ALGEBRA LINEARE E GEOMETRIA

1º appello — 14 giugno 2022

Esercizio 1. Sia $f: \mathbb{R}^4 \to \mathbb{R}^4$ la funzione lineare definita da

$$f(x_1, x_2, x_3, x_4) = \left(2x_1 - x_2 - \frac{5}{2}x_3 + x_4, -x_1 + x_3 - \frac{1}{2}x_4, x_1 + x_2 - \frac{1}{2}x_3 + \frac{1}{2}x_4, 2x_2 + x_3\right)$$

- (a) Scrivere la matrice A di f rispetto alle basi canoniche.
- (b) Calcolare il rango di A e trovare basi di Ker(f) e di Im(f).
- (c) Trovare la dimensione e una base di $Ker(f) \cap Im(f)$.
- (d) Esiste una funzione lineare $g: \mathbb{R}^4 \to \mathbb{R}^4$ tale che Ker(g) = Im(g)? (la risposta deve essere giustificata)

Soluzione. (a) La matrice A è

$$A = \begin{pmatrix} 2 & -1 & -5/2 & 1 \\ -1 & 0 & 1 & -1/2 \\ 1 & 1 & -1/2 & 1/2 \\ 0 & 2 & 1 & 0 \end{pmatrix}$$

(b) Riducendo la matrice A in forma a scala si ottiene

$$\begin{pmatrix}
-1 & 0 & 1 & -1/2 \\
0 & -1 & -1/2 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

da cui si deduce che A ha rango 2 e quindi dim $(\operatorname{Im} f) = 2$. Una base dell'immagine di f è costituita dalle prime due colonne di A. Per trovare una base del nucleo di f basta risolvere il sistema

$$\begin{cases}
-x_1 + x_3 - \frac{1}{2}x_4 = 0 \\
-x_2 - \frac{1}{2}x_3 = 0
\end{cases}$$

da cui si ricava

$$\begin{cases} x_1 = x_3 - \frac{1}{2} x_4 \\ x_2 = -\frac{1}{2} x_3 \end{cases}$$

Una base del nucleo di f è formata dai due vettori $u_1 = (1, -1/2, 1, 0)$ e $u_2 = (-1/2, 0, 0, 1)$.

- (c) Si ha dim $(\text{Ker}(f) \cap \text{Im}(f)) = 1$ e una base di $\text{Ker}(f) \cap \text{Im}(f)$ è data dal vettore $2u_1 + 2u_2 = (1, -1, 2, 2)$ che è anche uguale alla somma delle prime due colonne di A.
- (d) Dato che dim(Ker g) + dim(Im g) = 4, se vogliamo che Ker(g) = Im(g) si deve avere dim(Ker g) = dim(Im g) = 2. Se indichiamo con e_1, e_2, e_3, e_4 i vettori della base canonica di \mathbb{R}^4 per costruire una tale funzione g basta porre $g(e_1) = 0$, $g(e_2) = 0$, $g(e_3) = e_1$, $g(e_4) = e_2$. In questo modo si ha Ker(g) = $\langle e_1, e_2 \rangle$ e Im(g) = $\langle e_1, e_2 \rangle$.

Esercizio 2. Consideriamo la matrice

$$A = \begin{pmatrix} 2 & 2 & 0 \\ 2 & -2 & 4 \\ 1 & -3 & 4 \end{pmatrix}$$

- (a) Trovare una base del nucleo di A.
- (b) Determinare il polinomio caratteristico e gli autovalori di A.
- (c) Trovare le basi degli autospazi e dire se A è diagonalizzabile.
- (d) Esiste una matrice **simmetrica** simile ad A? (la risposta deve essere qiustificata)

Soluzione. (a) La matrice A ha rango 2, quindi il nucleo di A ha dimensione 1 e una sua base è data dal vettore $v_1 = (-1, 1, 1)$.

- (b) Il polinomio caratteristico di A è $x(x-2)^2$ e gli autovalori sono 0 (con molteplicità 1) e 2 (con molteplicità 2).
- (c) L'autospazio relativo all'autovalore 0 è il nucleo di A e una sua base è data dal vettore $v_1 = (-1, 1, 1)$ trovato prima.

L'autospazio relativo all'autovalore 2 ha dimensione 1 e una sua base è data dal vettore $v_2 = (-2,0,1)$. Dato che la molteplicità geometrica (cioè la dimensione dell'autospazio) è diversa dalla molteplicità algebrica, la matrice A non è diagonalizzabile.

(d) No. Ricordiamo che una matrice simmetrica è sempre diagonalizzabile. Siccome A non è diagonalizzabile, nessuna matrice simmetrica può essere simile ad A.

Esercizio 3. Nello spazio vettoriale euclideo \mathbb{R}^4 , dotato del prodotto scalare usuale, sia U il sottospazio generato dai vettori $u_1 = (1, 0, 2, -2), u_2 = (0, 1, -4, 5).$

- (a) Trovare una base ortogonale di U.
- (b) Scrivere le equazioni cartesiane di U^{\perp} e trovare una sua base.
- (c) Dato $v = (-1, 4, 0, 4) \in \mathbb{R}^4$ determinare la sua proiezione ortogonale su U.
- (d) Si dica se esiste un sottospazio $W \subset \mathbb{R}^4$ tale che la proiezione ortogonale di v su W sia il vettore w = (1, 1, -2, 0).

Soluzione. (a) Per trovare una base ortogonale di U utilizziamo il procedimento di Gram–Schmidt. Poniamo $u_1' = u_1$ e $u_2' = u_2 + \alpha u_1$. Richiedendo che $u_1' \cdot u_2' = 0$ si trova $\alpha = 2$ e quindi $u_2' = u_2 + 2u_1 = (2, 1, 0, 1)$. Una base ortogonale di U è formata dai vettori u_1' e u_2' .

(b) Un generico vettore $(x_1, x_2, x_3, x_4) \in U^{\perp}$ deve essere ortogonale ai vettori u_1' e u_2' della base di U. Le equazioni cartesiane di U^{\perp} sono quindi

$$U^{\perp}: \begin{cases} x_1 + 2x_3 - 2x_4 = 0\\ 2x_1 + x_2 + x_4 = 0. \end{cases}$$

Da queste equazioni si ricava

$$\begin{cases} x_3 = -x_1/2 + x_4 \\ x_2 = -2x_1 - x_4 \end{cases}$$

e quindi una base di U^{\perp} è formata dai vettori (1, -2, -1/2, 0) e (0, -1, 1, 1).

(c) Poniamo v=v'+v'', con $v'\in U$ e $v''\in U^{\perp}$. Si ha $v'=\alpha_1u_1'+\alpha_2u_2'=(\alpha_1+2\alpha_2,\alpha_2,2\alpha_1,-2\alpha_1+\alpha_2)$ e $v''=v-v'=(-1-\alpha_1-2\alpha_2,4-\alpha_2,-2\alpha_1,4+2\alpha_1-\alpha_2)$. Il

vettore $v'' \in U^{\perp}$ deve soddisfare le equazioni di U^{\perp} . Da queste equazioni si ricava $\alpha_1 = -1$ e $\alpha_2 = 1$. Quindi la proiezione ortogonale di v su U è il vettore v' = (1, 1, -2, 3).

(d) Se esiste un tale sottospazio W poniamo v=w+w'', con $w\in W$ e $w''\in W^{\perp}$. Si ha w''=v-w=(-2,3,2,4) e questo vettore dovrebbe essere ortogonale al vettore $w=(1,1,-2,0)\in W$. Però si ha $w\cdot w''=-3\neq 0$, quindi w e w'' non sono ortogonali. Questo significa che non esiste alcun sottospazio W tale che la proiezione ortogonale di v su W sia il vettore w assegnato.

Esercizio 4. Nello spazio affine $\mathbb{A}^3_{\mathbb{R}}$ consideriamo i piani

$$\pi: 2x - y + z - 1 = 0,$$
 $\sigma_{\alpha}: (\alpha + 2)x - 2y + \alpha z + \alpha = 0.$

- (a) Determinare il valore di α per cui i piani σ_{α} e π sono paralleli. Per tale valore di α calcolare la distanza tra i piani π e σ_{α} .
- (b) Determinare il valore di α per cui le rette ortogonali al piano σ_{α} sono parallele al piano π .
- (c) Poniamo $\alpha = 0$. Determinare un vettore direttore della retta $r = \pi \cap \sigma_0$.
- (d) Poniamo $\alpha = 0$. Dato il punto $P = (1, 0, -1) \in \pi$ trovare un punto $S \in \sigma_0$ tale che la retta passante per P e S sia ortogonale a π .

Soluzione. (a) Un vettore ortogonale al piano π è $n_{\pi}=(2,-1,1)$, mentre un vettore ortogonale a σ_{α} è $n_{\sigma_{\alpha}}=(\alpha+2,-2,\alpha)$. I piani σ_{α} e π sono paralleli se e solo se $n_{\sigma_{\alpha}}=\lambda n_{\pi}$, da cui si ricava $\alpha=2$. Per $\alpha=2$ il piano diventa $\sigma_2:4x-2y+2z+2=0$.

Prendiamo il punto $R = (0, 1, 0) \in \sigma_2$. Dato che i due piani sono paralleli, si ha:

$$\operatorname{dist}(\sigma_2, \pi) = \operatorname{dist}(R, \pi) = \frac{2}{\sqrt{6}} = \frac{\sqrt{6}}{3}$$

- (b) Affinché le rette ortogonali al piano σ_{α} siano parallele al piano π i vettori $n_{\pi} = (2, -1, 1)$ e $n_{\sigma_{\alpha}} = (\alpha + 2, -2, \alpha)$ devono essere ortogonali. Richiedendo che $n_{\pi} \cdot n_{\sigma_{\alpha}} = 0$ si ottiene $\alpha = -2$.
- (c) Per $\alpha=0$ si ottiene il piano $\sigma_0:2x-2y=0$, il cui vettore normale è $n_0=(2,-2,0)$. Un vettore direttore della retta $r=\pi\cap\sigma_0$ è $v_r=n_\pi\times n_0=(2,2,-2)$.
- (d) Consideriamo la retta passante per P=(1,0,-1) e ortogonale al piano π . Le sue equazioni parametriche sono

$$\begin{cases} x = 1 + 2t \\ y = -t \\ z = -1 + t \end{cases}$$

Intersecando tale retta con il piano σ_0 (cioè mettendo a sistema le equazioni della retta con l'equazione 2x - 2y = 0 di σ_0) si trova il punto S = (1/3, 1/3, -4/3). Questo è il punto cercato.