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Abstract. Let Uε(g) be the simply connected quantized enveloping algebra at roots of one
associated to a finite dimensional complex simple Lie algebra g. The De Concini–Kac–Procesi
conjecture on the dimension of the irreducible representations of Uε(g) is proved for the repre-
sentations corresponding to the spherical conjugacy classes of the simply connected algebraic
group G with Lie algebra g. We achieve this result by means of a new characterization of the
spherical conjugacy classes of G in terms of elements of the Weyl group.

Introduction

Since their appearance in the mid 1980’s quantum groups have been extensively
investigated. In particular the representation theory of the quantized enveloping algebra
Uε(g), as introduced in [DCK1], and of the quantum function algebra Fε[G] ([DCL]) has
been deeply studied by many authors. Here g is a simple complex Lie algebra, G is the
corresponding simple simply connected algebraic group, and ε is a primitive �-th root
of unity, with � an odd integer strictly greater than 1. However, while the irreducible
representations of Fε[G] are well described ([DCP2]), the representation theory of Uε(g)
is far from being understood. In this context there is a procedure to associate a certain
conjugacy class OV of G to each simple Uε(g)-module V . The De Concini–Kac–Procesi
conjecture asserts that �

1
2 dimOV divides dimV . At present the conjecture has been

proved only in some cases, namely for the conjugacy classes of maximal dimension, i.e.,
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the regular orbits ([DCKP2]), for the subregular unipotent orbits in type An when �
is a power of a prime ([C3]), for all orbits in An when � is a prime ([C1]), and for the
conjugacy classes Og of g ∈ SLn when the conjugacy class of the unipotent part of g is
spherical ([C2]). We recall that a conjugacy class O in G is called spherical if there exists
a Borel subgroup of G with a dense orbit in O. The proof of the conjecture in [C2] makes
use of the representation theory of the quantized Borel subalgebra Bε introduced in
[DCKP3]. This method works for representations corresponding to unipotent spherical
orbits and this underlines the correspondence between the geometry of the conjugacy
class and the structure of the corresponding irreducible representations.

The same approach is extended in the present paper to the case of any simple Lie
algebra g and any spherical conjugacy class of G. For this purpose we make use of the
analysis of the spherical conjugacy classes in G. In order to determine the semisimple
ones, we use the classification of spherical pairs (G,H) where H is a closed connected
reductive subgroup of G of the same rank (see [Kr], [Br3]). On the other hand the
spherical unipotent conjugacy classes (or, equivalently, the spherical nilpotent adjoint
orbits in g) have been classified by Panyushev in [P2] (see also [P4] for a proof which does
not rely on the classification of nilpotent orbits). We finally determine the remaining
spherical conjugacy classes in Section 1.3.

Our strategy in the proof of the De Concini–Kac–Procesi conjecture for representa-
tions corresponding to spherical orbits relies on a so far unknown characterization of
these orbits in terms of elements of the Weyl group W of G. More precisely, let us fix a
pair of opposite Borel subgroups (B,B−). If O is any conjugacy class in G, there exists
a unique element z = z(O) ∈ W such that O ∩ BżB is open dense in O. We give a
characterization of spherical conjugacy classes in the following theorem.

Theorem 1. Let O be a conjugacy class in G, z = z(O). Then O is spherical if and
only if dimO = �(z) + rk(1 − z).

Here �(z) denotes the length of z and rk(1 − z) denotes the rank of 1 − z in the
standard representation of W . In order to make use of the representation theory of
Bε, we show that if O is a spherical conjugacy class, then O ∩Bż(O)B ∩B− is always
nonempty. As a consequence of this fact we obtain our main result on the representation
theory of Uε(g):

Theorem 2. Assume g is a finite dimensional simple complex Lie algebra and � is
a good integer. If V is a simple Uε(g)-module whose associated conjugacy class OV is
spherical, then �

1
2 dimOV divides dimV .

The paper is structured as follows. In the Preliminaries we introduce notation and
recall the classification of the spherical nilpotent orbits of g. In Section 1 the spherical
conjugacy classes of G are analyzed and the main theorems are proved. In establishing
Theorem 1 we shall deal with the classical and the exceptional cases separately and we
shall consider first the unipotent conjugacy classes of G, then the semisimple conjugacy
classes and, finally, the conjugacy classes of G which are neither unipotent nor semisim-
ple. Section 1.4 is dedicated to the analysis of the properties of the correspondence
O �→ z(O) when O is a spherical conjugacy class. In Section 2 the De Concini–Kac–
Procesi conjecture is proved for representations corresponding to spherical conjugacy
classes. The proof is then extended, using the De Concini–Kac reduction theorem
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([DCK2]), to a larger class of representations (see Corollary 32). As a consequence, the
De Concini–Kac–Procesi conjecture is proved in type C2.

As far as notation and terminology are concerned, we shall follow [DCK1] and [Hu1].
In particular for the definition of the classical groups we choose the bilinear forms
associated to the following matrices with respect to the canonical bases:

[
0 In

−In 0

]
for Cn,

[
0 In
In 0

]
for Dn,

⎡⎣ 1 0 0
0 0 In
0 In 0

⎤⎦ for Bn.

In each case we fix the Borel subgroup corresponding to the set of simple roots as
described in [Hu1, §12.1].

Acknowledgements. The authors would like to thank Andrea Maffei for helpful dis-
cussions and suggestions.

1. Preliminaries

Let us introduce the objects of our investigation. Let A be an n×n Cartan matrix and
let g be the associated simple complex Lie algebra, with Cartan subalgebra h. Let Φ be
the set of roots relative to h, Φ+ a fixed set of positive roots, and Δ = {α1, . . . , αn} the
corresponding set of simple roots. Let G be a reductive algebraic group with Lie algebra
g, T the maximal torus with Lie algebra h, B the Borel subgroup determined by Φ+,
and B− the Borel subgroup opposite to B. Let U (respectively U−) be the unipotent
radical of B (respectively B−).

Let W be the Weyl group of g and let us denote by sα the reflection corresponding to
the root α. By �(w) we shall denote the length of the element w ∈W , and by rk(1−w)
we shall mean the rank of 1 − w in the standard representation of the Weyl group. By
w0 we shall denote the longest element in W . If N = N(T ) is the normalizer of T in G,
then W = N/T ; given an element w ∈ W we shall denote a representative of w in N
by ẇ. For any root α of g, we shall denote by xα(t) the elements of the corresponding
root subgroup Xα of G. We shall choose the representatives ṡα ∈ N of the reflection
sα ∈ W as in [Ca1, Theorem 7.2.2]. In particular, we recall that the Weyl group of Sp2n

(respectively SO2n) can be identified with the group of permutations σ in the symmetric
group S2n such that σ(n+i) = σ(i)±n for all 1 � i � n (respectively σ(n+i) = σ(i)±n
and #{i � n | σ(i) > n} is even) and it is exactly for these elements that one can choose
a monomial representative in Sp2n (respectively SO2n). For further details see [FH, p.
397]. In case of ambiguity we will denote the Weyl group (respectively Borel subgroups)
of an algebraic group K by W (K) (respectively B(K), B−(K)).

In order to describe the unipotent conjugacy classes of G, we will make use of their
standard descriptions in terms of Young diagrams and weighted Dynkin diagrams [BC1],
[BC2].

For the dimension of these classes we will refer to [Ca2, §13.1].

Definition 1. Let K be a connected algebraic group over C and let H be a closed
subgroup of K. The homogeneous space K/H is called spherical if there exists a Borel
subgroup of K with a dense orbit.
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Let us recall that the sphericity of K/H depends only on the Lie algebras of K and
H . By an abuse of notation, in order to lighten the presentation, we shall identify
isogenous groups whenever convenient.

If g is of classical type, its spherical nilpotent orbits are classified in the following
theorem.

Theorem 3. [P2, §4] The spherical nilpotent orbits in type An and Cn are those corre-
sponding to Young diagrams with at most two columns. The spherical nilpotent orbits in
type Bn and Dn are those corresponding to Young diagrams with at most two columns
or to Young diagrams with three columns and only one row with three boxes.

In order to deal with the exceptional Lie algebras, we shall also make use of the
following theorem.

Theorem 4. [P3, Theorem 3.2] The spherical nilpotent orbits in g are those of type
rA1 + sÃ1.

1. Spherical conjugacy classes

Definition 2. We say that an element x ∈ G lies over an element w ∈W , if x ∈ BẇB.

Let O be a conjugacy class in G. There exists a unique element z = z(O) ∈W such
that O ∩BżB is open dense in O. In particular,

O = O ∩BżB ⊆ BżB. (1.1)

It follows that if y is an element of O and y ∈ BẇB, then w � z in the Chevalley–
Bruhat order of W .

Let us observe that if O is a spherical conjugacy class of G, and if B.x is the dense
B-orbit in O, then B.x ⊆ BżB.

Theorem 5. Suppose that O contains an element x ∈ BẇB. Then

dimB.x � �(w) + rk(1 − w).

In particular dimO � �(w)+ rk(1−w). If, in addition, dimO � �(w)+ rk(1−w), then
O is spherical, w = z(O), and B.x is the dense B-orbit in O.

Proof. Let Uw = U ∩ ẇU−ẇ−1 and let Bw = UwT . Let us estimate the dimension of
the orbit Bw.x.

Step 1. The centralizer CBw (x) is contained in a maximal torus. Let x = ūẇb be
the unique decomposition of x in UwẇB and let u be a unipotent element in CBw (x).
Then uūẇb = ux = xu = ūẇbu. By the uniqueness of the decomposition it follows that
u = 1, since bu ∈ B and u ∈ Uw. Therefore the unipotent radical of CBw (x) is trivial
and, by [Hu2, Proposition 19.4(a)], CBw (x) is contained in a maximal torus.

Step 2. We have: dimCBw(x) � n− rk(1 − w). Without loss of generality, we may
assume that CBw (x) is contained in T . Let t ∈ CBw(x). Then xtx−1 = t and, by [SS,
§3.1], ẇtẇ−1 = t. Therefore CBw (x) ⊂ Tw, where

Tw = {t ∈ T | ẇtẇ−1 = t},
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thus dimCBw(x) � dimTw = n− rk(1 − w).

Now let us observe that:

dimBw.x = dimBw − dimCBw(x)
= �(w) + n− dimCBw(x) � �(w) + n− n+ rk(1 − w) = �(w) + rk(1 − w).

It follows that if, in addition, �(w) + rk(1 − w) � dimO, then dimCBw (x) = dimTw

and dimO = �(w) + rk(1 − w). In particular, B.x is the dense B-orbit in O. �
Proposition 6. Let O be a conjugacy class, z = z(O). If there exists an element
w ∈ W such that w � z and dimO � �(w) + rk(1 − w), then O is spherical with
dimO = �(w) + rk(1 − w) = �(z) + rk(1 − z).

Proof. From w � z it follows that �(w) + rk(1 − w) � �(z) + rk(1 − z). Indeed, it is
enough to consider the case �(z) = �(w) + 1: then rk(1 − z) = rk(1 − w) ± 1 so that
either �(z) + rk(1 − z) = �(w) + rk(1 − w) + 2, or �(z) + rk(1 − z) = �(w) + rk(1 − w),
and the inequality follows. Therefore dimO � �(w) + rk(1 − w) � �(z) + rk(1 − z). By
Theorem 5 we obtain dimO = �(z) + rk(1 − z) = �(w) + rk(1 − w). �

Let us observe that it may happen that w �= z.

Corollary 7. Let O be a conjugacy class, z = z(O). Let w1, . . . , wk be elements of W
such that O ∩ BẇiB �= ∅ for i = 1, . . . , k, and let us consider the set X of minimal
elements in

{w ∈ W | w � wi, i = 1, . . . , k}.
If for every w ∈ X we have dimO � �(w) + rk(1 − w), then O is spherical.

Proof. Since wi � z for i = 1, . . . , k, there exists w ∈ X such that w � z. Then we
conclude the proof by Proposition 6. �
Corollary 8. Let O be a conjugacy class. Let w1, w2 be elements of W such that
O ∩BẇiB �= ∅ for i = 1, 2. If

{w ∈ W | w � wi, i = 1, 2} = {w0},
then z(O) = w0. If, in addition, dimO � �(w0) + rk(1 − w0) then O is spherical. �
Definition 3. Let O be a conjugacy class. We say that O is well placed if there exists
an element w ∈W such that

O ∩B− ∩BẇB �= ∅ and dimO = �(w) + rk(1 − w).

It follows from Definition 3 and Theorem 5 that if a conjugacy class O is well placed,
then it is spherical and z(O) = w. Our aim is to show that every spherical conjugacy
class is well placed.

In the sequel, we will make use of following lemma.

Lemma 9. Let φ : G1 → G2 be an isogeny of reductive algebraic groups. Let x1 ∈ G1,
x2 = φ(x1) and let Oxi be the conjugacy class of xi in Gi. Let w ∈ W = W (G1) =
W (G2) and let ẇi be a representative of w in Gi. Then B(G1)ẇ1B(G1)∩B−(G1)∩Ox1 �=
∅ if and only if B(G2)ẇ2B(G2) ∩B−(G2) ∩ Ox2 �= ∅. �
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1.1. Unipotent conjugacy classes
In view of Definition 3, we begin this section with a result concerning the intersection
between U− and the (unique) dense B-orbit in a spherical unipotent conjugacy class.

Lemma 10. Let O be a unipotent spherical conjugacy class, B.x the (unique) dense
B-orbit in O. Then B.x ∩ U− is not empty.

Proof. Let g ∈ O and let P be the canonical parabolic subgroup of G associated to g
(see [SS] and §1.3). Then g lies in the unipotent radical Pu of P , and H = CG(g) � P .
Since O is spherical, there exists a Borel subgroup B1 of G such that HB1 is dense
in G. In particular, PB1 is dense in G. Without loss of generality, we may assume
P � B, P = PJ1 with J1 ⊆ {α1, . . . , αn} say, and B1 = τ̇Bτ̇−1, with τ̇ ∈ NJ1,∅,
following the notation in [Ca2, §2.8] (here we have J2 = ∅). In our case the subset K of
{α1, . . . , αn} is empty. We recall that NJ1,∅ = {σ̇ | σ ∈ DJ1,∅} and that DJ1,∅ = D−1

J1
,

where DJ1 = {σ ∈ W | σ(Φ+
J1

) ⊆ Φ+}. Then τ−1(Φ+
J1

) ⊆ Φ+. We show that P τ̇Bτ̇−1

is dense in G if and only if τ−1(Φ+ \ ΦJ1) ⊆ Φ− (which then implies that w0τ is the
longest element of WJ1). We have

P ∩ τ̇Bτ̇−1 = (Pu ∩ τ̇U τ̇−1)(LJ1 ∩ τ̇Bτ̇−1),

and LJ1 ∩ τ̇Bτ̇−1 = LJ1 ∩ B1 is a Borel subgroup of LJ1 by [Ca2, Propositions 2.8.7,
2.8.9]. Let us denote by r the number of positive roots in ΦJ1 and by s the dimension
of Pu ∩ τ̇U τ̇−1. Then P τ̇Bτ̇−1 is dense in G if and only if dim(P ∩ τ̇Bτ̇−1) = dimP +
dimB − dimG. Since dimP = dimPu + dimLJ1 = N + n + r, dimB = N + n,
dimLJ1 ∩ B = n + r, we get that P τ̇Bτ̇−1 is dense in G if and only if s = 0, that
is Pu ∩ τ̇U τ̇−1 = {1}. This in turn is equivalent to (Φ+ \ ΦJ1) ∩ τ(Φ+) = ∅, that is
τ−1(Φ+ \ ΦJ1) ⊆ Φ−, as we wanted.

We are now in the position to exhibit an element in B.x ∩ U−. By hypothesis we
have g ∈ Pu =

∏
β∈Φ+\ΦJ1

Xβ . Then τ̇−1gτ̇ lies in
∏

β∈Φ+\ΦJ1
Xτ−1β � U−. On the

other hand, from H τ̇Bτ̇−1 dense in G it follows that CG(τ̇−1gτ̇)B is dense in G, hence
τ̇−1gτ̇ lies in B.x. �

Let us observe that we can deal directly with the minimal unipotent conjugacy class.

Proposition 11. Let O be the unipotent conjugacy class of type A1 (minimal orbit).
Then O is well placed.

Proof. Let β1 denote the highest root of g. Then x−β1(1) is a representative of O. For
every positive root α and every t �= 0 we have:

x−α(t) = xα(t−1)hṡαxα(t−1) (1.2)

for some h ∈ T (see [Ca1, p. 106]). In particular x−β1(1) belongs to Bṡβ1B ∩ B−. By
[CMG, Lemma 4.3.5] we have �(sβ1) + rk(1− sβ1) = #{α ∈ Φ+ | α �⊥ β1}+ 1 = dimO,
and the statement follows. �

1.1.1. Classical type. This section is devoted to the analysis of the spherical unipotent
conjugacy classes of G when G is of classical type. Since the case of type An has been
treated in [C2] we shall assume that G is of type Bn, Cn or Dn.
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It will be useful for our purposes to fix some notation for Young diagrams corre-
sponding to spherical unipotent conjugacy classes. We will denote by Xt,m and Zt,m,
respectively, the following Young diagrams with m boxes:

Xt,m = Zt,m =

...

...

}
t ...

...
.

}
t

(1.3)

By an abuse of notation, given a unipotent element u ∈ G and a Young diagram of fixed
shape J , we will say that u = J if the conjugacy class of u is described by J .

It will be convenient for our purposes to understand when an element of a classical
group lies over the longest element w0 of the Weyl group.

Remark 1. Let G = Sp2n (respectively SO2n and n even) so that w0 = −1. Then the
elements of B− and B are of the form[

tF−1 0
FΣ F

]
and

[
X XA

0 tX−1

]
respectively, where Σ and A are symmetric (respectively skew-symmetric), and F and
X are upper triangular, invertible matrices. Therefore an element x ∈ B− lies over w0 if
there exist upper triangular invertible matrices X and Y , and symmetric (respectively
skew-symmetric) matrices A, B such that

x =
[

tF−1 0
FΣ F

]
=

[
X XA

0 tX−1

] [
0 In

∓In 0

] [
Y Y B

0 tY −1

]
. (1.4)

A direct computation shows that (1.4) holds if and only if FΣ = tX−1Y , i.e., if and
only if FΣ lies in the big cell of GLn or, equivalently, if its principal minors are different
from zero (see, for example, [Hu2, Exercise 28.8]).

Similarly, if G = SO2n+1, so that w0 = −1, the elements of B− and B are of the
form ⎡⎣ 1 tψ 0

0 tF−1 0
−Fψ FΣ F

⎤⎦ and

⎡⎣ 1 0 tγ
−Xγ X XA

0 0 tX−1

⎤⎦
respectively, where the symmetric parts of Σ and A are −(1/2)ψ tψ and −(1/2)γ tγ
respectively, and F and X are upper triangular, invertible matrices. Therefore an
element

x =

⎡⎣ 1 tψ 0
0 tF−1 0

−Fψ FΣ F

⎤⎦ ∈ B−
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lies over w0 if and only if there exist two upper triangular invertible matrices U and X ,
two vectors γ and c, and two matrices A and S with symmetric part equal to −(1/2)γ tγ
and −(1/2)c tc, respectively, such that the following equality holds:

x =

⎡⎣ 1 0 tγ
−Xγ X XA

0 0 tX−1

⎤⎦⎡⎣ (−1)n 0 0
0 0 In
0 In 0

⎤⎦⎡⎣ 1 0 tc
−Uc U US

0 0 tU−1

⎤⎦ . (1.5)

A tedious but straightforward computation shows that (1.5) holds if and only if FΣ
lies in the big cell of GLn and tψΣ−1ψ = (−1)n − 1.

Theorem 12. Let Og be a spherical unipotent conjugacy class of an element g ∈ G.
Then Og is well placed.

Proof. G of type Cn. For every integer k = 1, . . . , n let us consider the unipotent
conjugacy class Ok of Sp2n parametrized by a Young diagram of shape Xk,2n. We have:
dimOk = k(2n− k + 1).

For every fixed k let us choose the following matrix Ak in Ok ∩B−:

Ak =
[
In 0n

I ′k In

]

where I ′k is the n× n diagonal matrix I ′k =
[
Ik 0
0 0n−k

]
.

In W let us consider the element wk sending ei to −ei for every i = 1, . . . , k and
fixing all the other elements of the canonical basis of Cn. We have:

rk(1 − wk) + �(wk) = k(2n− k + 1) = dimOk.

If we choose the representative

ẇk =

⎡⎢⎢⎣
0 0 Ik 0
0 In−k 0 0

−Ik 0 0 0
0 0 0 In−k

⎤⎥⎥⎦ ,
then Ak = UkẇkBk, where

Uk =
[
In I ′k
0n In

]
and Bk =

⎡⎢⎢⎣
−Ik 0
0 In−k

−I ′k
0n

−Ik 0
0 In−k

⎤⎥⎥⎦ .
This identity shows that Ak lies over wk since Uk and Bk belong to B. This concludes
the proof for G of type Cn.

G of type Dn. Let us consider the unipotent conjugacy classes of SO2n associated to
Young diagrams either of shape X2k,2n with k = 1, . . . , [n/2], or of shape Z2k,2n with
k = 0, . . . , [n/2]− 1. Let us recall that when n is even there are two distinct conjugacy
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classes, On/2 and O′
n/2, associated to the Young diagram of shape Xn,2n, with weighted

Dynkin diagrams

D =
◦

◦0 ◦0 . . . 0◦
0�����

2
���

��
◦

and D′ =
◦

◦0 ◦0 . . . 0◦
2�����

0
���

��
◦

respectively.
Moreover let Ok (for k < n

2 ) and Õk be the unipotent conjugacy classes with Young
diagrams X2k,2n and Z2k,2n, respectively.

We have: dimOk = 2k(2n− 2k − 1), dim Õk = 4(k + 1)(n− k − 1) and dimO′
n/2 =

n2 − n = dimOn/2.
Now let us consider the following element wk in the Weyl group of so2n:

wk :

⎧⎨⎩
ei �→ −ei+1 if i is odd and 1 � i � 2k − 1,
ei �→ −ei−1 if i is even and 2 � i � 2k,
ei �→ ei if i > 2k.

Then �(wk) = 4nk−4k2−3k and rk(1−wk) = k, therefore �(wk)+rk(1−wk) = dimOk.

Let us introduce the following matrices: S1 =
[

0 1
−1 0

]
, Sk = diag(S1, . . . , S1) of

order 2k, Jk =
[
Sk 0
0 0n−2k

]
, uk =

[
In 0n

Jk In

]
, and Hk =

[
In −Jk

0n In

]
.

Notice that Hk ∈ B and uk lies in Ok ∩ B− for k < n/2. The weighted Dynkin
diagram associated to un/2 shows that un/2 ∈ On/2∩B−. Besides, the following identity
of matrices holds: HkẇkHk = uk where

ẇk =

⎡⎢⎢⎣
02k

In−2k
Jk

Jk
02k

In−2k

⎤⎥⎥⎦ .
This shows that uk lies over wk for k = 1, . . . , [n/2].

Now let n be even and k = n/2, and let us consider the automorphism τ̂ of SO2n

arising from the automorphism τ of the Dynkin diagram interchanging αn−1 and αn.
Then u′n/2 = τ̂ (un/2) ∈ B− is a representative of the conjugacy class O′

n/2 associated
to D′. If we apply the map τ̂ to the equality un/2 = Hn/2ẇn/2Hn/2, we find that u′n/2

lies over wτ
n/2 = τwn/2τ ∈ W ⊂ Aut(Φ). As τ permutes simple roots, it is clear that

�(wn/2) = �(wτ
n/2). Therefore, �(wτ

n/2) + rk(1 − wτ
n/2) = �(wn/2) + rk(1 − wn/2) =

dimOn/2 = dimO′
n/2. This concludes the proof for G of type Dn and O a conjugacy

class corresponding to a Young diagram of shape X2k,2n with k ≤ [n
2 ].

Now we want to prove the statement for Õk. Let us first assume n = 2m. Let

vm−1 =
[

tF−1 0
FΣ F

]
where:
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• F is the upper triangular n× n matrix with all diagonal elements equal to 1, the
first upper off-diagonal equal to (−1, 0,−1, . . . , 0,−1) and zero elsewhere;

• Σ is the skew symmetric matrix whose first upper off-diagonal is (1, 0, 1, 0, . . . , 0, 1),
all further odd upper off-diagonals are equal to (2, 0, 2, 0, . . . , 0, 2) and all even off-
diagonals are equal to (0, 0, . . . , 0).

One can show that vm−1 ∈ Õm−1 and that FΣ belongs to the big cell of GL2m.
Therefore, by Remark 1, vm−1 ∈ B− lies over w0. Observe that

�(w0) + rk(1 − w0) = n2 = 4m2 = dim Õm−1

and that equality holds also when n = 2, i.e., when SO2n is not simple. Hence the
statement is proved for n even and k = n/2 − 1.

Let us consider the conjugacy class Õk for n not necessarily even and the embedding
j2k+2 of SO4k+4 into SO2n:

j2k+2 :
[
A B
C D

]
�−→

⎡⎢⎢⎣
A

In−2k−2

B
0n−2k−2

C
0n−2k−2

D
In−2k−2

⎤⎥⎥⎦ .
The embedded image of vm−1, for m = k + 1, belongs to B−. It is a representative of

Õk and lies over ηk =
[ −I2k+2 0

0 In−2k−2

]
. One can check that �(ηk) + rk(1 − ηk) =

dim Õk, so the statement is proved for G of type Dn.

G of type Bn. Let us consider the unipotent conjugacy classes Ck and C̃h of shape
X2k,2n+1 and Z2h,2n+1, respectively, with k = 1, . . . , [n/2] and h = 0, . . . , [(n− 1)/2].
We have: dim Ck = 4nk − 4k2 and dim C̃h = 2(h+ 1)(2n− 2h− 1).

Let us consider the following embedding of SO2n in SO2n+1:

X �→
[

1
X

]
.

Under this embedding a representative of an element w ∈ W (SO2n) is mapped to a
representative of an element in W (SO2n+1). Through the same embedding the Borel
subgroup B(SO2n) (respectively B−(SO2n)) can be seen as a subgroup of B(SO2n+1)
(respectively B−(SO2n+1)). The image of the representative uk of the class Ok ⊂ SO2n

is a representative of the class Ck ⊂ SO2n+1, it belongs to B−(SO2n+1) and lies over wk

where wk is the same as in the corresponding case of SO2n. The length of wk, viewed
as an element of W (SO2n+1), is �(wk) = 4nk − 4k2 − k and rk(1 − wk) = k, therefore
�(wk) + rk(1 − wk) = dim Ck. Hence, we have the statement for Ck.

Similarly, if k � [n/2]− 1, the image of the representative vk of the class Õk ⊂ SO2n

is a representative of the class C̃k ⊂ SO2n+1. It belongs to B−(SO2n+1) and lies over ηk

where ηk is the same as in the corresponding case of SO2n. If we view ηk as an element
of W (SO2n+1), we obtain:

�(ηk) + rk(1 − ηk) = 4nk − 4k2 − 8k + 4n− 4 + 2k + 2 = dim C̃k,
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so the statement holds for C̃k with k � [n/2]− 1.
Let us now prove the statement for the classes corresponding to Young diagrams with

no rows consisting of only one box, i.e., for C̃n−1
2

when n is odd. In this case

dim C̃n−1
2

= n2 + n = �(w0) + rk(1 − w0).

Let us consider the element v =

⎡⎣ 1 tψ 0
0 In 0
−ψ Σ In

⎤⎦ where ψ = t(1 0 . . . 0) and Σ is

the n× n matrix with diagonal equal to (−1/2, 0, . . . , 0), first upper off-diagonal equal
to (1, 1, . . . , 1), first lower off-diagonal equal to (−1,−1, . . . ,−1), and zero elsewhere.
Then v is a representative of C̃n−1

2
. One can check that Σ belongs to the big cell of GLn

and that tψΣ−1ψ = −2. By Remark 1 we conclude the proof. �

1.1.2. Exceptional type. This section is devoted to the analysis of the spherical
unipotent conjugacy classes of G when G is of exceptional type. Let us introduce some
notation: we shall denote by β1 the highest root of g and, inductively, by βr, for r > 1,
the highest root of the root system orthogonal to β1, . . . , βr−1 when this is irreducible.
Similarly, we shall denote by γ1 the highest short root of g and inductively, by γr, for
r > 1, the highest short root of the root system orthogonal to γ1, . . . , γr−1 when it is
irreducible.

Theorem 13. Let O be a spherical unipotent conjugacy class. Then O is well placed.

Proof. The unipotent spherical conjugacy classes of G are those of type rA1 + sÃ1. We
shall deal with the different types of orbits separately:

Type A1. See Proposition 11.

Type Ã1 (g of type F4, G2). Let g be of type G2. The element x−γ1(1) is a representative
of the class O of type Ã1 and lies over sγ1 by (1.2). Therefore, z(O) � sγ1 . Besides,
since O contains the minimal conjugacy class, by (1.1) it follows that z(O) � sβ1 ,
hence, by Corollary 8, z(O) = w0. We now conclude using Lemma 10 and noticing that
dimO = 8 = �(w0) + rk(1 − w0).

Let g be of type F4. The element x = x−β1(1)x−β2(1) is a representative of the class
of type Ã1, as the calculation of its weighted Dynkin diagram shows. By (1.2) x belongs
to Bṡβ1 ṡβ2B, and one can check that �(sβ1sβ2) + rk(1 − sβ1sβ2) = 22 = dimO.

Type 2A1 (g of type E6, E7, E8). The element x−β1(1)x−β2(1) is a representative of this
class. By construction and by (1.2) x−β1(1)x−β2(1) lies over sβ1sβ2 . One can check that
�(sβ1sβ2) + rk(1 − sβ1sβ2) = dimO.

Type 3A1 (g of type E6, E7, E8). If g is of type E7, there are two conjugacy classes
of type 3A1 that, following [BC2], we shall denote by (3A1)′, (3A1)′′. A representa-
tive of the class (3A1)′′ is x−β1(1)x−β2(1)x−α7(1), as one can verify by computing its
weighted Dynkin diagram. Relation (1.2) implies that x−β1(1)x−β2(1)x−α7(1) lies over
sβ1sβ2sα7 , since α7 is orthogonal to β1 and β2. One can verify that �(sβ1sβ2sα7)+rk(1−
sβ1sβ2sα7) = 54 = dimO.
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In order to handle the remaining classes of type 3A1, we consider subalgebras of type
D4 in g and the corresponding immersions of algebraic groups. We realize the root
systems of these subalgebras as the sets of roots orthogonal to ker(1−w) where w ∈W
is chosen as follows:

• w0 = sβ1sβ2sβ3sα4 if g is of type E6;
• sβ1sβ2sα2+α3+2α4+α5sα3 if g is of type E7;
• sβ1sβ2sβ3sα7 if g is of type E8.

In Theorem 12 we proved that if O′ is the class of type 3A1 of D4, then z(O′) is
the longest element of the Weyl group of D4. By construction, in each case w is the
longest element of the Weyl group of the corresponding copy of D4. One can verify that
�(w) + rk(1 − w) is equal to the dimension of the unipotent orbit of type 3A1 if g is of
type E6 or E8 and (3A1)′, if g is of type E7. In the latter case, Theorem 5 implies that
a representative of the class of type 3A1 in D4 is a representative of the class of type
(3A1)′.

Type A1 + Ã1 (g of type F4). Let us consider the subgroup of G of type B4 generated
by X±α for α ∈ {α2 + 2α3 + 2α4, α1, α2, α3}. By Theorem 12, if O′ is the conjugacy
class of type A1 + Ã1 in B4, then z(O′) is the longest element of the Weyl group of
B4 and coincides with the longest element of W . Therefore there is a representative
of the conjugacy class of type A1 + Ã1 in F4 in Bẇ0B. We have: dimO = 28 =
�(w0) + rk(1 − w0).

Type 4A1 (g of type E7, E8). We observe that dimO = dimB = �(w0) + rk(1 − w0)
therefore we need to prove that z(O) = w0. In order to do so we shall apply Corollary 8.

Let us consider the following subalgebras of type D6 in g and the corresponding im-
mersions of algebraic groups: as above, we realize the root systems of these subalgebras
as the sets of roots orthogonal to ker(1−wi) where the wi’s in W are chosen as follows:

• if g is of type E7:
w1 = sβ1sβ2sα2+α3+2α4+α5sα3sα2sα5 = w0sα7 ;
w2 = sβ1sβ2sα2+α3+2α4+α5sα3sα2sα7 = w0sα5 ;

• if g is of type E8:
w1 = sβ1sβ2sβ3sα2+α3+2α4+α5sα2sα5 = w0sα3sα7 ;
w2 = sβ1sβ2sβ3sα2+α3+2α4+α5sα3sα7 = w0sα2sα5 .

It is shown in Theorem 12 that if O′ is the conjugacy class of type 4A1 in D6 then
z(O′) is the longest element of the Weyl group of D6 which coincides with wi in each
case. The only element in W which is greater than or equal to both w1 and w2 is w0,
hence the statement. �

1.2. Semisimple conjugacy classes

As for spherical unipotent conjugacy classes, we establish a result concerning the inter-
sections B− ∩O ∩BẇB, with w ∈W , when O is a semisimple conjugacy class.

Lemma 14. Let t be a semisimple element of G such that Ot ∩ BẇB �= ∅ for some
w ∈W . Then B− ∩ Ot ∩BẇB �= ∅.
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Proof. Without loss of generality, we may assume that t lies in T . Let g ∈ G be such
that g−1tg ∈ BẇB, and let g = uσσ̇b be the unique decomposition of g in Uσσ̇B. Then
σ̇−1u−1

σ tuσσ̇ belongs to Ot ∩BẇB ∩B− since σ̇−1uσσ̇ lies in U−. �
1.2.1. Classical type. In this section we shall analyze the spherical semisimple con-

jugacy classes of G when G is of classical type. Using [Br3, Remarque §0], we list the
spherical semisimple conjugacy classes (up to a certain element of the torus) in Table 1,
where we indicate a representative g of each semisimple class Og, the dimension of Og,
and the structure of the Lie algebra of the centralizer of g. By ζ we shall denote a
primitive 2n-th root of 1. Note that D1 must be interpreted as a 1-dimensional torus
T1 wherever it occurs and that A0 and B0 denote the trivial Lie algebra.

Remark 2. It is well known that X,Y ∈ Sp2n are conjugated in Sp2n if and only if they
are conjugated in GL2n. The same holds for X,Y in the orthogonal group Om (see, for
example, [SS, Ex. 2.15 (ii)]). It follows that if X,Y ∈ SOm are conjugated in GLm and
COm(X) �⊂ SOm, then X and Y are conjugated in SOm. In contrast, if COm(X) ⊂ SOm,
then the conjugacy class of X in Om splits into two distinct conjugacy classes in SOm

of the same dimension.

Theorem 15. Let Og be a spherical semisimple conjugacy class of G. Then Og is well
placed.

Table 1

dimOg Lie(CG(g))
An−1

gk = diag(−Ik, In−k)
k even and 1 � k �

[
n
2

] 2k(n− k) C + Ak−1 + An−k−1

gζ,k = diag(−ζIk, ζIn−k)
k odd and 1 � k �

[
n
2

] 2k(n− k) C + Ak−1 + An−k−1

Bn

ρk = diag(1, −Ik, In−k, −Ik, In−k)
1 � k � n

2k(2n− 2k + 1) Dk + Bn−k

bλ = diag(1, λIn, λ−1In)
λ ∈ C \ {0,±1} n2 + n C + An−1

Cn

σk = diag(−Ik, In−k, −Ik, In−k)
1 � k �

[
n
2

] 4k(n− k) Ck + Cn−k

cλ = diag(λ, In−1, λ
−1, In−1)

λ ∈ C \ {0, ±1} 4n− 2 C + Cn−1

c = diag(i In, −i In) n2 + n C + Ãn−1

Dn

σk = diag(−Ik, In−k, −Ik, In−k)
1 � k �

[
n
2

] 4k(n− k) Dk + Dn−k

c = diag(i In, −i In) n2 − n C + An−1

d = diag(i In−1, −i, −i In−1, i) n2 − n C + An−1
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Proof. For each class Og we shall exhibit an element w of the Weyl group such that
dimOg = �(w) + rk(1 − w), and a representative of Og in BẇB. The proof will follow
from Lemma 14.

Type An−1. Let tk =

⎡⎣ −ηIk 0 0
0 ηIn−2k 0

−2ηYk 0 ηIk

⎤⎦, where η =

{
ζ if k is odd,
1 if k is even,

and Yk is the k×k matrix

⎡⎣0 1

1 0
. . .

⎤⎦. Then tk ∈ Ogk
∩B− if k is even and tk ∈ Ogζ,k

∩B−

if k is odd. As in the proof of [C2, Theorem 3.4], tk ∈ BẇkB where

wk = (n, n− 1, . . . , n− k + 1, k + 1, k + 2, . . . , n− k, k, . . . , 1)

and �(wk) + rk(1 − wk) = 2k(n− k).
Type Cn. Let us consider the conjugacy class Oσk

. The following element v̇k lies in
N ∩ Oσk

:

v̇k =

⎡⎢⎢⎣
02k 0 Sk 0
0 In−2k 0 0n−2k

−Sk 0 02k 0
0 0n−2k 0 In−2k

⎤⎥⎥⎦
where Sk is the 2k × 2k matrix introduced in the proof of Theorem 12. Let vk be the
image of v̇k in W . Then �(vk) + rk(1 − vk) = 4nk − 4k2 = 4k(n− k) = dimOσk

.
Let us now consider the class Ocλ

. Let us first assume n = 2. With the help

of Remark 1, one can check that the element x =
[
A 0
C D

]
=

⎡⎢⎢⎣
λ 0 0 0
0 1 0 0
1 1 λ−1 0
λ 0 0 1

⎤⎥⎥⎦
is contained in Ocλ

∩ B− ∩ Bẇ0B. Let us now suppose n > 2. Then the element⎡⎢⎢⎣
A

In−2
0n

C
0n−2

D
In−2

⎤⎥⎥⎦ is a representative of Ocλ
lying over the following element

w of W :

w(ei) =

{
−ei if i = 1, 2,
ei if i �= 1, 2.

We have: �(w) + rk(1 − w) = 4n− 2 = dimOcλ
.

Let us now consider the class Oc. One can check that the element
[

0 In
−In 0

]
lies

in Oc ∩Bẇ0B and that dimOc = n2 + n = �(w0) + rk(1 − w0).

Type Dn. Let us notice that the centralizer of σk in O2n contains the element⎡⎢⎢⎣
0

In−1

1
0n−1

1
0n−1

0
In−1

⎤⎥⎥⎦ ,
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which does not lie in SO2n. By Remark 2, an element x ∈ SO2n belongs to Oσk
if and

only if it is conjugated to σk in GL2n.
Let us consider the element w̃k of W (SO2n) represented in N by:

˙̃wk =

⎡⎢⎢⎣
02k

In−2k

I2k

0n−2k

I2k

0n−2k

02k

In−2k

⎤⎥⎥⎦ .
Then ˙̃wk lies in Oσk

and �(w̃k) + rk(1 − w̃k) = 4k(n− k) = dimOσk
.

Let us consider the conjugacy class Oc of c. In this case CO2n(c) ⊂ SO2n so the
conjugacy class of c in O2n splits into the conjugacy classes Oc and Od in SO2n. Let
Jk be the n× n matrices introduced in the proof of Theorem 12. If n is even, then the

element ẇ =
[

0 Jn/2

Jn/2 0

]
∈ N is a representative of Oc. Besides, if w ∈ W is the

image of ẇ in W , then �(w)+rk(1−w) = n2−n = dimOc. If n is odd, then the element

ẇ′ =

⎡⎢⎢⎣
0n−1

i
J(n−1)/2

J(n−1)/2
0n−1

−i

⎤⎥⎥⎦ lies in Oc ∩ N and �(w′) + rk(1 − w′) = n2 − n =

dimOc where w′ is the image of ẇ′ in W .
Let us now consider the class Od. If n is odd, then −d ∈ Oc so that z(Od) = w =

z(Oc). If n is even, then d = τ̂(c), where τ̂ is the automorphism of SO2n introduced
in the proof of Theorem 12. Therefore τ̂ (ẇ) ∈ N is a representative of Od and its
projection wτ is such that �(wτ ) + rk(1 − wτ ) = n2 − n = dimOd.

Type Bn. Let ρk with k = 1, . . . , n be the semisimple elements of SO2n+1 introduced in
Table 1. The following cases need to be analysed separately.

Case I: 1 � k � [n
2 ]. We already proved that, under these hypotheses, the conjugacy

class Oσk
of σk in SO2n contains the element

˙̃wk =

⎡⎢⎢⎣
0

In−2k

I2k

0n−2k

I2k

0n−2k

0
In−2k

⎤⎥⎥⎦ .

Then v̇k =
[

1
˙̃wk

]
lies in Oρk

∩N . Let vk be the element in W (SO2n+1) represented

by v̇k. Then �(vk) + rk(1 − vk) = 2k(2n− 2k + 1) = dimOρk
.

Case II: [n
2 ] < k � n. Let us consider the following element of N :

Żn−k =

⎡⎢⎢⎢⎣
−1

02(n−k)+1

−I2k−n−1

−I2(n−k)+1

02k−n−1

−I2(n−k)+1

02k−n−1

02(n−k)+1

−I2k−n−1

⎤⎥⎥⎥⎦ .
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Since the element diag(−1, I2n) belongs to the centralizer CO2n+1(ρk), it follows from
Remark 2 that Żn−k lies in Oρk

. Besides, �(Zn−k) + rk(1−Zn−k) = 2k(2n− 2k+ 1) =
dim Oρk

.
Finally, let Obλ

be the conjugacy class of bλ. Then dimObλ
= n2 + n = �(w0) +

rk(1 − w0). Let

v =

⎡⎣ 1 tψ 0

0 λ−1In 0
−λψ λΣ λIn

⎤⎦
where ψ = t(1 0 . . . 0) and Σ is the n× n matrix with diagonal (−1/2, 0, . . . , 0), first
upper off-diagonal (1, 1, . . . , 1), first lower off-diagonal (−1, −1, . . . , −1), and with
zero elsewhere. Since the element diag(−1, I2n) belongs to the centralizer in O2n+1 of
bλ, v lies in Obλ

and, by Remark 1, lies over w0. �
1.2.2. Exceptional type. In this section we shall analyze the spherical semisimple

conjugacy classes of G when G is of exceptional type. Using [Br3, Remarque §0], we
are able to list the spherical semisimple conjugacy classes up to a certain element of the
torus. The results are collected in Table 2, where we indicate a representative g of each
semisimple class Og, the dimension of Og, and the structure of the Lie algebra of the
centralizer of g. If g has rank n, we shall denote by ω̌i, for i = 1, . . . , n, the elements in
h defined by

〈αj , ω̌i〉 = δji, j = 1, . . . , n.

Theorem 16. Let Og be a spherical semisimple conjugacy class. Then Og is well
placed.

Table 2

dimOg Lie(CG(g)) w

E6

p1 = exp(πiω̌2) 40 A1 + A5 w0 = sβ1sβ2sβ3sα4

p2 = exp(πiω̌1) 32 C + D5 sβ1sβ2

E7

q1 = exp(πiω̌2) 70 A7 w0

q2 = exp(πiω̌1) 64 A1 + D6 sβ1sβ2sα2+α3+2α4+α5sα3

q3 = exp(πiω̌7) 54 C + E6 sβ1sβ2sα7

E8

r1 = exp(πiω̌1) 128 D8 w0

r2 = exp(πiω̌8) 112 A1 + E7 sβ1sβ2sβ3sα7

F4

f1 = exp(πiω̌1) 28 A1 + C3 w0

f2 = exp(πiω̌4) 16 B4 sγ1

G2

e1 = exp(πiω̌2) 8 A1 + Ã1 w0

e2 = exp((2πiω̌1)/3) 6 A2 sγ1
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Proof. Let us consider the conjugacy class Op2 in E6 and the element

z = ṡβ1 ṡβ2xβ1(1)xβ2(1) exp(πiω̌1)xβ2(−1)xβ1(−1)ṡ−1
β2
ṡ−1

β1
.

Then z = x−β1(t1)x−β2(t2)ṡβ1 ṡβ2xβ2(1)xβ1(1) exp(πiω̌1)ṡ−1
β2
ṡ−1

β1
for some t1 and t2 dif-

ferent from zero so that z = x−β1(2t1)x−β2(2t2)h for some h ∈ T . Hence z lies in
Op2 ∩Bṡβ1 ṡβ2B ∩B−. Besides, �(sβ1sβ2) + rk(1 − sβ1sβ2) = 32 = dimOp2 .

In a similar way, for the conjugacy class Oq3 in E7, let us consider the element

y = ṡβ1 ṡβ2 ṡα7xβ1(1)xβ2(1)xα7(1) exp(πiω̌7)xα7(−1)xβ2(−1)xβ1(−1)ṡ−1
α7
ṡ−1

β2
ṡ−1

β1

= x−β1(t1)x−β2(t2)x−α7(t3)ṡβ1 ṡβ2 ṡα7xα7(1)xβ2(1)xβ1(1) exp(πiω̌7)ṡ−1
α7
ṡ−1

β2
ṡ−1

β1

for some t1, t2, and t3 different from zero. Then y = x−β1(2t1)x−β2(2t2)x−α7(2t3)h for
some h ∈ T . Hence, y lies in Oq3 ∩Bṡβ1 ṡβ2 ṡα7B ∩ B−. Besides, �(sβ1sβ2sα7) + rk(1 −
sβ1sβ2sα7) = 54 = dimOq3 .

Now let g be of type F4 and let us consider the conjugacy class Of2 . Let us fix a
short root γ which does not belong to the root system of CG(f2) (which is of type B4),
and let w ∈W be such that w(γ) = −γ1. Then we have:

x := ẇxγ(−1)f2xγ(1)ẇ−1 = x−γ1(t)h

for some t �= 0 and some h ∈ T . Therefore x lies in Of2 ∩Bṡγ1B ∩ B−. Since the root
system of type F4 is self-dual, we have:

�(sγ1) + rk(1 − sγ1) = �(sβ1) + rk(1 − sβ1) = 16 = dimOf2 .

Now let g be of type G2. Then the element

ṡ−1
γ1
xγ1(−1)e2xγ1(1)ṡγ1 = ṡ−1

γ1
xγ1(t)e2ṡγ1 ,

for some t �= 0, lies in Bṡγ1B ∩ Oe2 ∩B−. As in type F4 we have:

�(sγ1) + rk(1 − sγ1) = �(sβ1) + rk(1 − sβ1) = 6 = dimOe2 .

For the remaining spherical semisimple conjugacy classes we shall assume G = Gad

and use Lemma 9. For each of these classes Og we shall prove the statement by exhibiting
an element ẇ ∈ N ∩ Og such that �(w) + rk(1 − w) = dimOg and by using Lemma 14.
The elements w’s are listed in Table 2. Let us observe that for every element w in Table
2 corresponding to these classes, we can choose a representative ẇ ∈ N of order two in
Gad. For w = w0, when w0 = −1, this fact was observed in [Vö, Lemma 2]. In general
this can be seen using the expression of w as a product of reflections with respect to
mutually orthogonal roots as in Table 2 and [Ca1, Lemma 7.2.1]. From the analysis of
the conjugacy classes of the involutions of Gad in [K1] (see also [H, §X.5]), we deduce
dimOẇ � �(w0) + rk(1−w0). If w = w0, by Theorem 5, dimOẇ0 = �(w0) + rk(1−w0).
By [H, §X.5, Tables II, III] there is only one conjugacy class of involutions in Gad whose
dimension is equal to �(w0) + rk(1 −w0). Therefore ẇ0 lies in the spherical semisimple
conjugacy class of maximal dimension.

Finally we are left with the conjugacy classes Oq2 and Or2 . In order to prove that the
element ẇ lies in the corresponding orbit Og when g is either q2 or r2, it is sufficient to
use [H, §X.5, Tables II, III] and estimate the dimension of the centralizer of ẇ. One can
perform this computation in the Lie algebra of G, namely, calculating the dimension of
Lie(CG(ẇ)) = {x ∈ g | Ad(ẇ)(x) = x}. This can be done analyzing the eigenspaces
of Ad(ẇ) in the stable subspaces of the form gα + gw(α), with the use of [Ca1, Lemma
7.2.1]. �
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1.3. The remaining conjugacy classes
In this section we shall investigate the spherical conjugacy classes Og of elements g ∈ G
that are neither semisimple nor unipotent. If the conjugacy class Og of an element g
with Jordan decomposition su is spherical, then both Os and Ou are spherical. Indeed,
if BCG(g) is dense in G, then also BCG(s) ⊃ BCG(g) and BCG(u) ⊃ BCG(g) are
dense in G. Therefore the semisimple parts of the elements we shall consider in this
section are those occurring in § 1.2. Let us notice that when the identity component
of the centralizer of such a semisimple element is not simple, it is isomorphic either to
an almost direct product G1G2 or to an almost direct product G1G2T1, where T1 is a
one-dimensional torus. When this is the case, we will identify Gj with a subgroup of G
and write a unipotent element commuting with s as a pair (u1, u2) or, equivalently, as a
product u1u2 with uj ∈ Gj unipotent. If the conjugacy class of su = su1u2 is spherical,
then the conjugacy class of uj ∈ Gj is necessarily spherical.

In the sequel we will need the following definition and results.

Definition 4. Let Ḡ be a reductive connected algebraic group. Let H be a closed
subgroup of Ḡ. We say that H = HuK is a Levi decomposition of H if Hu is the
unipotent radical of H and K is a maximal reductive subgroup of H .

In characteristic zero such a decomposition always exists.

Proposition 17. [Br3, Proposition I.1] Let Ḡ be a reductive connected algebraic group
over an algebraically closed field of characteristic zero. Let H be a closed subgroup of
Ḡ with Levi decomposition H = HuK. Let P be a parabolic subgroup of Ḡ with a Levi
decomposition P = P uL such that Hu ⊂ Pu and K ⊂ L. Then the following conditions
are equivalent:

(1) Ḡ/H is spherical;
(2) K has an open orbit in Pu/Hu and the generic K-stabilizer of Pu/Hu is sphe-

rical in L.

When H is the centralizer CḠ(u) of a unipotent element in a semisimple algebraic
group Ḡ, a construction of the subgroups P , K and L from Proposition 17 is given
in [E, Lemma 5.3], using key results of [SS]. Let us recall this construction. Let e
be the nilpotent element of ḡ = Lie(Ḡ) corresponding to u and let (e, h, f) be an
SL2-triple in ḡ. The semisimple element h determines a natural Z-grading on ḡ by
ḡj := {z ∈ ḡ | [h, z] = jz}. The subalgebra p :=

⊕
j≥0 ḡj is parabolic and pu :=

⊕
j>0 ḡj

is its nilpotent radical. The subalgebra p is called the canonical parabolic subalgebra
associated to e and it is independent of the choice of the SL2-triple. Let P be the
parabolic subgroup of Ḡ whose Lie algebra is p and let L be the connected, reductive
subgroup of Ḡ whose Lie algebra is ḡ0, i.e., L = {g ∈ Ḡ | Ad(g)h = h}◦. The group P is
called the canonical parabolic associated to u and P = PuL is a Levi decomposition of P .
It turns out that CḠ(u) ⊂ P , CḠ(u)u ⊂ Pu and that CḠ(u) = (P ∩CḠ(u))(CḠ(u)∩L)
is a Levi decomposition of CḠ(u).

A similar construction works in the case of nonsemisimple elements as follows.

Lemma 18. Let Ḡ be a connected reductive algebraic group with Lie algebra ḡ, let g ∈ Ḡ
be an element with Jordan decomposition g = su, u �= 1, and let H = CḠ(g). Then
the Levi decomposition P = P uL of the canonical parabolic P associated to u induces a
Levi decomposition H = HuK of H with K = L ∩H.
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Proof. The semisimple element s lies in CḠ(u) and u lies in CḠ(s)◦, which is a reductive
subgroup. Hence, there exists an SL2-triple (e, h, f) of elements of Lie(CḠ(s)◦) = {x ∈
ḡ | Ad(s)x = x} where e is the nilpotent element associated to u. It follows that
s ∈ CḠ(h) = {y ∈ Ḡ | Ad(y)h = h} = L̃ where L̃◦ = L. The canonical parabolic P
associated to u contains H = CḠ(u) ∩ CḠ(s). The subgroup K = L ∩ H is reductive
because it is the centralizer of a semisimple element s ∈ L̃ ∩CḠ(u) (see [St2, Corollary
9.4]). The subgroup

V = P u ∩H = CḠ(u)u ∩CḠ(s)

is a unipotent normal subgroup of H . In order to prove that H = KV is a Levi
decomposition of H and, in particular, thatHu = V , it is enough to show that H ⊆ KV
because K ∩ V = 1 follows from the Levi decomposition of CḠ(u). Let z ∈ H . As
H ⊂ CḠ(u), there exist unique v ∈ CḠ(u)u and t ∈ CḠ(u) ∩ L such that z = vt.
Then svs−1 ∈ V because V is normal in H , and sts−1 ∈ CḠ(u) ∩ L because both
t, s ∈ CḠ(u) ∩ L̃ and L is normal in L̃. Besides, z = szs−1. By the uniqueness of the
decomposition in CḠ(u), we necessarily get sts−1 = t and svs−1 = v, i.e., t ∈ K and
v ∈ V . �
Corollary 19. Let Ḡ be a connected reductive algebraic group with Lie algebra ḡ, let
g ∈ Ḡ be an element with Jordan decomposition g = su, u �= 1, and let H = CḠ(g).
Then the Levi decomposition P = PuL of the canonical parabolic P associated to u
induces a Levi decomposition H◦ = HuK◦ of H◦, with K = L ∩H.

Proof. The corollary follows from Hu ⊆ H◦. �

As we have already observed, the sphericity of Ḡ/H depends only on the Lie algebras
of Ḡ and H . In particular, for the analysis of the conjugacy class of an element g ∈ G,
it does not matter whether we consider CG(g) or its identity component.

Remark 3. Let G1 ⊂ G2 be reductive algebraic groups and let u be a unipotent element
in G1. Suppose that the conjugacy class of u in G2 is spherical. Then the conjugacy
class of u in G1 is spherical by [P2, Corollary 2.3, Theorem 3.1].

Again we shall handle the classical and the exceptional cases separately.

1.3.1. Classical type. In this section we shall assume that G is of classical type.

Proposition 20. Let g = su ∈ G with s �= 1 and u �= 1. If the conjugacy class of g is
spherical, then only the following possibilities may occur:

• G is of type Cn and, up to a central element, g = σku with u = X1,2n;
• G is of type Bn and, up to a central element, g = ρnu where u = X2t,2n+1 with
t = 1, . . . ,

[
n
2

]
.

Proof. We shall use Proposition 17 in order to show that if g is not as in the statement,
then Og cannot be spherical. With notation as in Lemma 18, we shall describe K◦ and
its action on Pu/Hu ∼= pu/hu.
Type An−1. Since Og is spherical, s is conjugated, up to a central element, to one of
the gk’s or of the gζ,k’s (see Table 1). We shall show that necessarily u = 1, leading to
a contradiction. As u is a unipotent element of the centralizer of gk (respectively gζ,k),
it can be identified with a pair (u1, u2) ∈ SLk × SLn−k. It is enough to prove that if
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one of the uj �= 1 and the other is equal to 1, then Og is not spherical. Suppose that
u = (u1, 1) with u1 spherical with Young diagram of shape Xt, k for 1 � t �

[
k
2

]
. We

have:

• pu/hu ∼= Matt,n−k × Matn−k,t;
• K ∼= {(A, B, C) ∈ GLt × GLk−2t × GLn−k | detA2 detB detC = 1};
• action of K on pu/hu:

(A, B, C).(P, Q) = (YtAYtPC
−1, CQA−1)

where Yt is a symmetric t× t matrix such that Y 2
t = 1, depending on the choice

of u1.

Since Tr(QYtP ) is a nontrivial polynomial invariant of the action of K on pu/hu, Og is
not spherical. The case u2 �= 1 is similar and left to the reader.

Now let G be orthogonal or symplectic. Then, if the conjugacy class of g = su1u2 is
spherical, then u1 and u2 are either of shape Xt,m or of shape Z2t,m, with uj of shape
Z2t,m only if G = SOm.

Type Cn. Let us distinguish the following possibilities for s:
(i) s = σk. If u1 = Xt,2k with t � 1 and u2 = 1, we have:

• pu/hu ∼= Mat2n−2k,t;
• K◦ ∼= Sp2n−2k × SOt × Sp2k−2t;
• action of K◦: orthosymplectic of Sp2n−2k × SOt.

If t � 2, the orthosymplectic action of Sp2n−2k × SOt on Mat2n−2k,t cannot have a
dense orbit because it has a nontrivial invariant. Indeed, if X ∈ Mat2n−2k,t, E is the
matrix of the form with respect to which SOt is orthogonal, and if J is the matrix of the
form with respect to which Sp2n−2k is symplectic, then Tr((E tXJX)2) is a nontrivial
invariant for the Sp2n−2k × SOt-action. Then, if u1 is of shape Xt,2k and t � 2, Oσku

is not spherical. By the symmetry in the roles of u1 and u2, the same holds if u2 is of
shape Xt,2n−2k with t � 2.

If u1 = X1,2k and u2 = X1,2n−2k, we have:

• pu/hu ∼= C2n−2k ⊕ C2k−2 ⊕ C;
• K◦ ∼= Sp2n−2k × Sp2k−2;
• action of K◦: standard of Sp2n−2k ⊕ standard of Sp2k−2 ⊕ trivial.

It is clear that the action of K◦ on pu/hu cannot have an open orbit.

(ii) s = cλ. Since u ∈ CG(cλ),

u =

⎡⎢⎢⎣
1

U1 U2

1
U3 U4

⎤⎥⎥⎦
where

[
U1 U2

U3 U4

]
is a spherical unipotent element of Sp2n−2. In particular, the Young

diagram of u has shape Xk,2n with 1 � k � n− 1. We have:

• pu/hu ∼= C
k ⊕ C

k;
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• K◦ ∼= C∗ × SOk × Sp2n−2k−2;
• K◦ acts as follows: (a,A,B).(v, w) = (aAv, a−1Aw).

This action never has a dense orbit since the product (tvEv)(twEw) is invariant.

(iii) s = c. Then necessarily u =
[
A

tA−1

]
where A is a spherical unipotent

element of SLn. In particular, the Young diagram of u has shape X2k,2n with 1 � k �
[n
2 ]. We have:

• pu/hu ∼= Symk ⊕ Symk ⊕ Matk,n−2k ⊕ Matn−2k,k where Symk is the space of
k × k symmetric matrices;

• K◦ ∼= GLk × GLn−2k;
• K◦ acts as follows:

(A,B).(Z,L,M,N) = (YkAYkZYk
tAYk,

tA−1LA−1, tA−1MB−1, BNYk
tAYk).

This action never has a dense orbit since Tr(YkZYkL) is a nonzero polynomial invariant.

Type Dn. Let us distinguish the following possibilities for s:
(i) s = c. This case can be treated as for G of type Cn. In the computations, Symk

is replaced by Antk, the space of skew-symmetric k × k matrices. When k = 1, the
product MN is a nontrivial invariant.

(ii) s = d. If n is odd, the proof follows by noticing that Oc = O−d. If n is even, the
conjugacy class of cu is spherical if and only if the conjugacy class of τ̂(cu) = dτ̂ (u) is
spherical. Then the proof follows from (i).

(iii) s = σk. If u1 = X2t,2k and u2 = 1, we have:

• pu/hu ∼= Mat2n−2k,2t;
• K◦ ∼= SO2n−2k × Sp2t × SO2k−4t;
• the action of K◦ is the orthosymplectic of SO2n−2k × Sp2t.

If u1 = Z2t,2k and u2 = 1, we have:

• pu/hu ∼= Mat2n−2k,2t ⊕ C2n−2k ⊕ C2t;
• K◦ ∼= SO2n−2k × Sp2t × SO2k−4t−3;
• action of K◦: orthosymplectic of SO2n−2k × Sp2t ⊕ standard of SO2n−2k ⊕

standard of Sp2t.

The orthosymplectic action of SO2n−2k×Sp2t on Mat2n−2k,2t has a nontrivial invariant,
namely Tr((J tXEX)2), unless t = 0 which occurs only if u1 = Z2t,2k.

If u1 = Z0,2k, the standard action of SO2n−2k has no dense orbit because if v ∈
C2n−2k, then tvEv is a nontrivial invariant. Therefore when u2 = 1, the conjugacy
class of g is not spherical unless g = u1 or g = σk, leading to a contradiction. By the
symmetry in the roles of u1 and u2, the result follows for G of type Dn.

Type Bn. Let us distinguish the following possibilities for s:
(i) s = ρk. Let u = X2t,r, with r = 2k if u2 = 1, and r = 2n− 2k + 1 if u1 = 1. We

have:

• pu/hu ∼= Mat2n+1−r,2t;
• K◦ ∼= SO2n+1−r × Sp2t × SOr−4t;
• the action of K◦ is the orthosymplectic of SO2n+1−r × Sp2t.
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Let u = Z2t,r, with r = 2k if u2 = 1, and r = 2n− 2k + 1 if u1 = 1. We have:

• pu/hu ∼= Mat2n+1−r,2t ⊕ C2n+1−r ⊕ C2t;
• K◦ ∼= SO2n+1−r × Sp2t × SOr−4t−3;
• the action of K◦ is orthosymplectic of SO2n+1−r×Sp2t ⊕ standard of SO2n+1−r

⊕ standard of Sp2t.

In both cases, by arguments similar to the previous ones, the action of K◦ on pu/hu

can never have a dense orbit unless g = ρnu where u = X2t,2n+1.

(ii) s = bλ. Then, necessarily, u =

⎡⎣ 1
A

tA−1

⎤⎦ where A is a spherical unipotent

element of SLn. In particular the Young diagram of u has shape X2k,2n+1 with 1 � k �
[n
2 ]. We have:

• pu/hu ∼= Ck ⊕ Ck ⊕ Antk ⊕ Antk ⊕ Matk,n−2k ⊕ Matn−2k,k;
• K◦ ∼= GLk × GLn−2k;
• K◦ acts on pu/hu as follows:

(A,B).(v, w, Z, L,M,N)

= (tA−1v, YkAYkw, YkAYkZYk
tAYk,

tA−1LA−1, tA−1MB−1, BNYk
tAYk)

where Yk is as above.

This action never has a dense orbit since twYkv is a nonzero polynomial invariant. The
statement of Proposition 20 now follows. �

Let us now analyze the remaining possibilities.

Theorem 21. Let g = su be an element of G such that:
• either G is of type Cn, s = σk and u = X1,2n;
• or G is of type Bn, s = ρn and u is a spherical unipotent element associated

with a Young diagram with two columns.
Then Og is spherical and well placed.

Proof. We shall show that Og is well placed and hence spherical by exhibiting an element
x ∈ Og ∩BẇB ∩B− for some w such that �(w) + rk(1 − w) = dimOg.

Type Cn. Let u = (u1, u2) ∈ CSp2n
(σk) ∼= Sp2k × Sp2n−2k, where 1 � k � [n

2 ], and let
us distinguish the following cases:

(1) u1 = 1, u2 = X1,2(n−k). In this case dimOg = (4k + 2)(n− k).
(1i) Let us assume k = [n

2 ]. Then dimOg = n2 + n = �(w0) + rk(1 − w0). Let us
choose the following element M ∈ B−:

M =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

S 0
1 1 0
−1 0 1
0 −1 0 1

−1
. . . . . .
. . . . . .

S

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
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where S = diag(1,−1, 1,−1, 1, . . . ) is an n×n matrix. Then one can verify that M lies
over w0 and that M ∈ Og.

(1ii) Now let us suppose k < [n
2 ]. Notice that in this case n − k � k + 2. Let i2k+1

be the following embedding of Sp4k+2 into Sp2n:

[
A2k+1 B2k+1

C2k+1 D2k+1

]
i2k+1�−→

⎡⎢⎢⎣
A2k+1

In−2k−1

B2k+1

0n−2k−1

C2k+1

0n−2k−1

D2k+1

In−2k−1

⎤⎥⎥⎦ .
Case (1i) shows that if G = Sp4k+2, g′ = σku where u = (u1, u2), u1 = 1, u2 = X1,2(k+1),
then Og′ contains a matrix M ∈ B−(Sp4k+2) lying over w0. In particular this implies
that i2k+1(M) lies in B− ∩Bẇ2k+1B where

ẇ2k+1 =

⎡⎢⎢⎣
02k+1 0 −I2k+1 0

0 In−2k−1 0 0n−2k−1

I2k+1 0 02k+1 0
0 0n−2k−1 0 In−2k−1

⎤⎥⎥⎦ .
The thesis follows by noticing that i2k+1(M) belongs to Og and that

�(w2k+1) + rk(1 − w2k+1) = (4k + 2)(n− k) = dimOg.

(2) u1 = X1,2k, u2 = 1. In this case dimOg = 2k(2n− 2k + 1).
(2i) Let us first suppose that n is even and let k = n

2 so that dimOg = n2 + n. Let
us choose the following element M̄ ∈ B− ∩ Og:

M̄ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

S̄ 0
1 1
−1 0 1 0

−1 0 1
. . . . . . . . .

. . . . . . 1
0 −1 0 −1

1 0

S̄

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
where S̄ = diag(−1, 1,−1, 1, . . . ) is an n×n matrix. Since dimOg = �(w0)+rk(1−w0),
it is enough to show that M̄ lies over w0, and this follows, using Remark 1, from a
straightforward calculation.

(2ii) Now let us suppose k < n
2 . Case (2i) shows that if G = Sp4k, g′ = σku where

u = (u1, u2), u1 = X1,2k, u2 = 1, then Og′ contains a matrix M̄ ∈ B−(Sp4k) lying
over w0. Using the embedding i2k of Sp4k into Sp2n, it is immediately seen that i2k(M̄)
belongs to B− ∩Bσ̇B where

σ̇ =

⎡⎢⎢⎣
02k 0 −I2k 0
0 In−2k 0 0n−2k

I2k 0 02k 0
0 0n−2k 0 In−2k

⎤⎥⎥⎦ .
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Finally, let us notice that i2k(M̄) is conjugated to g and that if σ is the projection of σ̇
in W , then �(σ) + rk(1 − σ) = 4kn− 4k2 + 2k = dimOg.

Type Bn. Let g = ρnu where u = (u1, 1), u1 is of shape X2k,2n and 1 � k � [n/2].
If k < n

2 , the class Og is completely determined by the diagram X2k,2n. If n is even,
let tn ∈ SO2n+1 be a representative of sαn ∈ W (SO2n+1). Conjugation by tn fixes ρn

and induces the automorphism τ̂ of SO2n (see the proof of Theorem 12). Therefore if
u1 and u′1 are representatives of the two distinct unipotent conjugacy classes of SO2n

associated to Xn,2n, and if u = (u1, 1) and u′ = (u′1, 1), then u′ ∈ Ou and ρnu
′ ∈ Oρnu.

Therefore also for k = n
2 , the class Og is completely determined by the diagram X2k,2n.

Thus let us denote by Ok the conjugacy class of g = ρnu with u1 of shape X2k,2n. Then
dimOk = 4nk−4k2+2n−2k. Let us first assume that k is maximal, i.e., k = kmax = [n

2 ].
Then dimOkmax = n2 + n = dimB(SO2n+1).

Let gn =

⎡⎣ 1 tψ 0
0 −In 0
ψ Σ −In

⎤⎦ where ψ = t(1, 0, . . . , 0), Σ is the n × n matrix with

diagonal (1/2, 0, . . . , 0), first upper off-diagonal (1, 1, . . . , 1), first lower off-diagonal
(−1, −1, . . . , −1), and 0 elsewhere. By Remark 1 the element gn lies over w0. As
diag(−1, 1, . . . , 1) ∈ CO2n+1(ρnu), it follows from Remark 2 that gn belongs to Okmax ,
so the assertion is proved for k maximal.

Let us now assume that 2k < n− 1, i.e., that there are strictly more than two rows
with one box in X2k,2n. We consider the following embedding of SO4k+3 × SO2n−4k−2

in SO2n+1:

⎛⎝⎡⎣ a tα tβ
γ A B
δ C D

⎤⎦ , [
A′ B′

C′ D′

]⎞⎠ �→

⎡⎢⎢⎢⎢⎣
a tα 0 tβ 0
γ A 0 B 0
0 0 A′ 0 B′

δ C 0 D 0
0 0 C′ 0 D′

⎤⎥⎥⎥⎥⎦ .
Let g2k+1 be the representative of the conjugacy class of Okmax in SO4k+3. One can check
that the embedded image of (g2k+1,−1) is a representative of Ok in B−(SO2n+1) and

that it lies over ωk =
[ −I2k+1 0

0 In−2k−1

]
∈W (SO2n+1). As rk(1 − ωk) + �(ωk) =

(2k + 1)2 + (2k + 1) + 2(n − 2k − 1)(2k + 1) = dimOk, we have the statement for
k = 1, . . . , [n/2]. �

1.3.2. Exceptional type. In this section we shall assume that G is of exceptional
type. We already recalled that if the conjugacy class Og of an element g with Jordan
decomposition su is spherical, then both Os and Ou are spherical. Besides, as Og

is spherical, dimOg � dimB. Therefore a dimensional argument rules out all the
possibilities except the following:

• g = p1xβ1(1) if g is of type E6;
• g = q2xβ1(1) if g is of type E7;
• g = r2xβ1(1) if g is of type E8;
• g = f2xβ1(1) if g is of type F4.

The following result excludes the first three cases.
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Proposition 22. If g is of type E6, E7, or E8, any spherical conjugacy class of G is
either semisimple or unipotent.

Proof. By the discussion above it is enough to prove that the class of sxβ1(1), with
s = p1, q2, r2, is not spherical. Let H be the centralizer of sxβ1(1) in G. We shall use
the same notation as in Lemma 18. Let S be a stabilizer in general position for the
action of K on l/k, where l = Lie(L) and k = Lie(K). Let cM (X) denote the complexity
of the action of a reductive algebraic group M , with Borel subgroup BM , on the variety
X , i.e., cM (X) = minx∈X codimBM .x. Then, by [P2, Theorem 1.2 (i)],

cG(G/H) = cL(L/K) + cS(pu/hu). (1.6)

We see that in all cases l = k⊕Chβ1 so that cL(L/K) = 0 and S = K. In particular, if
g is of type E6, E7, E8, then K is of type A5, D6, E7, respectively. By [Br1, Théorème
1.4] (see also [L, Theorem 1.4]) D6 and E7 have no linear multiplicity free representa-
tions, hence E7 and E8 have no spherical exceptional conjugacy classes that are neither
semisimple nor unipotent.

As far as E6 is concerned, one can check that

pu ∼=
⊕
α>0,
α �⊥β1

gα, hu = gβ1 ,

therefore dim(pu/hu) = 20. By [Br1, Théorème 1.4] there are no multiplicity free
representations of a group of type A5 on a vector space of dimension 20, hence the
statement. �

Theorem 23. Let g be of type F4 and let O be the conjugacy class of f2xβ1 . Then O
is spherical and well placed.

Proof. We have: dimO = 28 = �(w0) + rk(1 − w0). We shall show that z(O) = w0,
which implies by Theorem 5 that O is spherical.

The element f2 lies in T ⊂ CG(f1). Besides, C = CG(f1) is the subgroup of G of
type C3 × A1 with simple roots {α2, α3, α4} and β1. Since (f2)2 = 1, it follows that
f2 is of the form (s, t) ∈ C3 × A1 with t central and s2 = 1. Hence, f2 is conjugated
(up to a central element) in C to an element of the form (σ1, t). By Theorem 16 f2 is
conjugated, up to a central element in C, by an element in the component of type C3

to ṡα4 ṡα2+2α3+α4h for some h ∈ T . Hence f2x−β1(1) is conjugated to

ṡα4 ṡα2+2α3+α4hx−β1(1) ∈ Bṡα4 ṡα2+2α3+α4 ṡβ1B = Bẇ0ṡα2B

for some h ∈ T .
On the other hand, the involution ρ4 = hα2(−1)hα2+2α3+2α4(−1) (notation as in

[St1, Lemma 28]) is conjugated to f2, since its centralizer is the subgroup of type B4

with simple roots {α2 +2α3, α1, α2, α3 +α4}. Therefore the element ρ4xβ1(1) ∈ CG(ρ4)
is a representative of the class O. By Theorem 21 there exists a representative of the
conjugacy class Oρ4xβ1(1) in CG(ρ4) lying over the element w0sα3+α4 . By Corollary 8
z(O) = w0. Let us finally show that O ∩ Bẇ0B ∩ B− �= ∅. Let g ∈ G be such that
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g−1f2xβ1(1)g ∈ Bẇ0B and let g = uσσ̇b be its unique decomposition in Uσσ̇B. Then
g−1f2xβ1(1)g lies in Bẇ0B if and only if

σ̇−1u−1
σ f2xβ1(1)uσσ̇ = σ̇−1u−1

σ f2uσσ̇xσ−1(β1)(t),

with t ∈ C
∗, lies in Bẇ0B. Notice that uσ and xβ1(1) commute because β1 is the

highest root of g. The root σ−1(β1) is negative, otherwise z(Of2) would be w0, which is
impossible by Theorem 5. Then, as in Lemma 14, σ̇−1u−1

σ f2xβ1(1)uσσ̇ lies in Bẇ0B ∩
B−. �

1.4. Classification and remarks

The results of the previous sections can be summarized in the following theorem.

Theorem 24. A conjugacy class O is spherical if and only if it is well placed.

In fact, our results lead also to the following characterization of spherical conjugacy
classes.

Theorem 25. Let O be a conjugacy class in G, z = z(O). Then O is spherical if and
only if dimO = �(z) + rk(1 − z).

Corollary 26. Let O be a spherical conjugacy class of G and let z = z(O). Let x ∈ O
be an element such that B.x is dense in O. Then B.x = Bz.x = O ∩BżB.

Proof. Theorem 24 and Theorem 5 show that if y lies in O∩BżB, then B.y is dense in
O. It follows that y belongs to B.x, hence B.x = O ∩BżB. Besides, Uz.x = U.x since
they are irreducible, closed, and have the same dimension. Therefore Bz.x = TUz.x =
TU.x = B.x. �

Let us introduce the map

τ : {Spherical conjugacy classes of G} −→W, O �→ z(O)

and let us analyze some of its properties. A description of the image of τ is given in
Tables 2, 3, 4, and 5. In the tables, we use the notation introduced in §1.1.2. When G
is of type B (respectively D), the root system orthogonal to β1 is no longer irreducible:
it consists of three components of type A1 if G is of type D4, and of one component of
type A1 and one component of type B (respectively D) in the other cases. When G is of
type D4, we shall define μ1 = α1. When G is not of type D4, we shall denote by μ1 the
positive root of the component of type A1 and by ν1 the highest root of the component
of type B (respectively D). Inductively, for r > 1, we shall denote by μr the positive
root of the component of type A1 and by νr the highest root of the component of type
B (respectively D) of the root system orthogonal to β1, μj , νj for every j = 1, . . . , r− 1.

In a similar way, when G is of type C, the root system orthogonal to γ1 consists of
one component of type A1 and one component of type C. We shall denote by γ′2 the
highest short root of the component of type C. Inductively, for r > 1, we shall denote
by γ′r, the highest short root of the component of type C of the root system orthogonal
to γ1, γ

′
j for every j = 1, . . . , r − 1.
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Remark 4. We note that if O is a spherical conjugacy class, then z(O) is an involution.
The reason for this is that if G is of adjoint type, then each spherical conjugacy class O
coincides with its inverse. For unipotent classes this follows from [Co1, Lemma 1.16],
and [Co2, Lemma 2.3]. For the semisimple classes in almost all cases, we are dealing
with involutions in G. In the remaining cases we always have w0 = −1, and in this
case every semisimple element is conjugate to its inverse. Finally, for the classes Osu

where s �= 1 �= u, the result follows from the fact that s is an involution and that u is
conjugate to its inverse in CG(s).

Remark 5. Let π1 : G −→ G/U and π2 : G/U −→ G/B be canonical projections. Let
B act on G by conjugation, on G/B by left multiplication, and on G/U as follows:

b(gU) = bgb−1U.

Then π1 and π2 are B-equivariant maps. In particular, π2 ◦ π1 maps every B-orbit of
G to a B-orbit of G/B, i.e., a Schubert cell Cσ = Bσ̇B/B, for some σ ∈ W .

Let O be a spherical conjugacy class and let z = z(O). Let B.x be the dense B-orbit
in O. Then dimO = dimB.x = �(z) + rk(1 − z). Besides, π2 ◦ π1(B.x) = Cz , and
by [DCP1, Proposition 16.4] dimπ1(O) = �(z) + rk(1 − z). It follows that the map
ρ = π1|O : O → G/U has finite fibers. We think that the map ρ could give a relation
between O and the symplective leaves of B− coming from the quantization of B− (see
[DCP2]).

Table 3: Unipotent spherical conjugacy classes

g O z(O) O z(O)
An−1 Xk,n sβ1 . . . sβk

Bn X2k,2n+1 sβ1sν1 . . . sνk−1

Z2k,2n+1

k < (n−1)
2

sγ1 . . . sγ2k+2

Zn−1,2n+1 w0

Cn X2k,2n sβ1 . . . sβk

Dn
X2k,2n

k < n
2

sβ1sν1 . . . sνk−1 Z2k,2n sβ1sμ1sν1sμ2 . . . sνk
sμk+1

Xn,2n sβ1sν1 . . . sνn/2−2sαn X ′
n,2n sβ1sν1 . . . sνn/2−2sαn−1

E6 A1 sβ1 2A1 sβ1sβ2

3A1 w0

E7 A1 sβ1 2A1 sβ1sβ2

(3A1)′ sβ1sβ2sα2+α3+2α4+α5sα3 (3A1)′′ sβ1sβ2sα7

4A1 w0

E8 A1 sβ1 2A1 sβ1sβ2

3A1 sβ1sβ2sβ3sα7 4A1 w0

F4 A1 sβ1 Ã1 sβ1sβ2

A1 + Ã1 w0

G2 A1 sβ1 Ã1 w0
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Table 4: Spherical conjugacy classes which are neither semisimple nor unipotent

g Osu z(Osu)
Bn s = ρn, u = (X2k,2n, 1), k = [n/2] w0

s = ρn, u = (X2k,2n, 1), k < [n/2] sγ1 . . . sγ2k+1

Cn s = σk, u = (1, X1,2n−2k) sβ1 . . . sβ2k+1

s = σk, u = (X1,2k, 1) sβ1 . . . sβ2k

F4 f2xβ1(1) w0

Table 5: Spherical semisimple conjugacy classes, g of classical type

g O z(O)
An−1 Ogk

sβ1 . . . sβk

Ogζ,k
sβ1 . . . sβk

Bn
Oρk

1 � k � [n/2] sγ1 . . . sγ2k

Oρk

[n/2] < k � n
sγ1 . . . sγ2(n−k)+1

Obλ
w0

Cn Oσk
sγ1sγ′

2
. . . sγ′

kOcλ
sβ1sβ2

Oc w0

Dn Oc (n even) sβ1sν1 . . . sνn/2−2sαn

Od (n even) sβ1sν1 . . . sνn/2−2sαn−1

Oc (n odd) sβ1sν1 . . . sν(n−3)/2

Od (n odd) sβ1sν1 . . . sν(n−3)/2

Oσk

k < n/2 sβ1sμ1sν1sμ2 . . . sμk−1sνk−1sμk

Oσn/2 sβ1sμ1sν1sμ2 . . . sνn/2−2sμn/2−1sαn−1sαn

Let us recall that w0 can also be decomposed as a product of reflections corresponding
to mutually orthogonal roots.

Remark 6. We recall that for a B-variety X , the following objects are defined:

P = {f ∈ k(X) \ {0} | b.f = λf (b)f, for all b ∈ B}

where λf is an element of χ(B), the character group of B;

ψ : P → χ(B), f �→ λf ;
Γ(X) = ψ(P);

r(X) := rank(Γ(X));
u(X) = max

x∈X
dimU.x.
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Here we note that if O is a spherical conjugacy class, then r(O) = rk(1 − z(O)) and
u(O) = �(z(O)). Indeed, this follows from [P1, Corollary 1, Corollary 2(ii)], Theorem 5,
and [Kn, Lemma 2.1].

Remark 7. Let us recall that a nilpotent orbit O in g is called a model orbit if C[O]
consists exactly of the self-dual representations of G with highest weights in the root
lattice, each occurring once (see [MG2, p. 229]). In this case the corresponding unipotent
conjugacy class O in G is spherical ([Br2], [Po], [V]) and, by Remark 6, rk(1− z(O)) =
rk(1−w0). It follows from the proofs of Theorems 12 and 13 that z(O) = w0 (cf. [MG1,
Table 4] and [AHV]).

2. The proof of the DKP conjecture

In this section we prove the De Concini–Kac–Procesi conjecture for representations
corresponding to spherical conjugacy classes.

Let � be a positive odd integer greater than one. We will assume that � is a good
integer, i.e., that � is coprime with the bad primes (for the definition of the bad primes
see [B]) and that G is simply connected.

2.1. Strategy of the proof
Let ε be a primitive �-th root of unity and let Uε(g) be the simply connected quantum
group associated to g, as defined in [DCKP1], with generators Ei, Fi,Kβ with β in the
weight lattice P and i = 1, . . . , n. For our purposes it is convenient to introduce the
subalgebra Bε of Uε(g) generated by E1, . . . , En and Kβ with β ∈ P . The representation
theory of this algebra has been deeply investigated in [DCP2], where Bε

∼= Fε[B−].
The center of Uε(g) contains a proper, finitely generated subalgebra Z0 such that

Uε(g) is a finite Z0-module (in particular, it follows that every irreducible Uε(g)-module
has finite dimension).

For any associative algebra A, let us denote by Spec A the set of the equivalence
classes of the irreducible representations of A. It is worth noticing that Spec Z0 =
{(t−1u−, tu) | u ∈ U, t ∈ T, u− ∈ U−} ([DCKP2, §4.4]). In [DCKP1], the map
π : Spec Z0 −→ G, π(t−1u−, tu) = (u−)−1t2u, which is an unramified covering of the
big cell Ω = B−B of G, is considered. Let ϕ be the map obtained by composing π with
the central character χ : Spec Uε(g) −→ Spec Z0. It follows that, for every g ∈ Ω, one
can define a certain finite-dimensional quotient Ug of Uε(g) such that if g = ϕ(V ), then
V is a Ug-module.

In [DCKP1, §6.1, Proposition (a)] the following crucial result is established:

if g, h ∈ Ω are conjugated in G up to a central element, then
Ug and Uh are isomorphic. (2.1)

In [DCKP1, §6.8] the following conjecture is formulated.

Conjecture If σ ∈ Spec Uε(g) is an irreducible representation of Uε(g) on a vector
space V such that ϕ(σ) belongs to a conjugacy class OV in G, then dimV is divisible
by �

1
2 dimOV .

The De Concini–Kac–Procesi conjecture has been proved in the following cases:
(i) O is a regular conjugacy class ([DCKP2, Theorem 5.1]);
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(ii) G is of type An and � = p is a prime ([C1]);
(iii) G is of type An, � = pk and O is a subregular unipotent conjugacy class ([C2]);
(iv) G is of type An and O is a spherical unipotent conjugacy class ([C3]).

We recall that the subalgebra Bε contains a copy of the coordinate ring C[B−] of
B−. Given b ∈ B−, let us denote by mb the corresponding maximal ideal of C[B−] and
let us consider the algebra Ab := Bε/mbBε. This is a finite-dimensional algebra with
the following properties.

Theorem 27. [DCKP3] If p, q ∈ B− lie over the same element w ∈ W , then the
algebras Ap and Aq are isomorphic.

Theorem 28. [DCKP3] Let p ∈ B− ∩ BẇB be a point over w ∈ W and let Ap be the
corresponding algebra. Assume that � is a good integer. Then the dimension of each
irreducible representation of Ap is equal to �(�(w)+rk(1−w))/2.

Corollary 29. If p ∈ B− lies over w ∈ W and σ is an irreducible representation of
Uε(g) on a vector space V such that ϕ(σ) is conjugated to p, then dim(V ) is divisible by
�(�(w)+rk(1−w))/2.

Proof. See [C2, Corollary 2.9]. �

Theorem 24 and Corollary 29 lead to the following result.

Theorem 30. Let g be a simple complex Lie algebra, and let � be a good integer. If V is
a simple Uε(g)-module whose associated conjugacy class OV is spherical, then �

1
2 dimOV

divides dimV . �

It was shown in [DCK2, §8] that in order to prove the conjecture it is enough to
consider the exceptional conjugacy classes, that is, the conjugacy classes of exceptional
elements. For convenience of the reader we recall that a semisimple element g ∈ G is
exceptional if its centralizer in G has a finite center. An element g ∈ G is called ex-
ceptional if its semisimple part is exceptional. From the classification of the semisimple
exceptional elements ([K2, Lemma 7.1], [DCK2, §7]) it follows that when g is of classical
type or of type G2, all the semisimple exceptional elements are spherical. The elements
σk and ρk in Table 1, with k = 1, . . . ,

[
n
2

]
for g of type Cn, k = 2, . . . ,

[
n
2

]
for g of type

Dn, and k = 1, . . . , n for g of type Bn, are, up to central elements, representatives of
all semisimple, exceptional conjugacy classes. The elements appearing in Table 2, ex-
cept p2 and q3, are, up to central elements, representatives of all spherical, semisimple,
exceptional conjugacy classes for g of exceptional type.

Using the De Concini–Kac reduction theorem ([DCK2, §8]) we can go a bit further
in the proof of the conjecture.

Corollary 31. Let g be of classical type or of type G2, and let s be a semisimple element
of G. Then any irreducible representation V of Uε(g) lying over Os has dimension
divisible by �

1
2 dimOs .

Proof. An irreducible representation of Uε(g) lying over a semisimple element of G is
either exceptional or induced by an exceptional semisimple representation of Uε(g′)
([DCK2, §8]). By Theorem 15 the De Concini–Kac–Procesi conjecture follows for all
irreducible representations lying over semisimple elements. �
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Corollary 32. Let g be a nonexceptional element of G with Jordan decomposition g =
su such that Os and Ou are spherical. Then any irreducible representation V of Uε(g)
lying over Og has dimension divisible by �

1
2 dimOg .

Proof. Since Os is spherical, s can be chosen among the nonexceptional elements in
Tables 1 and 2. The case of G of type An was dealt with in [C2]. Using [DCK2, §8] we
have:

(1) G is of type Cn and s = cλ. Then V is induced by an irreducible Uε(sp2n−2)-

module V ′ lying over the spherical, unipotent conjugacy class of the element
[
U1 U2

U3 U4

]
∈ Sp2n−2.

(2) G is of type Cn (respectively Dn) and s = c. Then V is induced by an irreducible
Uε(sln)-module V ′ lying over the unipotent spherical conjugacy class of the element
A ∈ SLn where A is as in the proof of Proposition 20.

(3) G is of type Dn and s = d = τ̂ (c). Then, since CG(c) is generated by the root
subgroups corresponding to the simple roots α1, . . . , αn−1, the centralizer of d in G is
generated by the root subgroups corresponding to the simple roots α1, . . . , αn−2, αn,
and V is induced by an irreducible Uε(sln)-module V ′ lying over a spherical unipotent
conjugacy class of SLn.

(4) G is of type Dn and s = σ1. Then u =

⎡⎢⎢⎣
1

U1 U2

1
U3 U4

⎤⎥⎥⎦ where u′ =

[
U1 U2

U3 U4

]
is a spherical unipotent element of SO2n−2. Then V is induced by an

irreducible Uε(so2n−2)-module V ′ lying over u′.
(5) G is of type Bn and there are two possibilities:

(i) s = ρ1 and, as in the previous case, V is induced by an irreducible Uε(so2n−1)-
module V ′ lying over a spherical unipotent element;

(ii) s = bλ, and V is induced by an irreducible Uε(sln)-module V ′ lying over the
unipotent spherical conjugacy class of the element A ∈ SLn where A is as in the
proof of Proposition 20.

(6) G is of type E6. In this case s = exp(πiω̌1) and, since u commutes with s, u
belongs to the subgroup of type D5 with simple roots α2, . . . , α6. By [DCK2, §8] V is
induced by an irreducible Uε(so10)-module V ′ corresponding to the conjugacy class of
the element u. Besides, the conjugacy class of u in D5 is again spherical by Remark 3.

(7) G is of type E7. In this case s = exp(πiω̌7) and u belongs to the subgroup of type
E6 with simple roots α1, . . . , α6. By [DCK2, §8] V is induced by an irreducible Uε(e6)-
module V ′ corresponding to the unipotent spherical conjugacy class of the element u.
The conjugacy class of u in E6 is again spherical by Remark 3.

By Theorem 30 the proof is concluded. �

Remark 8. We point out that Corollary 32 can be generalized to a larger class of repre-
sentations by making use of the De Concini–Kac reduction theorem. In particular the
conjecture follows whenever the following conditions are satisfied:
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(1) s lies in the identity component of Z(CG(s));
(2) Ou is spherical.
When g is of classical type Condition (1) is equivalent to the following conditions in

the corresponding matrix groups:

• G = SO2n+1: CG(s)◦ contains no copy of type Dk with k � 2, i.e., if s is
diagonal, no submatrix of s is conjugated to ρk with k � 2;

• G = Sp2n: CG(s) contains at most one copy of type Ck with k � 1, i.e., if s is
diagonal, no submatrix of s is conjugated to σk with k � 1;

• G = SO2n: CG(s)◦ contains at most one copy of type Dk with k � 2, i.e., if s
is diagonal, no submatrix of s is conjugated to σk with k � 2.

Let us notice that when g is of type An Condition (1) is always satisfied ([C2, Theorem
3.4]).

Corollary 33. Any irreducible representation V of Uε(sp4) has dimension divisible by
�

1
2 dimOV .

Proof. Thanks to the De Concini–Kac reduction theorem, it is enough to consider the
exceptional representations of Uε(sp4). Since an exceptional element of Sp4 is either
spherical or regular, the De Concini–Kac–Procesi conjecture follows from Theorem 30
and [DCKP2, Theorem 5.1]. �
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