A class of imprimitive groups *'
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Abstract

We classify imprimitive groups inducing the alternating group A4 on the set of blocks,
with the inertia subgroup satisfying some very natural geometrical conditions which force
the group to operate linearly.

Recently in [1] C. Bartolone, S. Musumeci and K. Strambach studied imprimitive permu-
tation groups which are highly transitive on blocks and satisfy conditions common in geometry
(for instance in Laguerre and Minkowski geometries, see [2]). In particular, they classified all
imprimitive permutation groups G = (G, Q,Q), where G denotes the group of permutations,
) the set of points and Q the set of blocks, fulfilling the following conditions for some integer
m such that 3 <m < |Q] :

i) the inertia subgroup Ng, i.e. the subgroup fixing every block, induces a sharply transi-
tive action on every block;

i1) given two ordered m-tuples (X1, ..., X,,), (Y1, ..., Yy,) € O™, X; and Y] lying in the same
block A;, there is just one element in Ng moving (Xi, ..., X;,) to (Y1, ...,Y,,), provided
Aq, ..., A, are distinct blocks;

i7i) the stabilizer in G of a block has a 2-transitive action on it;
iv) the factor group G/Ng is finite and acts m-transitively on the set (2 of blocks.

Conditions i) and iii) force the inertia subgroup Ng to be elementary Abelian and, con-
sequently, G to be an affine group, of course of finite order in view of conditions v) and 7).
So one could envisage a wider programme of classifying finite imprimitive groups having an
elementary Abelian inertia subgroup satisfying ii) for some positive integer m < | Q|, pro-
vided the size of blocks and the factor permutation group G = (G//Ng, ) are assigned. As in
this context a large amount of non-splitting group extensions are expected, the programme
can be carried out only if the size of blocks is small. This article is a first step for the en-
visaged programme: we deal with the case where there are 4 blocks, each of size 16, and G
is isomorphic to A4 (the reasons of such a size come from [1] and [4]). It turns out that G
can be represented as an affine group with the inertia group Ng as the group of translations.
Moreover G splits over Ng, apart from some exceptional cases (43 for m = 1, 11 for m = 2
and 6 for m = 3) we list in section 4 (for m = 2) and section 5 (for m = 1 and m = 3).
Although some parts of the paper could be accomplished on a computer, we have preferred
to achieve any result by using combinatorial arguments.
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1. Let m be a positive integer < 4 and let G,, = (G, Q2,Q) be a transitive imprimitive
permutation group such that:

1. the inertia subgroup Ng,, is elementary Abelian;
2. the factor group G, = (Gy/Ng,,, Q) is isomorphic to A4 and | A| = 16 for all A € Q;

3. for any m distinct blocks A1, ..., A,, € Q and points X;,Y; € A;, i =1, ... ,m, there
is just one element g € Ng_, such that g(X;) =Y; for all .

As a block contains 16 points and there are 4 blocks at all, we have || = 64 and we may
regard G,, as a subgroup of the symmetric group Sg4 preserving Q. Let F = (F,Q,Q) be
the full subgroup of Sg4 preserving 2 and let Ng be the corresponding inertia subgroup. Of
course (N, Q) is isomorphic to the direct product of 4 copies of S16. In view of Condition 3,
Ng,, induces on every block A; € Q a sharply transitive permutation group; also, VX; € A,
Nr has an elementary Abelian subgroup U; of order 16 acting on A; as Ng,,/(Ng,,)x, and
leaving any other block point-wise fixed. Clearly Ng, , is contained in the direct sum

V =U ®U;®Us® Uy C N, (1)

that we may regard as a 16-dimensional vector space over the prime field GF(2).
Let Vi = U;@U; @ Uy, with {4, j,k,1} = {1,2,3,4}, then V/V, ~ U acts sharply transitively
on A; and we may identify A; with V/V; ~ GF(2)*, so

Q:U@Ww¢{u+wmemJ:Lz&q

with Q = {V/V4,V/V,,V/V3,V/V,}. Thus we can let G,,/Ng, =~ A4 act as a subgroup of
GL(V) normalizing Ng,, and there are four equivalent linear representations (G,)a,/Ng,, —
GL(V/V;) that we may identify with a linear representation a : Ag — GL(U) with U ~
GF(2)?. This allows a double embedding

Gm — Gm — AGL(V),

where G,,, denotes the twisted wreath product U wr, A4, and we may regard G,, as an im-
primitive permutation group with the same point set and block set as G,, (see [5] p. 86,
[1] §2.1 and §2.2). In this context the inertia subgroup Ng, corresponds to the group of
translations determined by a subspace W of V which is m-transversal with respect to the
decomposition (1) of V', which means that the projection W — @f};il U, is an isomorphism
for any m-subset {i1, ... ,im} of {1,2,3,4} (hence dim W = 4m) (see [1], §2.1.2 for details).
Manifestly we have G4 = G4, so we may assume m < 3 from now on.

2. In order to represent the twisted wreath product G,, , we need a set S of representatives
of Ay/As. In view of [5], p. 86, the structure of the group is independent of the choice of S,
so we take

S = {V1,02,73,94}

with ¥y = (ij)(k4), where {3,j,k} = {1,2,3} for £k = 1,2,3 and ¥4 = 1. Fix now a basis
{ev's}r,s:1,2,3,4 of V with U, = (e;1,er2,€.3,€.4) and, for [ = 1,2,3,4, let ¢; act on V as



the linear map moving e;s to ey,,)s. For any o € A4 each permutation 9,;00; fixes 4 and
may be identified with the corresponding element in Ag. So we have the linear mappings
(Vo) € GL(U) and we can let o linearly act on V' by putting o(e,s) = Z?Zl als €q (1)l
where
A(o), = (ars)

is the matrix defining a(J4(,00,) with respect to the fixed basis. Clearly A(v;), is the identity
and, putting ¢ = (123), we have J¢(,)(V, = ¢ for all = 1,2, 3,4, i.e. A((), is, up to similarity,
one of the following:

1.((1)?)7 2.(5%), 3(5%) 2)
e=(Y1) 1=(o 1) o=(s5)

Throughout the paper we use the symbol G!, (resp. G¢,) instead of G, (resp. G,,) to specify
which of the above cases occurs. Besides we indicate by

where

OmMm and ¢’7’, M

to indicate, respectively, the automorphism of U defined through the matrix M € GL(4,2)
and the automorphism of GL(V') obtained from the 4 x 4 permutation matrix corresponding
to 7 € S4 by placing M at the place (7(r),r). Thus the above argument says that the
permutations in G! are the affine mappings

Gyv X y(x) + v

with v € V and v € H; := (¢¢ A, Do, 1) (= Asg), where A; is the matrix (2.i).

3. Let G, be a subgroup of G¢, fulfilling conditions 1 — 3 in §1. Then the group of permu-
tations in G!, is '
Gy = (G uytw 1Y € Hi,w € W), (3)

where W is a H;-invariant subspace of V', m-transversal with respect to the decomposition
(1), and u,, is a vector depending on 7, only. The invariance of W under ¢ 4, and ¢y, 1 yields

Proposition 1. W is one of the following subspaces of V :
((x @), pawen (), prwpa(x)) :x € U) (m=1),
{ (10, w0x0) + a0 Vn, (2), azw™ o, (x1) + @) ) i 30 €U (= 2),

{ (10, x3,00x0) + pa,wipnz(x2) + pazwipn, (xa) ) 1 x € U ) (m =3),

for a suitable automorphism w of U such that (wea,)® = (wpy2)® = 1 with w + w™! =
goAiwgoAiw_lcpAi ifm=2andw?=1ifm=1, orm=3. O



Proposition 2. Let G/, be a subgroup of G, fulfilling the same conditions 1—3 of §1 satisfied by
Gl,. There is an isomorphism G., — GJ. if and only if i = j and there exist M € NGL(Z; 2)(Ai),
T € Sy4 and v € V such that

Gl =(9y1u’ rwr 27 € Hiy w' € o a (W),

where u;, = ¢ m(Wy + v+ (V) with ¢ py =7 ¢r, i and M € Cara,2)(Ai) if T € Ag or
i=1, M & Cqr,2(Ai) if T € Ag and i # 1. In such a case an isomorphism ¢ = (¢',4")
G, — GI, is given by

U Gy T Gyl g ()
Y ut Vo= dr (U V) + V.

Proof. Assume there exists an isomorphism 1 = (¢/,4") : G — GJ . Then there exist 7 € Sy
and bijective mappings v : U — Uy (I = 1,2,3,4) such that

YU+ Vi) =i(u) + Vo) Yuel. (4)

Furthermore ¢’ restricts to an isomorphism A : Ngi — Ng; of the corresponding iner-
tia subgroups mapping the point-wise stabilizer (NG%)[AZ] in Ng: of the block A; onto the

point-wise stabilizer (N ), o] in N¢; of the block Ar(;. Thus A induces isomorphisms

Nai /(Ngi, )ia) = Ngi /(Ngi )a, () that we may regards as linear isomorphisms
A2 Up — Urgyys

and, by identitying Ngi and W, we have A = EB;I:l Ar7r, Where m, denotes the natural
projection W — U,.. Moreover,

W;(l))\ = )\lﬂ'l, (l == ]., 2, 3,4) (5)

using the other projections 7, : W' — U, if W’ denotes the subspace of V underlying N, .
Now for all w € W we have ¢"(w + V;) = AM(w) + ¢ (V}) that, in view of (4), yields

di(m(w)) + Vo = 770y (AW)) + 1(00,) + Ve,

B rm(w) = Aim(w) + 6 (0,), (6)

thanks to (5). As W is transversal, each projection m; is surjective, so the identities (6) say
that +; is an affinity U; — Uy (y).
It follows from paragraph 2 that Gj,/Ng: and GJ,/N; share the same subgroup

K = (Po,1:k=1,2,3)

of GL(V). So ¢ induces an isomorphism p : G}, /Ngi — GJ,/Ng; mapping K onto itself.
More precisely we have

p(Bo,1) = o, 1, K =10k (4) (k=1,2,3). (7)

4



Let M; be the 4 x 4 matrix defining the affinity v; with respect to the above fixed bases of
U, and U,(;). Then (7) gives I = MT,l(k,)M;}lM) = MﬂkflM)M;}lM) for k = 1,2,3, ie.
My, My, M3, My are the same matrix M and we have 9" (u +V;) = ¢, p(u+v) + V;(;) with

v =0 (¥100,), 92(00,), ¥3(00), a(001,) )

Moreover p(¢¢ a,) € (¢¢ a,)K gives MA;M ™" € (A;), and this occurs just if j = i. Further-
more ng’M S ./\/’(;,]4(47 2) (G:n) yields M € CGL(4, 2)<Al> ifreAgori=1, M€ CGL(4,2) (Az> if
T¢ Ay and i #£ 1.

Finally 9'(gy u,+w), as an element of Sym(), is ¢"g,, uv+wd}”—1 which moves the point

U+Vl to 7/(u)+¢'r,M(V+7(V)+uv)+¢ﬂM(W)"i_’)//(vl) with 7/ = (bT,M’Y(b;}\/ja or w,(g"/, ua,-i—w) =
Gy'u’ 4, ai(w) as claimed. O
Lo

Remark 1. Proposition 2 says that a subspace W’ of V defines the inertia subgroup of a group
G),, isomorphic to G}, if, and only if, one of the following occurs:

$15, N(W), for some N € Cqra,2)(Ai),
W' =3¢ ¢ n(W), forsome N € Ngra,2)(Ai) \ Car,2)(Ai), if i # 1,
o N(W),  for some N € GL(4, 2), if i =1,

where y denotes the transposition (12) of S4. In fact, 7 = 9;, or 7 = x{¥;, for suitable
j€{1,2,3} and l € {1,2,3,4}, according as whether 7 € A4 or not. Hence W' = ¢ (W) =
(151547 MAT (W), or W = 9, MAT (W), in view of the fact that W is H;-invariant. This means
that we obtain W’ from W by replacing the linear mapping w, defining W as claimed in
Proposition 1, by <prgof\,1 if N € Cqr4,2)(Ai), or by gpr_lgof\,l if either N € Ngr,4,2)(A4i) \
CGL(4, 2) <AZ> or¢=1.

Remark 2. The Abelian group U has a natural structure of free module of rank 2 over the
centralizer k of the matrix E. Since the minimal polynomial 22 + z + 1 of E is irreducible
over GF(2), Schur’s Lemma guaranties that k is a field, of course isomorphic to GF(4). Thus
we may regard U as a 2-dimensional k-vector space and we have

,2) x k¥, ifi =2,
k

Car,2)(4i) = { k), ifi =3,

GL(2
GL(2
[ GL(2,2) xTL(1,k), ifi=2,
Nar,2)(Ai) = { T'L(2,k), if i =3,
and Cqra,2)(A1) = Nary,2) (A1) = GL(4,2).

Put v; = ¢c a0 0 = Py 1, i = pa, and ¥; = ©? + ¢; +idy. We have

Proposition 3. Up to isomorphism of permutation groups

an = <g%‘,ovvg5,u=917W W E W>



with u = (uy, ug, us, 0y ), and

ui+us = piwe?(uz) € ker(w+idy), (pF+idy)(u1) = (gi+w)(uz), if m=1;
u1 = uy € ker(p; + w + 2w 1;), ug = Oy, if m = 2;
up € ker(gp%w —I—wgpg), ;(uy) = ug = uz = Oy, if m=3.

Moreover, for any such a triple (ug, us, u3), one extension does exist and G%, splits over Ng,
if there exist x € U such that

up +uz = (w+idy)(x), Pi(ur) = ¥i(x), it m=1
up = (idU + (p; +1dy) (piw + w’lgoi))(x), if m=2;
up = (w—i—goi—l—(p?—i—w(piw—i—(pz?w—&—cpiw(p%)(x), if m=3.

Proof. We may assume

G;n = <g'yi,z’vg<5,z”vgl,w Tw e W>
with z’ € ker(y? + v; + idy) because we may take g,, , of order 3 (see [1], Lemma 4.3.3).
Besides, thanks to Proposition 2, we may replace z’ and z” by z’' + (v; +idy)(v) and 2" + (6 +
idy)(v) for any v € V. As kerv; = (¢; + idy)(U), this allows one to take z’ = 0y, as well as

z" = (uy,ug, us, 0y) for suitable uy, uz, us € U. Thus the vector z” must satisfy the conditions

a) (5+idy)(z") e W, -
b) ((67:)* + 0y +idv)(2") € W,

as a consequence of the fact that Gin/NG:'n ~ Ay.

Let m = 1. Then (8.a) gives uj +us € ker(w+idy) and uz = p2we;(u1+us) (= piwe? (ug +
uz) since (pw)?® = idy), whereas (8.b) yields wi;(u;) = us + @;uz which is equivalent to
(p3+idy)(u1) = (pitw)(uz). Assume there exists x € U such that uj +uy = (w+idy)(x), then
(95 zr4x)? = idy with x = (x, w(x), p2we;(x), piwpi(x)) € W. Assume also 9;(x) = ;(u1),
then

wii(x) = w(] +idy)(u1) + wei(ur) = w(p; +w)(uz) + wei(u1) = wei(ur + uz) + up
= @i(uz) +uz

and the order of g5 74 gv,,0, is 3, i.e. we have a split extension over the inertia subgroup.

Let m = 2. Then (0 +idy)(V)NW = (6 +idy)(W) and we may assume gs,» of order
2, which means u; = uz and uz = Oy. Thus (8.b) gives u; € ker(wy); + go?uflgpi + p?) =
ker(p2w™1); + ; + w) because wp;w = 2w tp? and p?1Y; = ;. Assume there exists x € U
such that u; = (idy + (p; + idy) (@iw +w ™)) (), then 1p;(u1) = ¥(x) and this gives in turn
(gdz”+x)2 = (96, 2z +x9; Ov)3 = idV with x = (X7 X, (UJ + ‘p?w_l@i)(x)v (w =+ @?W_l%‘)(x)) ew.

Let m = 3. Up to multiplying by a translation in the inertia group we may assume
uz = uz = Oy. Then (8.a) yields (pw + wy?)(u1) = Oy, whereas (8.b) gives ¥;(u1) = Op.
Assume there exists x € U such that u; = (w + @; + ¢? + wEiw + 2w + Piwe?)(x). Then
(§+idy)(x) = (6 +idy)(z") and ((6¢;)? + 5p; +idy ) (x) = Oy = ((6¢i)? +p; +idy ) (z") with

x = (u1 + @i(idy + @i)x, @i(idy + pi)x, x,x) € W



and we may assume the order of g5, and gs g, 0,, to be 2 and 3, respectively.

Finally (gsz)? and (9527 9,0, )° are translations g1, and g1, with a = (u; + ug,us +
U2, usz,uz) and b = (;(u1),uz + ©;(u3), 2 (us) + us, v;(u2) + ¢?(uz)) vectors of W satisfying
the conditions a € ker(§ + idy), b € ker(6v; +idy) and (2 + v; +idy + 672)(b) = (42 + i +
idy)(idy + 67i)(a), so Theorem 1 in [3] guaranties that

an = <g%0v7g5,z”7glw Tw e W>

with z” = (uy, ug, uz, Oy) is an extension of W by H; for any triple (u1, us, us) of vectors of U
fulfilling the asked conditions. O

4 (m = 2). In case m = 2 the linear mapping w acts fixed-point freely, w + w™! being
invertible. Besides the order of w is either 3 or 6, as immediately follows from the following

Lemma. The minimal polynomial u,(z) of w divides x* 4+ 2% + 1 and w? centralizes ;.
Moreover p,(z) = x? + x + 1 precisely if w centralizes ;.

Proof. Proposition 1 yields w + w™! = pwp;w tp; and (pw)® = 1 and this gives in turn
w2+ 1=pwo; ! which means that w and w? have no fixed point and

po(w™ +1) = pipw(w?) et = pi(pe(w)) e = 0. 9)

Assume p,(z) does not divide % + 22 + 1, then pu,,(z) is either z* + 2 + 1, or 2% + 23 + 1, or
4+ 23+ 22+ 2+ 1. The latter requires the order of w to be 5, so w* +w? +1 = p,(W3+1) =0
by (9), a contradiction. In the remaining cases the order of w is 15 with w2 +1 = w? +w+1
and w2+ 1 = w3 + w? according as whether p,(2) = 2* + 23+ 1, or p,(z) = 2* + 2 +1. But
in both cases a contradiction occurs. Therefore w? =w?+1=w2+1= piw?p? and we see
that w? centralizes ;.

Let w centralize ;, then (p;w)® = 1 says that the order of w is 3, hence its minimal
polynomial must be 22 + 2 + 1. Let p,(x) = 22 + 2 + 1, then w™! = w + 1 and the identity
w+wl= cpiwgoiwflgoi forces w to centralize ;. O

In case i = 3 the above lemma says that if the minimal polynomial of w is 2% + = + 1,
then any matrix representing w may be regarded as a 2 X 2-matrix over k. Thus, in view of
Remark 1 and Remark 2 we may take to represent w

E O

11 _ =1

P —<O E)’ ifi =1,
E O E? O

21 __ 22 __ s — 9.

P _<0 E)’P _<0 E2>’ ifi=2; (10)
E E2 EQ

P31:<O g)’P32:<O 02>,P33:<O g), 1f1:3

Let now the minimal polynomial of w be z* 4+ 22 + 1 = (22 + 2 + 1)? (hence w does not
centralize p; and i = 2, or ¢ = 3). Then w acts reducibly leaving a 2-dimensional subspace Z



invariant with Z = (u,w(u)) for a suitable vector u € U, w fixing no point. Moreover, by the
above lemma, w? centralizes ;.

Since w? satisfies conditions such as the ones satisfied by w, the above argument says that
w? is k-linear, even k-scalar if i = 2. Thus w? operates on the set £ = {l1, ... ,I5} of lines of
the vector plane over k by stabilizing at least two of them, say I4 and [5, its order being 3. Of
course we may assume ¢;(l4) = Iy and @;(l5) =I5, as well.

Assume Z ¢ L, then w? cannot be k-scalar, hence ¢ = 3. Up to an arrangement of indices,
we may put u € Iy, w?(u) € Iy and w*(u) = w(u) € I3. There are just three subspaces of
dimension 3 over GF(2) meeting at Z we can indicate as

Ly =7+ (k‘:l,2,3).

Thus w?(Lg) = Liy1 and w(Ly,) = Ly_1 (mod 3). Furthermore w moves the pair of points of
I\ Z to the pair of points of Ly_; lying neither in Z nor in I_; (otherwise w?(ly) = lp41,
w?(ly) = Iy and w?(I5) = I5 would force w to operate as a permutation group of £, hence
to centralize the k-scalar mapping ¢3). As a consequence @3(u) € (I \ Z) gives wys(u) €
L3\ (IsUZ) ClyUls, hence

gpgwgog(u) S (L1 \ (ll U Z)) U (LQ \ (l2 @] Z)) = (wcp3)2(u) S (l3 U ll) \ Z.

Thus we infer (we3)3(u) # u, but (we3)® = 1, so we have Z € L.

Let i = 2. The fact that w centralizes the k-scalar mapping w? forces w to be k-linear.
Assume the k-line Z fixed by w is none of the lines {4 and I5 stabilized by @2, then we may
assume w(l1) = I3 = pa(la) = p3(I3). This reduces matters to discuss two cases: either
w?(lg) = w(l3) = Iy and wW?(ly) = w(ls) = lg, or wW?(l3) = w(l4) = Iz and W?(I3) = w(ls) = I3.
But both possibilities lead to (wip2)? # 1. So we may represent w by a matrix of the shape

E" X E" 0O

o eh) "\ x E
with h = 1, or h = 2 because w acts fixed-point freely. Then X centralizes F¥ and we may
take X = E" in view of Remark 1 and Remark 2.

Let i = 3. If w? were k-scalar w should be k-linear, but we are assuming that w does not
centralize ¢3. So we can take P33 in (10) to represent w? and, consequently,

E J E O
OE2 , Or JEQ )

with J satisfying E.J = JE?, to represent w. Furthermore, up to conjugation by an element
in GL(2, k), we may take
0 1
y= ( 0 1 ) |



Summing up, in case w does not centralize ; we obtain the representations

E? E?
23 __ 24 __
(g 5) (0o &)
), if i = 2;

E 0O E* 0

25 26

P (E E)’P (E2E2

PM:( if i =3,

E O
35 _
Jor=(5 )

Hence there are at most twelve non-equivalent instances for the inertia subgroup of a subgroup
G of G5 fulfilling conditions such as 1 —3 in §1. Each of them corresponds to a subspace, we
shall denote by Wéj , defined as specified in Proposition 1 through w = ¢pi; with P¥ given
by (10) and (11). Looking at Remarks 1 and 2 we see that actually no two different such
instances yield equivalent permutation groups and by Proposition 3 we have

E FE
O E

E J
O E?

Gl2j = <g'yz-,0v,95,u7gl,w W E W;]> )

with u = (u,u,0p,0p) and u € ker(y; +w + 2w~ 11);). Moreover Géj splits over ng if there
exists x € U such that u = (idy + (¢; + idy)(piw + w™1;))(x): this confines non-splitting
extensions to the following cases (in terms of k-coordinates)

(X,Y), Y #£0, with (i,5) = (2,1),(2,5);
(X,Y) # (0,0), with (4,7) = (3,1);
(0,Y), Y #0, with (i,5) = (3,3);
(X,JX),X #£0, with (i,7) = (3,5).

Thus, up to transforming by an automorphism of U centralizing both ; and w, we can reduce
matters to the cases

(0,1), with (i,§) = (2,1),(2,5), (3,1), (3,3);
(1, 1), with (z,7) = (2,1),(2,5),(3,1);
u=< (E,I), with (i,75)=1(2,5),(3,5); (12)
(E%1), with (i ) = (2,5)
(1,0), with (i,5) = (3,1).

It is a straightforward calculation to verify that none of the above eleven extensions splits
over the inertia subgroup. On the other hand Proposition 2 guaranties that actually no two
of them are equivalent as permutation groups.

5 (m = 1orm = 3). As in this case the order of w is at most 2 (Proposition 1), every

representation of w has the shape
My Mo
My Moo

with 2-dimensional matrices M;; such that
a) MP) + MisMyy =1, b) MyiMig = MisMas,

¢) M3, + Moy Mg = I, d) Mo My = Moo Mo, .



Let i = 1. Then (wy1)® =1 and ¢ = 1 force w = 1.
Let ¢ = 2. Using k-coordinates we have that s fixes each point of the k-line L =

{(X, O) : X € k}. So from wp3w = pawps we infer that wys leaves the subspace pow(L) =
{(M11 X, EM> X) : X € k} point-wise fixed and this leads to

a) M3 + MiaE? My = Myy;  b) Moy Myy + MagE? Moy = EMo. (14)
Thus (13.a) and (14.a) give
M1 =1+ Mi2EMoy, (15)
whereas (13.d) and (14.b) yield
(M22 + I)EMQl =0. (16)

Now we distinguish three cases according to rankMa;.

Let My; = O. Then My, = I by (15) and M3, = (MxgFE)? = I force Mys = I. Thus, in
view of Remark 1 and Remark 2, we may take Mo = O, I + J, or I according as whether
rankMio = 0,1, or 2.

Let rankMs; = 1, then we may assume My = [ + J. Conditions (15) and (13.a) imply
(MlgEM21)2 = M12M21 and we find

a ab
Mz = ( b ab ) '
On the other hand (13.d) gives

B T Y [z z+1
M11_<m+1 y—l—l) and M22_<t t—i—l)

with x # y and z # ¢, w being invertible. So My = I by (16) and Mi2(I + J) = O by (13.¢),
which means a(b+ 1) = b(a+1) =0, i.e. M2 =0, or Mia = I+ J. Using (15) we see that
the first case leads to My = I, the latter to M1, = J.

Let rankMsy; = 2, then we may take My, = I and consequently Moo = My; = I thanks to
(16) and (14.b), and M2 = O by (15).

Let i = 3. We have

Lemma. wys + 3w =w + 1.

Proof. The given conditions on 3 and w force p := (g03w9032 + cp32w<,03)2 to be the zero map.
On the other hand, using ¢3 = 3 + 1, we find

p = (p3w +wps)? = wps + 05 + Pawps + PIw = Wes + P3 + PawPs + P3w.

Therefore w3 + p3w = P2 + pswes, which in turn gives the claimed identity, provided we
multiply both sides by 9032. O

As w? = 1 there is a subspace L of U such that w induces the identity both on L and
on U/L. If w # 1 such a subspace is unique and the above lemma says that L must be a
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k-line. So, up to an element in GLgy(k), we may assume that L = {(X,0) : X € k} which

means M1 = Moy = I and Moy = O. Then My, € {J,JE, JE?} and we may take Mis = J.
Summing up we may represent w by one of the following

I O
11 R
R _<O I)’ if1 =1,
I O I I+J I 0
21 __ 22 __ 23 __
F={o 1) " =lo 1 ) o=+ 1>’ tila
P (1 I) s I+J) poo_ (1 O) =
“\o 1) “\I1+J 1 ) “\1 1)
I O I J
31 __ 32 __ L,
R _<O I)’ R _(O I)’ if i = 3.

Thus Remarks 1 and 2 guarantee that there are at least nine non-isomorphic subgroups Gilj
of G; and nine non-isomorphic subgroups G5 of G fulfilling the conditions required in §1.
Using analogous notation such as in the previous paragraph, by Proposition 3 we have

G% = <g%70vvg5,u’glyw AAS W%J>’
with u = (uy, ug, us, 0yy) and

up+uz = @;we?(uz) € ker(w+idy), (? +idy)(u1) = (pitw)(uz), if m=1;
up € ker(p?w + w?), ¥;(ur) = uy = uz = Op, if m=3.

Moreover G splits over W4 if there exist x € U such that

up 4 uz = (W +idy)(x), Pi(u1) = ¥i(x), if m=1;
ur = (w+ @i + 97 + wpw + 2w + piwe?) (x) if m=3.

This confines non-splitting extensions to the following cases, where we put P = I + J and,
using k-coordinates, up, = (U;,U}/), h = 1,2,

(27]):(171)7 if U175U2;
(i,7)=(2,1) with UY = E?UY, if uy # uo;
1)) =(2.2) with UY = U3 = 0, it PU{ # PUS;
a (i,7)=(2,3) with PU| = PU, = EU{ + E2UY, if U] # U}, or UY # EUY,;
i,7)=(2,6) with U = U, = EU} + E2UY, if U) # EUY,
1 2 1 2 2 1
(l,j):(g,l) with us :E2u17 if us 750(];

(i,5)=(2,1) with u; = (O, 1), (O, E), or (O, E?);
(1,7)=(2,2) with u; = (O, E);

m=3:% (i,7)=(2,3) with u; = (O, 1), or (O, E?);
(i,7)=(3,1) with u; # Oy;
(i,5)=(3,2) with u; = (1,0), (E,0), or (E?,0).

Notice that it is always u = (uy,ug,u; + u2,0y) in case m = 1. Finally, up to transforming
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by an automorphism of U centralizing both ¢; and w, matters can be reduced to the cases

(18)

~ N L L 1 1 1 . ==
M AN M N AN A A~ MMM

NN NN SN

e N N N N S S S

S R R SR Sl e R R N S R S S S I SR SR e

e N N N e e e e e e e e e S e e e N e e e e N S e N N N S

[ I o B B B I I I M B B B BN B B I B B N B I I I B B B I I B )
>0 -3 ;> O D 3033 0330300 3;3 00033 32383 3 3003 030 oo o 3o o
-~ = -~

-~ ~ N 7\l/\l/ 7)\'/ - o~
I~ N N

EOODM\O}@/\O)EOMDETH\E/OEEOOO E\}E)Iamu)\n)nmﬂ}%mu}\IJE,

OOOOIIIEEEEOOOOIIEEEEEEEIIIIEE

S N S e N e S S e S e S S S e e e e S e e N S N N N N N N
| (| e e {1

> 9 - ;> 00 ;0 33; 0 5 IO »» X ;> x>’ m™’ 5 > 1o oS o o o o o

and it is a straightforward calculation to verify that none of the above extensions splits over
the inertia group. On the other hand Proposition 2 guaranties that actually no two of them

are equivalent as permutation groups.
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