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ABSTRACT
Traffic analysis may threaten user privacy, even if the traffic
is encrypted. In this paper, we use IEEE 802.11 wireless
local area networks (WLANs) as an example to show that
inferring users’ online activities accurately by traffic analy-
sis without the administrator’s privilege is possible during
very short periods (e.g., a few seconds). The online activi-
ties we investigated include web browsing, chatting, online
gaming, downloading, uploading and video watching, etc.
We implement a hierarchical classification system based on
machine learning algorithms to discover what a user is doing
on his/her computer. Furthermore, we conduct experiments
in different network environments (e.g., at home, on univer-
sity campus, and in public areas) with different application
scenarios to evaluate the performance of the classification
system. Results show that our system can distinguish dif-
ferent online applications on the accuracy of about 80% in
5 seconds and over 90% accuracy if the eavesdropping lasts
for 1 minute.

Categories and Subject Descriptors
C.2.0 [Information Systems Applications]: General—
Security and Protection

General Terms
Experimentation, Security

Keywords
Traffic Analysis, Privacy, Users’ Online Activities, Machine
Learning

1. INTRODUCTION
Traffic analysis attacks on encrypted traffic are often re-

ferred to as side-channel information leaks. Although the
privacy threat of side-channel information leaks has been
discovered in various applications, including web browsing [1,
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2], secure shell (SSH) [3], keystroke dynamics [4], video-
streaming [5] and voice-over-IP (VoIP) [6, 7], these investi-
gations are based mostly on an implicit assumption that the
adversary knows a user’s online activity (i.e., the particular
network application or service that a user is running). Ac-
tually, a user’s online activity is highly private and sensitive
information. Users usually do not want strangers, their par-
ents, guardians, supervisors, bosses or peers to track their
online activities. Furthermore, it is more risky if the tech-
nique inferring users’ online activities is combined with the
previous study on side-channel information leaks.

Nowadays, due to the shared-medium of wireless links and
the ease of eavesdropping in WLANs, traffic traces that users
sent over wireless links are almost exposed to adversaries. In
this paper, we investigate the user privacy breach on users’
online activities by analyzing encrypted MAC-layer traffic.
We attempt to infer users’ online activities in real time by
using no more information than packet size, timing and di-
rection. It is a challenging task to do this accurately with
such limited information, especially among a wide range of
network applications, such as web browsing, online chatting,
online gaming, downloading, uploading, online video and
BitTorrent. Although traffic features (e.g., average packet
size, frequency of a frame and average interval-arrival time)
between low bandwidth consumption and high bandwidth
consumption applications are identifiable (e.g., chatting vs.
downloading), similar applications have very fine distinction,
especially under time-varying network environments, differ-
ent users’ online habits and software. In our work, we show
that traffic, even from the same application, varies largely
among different environments. We also consider concurrent
online activities. In this case, traffic features in one ap-
plication may be submerged by another application; and
the changeable features make the accurate identification of
users’ online activities even more difficult.

To overcome the above challenges, we explore an online
hierarchical classification system based on machine learn-
ing (ML) techniques to map traffic features to the online
activities and show that an adversary is able to infer and
track what the user is doing during very short periods (e.g.
a few seconds) without any information about the proto-
cols, software and servers the user is using. Specifically,
our classification system performs multiclass classification
by taking advantage of both the efficient computation of de-
cision tree structure and the high classification accuracy of
Support Vector Machine (SVM) and Neural Network (NN)
algorithms. Traffic features adopted in the classification sys-
tem are only based on packet-level statistical values, such as
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average packet size and average interarrival time etc., in the
MAC layer. We conduct experiments in different network
environments (e.g., at home, on university campus and in
public areas) with different application scenarios to evaluate
the classification system. Results show that the proposed
classification system achieves good accuracy in noisy envi-
ronments, distinguishes online activities with around 80%
accuracy in 5 seconds, and with over 90% accuracy if the
eavesdropping duration lasts for 1 minute. We hope that
our work will alert LAN users, network designers, and ad-
ministrators that there is a serious privacy breach of users’
online activities.

The rest of this paper is organized as follows. We summa-
rize the related work in Section 2. Section 3 overviews the
background and challenges. We present the design of the on-
line hierarchical classification system in Section 4. Then we
demonstrate the experiments conducted at home, on cam-
pus and in public networks to evaluate the accuracy of our
classification system in Section 5. Section 6 discusses the
implication issues. Finally, we conclude the paper in Sec-
tion 7.

2. RELATED WORK
Side-channel Information Leaks: Side-channel infor-

mation leaks have been researched widely. Encrypted traffic
does not prevent traffic analysis attacks, thus user privacy
is still vulnerable. Liberatore, et al. [8] present a straightfor-
ward traffic analysis attack against encrypted HTTP streams
to identify the source of the traffic, and the authors in [2, 9]
do similar webpage fingerprinting. Chen, et al. [1] find that
significant traffic distinctions of different webpages help an
adversary to wiretap what the user is browsing. Moreover,
the lengths of encrypted VoIP packets can be used to identify
the phrases spoken within a call [7]. In addition, adversaries
may adopt wireless signal strength in multiple monitoring lo-
cations to obtain an accurate estimation of a user’s location
and motion behind walls [10, 11]. Srinivasan, et al. [12] show
that a Fingerprint And Timing-based Snooping (FATS) at-
tack can observe private activities, such as cooking, shower-
ing, and using the toilet, by eavesdropping on the wireless
transmissions of sensors in a home. However, the above re-
search rarely concerns the privacy regarding users’ online
activities.

Traffic Classification: Traffic classification is mostly em-
ployed by network administrators to monitor network traf-
fic and identify Internet applications. These applications
are mostly described based on protocol behaviors, such as
HTTP, SMTP, FTP, SSH and DNS, etc. But nowadays,
many applications are able to run over one protocol. For
example, web browsing, chatting, online gaming, download-
ing, watching online video, etc., can be executed in HTTP
protocol. Hence, we focus on the users’ online activities
which may have more sensitive information than protocol
behaviors.

In addition, traffic classification usually uses traffic fea-
tures in or beyond the IP layer, such as IP address, TCP
port, protocol fingerprinting, etc. Few are implemented only
by features in the MAC layer. But compared with the diffi-
culty of getting traffic from the routers, gateways or servers
without the administrator’s privilege, the easy way is for
an adversary to eavesdrop on the traffic in the MAC layer.
Thus in this paper, we investigate traffic classification on
encrypted traffic in the MAC layer.

The traditional identification techniques, the port-based
approach, payload-based approach and host-behavior-based
approach [13] are no longer valid in the MAC layer. The
port-based approach relies on the well-known ports registered
by the Internet Assigned Numbers Authority (IANA) [14],
and the payload-based approach is based on features of the
payload [15]. But this information is undetectable in the
MAC-layer due to the MAC-layer encryption. Similarly, the
host-behavior-based approach [16, 17] can not be used with-
out end-to-end information about host connections, such as
port, IP address, etc. Instead, we employ a flow-feature-
based approach which is based on machine learning (ML)
techniques for the MAC-layer traffic classification.

Recently, Wright, et al. [18, 19] and Dainotti, et al. [20]
propose packet-level classification approaches based on the
features, packet interarrival time and payload size. Our clas-
sification approach is different from the above approaches in
a few important ways. (1) The evaluation in [18, 19, 20] is
based on traffic flows, which means that packets in a flow be-
long to an application. In contrast, we do not know which
flow or application an encrypted frame belongs to in the
MAC layer. (2) In terms of different time-varying wireless
environments, the traffic varies largely. Thus, we evaluate
our classification system at home, on campus and in a pub-
lic area. (3) Our classification system, which is based on
different machine learning algorithms and features, gives an
identification in real time (every 5 seconds). Nowadays, on-
line classification methods [21, 22, 23, 24] rely on features
of TCP/UDP and IP traffic. These features are unavailable
in the MAC layer and can not be applied to the MAC-layer
classification.

Machine Learning: Recently, researchers have adopted
ML technologies in the flow-feature-based traffic classifica-
tion. Nguyen et al. conduct a survey [13] in this area fo-
cusing on ML techniques, such as Bayesian techniques [25],
k-nearest neighbor algorithm, decision tree (e.g., C4.5), NN
and SVM [26]. Hidden Markov Model (HMM) is also em-
ployed in traffic analysis [7, 18, 20]. In this paper, we use two
intelligent ML algorithms, SVM and NN, to identify seven
popular online activities.

3. BACKGROUND AND CHALLENGES

3.1 Adversary Model
The shared-medium nature of WLANs poses privacy vul-

nerabilities on users’ online activities. To track the traffic
from and to a user, the adversary only needs to install snif-
fer software (e.g. Wireshark, Aircrack-ng). In this case, the
network adapter passes all packets it receives to the adver-
sary rather than just frames addressed to it. In this paper,
we act as an adversary and use the Intel Wireless WiFi Link
4965AGN network cards with the Libpcap library to inter-
cept specific users’ traffic. The adversary does not know
any information about the software and encryption schemes
adopted by the users.

Figure 1 shows the working scenario of an adversary who
adopts traffic classification to infer users’ online activities.
The adversary sniffs the WLAN in the same channel as the
Access Point (AP). The classification system collects traffic
samples of the whole network and knows how many users are
in this WLAN. Then after the adversary inputs the MAC
address of the user he wants to eavesdrop on, the classifica-
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Figure 1: Adversary Model

tion system identifies which online applications the user is
running.

3.2 Challenges
Challenges for the MAC-layer traffic classification come

from the following factors.

3.2.1 Limited Flow Features
Features for traffic classification in TCP/UDP and the

IP layer can be obtained from packet headers, including the
TCP port and IP address, payload information, SYN packet
and protocol fingerprinting [13]. In contrast, valid informa-
tion from the MAC layer is very limited, since MAC layer
frames are usually encrypted. From the MAC header, we
can find the MAC address, SSID (Service Set Identifier),
directions of the traffic (receiving or sending), RF signal
strength and frame types. Besides the header, we only get
the packet-level data, such as frame size and its timestamp.

3.2.2 Noises in Traffic Features
Traffic patterns, even from the same application, can be

easily affected by network situations, such as signal strength,
available bandwidth, and service provider. Therefore, a
MAC-layer flow of a given application may exhibit differ-
ent features in different time slots, locations and network
situations. From Figure 2, we can see that the data rate
of the same applications (e.g., downloading or online video)
fluctuates tremendously (even from 0 to 1MBps) in a very
short time and differs markedly in different network situ-
ations. The data rate in Figure 2(b) with better network
situations is much larger than that in Figure 2(a). In addi-
tion, the flow features may be affected by the attributes of an
application, such as“who is running the application”; “which
software is used by a user”; “the target content server (web-
sites)”, etc. We download the same contents by BitTorrent
(BT) and HTTP from different servers at the same time.
As shown in Figure 3, the data rates widely diverge. This
noise makes a highly accurate traffic classification difficult
to achieve. Hence, it is hard to find standard or uniform
parameters for classifiers in different situations.

3.2.3 Existence of Concurrent Applications
A user may open multiple application windows and per-

form multiple tasks on the Internet simultaneously. By wire-
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Figure 2: Data rate of the same applications in dif-
ferent network situations
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Figure 3: Data rate of the same applications from
different servers

tapping on the traffic in the MAC layer, we only observe the
aggregated traffic to and from a given user. Hence, using
traffic analysis, it is very hard to know how many appli-
cations are running by a specific user and what bandwidth
portion is allocated to individual applications. In addition,
because the frames in the MAC layer are transmitted over
the last hop, the end-to-end information, such as the rela-
tionship of frames between sending and corresponding re-
sponses is undetectable.

3.2.4 Dynamic Task Switch by Users
Because a user may continually switch his/her applica-

tions and each application may last for a short period of
time, tracking users’ activities requires that the system should
map the traffic patterns to specific applications quickly and
accurately without complete knowledge about the traffic. In
addition, the classification model must be updated dynami-
cally according to the time-varying network environments.

4. CLASSIFICATION METHODOLOGY

4.1 Data Collections

4.1.1 Data Set
We investigate seven popular network applications, in-

cluding web browsing, chatting, online gaming, download-
ing, uploading, online video and BT, which are labeled from
➀ to ➆. We list the applications and their variations in Ta-
ble 1.

Multiple concurrent applications are also studied in this
paper. In most of the cases, users do not run more than two
applications in each short time (e.g., 5 seconds). Even if
users run more than two, we can identify two main applica-
tions which have larger traffic loads in the concurrent traffic.

61



Table 1: Attributes of network applications
Applications Software Server (Website)
Browsing ➀ IE, Mozilla Firefox Yahoo, CNN, Amazon, Google, etc.
Chatting ➁ MSN, QQ, Google Talk MSN, Tencent, Google
Online Game ➂ QQ Three Kingdoms, World of Warcraft Tencent, WoW Servers
Downloading ➃ HTTP Ubuntu, Microsoft, Sun, etc.
Uploading ➄ HTTP YouTube, Facebook, Google, etc.
Online Video ➅ HTTP or specific client YouTube, MSN, etc.
BitTorrent ➆ Bitcomet, Flashget, Xunlei, http://torrent.ubuntu.com, Xunlei,
(Typical P2P File-sharing) Linux BitTorrent Client http://www.verycd.com/, etc.

Table 2: Features used in classification
data rate (receiving and sending)

data frames, frame size (categories, mean, median,
control frames, variance, . . . )
management frame interarrival time (mean, median,
frames variance, . . . )

frame size distribution (> m bytes or
< m bytes) (m = 100, 500, 1000, . . . )
number of frames (receiving and sending)

Hence, we consider only two concurrent applications in this
paper. They can be divided into three types: a large band-
width consumption application plus a low bandwidth con-
sumption application (e.g., downloading and chatting), two
large bandwidth consumption applications (e.g., download-
ing and online video) and two small bandwidth consumption
applications (e.g., browsing and chatting). The six typical
combinations of the concurrent applications we selected in
our experiments are browsing and chatting {➀,➁}, brows-
ing and BT {➀,➆}, browsing and uploading {➀,➄}, chat-
ting and downloading {➁,➃}, downloading and video {➃,➅},
video and BT {➅,➆}.

The traffic samples we collected in the experiments are
divided into the training set and the testing set. The former
is used to train the classification system to build the model,
and the latter is used to evaluate classification accuracy.

4.1.2 Scenarios
We consider three dominant WLAN deployments: public

network, home network, and university campus (or enter-
prise) network. The traffic in public networks is usually not
encrypted at the link layer [27]. Hence, it is very easy to ob-
tain the identifying features of a specific user’s traffic in such
an environment. We carry out tests in airports, cafe houses,
McDonald’s, etc. Home and small business networks are
small and more likely to adopt link-layer encryption, such
as Wired Equivalent Privacy (WEP) or WiFi Protected Ac-
cess (WPA). We conduct the experiments in a home en-
vironment with Comcast Internet as the Internet Service
Provider. Campus networks usually support a large popula-
tion of users and employ the link-layer encryption. We also
conduct experiments on the university campus.

To achieve better accuracy, the classification system must
adapt to dynamic network conditions and tolerate the noises
caused by variant versions of applications, users’ habits and
interferences among concurrent applications.

To evaluate the network condition, we collect traffic data
samples in different received signal strength indication (RSSI),
with various channel utilization, in different time slots (morn-

Table 3: Features of seven applications (from AP to
the user)
Applications Average Average Frame size

frame interarrival distribution
size (byte) time (s) (>500bytes)

Browsing ➀ 1013.20 0.0284 64.617%
Chatting ➁ 269.06 0.9901 9.357%
Online Game ➂ 459.53 0.3084 34.501%
Downloading ➃ 1575.3 0.0028 99.951%
Uploading ➄ 132.76 0.0301 0.0307%
Online Video ➅ 1547.6 0.0119 99.560%
BitTorrent ➆ 962.04 0.0247 60.650%

ing, afternoon and evening, respectively) and networks. In
this way, the training data in a certain network condition
indicated by RSSI and channel utilization are used to build
the classifier models under different network conditions. The
system will select the most appropriate classifier model, which
is under similar network conditions as the testing data.

To tolerate noise, we consider various attributes of appli-
cations in our data collection efforts. We select commonly
used applications and their attributes listed in Table 1. More
than 10 people participate in the test with their choices of
different operating systems, software and laptops.

4.2 Feature Extraction and Selection

4.2.1 Feature Extraction
The observed traffic traces are time-series data. Individ-

ual frames contain very little information, but they are cor-
related with their neighboring frames in a certain pattern
for a given application. Therefore, the statistical features of
frames may disclose information leaks. For example, chat-
ting and gaming have a small number of frames with rel-
atively small size for both sending and receiving. Brows-
ing contains bursty traffic. Downloading and uploading are
both high bandwidth consumption applications with large
frame size in downlink and uplink, respectively. Online video
demonstrates a relatively stable data rate which is usually
between BT and downloading. BT may be a high band-
width consumption application in bidirectional directions.
Its traffic variance is also very large.

For statistical analysis, we need to demarcate traffic flows
into a series of measurements. We use an “observation win-
dow” to represent a segment of a flow and extract the flow
features in each individual window. The window size, W ,
can be either expressed in time domain or measured by
events. Intuitively, if the window size reflects the periodic
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Table 4: Similarity distances of seven applications
DM ➀br. ➁ch. ➂ga. ➃do. ➄up. ➅vo. ➆bt.
➀br. - 1854.3 361.14 374.48 767.63 21.707 3.7258
➁ch. 1854.3 - 8.9232 4258.1 1556.3 1625.1 1439.3
➂ga. 361.14 8.9232 - 55341 33480 2176.9 205.03
➃do. 374.48 4258.1 55341 - 100037 93.777 576.74
➄up. 767.63 1556.3 33480 100037 - 5699.2 189.79
➅vo. 21.707 1625.1 2176.9 93.777 5699.2 - 15.852
➆bt. 3.7258 1439.3 205.03 576.74 189.79 15.852 -

components of the traffic trace, it will be useful for fea-
ture extraction. We have attempted to find the periodic-
ity of the traffic traces by the fast Fourier transform. Un-
fortunately, the periodicity is fuzzy and undetectable. In
our experiments, we use a fixed time domain to describe
W . For example, the traffic is a time series denoted as
{T1, T2, · · · , TW , TW+1, · · · , TN}. Without using a sliding
window, the traffic data will be divided into flow segments:
{T1, T2, · · · , TW },{TW+1, · · · , T2W }, · · ·. But with the slid-
ing window technique, the flow segments to be considered
will be {T1, T2, · · · , TW }, {T2, · · · , TW+1}, · · · . In this way,
we can obtain more instances of features.

We list the features used in our classification in Table 2.
Therein, “frame size distribution (>500bytes)” means the
percentage of frames which are larger than 500 bytes in each
window size. Table 3 illustrates features in home scenarios
with RSSI around 55, which is equivalent to -50dBm of RF
Signal Strength according to Cisco Standard [28]. We can
see that different applications have very different features.

4.2.2 Feature Selection
Since the flow features are not equally important for infer-

ring specific applications, we need to identify representative
features and remove irrelevant and redundant ones to im-
prove classification accuracy. We use a best first search to
generate candidate sets of features, since it provides higher
classification accuracy than greedy search [29]. We also use
the correlation-based filter (CFS) to examine the relevance
of each feature, i.e., those highly correlated to a specific class
but with minimal correlation to each other [26]. CFS is prac-
tical and outperforms the other filter method (consistency-
based filter) in terms of classification accuracy and efficiency
[29]. For every trace, the CFS selected three categories of
features: frame size, number of frames and frame distribu-
tion information. The aptness of the feature selection is
evaluated in Section 5.

4.3 ML Algorithms
In our classification system, the relationships of frames in

the MAC layer are vaguely understood and difficult to de-
scribe adequately with conventional approaches, so straight-
forward classification methods, such as k-nearest neighbor
algorithm, decision tree (e.g., C4.5) and Naive Bayes, etc.,
may not yield high classification accuracy. HMM is a pow-
erful statistical technique based on the Markovian assump-
tion. But the number of parameters that need to be set
in an HMM is huge. As a result, the amount of data that
is required to train an HMM is also very large. Hence, we
use SVM and NN algorithms, which are widely used in in-
telligent data mining applications [26], to design the classi-
fiers. These two methods can model complex relationships

between inputs and outputs and find patterns in data. NN
is a universal approximation tool and able to tolerate noise.
SVM performs better with small training sets, which is very
useful for online classification. Kim et al. present in [26] that
SVM outperforms other classification methods with more
than 98% overall accuracy. Considering that the relation-
ships between features seem to be nonlinear, we choose ra-
dial basis function (RBF) for both SVM and NN algorithms
to achieve non-linear classification. RBF is one of the most
commonly used in SVM. Similarly, we also use a popular
artificial NN, radial basis function network (RBFN), to do
the classification.

4.4 Hierarchical Classification Structures
Classifying seven applications in aggregated traffic belongs

to the category of multiclass classification. The main tech-
nique for multiclass classification is to decompose the mul-
ticlass problem into several binary problems, especially for
SVM. The common methods to build such binary classifiers
are (i) one of the classes to the rest (one-versus-all, OVA)
(ii) between every pair of classes (one-versus-one, OVO), or
(iii) directed acyclic graph SVM (DAGSVM) [30]. For a
K-class problem (K = 7 in our classification for seven pop-
ular online applications), the disadvantage of OVA is that
it needs K classifiers and each classifier needs to be trained
by training samples of all the classes. OVO and DAGSVM
have to construct K(K − 1)/2 classifiers, which incur large
computational overhead.

To decrease the number of classifiers and improve the ac-
curacy, we use the decision tree structure [31, 32, 33] in
our classification system. We present hierarchical classifica-
tion structures, which take advantage of both the efficient
computation of the tree structure and the high classification
accuracy of SVM and RBFN, in Figure 4 and 5, respectively.
We use K (K = 7) classifiers for SVM and K − 1 classifiers
in the RBFN model. Each classifier only needs to be trained
to a subset of the training samples, and the hierarchical clas-
sification allows individual classifiers in the structure to be
updated flexibly and independently. This is a notable im-
provement when the number of classes is large. At each node
of the tree, a decision is made to assign the input to several
possible groups which are the subtrees. Each of these groups
may contain multiple classes. This is repeated down the tree
until the sample reaches a leaf node that represents the class
it has been assigned to.

In the design of the classification system, the basic rule
we obey is to separate the most different and independent
groups or classes first and distinguish the most similar classes
last. We measure the similarity of different applications by
using the Mahalanobis distance. It is a multivariate distance
measure for several modeling algorithms, such as k-nearest
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neighbors and RBFN. The Mahalanobis distance from a
multivariate matrix Y to X is shown as follows:

DM (Y ) =

√
(Y − µ)T S−1(Y − µ)

where µ and S are the mean and covariance of X.
For example, to calculate the Mahalanobis distances be-

tween browsing and chatting, we use the data rate in down-
link and uplink as the multivariate matrix Y for browsing
and denote X for chatting. DM (Y ) is the Mahalanobis dis-
tance from browsing to chatting. Similarly, DM (X) is the
Mahalanobis distance from chatting to browsing. After that,
we utilize, E (DM (X) + DM (Y )), the average of these two
distances as the distance between browsing and chatting.
We show the similarity in distances of seven applications in
Table 4 (in home scenarios with RSSI around 55).

Among seven applications, only upload and BT may have
continuous large traffic in uplink. Hence, we adopt Classifier
1 to distinguish upload and BT from the rest of the appli-
cations in Figure 4 and Figure 5. From Table 4, we notice
that the following application pairs have relatively small dis-
tances: browsing and BT, chatting and online gaming, and
downloading and online video. Therefore, we group each
pair and design Classifiers 3 and 4 to separate the applica-
tion pairs in SVM algorithms in Figure 4, where Classifiers
2, 5, 6 and 7 are leaf nodes in the binary classification tree.
The output of the system is an application for the input flow
segment.

Likewise, the hierarchical classification structure of RBFN
is shown in Figure 5. A major difference between RBFN
and SVM is that a RBFN classifier is able to separate more
than two classes. Therefore, we use Classifiers 3 and 6 for
multiple class separation in order to reduce the number of
classifiers. Classifiers 2, 4 and 5 are binary classifications.
Because BT has a large range of data rates, sometimes it
looks like downloading with a large data rate, and sometimes
it is like browsing. In order to improve the accuracy of de-
tection BT, we identify the BT application by Classifiers 2

and 7 in SVM algorithms, and by Classifiers 2, 5 and 6 in
RBFN algorithms.

4.5 Classification for Concurrent Applications
A user may open multiple windows and run multiple on-

line applications simultaneously. In this case, the traffic we
observe in the MAC layer is a mixture of frames from mul-
tiple applications. However, it is hard to separate frames
of one application from the others when the frames are en-
crypted.

Our strategy is to use the proposed hierarchical structure
in Section 4.4 to identify the dominating application at first.
Then we classify the possible concurrent applications. We
denote the window size as W and give a classification re-
sult of concurrent applications after L window sizes. For
each W , we identify the flow segment of the application it
belongs to. Then we get L identified sub-flows to compute
the proportion that each application occupied in the L sub-
flows. The application with the highest proportion will be
the dominating application. Similarly, we can get the appli-
cation which is the second largest proportion. At the same
time, we need to set a threshold for an application to iden-
tify its existence. Only if the proportion of the application
is larger than its threshold, the application may be regarded
as a concurrent application. According to the above strat-
egy, we may infer the possible concurrent applications in the
aggregated traffic.

However, the low traffic applications (e.g., chatting and
online gaming) are hardly detected. They may be inun-
dated by the dominating applications. In this case, we ad-
just features to tell if the aggregated traffic includes low
bandwidth applications. For example, we adopt the frame
size distribution and the number of frames in small size (e.g.,
≤ 400bytes) as features to tell if the downloading frames are
mixed with chatting. The reason is that downloading has
few frames smaller than 400 bytes, and most chatting frames
are smaller than 400 bytes. To efficiently identify multiple
online applications, we have to reduce the window size W .
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Table 5: Overall accuracy for seven applications (W = 5s)(%)
Overall accuracy of SVM algorithms: The Same Location, User in One Day

Scenarios ➀br. ➁ch. ➂ga. ➃do. ➄up. ➅vo. ➆bt. Mean
Home 42.690 79.935 98.017 91.285 95.969 91.283 81.734 82.987
Public 65.934 70.450 74.041 94.052 87.172 64.319 91.054 78.146
University 45.623 66.967 84.399 85.526 91.901 83.984 70.172 75.510

Overall accuracy of RBFN algorithms: The Same Location, User in One Day
Home 37.767 77.932 88.181 99.877 95.922 93.321 89.683 83.240
Public 48.738 61.488 81.031 94.005 84.748 96.227 91.381 79.657
University 28.533 64.442 61.160 95.703 91.901 71.584 90.847 72.024

Overall accuracy: Similar RSSI, Totally Different Location, User and Time
Mixed (SVM) 53.164 61.108 67.873 92.740 91.866 72.402 58.218 71.053
Mixed (RBFN) 36.362 68.367 58.901 95.386 93.827 90.894 56.023 71.394

Table 6: Accuracy and FP in Different Window Sizes (%)
Metrics Window Sizes ➀br. ➁ch. ➂ga. ➃do. ➄up. ➅vo. ➆bt. Mean
Accuracy W = 5s (SVM) 42.690 79.935 98.017 91.285 95.969 91.283 81.734 82.987
Accuracy W = 5s (RBFN) 37.767 77.932 88.181 99.877 95.922 93.321 89.683 83.240
Accuracy W = 60s (SVM) 53.571 99.427 100.000 100.000 95.969 100.000 99.692 92.666
Accuracy W = 60s (RBFN) 72.936 85.293 93.742 100.000 95.922 100.000 95.137 91.861

FP W = 5s (SVM) 2.583 1.815 2.930 1.257 0.773 2.621 7.871 2.836
FP W = 5s (RBFN) 2.734 2.212 3.287 0.932 0.020 1.047 9.322 2.793
FP W = 60s (SVM) 0.055 0.734 0.662 0.131 0.000 0.000 6.975 1.222
FP W = 60s (RBFN) 1.507 1.448 1.861 0.129 0.000 0.297 4.255 1.356

Thus, the majority of the frames in individual windows are
from a single application, and we have more chances to de-
tect concurrent applications in a fixed time duration.

As a user usually does not actively run more than two
online applications at the same time, we test our classifica-
tion system based on two concurrent applications. We show
in Section 5 that we can successfully detect the two con-
current applications (the main application and the hidden
application) in the aggregated traffic.

5. EVALUATION
Our prototype classification system has been tested at a

home, on a university campus, and in public areas. Wireless
LANs in these environments all support 802.11a/b/g modes,
and the data rate may fluctuate from 1Mbps to 54Mbps.
The encryption scheme of WLANs at home and on campus
is WPA/WPA2, and the traffic collected in public areas is
unencrypted. More than 10 volunteers run the same applica-
tions on different devices, operating systems or laptops. An
application runs for about 10 minutes each time. In total, we
get more than 50 hours of traffic data. In our experiments,
we measure the traffic and collect features when the RSSI is
larger than 40 (i.e., RF Signal Strength > -70dBm) and the
maximum data rate is larger than 50KB/s. Otherwise, users
will suffer from poor network quality. We divide the collec-
tion data into many groups according to similar RSSI values
or scenarios. A similar RSSI means ±10dBm, and scenarios
are determined by many factors, such as location, user and
time duration of measurement. For each group of data, the
training data is randomly selected from the collected data
and the rest are used for evaluation, called testing data. In
the experiments, the testing data set is a factor of 3 to 10
times larger than the training data set.

5.1 Performance Metrics
A key criterion of performance evaluation for classification

techniques is the accuracy (i.e., how accurately the technique
or model classifies the flows) [13], which can be measured
by three metrics: overall accuracy, true positive (TP), and
false positive (FP). The overall accuracy is defined as the
percentage of correctly classified instances among the total
number of instances, and true positive means the percent-
age of members of a given class X is correctly classified to
class X . FP reflects the percent of non-class X packets
incorrectly classified as belonging to class X .

5.2 Overall Accuracy in Different Scenarios
The overall accuracy of different applications and scenar-

ios is listed in Table 5. We set the window size to W = 5
seconds. The overall accuracy of classification for seven ap-
plications in different scenarios is around 80% when we select
the same location and user in one day. We achieve the best
accuracy in the home scenario, 82.987%, and the lowest ac-
curacy in the university scenario, 75.510%. The relatively
low accuracy in the university environment is caused by traf-
fic interference and collision, which lead to large jitters in the
data rate. In contrast, the number of users is very limited in
the home scenario, so the interference and collision caused
by sharing wireless bandwidth is less than in the public and
university scenarios. Public networks likely have a low and
restricted data rate. This rate limiting reduces the classifi-
cation accuracy. The mixed scenario is only distinguished by
the similar RSSI. It may include the traffic trace from home,
public area, and university. Hence, it has much noise and
different traffic patterns in different environments. There-
fore, the accuracy in the mixed scenario is the lowest, about
71%, among all scenarios.

Among different applications, browsing has the lowest ac-
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Figure 6: Overall accuracy and TP of classifiers

curacy. This is caused by two factors. First, browsing ap-
plications have a large variance in the data rate. Flash,
GIF and video files of advertisements are embedded in many
websites which may generate bursty traffic. Second, in a hi-
erarchical classification structure, browsing is in the lowest
layer of the classifier model, shown in Figure 4 and 5. Errors
from previously layers have accumulated to the classifier of
browsing. In summary, high bandwidth applications have
better accuracy than low bandwidth applications.

SVM algorithms achieve similar overall accuracy to RBFN
algorithms. For high traffic applications, RBFN performs
better than SVM, such as downloading, online video and
BT. On the contrary, SVM gets better accuracy in low traffic
applications, especially in browsing and chatting.

5.3 Accuracy and False Positive in Different
Window Sizes (W )

Changing the window size from 5 to 60 seconds, the classi-
fication accuracy of each application is presented in Table 6.
The accuracy increases simultaneously with the rise in W .
This is because the features extracted from a larger win-
dow can tolerate more noise. If we collect features every 60
seconds, it achieves more than 90% accuracy; and five appli-
cations can be classified with almost 100% accuracy. SVM is
more sensitive to increasing window size and performs better
than RBFN.

The FP of each application is also listed in Table 6. We
can see that the FPs of low traffic applications are mostly
higher than those of high traffic applications. BT always has
the largest FP in both SVM and RBFN algorithms. That
means other applications are misclassified as belonging to
BT, especially for browsing. The reason is that the traffic
of BT varies very much. It may resembles low traffic appli-
cations, or looks like high traffic applications according to
network resources.

5.4 Overall Accuracy and True Positive of SVM
and RBFN Classifiers

We give the overall accuracy and TP of each classifier

for SVM and RBFN in Figure 6. The features are gener-
ated according to Section 4.2, and W is set as 5 seconds.
The classification systems of SVM and RBFN algorithms
are shown in Figure 4 and 5. Note that, for simplicity, Clas-
sifier 1 does not use either SVM or RBFN but only employs
a threshold of data rate. For example, if the sending data
rate is beyond 40KB/s and the average sending rate is above
60KB/s in consecutive 5 seconds, we regard the traffic as
probably uploading and then pass it to Classifier 2, other-
wise to Classifier 3.The classifiers, except Classifier 1, are
shown in Figure 6. TP i

j indicates the TP of the jth class
which is under Classifier i in Figure 4 and 5. For example,
Classifier 3 (i = 3) of RBFN, TP 3

1 indicates the TP of low
traffic applications “chatting & gaming,” TP 3

2 shows the TP
of “browsing and BT” and TP 3

3 describes the TP of large
traffic applications “downloading, online video and BT.”

For SVM algorithms, the overall accuracies of the classi-
fiers are beyond 80%; and the TPs are above 85% except
browsing, the lowest at 51.534%. This fact is also observed
in Section 5.2. Figure 6(b) shows the overall accuracy and
TP of RBFN classifiers. All classifiers perform well with high
accuracy over 85%, except for Classifier 5 at 65.380% and
the TP of browsing at only 53.946%. It shows TPs are close
to accuracies both in SVM and RBFN algorithms. That
means our classification system is very balanced. We also
observe that RBFN algorithms are good at multiclass clas-
sification, since the two triple-category classifiers perform
well.

5.5 Feature Selection
Figure 7 compares the overall accuracy of classifications

when we use the same hierarchical structure but different
features. Note that, classifier 1 is not included because it
does not use ML algorithms. For SVM algorithms, we use
two pairs of features in one case, (receiving data rate, sending
data rate) and (number of receiving frames, number of send-
ing frames). In the second case, we adopt one pair of features
(mean receiving frame size, mean sending frame size). The
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Figure 7: Overall accuracy by using different feature selection

Table 7: Detection probability for concurrent appli-
cations (%)

Applications SVM RBFN
{➀br., ➄up.} {41.4, 100.0} {47.8, 100.0}
{➀br., ➆bt.} {75.7, 100.0} {54.2, 100.0}
{➀br., ➁ch.} {100.0, 36.5} {100.0, 41.0}
{➁ch., ➃do.} {100.0, 100.0} {100.0, 100.0}
{➃do., ➅vo.} {100.0, 98.2} {100.0, 100.0}
{➅vo., ➆bt.} {100.0, 63.7} {100.0, 65.3}

classification with two pairs of features yields better accu-
racy.

For RBFN algorithms, we use multiple features, (mean
receiving frame size), the number of frames and frame size
distribution, in the first case. The second case only uses one
feature, (mean receiving frame size). Figure 7 shows that
classifiers using the first kind of features achieve higher ac-
curacy. In summary, more appropriate features will benefit
the performance of classification and improve the accuracy.

5.6 Classification for Concurrent Applications
To verify the ability to identify multiple concurrent online

applications, we let aggregated traffic (six combinations of
two concurrent applications) pass through the proposed clas-
sification system. Because we can not be certain that frames
from each application will appear in each flow segment, the
classification result of each flow segment can not be used to
judge the accuracy of concurrent applications. Instead, we
use the detection probability to evaluate the performance of
our classification system. The result is given every 1 minute
when L = 60 and W = 1 second. If the dominating applica-
tion is the right aggregated application, we give a detection
probability of 100%. Then we compute the detection prob-
ability of the second application by dividing its proportion
by all applications except the dominating application. Us-
ing these methods, we give the detection probability of six
combinations in Table 7. We see that our system separates

two large bandwidth consumption applications, download-
ing and online video, with 100% accuracy. A large band-
width consumption application plus a low bandwidth con-
sumption application (e.g., downloading and chatting) also
perform well with 100% accuracy. Because browsing is hard
to separate from BT, other combinations have a lower prob-
ability of being classified accurately. Chatting has the lowest
probability, about 36.474%, when identified from browsing.
The performance of SVM algorithms is similar to that of
RBFN algorithms.

6. DISCUSSIONS

6.1 Impact of Rate Limiting
For fairness and security, rate limiting software may be

used to control the traffic rate of individual users in LANs.
Hence, a user can not send or receive frames beyond a spec-
ified rate. With such a restriction, if the traffic rate is too
low, the rate-related features can not be used to separate
high traffic applications from original low traffic applica-
tions. However, if the specified rate is not too low (e.g.,
above 50KBps), the feature-based classification presented in
this paper is still valid. In addition, we have examined our
classification approach in public networks, where the data
rate is limited, and our approach performs well.

6.2 Resistance to Current Defense Methods
Our system can thwart pseudonyms [10], because all pack-

ets sent under one pseudonym are trivially linkable. More-
over, pseudonym schemes only change MAC addresses each
session or when idle. The infrequent change of MAC ad-
dresses can not defend the monitoring of an adversary in
a few seconds. A link protocol [34] has implemented the
function to obscure identifiers; but it can not obscure the
traffic features, such as frame interarrival time and frame
size distribution. In addition, high-level mitigation policies,
such as packet padding, are likely to be ineffective or incur
prohibitively high communication overhead [1, 2]. Traffic
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morphing [35] defends against traffic analysis in VoIP and
web browsing applications by modifying packet sizes. How-
ever, other features (e.g., data rate) may still be sufficient
for classification. Therefore, efficient defense against side-
channel information leaks is a future research topic with
strong practical relevance.

7. CONCLUSIONS
In this paper, we propose an online hierarchical classifi-

cation system to identify users’ online activities with high
accuracy just by peeping at MAC-layer traffic. The clas-
sification system is implemented by using ML algorithms,
including SVM and RBFN, and achieves high accuracy in
different network situations, such as at home, in university
and public network environments. The results show that
it can distinguish different online applications with around
80% accuracy in just 5 seconds, and the accuracy is over 90%
if the eavesdropping duration lasts for 1 minute. At the same
time, our classification system can discover the combination
of multiple concurrent online applications. Our work shows
that the privacy leak of users’ online activities is a severe
threat in WiFi networks. We expect that our classification
system will invoke public attention to user privacy in online
activities.
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