structure on the poset)

• put c = -i- (need pseudocomplement)

The interior-closure problem (Sambin,?)

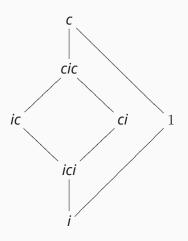
For an interior *i* and a closure *c*

on an arbitrary poset:

at most 7 combinations.

Construtive and very general: <u>no link between *i* and *c*</u>

Relevant for \Box and \Diamond in a general class of (non classical) modal logics...



The present framework is a bit too general for studying Kuratowski's monoids...

There are 26 additional inequalities which could be imposed:

$$c = i, c = ici, c = ic, c = ci, c = cic, c = 1,$$

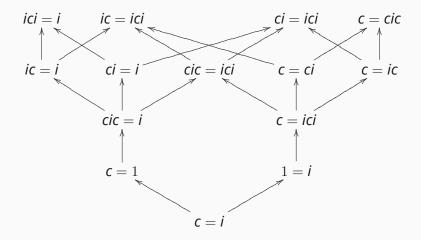
 $cic = i, cic = ici, cic = ic, cic = ci, cic \le 1, 1 \le cic,$
 $ic = i, ic = ici, ic \le ci, ic \le 1, 1 \le ic,$
 $ci = i, ci = ici, ci \le ic, ci \le 1, 1 \le ci,$
 $ici = i, ici \le 1, 1 \le ici,$
 $1 = i.$

Although items in the same row are equivalent...

$\textit{cic} \leq 1$	cic = i	
$1 \leq \mathit{cic}$	c = cic	
ic ≤ ci	cic = ci	ic = ici
$ic \leq 1$	ic = i	
$1 \leq ic$	<i>c</i> = <i>ic</i>	
$ci \leq ic$	cic = ic	ci = ici
$\frac{ci \le ic}{ci \le 1}$	cic = ic ci = i	ci = ici
		ci = ici
	ci = i	ci = ici

(like axioms *B* and 5 over *S*4)

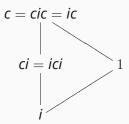
These are the implications which hold in general:



(some counterexample still missing...).

Example:

if c = ic (every closed is open), then



A point is in the closure of a set if every open neighbourhood of the point intersects the set.

For a constructively-sound algebraic version of this, we need a poset with an overlap relation...

(with LEM, overlap = non empty intersection)

Overlap relations

Poset with overlap (X, \leq, \rtimes) = poset (X, \leq) + binary relation \rtimes on X s.t.

 $x \approx y \Rightarrow y \approx x$ (symmetry)

 $(x \ge y) \& (y \le z) \Rightarrow (x \ge z)$ (monotonicity)

 $\forall z \ (x \otimes z \Rightarrow y \otimes z) \Rightarrow x \leq y$

(density)

A "positive" link between interior and closure

Compatibility:

 $ix \otimes cy \Rightarrow ix \otimes y$

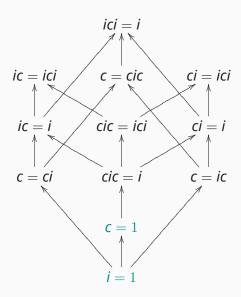
In a poset with \approx if *i* and *c* are compatible then:

• $i = 1 \Rightarrow c = 1$

• ...

- $c = ic \Rightarrow ci = i$
- $c = ci \Rightarrow ic = i$

•



TFAE: • LEM • $c = 1 \Rightarrow i = 1$ • $ci = i \Rightarrow c = ic$ • ... Example (a version of Booleanness):

if
$$|c = ic|$$
 (every closed is open), then

(as in the classical case).

[More to appear in my paper...]

The interior-pseudocomplement problem

Pseudo-complement operator – on a poset X:

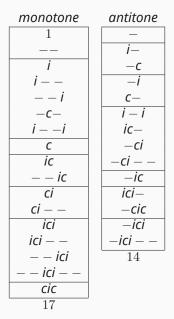
 $x \leq -y \iff y \leq -x$

(- defines an antitone Galois connection on X)

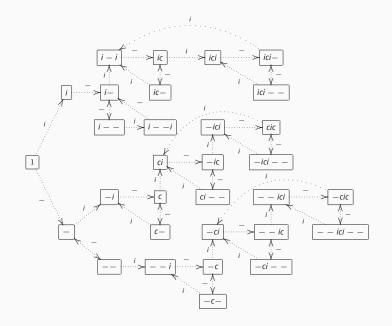
Properties: $(1 \le --)$ $x \le --x$ $(1 \le --)$ $x \le y \Rightarrow -y \le -x$ (- is antitone)--x = -x(- --= -) $x \le --y \Leftrightarrow --x \le --y$ (- is a closure operator)

Let i be an interior operator on X and put c = -i - i.

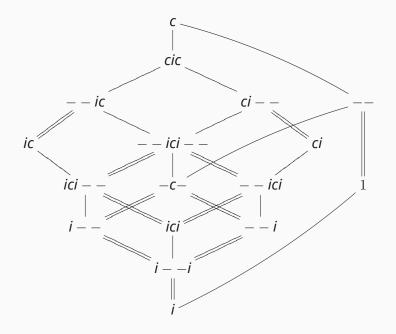
31 (?) possible combinations

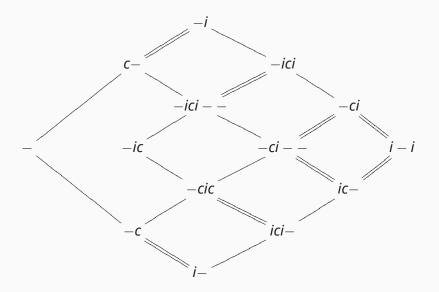


Cayley graph of the monoid generated by i and -



25





What happens when *X* is a cHa and i and *c* preserve finite \land and \lor respectively?

An application: the pointfree Kuratowski's problem

The Kuratowski's problem for locales

X = co-frame of sublocales of a given locale L

\leq is the sub-locale relation

(opposite of the pointwise order on nuclei)

- is the supplement (co-pseudocomplement) in *X* (that is, $-x \le y \Leftrightarrow -y \le x$) [for *j* a nucleus, $-L_j$ is given by the nucleus $x \mapsto \bigwedge_{x < y} (jy \to y)$]

i is the interior in the sense of sublocales (it is a closure operator on nuclei)

c is the closure in the sense of sublocales

(it is an interior operator on nuclei)

Some facts about open and closed sublocales

Open and closed sublocales are complemented.

Consequences:

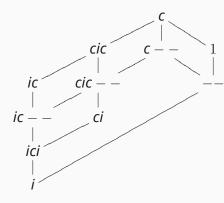
$$--i = i = -c - = i - - \le c - - = -i - \le c = - - c$$

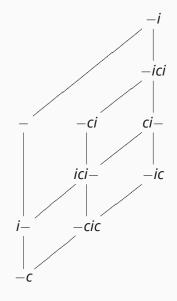
$$-\mathbf{c} \leq \mathbf{i} - \leq - \leq \mathbf{c} - = -\mathbf{i}$$

Formally, the Kuratowski's problem for locales is a special case of the interior-pseudocomplement problem above because i = -c-

Warning: since now — is a co-pseudocomplement, one has to apply the previous result with respect to the opposite order, and so the roles of the interior and closure operators are switched.

Solution: (i) take the previous diagrams, (ii) reverse them, (iii) write *c* in place of *i* and vice versa (simultaneously), and (v) simplify based on the previous facts...



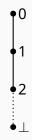


 $c \neq -i-$

L = the opposite of $\omega + 1$

Z = its smallest dense sublocale (defined by the double negation nucleus) so cZ = L.

But also -Z = L and hence $-i - Z = \emptyset$ (the smallest sublocale of *L*).



References

C., Kuratowski's problem in constructive Topology, Journal of Logic and Analysis (to appear)

Gardner & MJackson, The Kuratowski closure-complement theorem, New Zealand J. Math. 38 (2008)

Sambin, Positive Topology. A new practice in constructive mathematics, Clarendon Press, Cambridge (to appear)

Related works:

Al-Hassani & Mahesar & Sacerdoti Coen & Sorge, A term rewriting system for Kuratowski's closure-complement problem, 23rd Internat. Conference on Rewriting Techniques and Applications (2012)

He & Zhang, Interior and boundary in a locale, Advances in Mathematics (China) 29 (2000)

Other references?

Gracias! Gràcies!