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Abstract. Let U:(g) be the simply connected quantized enveloping algebra at roots of one
associated to a finite dimensional complex simple Lie algebra g. The De Concini-Kac—Procesi
conjecture on the dimension of the irreducible representations of Ue (g) is proved for the repre-
sentations corresponding to the spherical conjugacy classes of the simply connected algebraic
group G with Lie algebra g. We achieve this result by means of a new characterization of the
spherical conjugacy classes of G in terms of elements of the Weyl group.

Introduction

Since their appearance in the mid 1980’s quantum groups have been extensively
investigated. In particular the representation theory of the quantized enveloping algebra
U-(g), as introduced in [DCK1], and of the quantum function algebra F¢[G] ([DCL]) has
been deeply studied by many authors. Here g is a simple complex Lie algebra, G is the
corresponding simple simply connected algebraic group, and ¢ is a primitive ¢-th root
of unity, with ¢ an odd integer strictly greater than 1. However, while the irreducible
representations of Fy[G] are well described ([DCP2]), the representation theory of U, (g)
is far from being understood. In this context there is a procedure to associate a certain
conjugacy class Oy of G to each simple U, (g)-module V. The De Concini-Kac—Procesi
conjecture asserts that (2 4mOv givides dimV. At present the conjecture has been
proved only in some cases, namely for the conjugacy classes of maximal dimension, i.e.,
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the regular orbits ([DCKPZ2]), for the subregular unipotent orbits in type A, when ¢
is a power of a prime ([C3]), for all orbits in A,, when ¢ is a prime ([C1]), and for the
conjugacy classes Oy of g € SL,, when the conjugacy class of the unipotent part of g is
spherical ([C2]). We recall that a conjugacy class O in G is called spherical if there exists
a Borel subgroup of G with a dense orbit in @. The proof of the conjecture in [C2] makes
use of the representation theory of the quantized Borel subalgebra B. introduced in
[DCKP3]. This method works for representations corresponding to unipotent spherical
orbits and this underlines the correspondence between the geometry of the conjugacy
class and the structure of the corresponding irreducible representations.

The same approach is extended in the present paper to the case of any simple Lie
algebra g and any spherical conjugacy class of G. For this purpose we make use of the
analysis of the spherical conjugacy classes in G. In order to determine the semisimple
ones, we use the classification of spherical pairs (G, H) where H is a closed connected
reductive subgroup of G of the same rank (see [Kr], [Br3]). On the other hand the
spherical unipotent conjugacy classes (or, equivalently, the spherical nilpotent adjoint
orbits in g) have been classified by Panyushev in [P2] (see also [P4] for a proof which does
not rely on the classification of nilpotent orbits). We finally determine the remaining
spherical conjugacy classes in Section 1.3.

Our strategy in the proof of the De Concini—-Kac—Procesi conjecture for representa-
tions corresponding to spherical orbits relies on a so far unknown characterization of
these orbits in terms of elements of the Weyl group W of G. More precisely, let us fix a
pair of opposite Borel subgroups (B, B~). If O is any conjugacy class in G, there exists
a unique element z = z(0O) € W such that O N BZB is open dense in O. We give a
characterization of spherical conjugacy classes in the following theorem.

Theorem 1. Let O be a conjugacy class in G, z = z(O). Then O is spherical if and
only if dim O = ¢(z) + rk(1 — 2).

Here £(z) denotes the length of z and rk(1 — z) denotes the rank of 1 — z in the
standard representation of W. In order to make use of the representation theory of
B., we show that if O is a spherical conjugacy class, then O N BZ(O)B N B~ is always
nonempty. As a consequence of this fact we obtain our main result on the representation
theory of U.(g):

Theorem 2. Assume g is a finite dimensional simple complex Lie algebra and £ is
a good integer. If V is a simple U-(g)-module whose associated conjugacy class Oy s
spherical, then 02 4mOV givides dim V.

The paper is structured as follows. In the Preliminaries we introduce notation and
recall the classification of the spherical nilpotent orbits of g. In Section 1 the spherical
conjugacy classes of G are analyzed and the main theorems are proved. In establishing
Theorem 1 we shall deal with the classical and the exceptional cases separately and we
shall consider first the unipotent conjugacy classes of G, then the semisimple conjugacy
classes and, finally, the conjugacy classes of G which are neither unipotent nor semisim-
ple. Section 1.4 is dedicated to the analysis of the properties of the correspondence
O — 2z(O) when O is a spherical conjugacy class. In Section 2 the De Concini-Kac—
Procesi conjecture is proved for representations corresponding to spherical conjugacy
classes. The proof is then extended, using the De Concini—Kac reduction theorem
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([DCK2]), to a larger class of representations (see Corollary 32). As a consequence, the
De Concini-Kac—Procesi conjecture is proved in type Cs.

As far as notation and terminology are concerned, we shall follow [DCK1] and [Hul].
In particular for the definition of the classical groups we choose the bilinear forms
associated to the following matrices with respect to the canonical bases:

In each case we fix the Borel subgroup corresponding to the set of simple roots as
described in [Hul, §12.1].

Acknowledgements. The authors would like to thank Andrea Maffei for helpful dis-
cussions and suggestions.

1. Preliminaries

Let us introduce the objects of our investigation. Let A be an n x n Cartan matrix and
let g be the associated simple complex Lie algebra, with Cartan subalgebra h. Let ® be
the set of roots relative to h, @1 a fixed set of positive roots, and A = {«a,...,a,} the
corresponding set of simple roots. Let G be a reductive algebraic group with Lie algebra
g, T the maximal torus with Lie algebra b, B the Borel subgroup determined by &,
and B~ the Borel subgroup opposite to B. Let U (respectively U~) be the unipotent
radical of B (respectively B™).

Let W be the Weyl group of g and let us denote by s, the reflection corresponding to
the root a.. By ¢(w) we shall denote the length of the element w € W, and by rk(1 —w)
we shall mean the rank of 1 — w in the standard representation of the Weyl group. By
wp we shall denote the longest element in W. If N = N(T') is the normalizer of T in G,
then W = N/T; given an element w € W we shall denote a representative of w in N
by w. For any root « of g, we shall denote by z,,(t) the elements of the corresponding
root subgroup X, of G. We shall choose the representatives §, € N of the reflection
Sq € W asin [Cal, Theorem 7.2.2]. In particular, we recall that the Weyl group of Sp,,,
(respectively SOa,,) can be identified with the group of permutations o in the symmetric
group Sa, such that o(n+1i) = o(i)£n for all 1 < i < n (respectively o(n+1i) = o(i)£n
and #{i <n | o(i) > n} is even) and it is exactly for these elements that one can choose
a monomial representative in Sp,,, (respectively SOg,). For further details see [FH, p.
397]. In case of ambiguity we will denote the Weyl group (respectively Borel subgroups)
of an algebraic group K by W (K) (respectively B(K), B~ (K)).

In order to describe the unipotent conjugacy classes of GG, we will make use of their
standard descriptions in terms of Young diagrams and weighted Dynkin diagrams [BC1],
[BC2].

For the dimension of these classes we will refer to [Ca2, §13.1].

Definition 1. Let K be a connected algebraic group over C and let H be a closed

subgroup of K. The homogeneous space K/H is called spherical if there exists a Borel
subgroup of K with a dense orbit.



32 N. CANTARINI, G. CARNOVALE, AND M. COSTANTINI

Let us recall that the sphericity of K/H depends only on the Lie algebras of K and
H. By an abuse of notation, in order to lighten the presentation, we shall identify
isogenous groups whenever convenient.

If g is of classical type, its spherical nilpotent orbits are classified in the following
theorem.

Theorem 3. [P2, §4] The spherical nilpotent orbits in type A,, and C,, are those corre-
sponding to Young diagrams with at most two columns. The spherical nilpotent orbits in
type B, and D,, are those corresponding to Young diagrams with at most two columns
or to Young diagrams with three columns and only one row with three boxes.

In order to deal with the exceptional Lie algebras, we shall also make use of the
following theorem.

Theorem 4. [P3, Theorem 3.2] The spherical nilpotent orbits in g are those of type
”I’Al + SAl.

1. Spherical conjugacy classes
Definition 2. We say that an element z € G lies over an element w € W, if v € BuwB.

Let O be a conjugacy class in G. There exists a unique element z = z(O) € W such
that O N BZB is open dense in O. In particular,

O=0NB:BC B:B. (1.1)

It follows that if 3 is an element of @ and y € BwB, then w < z in the Chevalley—
Bruhat order of W.

Let us observe that if O is a spherical conjugacy class of G, and if B.x is the dense
B-orbit in O, then B.x C BZB.

Theorem 5. Suppose that O contains an element x € BwB. Then
dim B.z > {(w) + rk(1 — w).

In particular dim O > £(w) +1k(1 —w). If, in addition, dim O < {(w) +rk(1 —w), then
O is spherical, w = z(O), and B.x is the dense B-orbit in O.

Proof. Let U = UNwU " w™! and let BY = UYT. Let us estimate the dimension of
the orbit BY.x.

Step 1. The centralizer Cpw(z) is contained in a maximal torus. Let z = @wb be
the unique decomposition of x in U%wB and let u be a unipotent element in Cpw (z).
Then uuwb = ux = ru = uwbu. By the uniqueness of the decomposition it follows that
u =1, since bu € B and u € U". Therefore the unipotent radical of Cpw () is trivial
and, by [Hu2, Proposition 19.4(a)], Cpw (x) is contained in a maximal torus.

Step 2. We have: dim Cpw(x) < n —rk(1l — w). Without loss of generality, we may
assume that Cpw(z) is contained in 7. Let t € Cpw(z). Then xtz~! =t and, by [SS,
§3.1], wtw~! = t. Therefore Cpw(x) C T™, where

T ={tc T |wtw ' =t},
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thus dim Cgw(z) < dimT* = n —rk(1 — w).

Now let us observe that:

dim B¥.z = dim B* — dim Cgw ()
={(w) +n—dimCpw(z) > l(w) +n—n+1k(l —w) = {(w) + rk(1l — w).

It follows that if, in addition, ¢(w) + rk(1 — w) > dim O, then dim Cpw(z) = dim T
and dim O = £(w) + rk(1 — w). In particular, B.z is the dense B-orbit in O. O

Proposition 6. Let O be a conjugacy class, z = z(0O). If there exists an element
w € W such that w < z and dim O < f(w) + rk(1 — w), then O is spherical with
dim O = {(w) + rk(1 — w) = £(z) + rk(1 — 2).

Proof. From w < z it follows that ¢(w) + rk(1 — w) < £(z) 4+ rk(1 — 2). Indeed, it is
enough to consider the case £(z) = ¢(w) + 1: then rk(1 — 2) = rk(1 — w) £ 1 so that
either £(z) + k(1 — 2) = l(w) + rk(1 — w) + 2, or £(z) + rk(1 — 2) = £(w) + rk(1 — w),
and the inequality follows. Therefore dim O < £(w) +rk(1 —w) < £(z) + rk(1 — 2). By
Theorem 5 we obtain dim O = ¢(z) + rk(1 — z) = {(w) + k(1 —w). O

Let us observe that it may happen that w # z.

Corollary 7. Let O be a conjugacy class, z = z(O). Let wy, ..., wy be elements of W
such that O N BB # @ fori = 1,...,k, and let us consider the set X of minimal
elements in

{lweW|wzw, i=1,...,k}

If for every w € X we have dim O < £(w) + rk(1 — w), then O is spherical.

Proof. Since w; < z for ¢ = 1,...,k, there exists w € X such that w < z. Then we
conclude the proof by Proposition 6. O

Corollary 8. Let O be a conjugacy class. Let wy, wo be elements of W such that
ONBuw;B+#o fori=1, 2. If
{lweW|w2zw, i=1,2} = {w},

then z(O) = wy. If, in addition, dim O < £(wp) + rk(1 — wg) then O is spherical. O

Definition 3. Let O be a conjugacy class. We say that O is well placed if there exists
an element w € W such that

ONB NBWwB# @ and dimO = {(w) + rk(1 — w).

It follows from Definition 3 and Theorem 5 that if a conjugacy class O is well placed,
then it is spherical and z(O) = w. Our aim is to show that every spherical conjugacy
class is well placed.

In the sequel, we will make use of following lemma.

Lemma 9. Let ¢ : Gi — G4 be an isogeny of reductive algebraic groups. Let x1 € G,
xo = ¢(x1) and let Oy, be the conjugacy class of x; in G;. Let w € W = W(G;p) =
W (G2) and let w; be a representative of w in G;. Then B(G1)un B(G1)NB™ (G1)NO,, #
@ if and only if B(G2)wesB(G2) N B~ (G2)NO,, #2. O
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1.1. Unipotent conjugacy classes

In view of Definition 3, we begin this section with a result concerning the intersection
between U~ and the (unique) dense B-orbit in a spherical unipotent conjugacy class.

Lemma 10. Let O be a unipotent spherical conjugacy class, B.x the (unique) dense
B-orbit in O. Then B.x NU™ is not empty.

Proof. Let g € O and let P be the canonical parabolic subgroup of G associated to g
(see [SS] and §1.3). Then g lies in the unipotent radical P* of P, and H = Cg(g) < P.
Since O is spherical, there exists a Borel subgroup B; of G such that HBj is dense
in G. In particular, PB; is dense in G. Without loss of generality, we may assume

P > B, P =Py, with J; C {a1, ..., an} say, and By = 7B~ !, with 7 € Ny, g,
following the notation in [Ca2, §2.8] (here we have J; = &). In our case the subset K of
{a1, ..., ap} is empty. We recall that Nj, g = {6 |0 € D, »} and that Dy, 5 = D;ll,

where Dy, = {o € W | o(®}) C ®*}. Then 7~ *(®],) C ®*. We show that P7B7 !
is dense in G if and only if 771(®T \ &) C &~ (which then implies that wo is the
longest element of W, ). We have

PNiBi~' =(P*NiUF ') (Ly, N7B7 ),

and Ly, N7B7~! = L;, N By is a Borel subgroup of L;, by [Ca2, Propositions 2.8.7,
2.8.9]. Let us denote by r the number of positive roots in ®;, and by s the dimension
of P*N+U+~1. Then P7B7~ ! is dense in G if and only if dim(PN+B7~!) = dim P +
dim B — dimG. Since dimP = dimP* +dimL; = N+ n+7r, dimB = N + n,
dimLy;, N B = n+r, we get that PrB7~! is dense in G if and only if s = 0, that
is P*N7U7~' = {1}. This in turn is equivalent to (®T \ &) N 7(®T) = &, that is
77 1@\ ®y,) C &, as we wanted.

We are now in the position to exhibit an element in B.x N U~. By hypothesis we
have g € P* = ]_[ﬁ€q>+\q>11 Xg. Then 7~ 1g7 lies in ]_[ﬁ€q>+\<1>J1 X,-15 <U™. On the
other hand, from H 7B7~! dense in G it follows that Co (7 'g7) B is dense in G, hence
7~ tg7 lies in B.x. O

Let us observe that we can deal directly with the minimal unipotent conjugacy class.

Proposition 11. Let O be the unipotent conjugacy class of type Ay (minimal orbit).
Then O is well placed.

Proof. Let 81 denote the highest root of g. Then x_g, (1) is a representative of O. For
every positive root o and every t # 0 we have:

T_o(t) = 2ot Hhéaxa(t™) (1.2)

for some h € T (see [Cal, p. 106]). In particular z_g, (1) belongs to Bsg, BN B~. By
[CMG, Lemma 4.3.5] we have {(sg,) +1k(1 —s5,) = #{a € ®* | a £ f1} +1 =dim O,
and the statement follows. [

1.1.1. Classical type. This section is devoted to the analysis of the spherical unipotent
conjugacy classes of G when G is of classical type. Since the case of type A,, has been
treated in [C2] we shall assume that G is of type B,,, C,, or D,,.
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It will be useful for our purposes to fix some notation for Young diagrams corre-
sponding to spherical unipotent conjugacy classes. We will denote by X;,, and Z ,,
respectively, the following Young diagrams with m boxes:

By an abuse of notation, given a unipotent element v € G and a Young diagram of fixed
shape J, we will say that v = J if the conjugacy class of u is described by J.

It will be convenient for our purposes to understand when an element of a classical
group lies over the longest element wy of the Weyl group.

Remark 1. Let G = Sp,,, (respectively SOs, and n even) so that wy = —1. Then the
elements of B~ and B are of the form

tp=11 0 X | XA
5 T F and 0 [ix—1

respectively, where ¥ and A are symmetric (respectively skew-symmetric), and F and
X are upper triangular, invertible matrices. Therefore an element x € B~ lies over wy if
there exist upper triangular invertible matrices X and Y, and symmetric (respectively
skew-symmetric) matrices A, B such that

[Pt o] (X XA o |1, 1[Y] YB »
TSI FS [F| o txt || FL, 0 0 ty-t | (1.4)

A direct computation shows that (1.4) holds if and only if F¥ = X1V i.e., if and
only if F'¥ lies in the big cell of GL,, or, equivalently, if its principal minors are different
from zero (see, for example, [Hu2, Exercise 28.8]).

Similarly, if G = SOgy,41, so that wy = —1, the elements of B~ and B are of the
form
1 oo 1 0| 'y
0 |*F1|0 and —Xy | X | XA
—Fy | F¥ | F 0 0 |tXxt

respectively, where the symmetric parts of ¥ and A are —(1/2)y % and —(1/2)v%
respectively, and F' and X are upper triangular, invertible matrices. Therefore an
element
1 thp | 0
zc=| o [tF1|0 |eB”
“Fy | Fn | F




36 N. CANTARINI, G. CARNOVALE, AND M. COSTANTINI

lies over wy if and only if there exist two upper triangular invertible matrices U and X,
two vectors v and ¢, and two matrices A and S with symmetric part equal to —(1/2)y%y
and —(1/2)c’, respectively, such that the following equality holds:

1 0] % (" o]o 1 [0] '
r=| Xy | X ]| XA 0 |0 |1 —Uc|U[ US |. (1.5)
0 [0 [tx1 0 [L.]0O 0 |0]|U!

A tedious but straightforward computation shows that (1.5) holds if and only if FX
lies in the big cell of GL,, and %X "1 = (—1)" — 1.

Theorem 12. Let Oy be a spherical unipotent conjugacy class of an element g € G.
Then Oy is well placed.

Proof. G of type C,,. For every integer k = 1,...,n let us consider the unipotent
conjugacy class Oy, of Sp,,, parametrized by a Young diagram of shape Xy, 2,. We have:
dim O, = k(2n —k+1).

For every fixed k let us choose the following matrix Ay in O N B~:

I, | 0,
A'“[Ié In]

Iy, 0
0 Onfk :| '

In W let us consider the element wy sending e; to —e; for every ¢ = 1,...,k and
fixing all the other elements of the canonical basis of C*. We have:

where I}, is the n x n diagonal matrix I}, = [

rk(1 — wy) + (wy) = k(2n — k + 1) = dim Ok.

If we choose the representative

0 0 I 0
" 0 I,-x|0 0
=, o0 o o0 |
0 0 0 I._&
then Ay = Uty By, where
-1 0 1
| I | I, _ 0 I,k
Uk—[on In] and Bj = . ‘ T 0
" 0 In—k

This identity shows that Ay lies over wy since Uy and By belong to B. This concludes
the proof for G of type C,.

G of type D,,. Let us consider the unipotent conjugacy classes of SOg, associated to
Young diagrams either of shape Xof 2n, with k = 1,..., [n/2], or of shape Zs 2, with
k=0, ..., [n/2] —1. Let us recall that when n is even there are two distinct conjugacy
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classes, O,/ and O',, /5, associated to the Young diagram of shape X, o,,, with weighted
Dynkin diagrams

0 0 0 0 2
D:8 3 < and D/: <
2 0

respectively. B

Moreover let Oy (for k < %) and Oy, be the unipotent conjugacy classes with Young
diagrams Xog 2, and Zay 2r,, respectively.

We have: dim Oy, = 2k(2n — 2k — 1), dim Oy, = 4(k + 1)(n — k — 1) and dim O;m =
n?—n= dim Oy, 3.

Now let us consider the following element wy in the Weyl group of sos,:

oo

ej+— —e;+1 ifiisodd and 1<7<2k—1,
wy :{ e;— —e;_q ifiiseven and 2 <i <2k,
e; — e; if ¢ > 2k.

Then ¢(wy,) = 4nk —4k? — 3k and tk(1 —wy) = k, therefore £(wy) +1k(1—wy) = dim Oy.

Let us introduce the following matrices: S; = _01 (1) } Sk = diag(S1,..., S1) of
TS| 0 (Lo, (L | -
order2k,Jk[ 0 Onzk]’uk[Jk In}ande[On T, ]

Notice that Hy € B and uy lies in O N B~ for k < n/2. The weighted Dynkin
diagram associated to u,, /o shows that u,, /o € O, /2N B~. Besides, the following identity
of matrices holds: HpwyH), = up where

J]
In—Qk ‘ i

T ‘ 02k

Wy =
In—Qk

This shows that wuy lies over wy for k =1,...,[n/2].

Now let n be even and k = n/2, and let us consider the automorphism 7 of SO,
arising from the automorphism 7 of the Dynkin diagram interchanging «,_1 and «,,.
Then “;1/2 = 7(upn/2) € B™ is a representative of the conjugacy class (’);/2 associated
to D'". If we apply the map 7 to the equality w, /o = Hy, /21, 2H,, /2, we find that u;l/Q
lies over w;/Q = Twp;2T €W C Aut(®). As 7 permutes simple roots, it is clear that
U(wny2) = L(w], )5). Therefore, £(w] ) + k(1 — wy 5) = L(wp/2) + k(1 — Wy 2) =
dim O,/ = dim O;/Q. This concludes the proof for G of type D,, and O a conjugacy
class corresponding to a Young diagram of shape Xoy 2, with k& < [Z].

Now we want to prove the statement for (5k. Let us first assume n = 2m. Let

tF=1] 0
Um—1 = [ 5 T F ] where:
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e F' is the upper triangular n X n matrix with all diagonal elements equal to 1, the
first upper off-diagonal equal to (—1,0,—1,..., 0,—1) and zero elsewhere;

e ¥ is the skew symmetric matrix whose first upper off-diagonal is (1,0, 1,0,...,0, 1),
all further odd upper off-diagonals are equal to (2,0,2,0,...,0,2) and all even off-
diagonals are equal to (0,0,...,0).

One can show that v,,_1 € 6m_1 and that F'Y belongs to the big cell of GLoy,.
Therefore, by Remark 1, v,,_1 € B~ lies over wy. Observe that

O(wo) + k(1 — wp) = n? = 4m? = dim O,,,_,

and that equality holds also when n = 2, i.e., when SOs, is not simple. Hence the
statement is proved for n even and k =n/2 — 1.

Let us consider the conjugacy class (5k for n not necessarily even and the embedding
j2k+2 of SO4k+4 into SOQnS

) . Al|B . I _op_2
J2k42 ¢ C | D C ‘ D

0p—2k—2 I o2

The embedded image of v,,_1, for m = k 4+ 1, belongs to B~. It is a representative of

Oy and lies over 1y, = ~ ok 0 . One can check that ¢(ng) + rk(1 —nx) =
0 In_ok—2
dim Oy, so the statement is proved for G of type D,,.

G of type B,. Let us consider the unipotent conjugacy classes Cy and C~h of shape
Xok,on+1 and Zop ont1, respectively, with £k =1,...,[n/2] and h=0,..., [(n —1)/2].
We have: dim Cy, = 4nk — 4k? and dimCj, = 2(h + 1)(2n — 2h — 1).

Let us consider the following embedding of SOg,, in SOgy,41:

v

Under this embedding a representative of an element w € W(SOs,,) is mapped to a
representative of an element in W (SOaz,,41). Through the same embedding the Borel
subgroup B(SOaz,) (respectively B~ (SOa2,)) can be seen as a subgroup of B(SOap41)
(respectively B~ (SO2,41)). The image of the representative uy of the class O C SOq,
is a representative of the class Cx, C SOgy,41, it belongs to B~ (SOa2,41) and lies over wy,
where wy, is the same as in the corresponding case of SOs,. The length of wy, viewed
as an element of W(SOay,41), is (wy) = 4nk — 4k? — k and 1k(1 — wy) = k, therefore
L(wy) + rk(1 — wy) = dim Cy,. Hence, we have the statement for Cy.

Similarly, if k¥ < [n/2] — 1, the image of the representative vy of the class 5k C SOs,
is a representative of the class 5k C SO2p4+1. It belongs to B~ (SOay+1) and lies over 7y
where 7, is the same as in the corresponding case of SOs,,. If we view 75 as an element
of W(SO2,,41), we obtain:

O(m) + tk(1 — mp,) = 4nk — 4k® — 8k + 4n — 4+ 2k + 2 = dim Cy,,
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so the statement holds for Cj, with k < [n/2] — 1.

Let us now prove the statement for the classes corresponding to Young diagrams with
no rows consisting of only one box, i.e., for Cn%l when n is odd. In this case

dimg% =n? +n=Ll(wo) + rk(1 — wp).

1 || o0
Let us consider the element v = 0 [I,| 0 | wherey = {10 ... 0) and X is
711) by In
the n x n matrix with diagonal equal to (=1/2,0,...,0), first upper off-diagonal equal
to (1,1,...,1), first lower off-diagonal equal to (—1,—1,...,—1), and zero elsewhere.

Then v is a representative of C no1. One can check that X belongs to the big cell of GL,,
and that f¢p X719 = —2. By Remark 1 we conclude the proof. [

1.1.2.  Exceptional type. This section is devoted to the analysis of the spherical
unipotent conjugacy classes of G when G is of exceptional type. Let us introduce some
notation: we shall denote by (31 the highest root of g and, inductively, by 3,, for r > 1,
the highest root of the root system orthogonal to 81, ..., 3.—1 when this is irreducible.
Similarly, we shall denote by 7; the highest short root of g and inductively, by ~,, for
r > 1, the highest short root of the root system orthogonal to 7,...,7,—1 when it is
irreducible.

Theorem 13. Let O be a spherical unipotent conjugacy class. Then O is well placed.

Proof. The unipotent spherical conjugacy classes of G are those of type rA; + sﬂl. We
shall deal with the different types of orbits separately:

Type A;. See Proposition 11.

Type Aq (g of type F4, G2). Let g be of type Ga. The element z_., (1) is a representative
of the class O of type A; and lies over Sy, by (1.2). Therefore, 2(O) > s,,. Besides,
since O contains the minimal conjugacy class, by (1.1) it follows that 2(O) > sg,,
hence, by Corollary 8, z2(O) = wg. We now conclude using Lemma 10 and noticing that
dim O =8 = (wp) + rk(1 — wp).

Let g be of type F4. The element x = x_g, (1)x_g,(1) is a representative of the class
of type :&1, as the calculation of its weighted Dynkin diagram shows. By (1.2) z belongs
to B$g, $3,B, and one can check that £(sg, sg,) + rk(1 — sg,83,) = 22 = dim O.

Type 2A1 (g of type Eg, E7, Eg). The element z_g, (1)z_g,(1) is a representative of this
class. By construction and by (1.2) z_g, (1)z_g, (1) lies over sg, sg,. One can check that
0(sp,88,) + k(1 — s8,83,) = dim O.

Type 3A1 (g of type Eg, E7, Eg). If g is of type E7, there are two conjugacy classes
of type 3A; that, following [BC2], we shall denote by (3A1)’, (3A1)”. A representa-
tive of the class (3A1)" is z_g, (1)z_p,(1)x_q,(1), as one can verify by computing its
weighted Dynkin diagram. Relation (1.2) implies that _g, (1)x_g, (1)z_q, (1) lies over
58, S8y Saz, Since az is orthogonal to B; and [z. One can verify that £(sg, sg,Sa,) +1k(1—
$8,58s8a,) = b4 = dim O.
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In order to handle the remaining classes of type 3A1, we consider subalgebras of type
D4 in g and the corresponding immersions of algebraic groups. We realize the root
systems of these subalgebras as the sets of roots orthogonal to ker(1 —w) where w € W
is chosen as follows:

® Wy = 58,58,5855q, if g is of type Eg;
® 5318828 as+az+20u+asSas if g is of type E7;
® 53,53,58;5q, if g is of type Es.

In Theorem 12 we proved that if O’ is the class of type 3A; of Dy, then z(O') is
the longest element of the Weyl group of Dy. By construction, in each case w is the
longest element of the Weyl group of the corresponding copy of D4. One can verify that
£(w) + rk(1 — w) is equal to the dimension of the unipotent orbit of type 3A; if g is of
type Eg or Eg and (3A;)’, if g is of type E7. In the latter case, Theorem 5 implies that
a representative of the class of type 3A; in D4 is a representative of the class of type
(3A1)".

Type Ay + /&1 (g of type F4). Let us consider the subgroup of G of type B4 generated
by X1, for a € {as + 2a3 + 204, a1, az, ag}. By Theorem 12, if O’ is the conjugacy
class of type A1 + /&1 in By, then z(O’) is the longest element of the Weyl group of
B4 and coincides with the longest element of W. Therefore there is a representative
of the conjugacy class of type A; + A; in Fy in BuwgB. We have: dimQO = 28 =
£(wp) + rk(1 — wp).

Type 4A; (g of type E7, Eg). We observe that dim O = dim B = £(wg) + rk(1 — wyp)
therefore we need to prove that z(Q) = wp. In order to do so we shall apply Corollary 8.

Let us consider the following subalgebras of type Dg in g and the corresponding im-
mersions of algebraic groups: as above, we realize the root systems of these subalgebras
as the sets of roots orthogonal to ker(1 — w;) where the w;’s in W are chosen as follows:

e if g is of type E7:
W1 = 881 5B Sas+az+2as+asSazSasSas = WoSar;
W2 = 88,583 Sas+az+2as+asSazSasSar = WoSas;
e if g is of type Eg:
W1 = 88,862 5B3Sas+as+2as+asSazSas = WoSazSar;
W2 = 53,56, 5B3Sas+as+2as+asSasSar = WoSasSas -
It is shown in Theorem 12 that if O is the conjugacy class of type 4A; in Dg then
z(0’) is the longest element of the Weyl group of Dg which coincides with w; in each

case. The only element in W which is greater than or equal to both w; and ws is wy,
hence the statement. [

1.2. Semisimple conjugacy classes
As for spherical unipotent conjugacy classes, we establish a result concerning the inter-
sections B~ N O N BwB, with w € W, when O is a semisimple conjugacy class.

Lemma 14. Let t be a semisimple element of G such that Oy N BwB # & for some
weW. Then B-NO;NBwB # &.
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Proof. Without loss of generality, we may assume that ¢ lies in T. Let g € G be such
that g~ 'tg € BwB, and let ¢ = u,&b be the unique decomposition of g in U235 B. Then
6~ tutu,0 belongs to O N BwB N B~ since 6 tu,o liesin U~. O

1.2.1. Classical type. In this section we shall analyze the spherical semisimple con-
jugacy classes of G when G is of classical type. Using [Br3, Remarque §0], we list the
spherical semisimple conjugacy classes (up to a certain element of the torus) in Table 1,
where we indicate a representative g of each semisimple class Oy, the dimension of Oy,
and the structure of the Lie algebra of the centralizer of g. By ( we shall denote a
primitive 2n-th root of 1. Note that D; must be interpreted as a 1-dimensional torus
T1 wherever it occurs and that Ay and By denote the trivial Lie algebra.

Remark 2. Tt is well known that X,Y € Sp,,, are conjugated in Sp,,, if and only if they
are conjugated in GLa,,. The same holds for X,Y in the orthogonal group O,, (see, for
example, [SS, Ex. 2.15 (ii)]). It follows that if X,Y € SO,, are conjugated in GL,, and
Co,,(X) ¢ SOy, then X and Y are conjugated in SO,,. In contrast, if Co , (X) C SOy,

then the conjugacy class of X in O,, splits into two distinct conjugacy classes in SO,,
of the same dimension.

Theorem 15. Let Oy be a spherical semisimple conjugacy class of G. Then Oy is well
placed.

Table 1
| | dim O, | Lie(Ca(g)) |
An—l
g = diag(—Ix, In—) _
keven and 1 < k < [%} 2k(n — k) CtAp—r 4 Ani
ge ke = diag(—Cly, Cln—x) _
kodd and 1 < k < [2] 2k(n—k) | C+Ap1 4 Anpos
B'n/
Pk = dlag(la 7Ik7 Infk; 7Ik; In7k>
1<k<n 2k(2n—2k—|—1) Dy + Bo—k
by = diag(1, M,,, \7'1,,) 5
AeC\{0,£1} nen CtAns
Cn
o = diag(—1Ix, In—k, —Ik, In—rk) B
Cx = diag()‘al’n—la )‘_1) I’VL—I) o
AeC\ {0, £1} n—2 C+ G
c = diag(i I,, —i I, n?+n CH+ A,_q
D,
o = diag(—Ix, In—k, —Ik, In—rk) B
c = diag(i I,,, —i I,,) n®—n C+A,_1
d = diag(i In—1, —%, —i Ipn_1, i) n?—n C+A,_1
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Proof. For each class O, we shall exhibit an element w of the Weyl group such that
dim Oy = ¢(w) + rk(1 — w), and a representative of Q4 in BwB. The proof will follow
from Lemma 14.
—nl 0 0
Type An—1. Let tg = 0 Nly—or 0 |, where n = {
7277Yk 0 nIk

¢ if k is odd,
1 if k is even,
0 1

and Y}, is the k x k matrix .- |. Thent; € Oy,NB™ ifkisevenand t, € O
1 0

NB~

9¢.k

if k is odd. As in the proof of [C2, Theorem 3.4], t;, € BB where
wg=Mmn—1,....n—k+1Lk+1,k+2,...,n—k,k,...,1)
and f(wg) + 1k(1 — wy) = 2k(n — k).

Type C,,. Let us consider the conjugacy class O,,. The following element vy lies in
NNOg,:

Oof 0 Sk 0

by = 0 Inor| 0 Op_ok
-5 0 Oof 0

0 On—ok 0 I ok

where Sy is the 2k x 2k matrix introduced in the proof of Theorem 12. Let v be the
image of vy, in W. Then £(vy) + rk(1 — vy) = dnk — 4k? = 4k(n — k) = dim O,, .

Let us now consider the class O.,. Let us first assume n = 2 With the help
A O O 0
0 1 0
of Remark 1, one can check that the element z = ] 1 0
A O O 1
is contained in O., N B~ N BuyB. Let us now suppose n > 2. Then the element
A
1 On
c n—2 D is a representative of O., lying over the following element
0n—2 ‘ In—2

N ifi=1,2,
wle;) =
e;  ifi#1,2

We have: {(w) +1k(1 —w) =4n —2 =dim O,
Let us now consider the class Q.. One can check that the element [ f} Ig ] lies
in O, N BB and that dim O, = n? +n = £(wg) + k(1 — wp).

Type D,,. Let us notice that the centralizer of o in Os, contains the element
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which does not lie in SOy,,. By Remark 2, an element x € SOg,, belongs to O,, if and
only if it is conjugated to ox in GLg,.
Let us consider the element wy, of W(SOa,) represented in N by:

02 ‘ Ioy

L I, o

Ioy ‘ 02k
On—Qk

0n72k

In—2k

Then wy, lies in Oy, and £(@;) + rk(1 — @) = 4k(n — k) = dim O,, .

Let us consider the conjugacy class O, of ¢. In this case Co,, (c) C SOg, so the
conjugacy class of ¢ in Og, splits into the conjugacy classes O, and Oy in SOs,. Let
Jr be the n x n matrices introduced in the proof of Theorem 12. If n is even, then the

element w = { JO J% 2 ] € N is a representative of Q.. Besides, if w € W is the
n/2
image of w in W, then £(w)+rk(1—w) = n? —n = dim O,. If n is odd, then the element
0
e ‘ Jn-1)/2
W = 5 lies in O. N N and 4(w') +1k(1 —w') =n? —n =
n—1
Jn—1)/2 ‘ _

dim O, where w’ is the image of v’ in W.

Let us now consider the class Q4. If n is odd, then —d € O, so that z(Q4) = w =
2(0.). If n is even, then d = 7(c¢), where 7 is the automorphism of SOg,, introduced
in the proof of Theorem 12. Therefore 7(w) € N is a representative of Oq and its
projection w7 is such that £(w™) +1k(1 — w™) = n? — n = dim O,.

Type B,,. Let pr, with k = 1,...,n be the semisimple elements of SOs,, 1 introduced in
Table 1. The following cases need to be analysed separately.

Case I: 1 < k < [5]. We already proved that, under these hypotheses, the conjugacy
class Oy, of oy in SOy, contains the element

0 Iy,
’(;17 _ In72k 071*276
k Top, 0
On—Qk In—Qk
1
Then v, = [ 5 lies in O,, NN. Let vy, be the element in W (SOa2p41) represented
k

by . Then £(vi) +rk(1 —v) =2k(2n — 2k + 1) =dim O,,.

Case II: [§] < k < n. Let us consider the following element of N:

1

- O2(n—k)+1 —Io(n—k)+1

Dty = —lop—n—1 O2k—n—1
—Ia(n—k)+1 O2(n—k)+1

O2k—n—1 —Iop—n_1
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Since the element diag(—1, I2,) belongs to the centralizer Co,, , (px), it follows from
Remark 2 that Z,_j lies in O, . Besides, £(Z,_1) + k(1 — Z,_x) = 2k(2n — 2k + 1) =
dim O,, .

Finally, let Op, be the conjugacy class of by. Then dim O, = n? +n = l(wy) +
rk(1 — wop). Let

1 RY 0
v = 0 | A'I,] 0
=X | AX | M,
where ¢ = {10 ... 0) and X is the n x n matrix with diagonal (=1/2, 0, ..., 0), first
upper off-diagonal (1, 1, ..., 1), first lower off-diagonal (—1, —1, ..., —1), and with

zero elsewhere. Since the element diag(—1, Ia,) belongs to the centralizer in Og,41 of
by, v lies in Oy, and, by Remark 1, lies over wy. 0O

1.2.2. FExceptional type. In this section we shall analyze the spherical semisimple
conjugacy classes of G when G is of exceptional type. Using [Br3, Remarque §0], we
are able to list the spherical semisimple conjugacy classes up to a certain element of the
torus. The results are collected in Table 2, where we indicate a representative g of each
semisimple class O, the dimension of Oy, and the structure of the Lie algebra of the
centralizer of g. If g has rank n, we shall denote by w;, for ¢ = 1,...,n, the elements in
h defined by

<aj7wi>:5jiv j=1...,n

Theorem 16. Let Oy be a spherical semisimple conjugacy class. Then Og4 is well
placed.

Table 2
| dim O, | Lie(Ca(9)) | w
Eg
p1 = exp(miws) 40 A+ As Wo = S8, 58,585 Saug
p2 = exp(miw) 32 C + Ds S8, 58,
E;
q1 = eXp(’]TZ'uVJ2> 70 A7 wo
g2 = exp(miw) 64 A1 + D6 | 58,508,502 +as+204tasSas
qs = exp(miwy) 54 C+Es SB1585Sar
Es
r1 = exp(miwn) 128 Dg wo
ro = exp(miws) 112 A; + E7 S81585583Sar
Fq
f1 = exp(mwian) 28 A +GCs wo
fo2 = exp(micy) 16 B4 Sy,
Go
e1 = exp(miws) 8 A+ A4 wo
ez = exp((2miw)/3) 6 Az £
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Proof. Let us consider the conjugacy class O, in Eg and the element

2 = 5p,5p,25,(1)zp, (1) exp(micn )zg, (—1)zs, (—1)55) 55,

Then z = x_g, (t1)x_g, (t2)38, $p, 28, (1)x s, (1) exp(mwl)sﬁségll for some 1 and to dif-
ferent from zero so that z = x_g, (2t1)r_p,(2t2)h for some h € T. Hence z lies in
Op, N Bég, 53,B N B~. Besides, {(sg,53,) + rk(1 — s8,53,) = 32 = dim Op,.

In a similar way, for the conjugacy class Og4, in E7, let us consider the element

Y = $8,5p,50,78, (1), (1)Za, (1) exp(midr)Ta, (—1)zg, (—1zg, (—1)$, 85 55]

=T-p (tl)m—& (t2)x—a7 (t3)551 éﬁ2 SarTaq (1)$52 (1)$61 (1) exp(ﬂah)é;}é;jé;ll

for some t1, to, and ¢3 different from zero. Then y = z_g, (2t1)z_g, (2t2)z_q, (2t3)h for
some h € T. Hence, y lies in Oy, N Bsg, $3,5q,8 N B~. Besides, (s, $8,5q,) + rk(1 —
58,58;5a;) = 54 = dim Oy, .

Now let g be of type F4 and let us consider the conjugacy class Oy,. Let us fix a
short root v which does not belong to the root system of Ci(f2) (which is of type By),
and let w € W be such that w(y) = —v;. Then we have:

@ = 2 (1) far (D™ = 2y (1)

for some ¢t # 0 and some h € T'. Therefore z lies in Op, N Bs,, BN B~. Since the root
system of type F4 is self-dual, we have:

0(sy,) +1k(1 — 54,) = £(sp,) + k(1 — 53,) = 16 = dim Op,.

Now let g be of type Go. Then the element

3;11I71 (_1)62‘77’71 (1)‘é’)'1 = 5;11-%71 (t)egé,yl ,

for some t # 0, lies in B$,, BN O, N B~. As in type F4 we have:
0(sy,) +1k(1 — 54,) = (sp,) + k(1 — s53,) =6 = dim O,,.

For the remaining spherical semisimple conjugacy classes we shall assume G = G,q
and use Lemma 9. For each of these classes O, we shall prove the statement by exhibiting
an element w € N N O, such that {(w) 4+ rk(1 — w) = dim O, and by using Lemma 14.
The elements w’s are listed in Table 2. Let us observe that for every element w in Table
2 corresponding to these classes, we can choose a representative w € N of order two in
Gaq. For w = wp, when wo = —1, this fact was observed in [V6, Lemma 2]. In general
this can be seen using the expression of w as a product of reflections with respect to
mutually orthogonal roots as in Table 2 and [Cal, Lemma 7.2.1]. From the analysis of
the conjugacy classes of the involutions of G,q in [K1] (see also [H, §X.5]), we deduce
dim Oy, < l(wp) +1k(1 — wp). If w = wp, by Theorem 5, dim O, = €(wp) 4+ rk(1 — wp).
By [H, §X.5, Tables II, III] there is only one conjugacy class of involutions in G,q whose
dimension is equal to £(wp) + rk(1 — wg). Therefore wy lies in the spherical semisimple
conjugacy class of maximal dimension.

Finally we are left with the conjugacy classes O, and O,,,. In order to prove that the
element w lies in the corresponding orbit O, when g is either g2 or 72, it is sufficient to
use [H, §X.5, Tables II, III] and estimate the dimension of the centralizer of w. One can
perform this computation in the Lie algebra of GG, namely, calculating the dimension of
Lie(Cg(w)) = {z € g | Ad(w)(z) = x}. This can be done analyzing the eigenspaces
of Ad(w) in the stable subspaces of the form go + guw(a), With the use of [Cal, Lemma
7.2.1]. O
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1.3. The remaining conjugacy classes

In this section we shall investigate the spherical conjugacy classes O, of elements g € G
that are neither semisimple nor unipotent. If the conjugacy class O, of an element g
with Jordan decomposition su is spherical, then both O4 and O, are spherical. Indeed,
if BCc(g) is dense in G, then also BCq(s) D BCq(g) and BCq(u) D BCg(g) are
dense in G. Therefore the semisimple parts of the elements we shall consider in this
section are those occurring in § 1.2. Let us notice that when the identity component
of the centralizer of such a semisimple element is not simple, it is isomorphic either to
an almost direct product GG1G5 or to an almost direct product G1GoT7, where T; is a
one-dimensional torus. When this is the case, we will identify G; with a subgroup of G
and write a unipotent element commuting with s as a pair (ug, us) or, equivalently, as a
product ujus with u; € G; unipotent. If the conjugacy class of su = sujus is spherical,
then the conjugacy class of u; € G is necessarily spherical.

In the sequel we will need the following definition and results.

Definition 4. Let G be a reductive connected algebraic group. Let H be a closed
subgroup of G. We say that H = H"K is a Levi decomposition of H if H" is the
unipotent radical of H and K is a maximal reductive subgroup of H.

In characteristic zero such a decomposition always exists.

Proposition 17. [Br3, Proposition I.1] Let G be a reductive connected algebraic group
over an algebraically closed field of characteristic zero. Let H be a closed subgroup of
G with Levi decomposition H = H*K. Let P be a parabolic subgroup of G with a Levi
decomposition P = P"L such that H* C P" and K C L. Then the following conditions
are equivalent:

(1) G/H ‘s spherical;

(2) K has an open orbit in P*/H" and the generic K -stabilizer of P*/H" is sphe-

rical in L.

When H is the centralizer Cz(u) of a unipotent element in a semisimple algebraic
group G, a construction of the subgroups P, K and L from Proposition 17 is given
in [E, Lemma 5.3], using key results of [SS]. Let us recall this construction. Let e
be the nilpotent element of § = Lie(G) corresponding to u and let (e, h, f) be an
SLo-triple in g. The semisimple element h determines a natural Z-grading on g by
gj == {2 € 8| [h, 2] = jz}. The subalgebrap := P, g, is parabolic and p* := B ,. 9;
is its nilpotent radical. The subalgebra p is called the canonical parabolic subalgebra
associated to e and it is independent of the choice of the SLo-triple. Let P be the
parabolic subgroup of G whose Lie algebra is p and let L be the connected, reductive
subgroup of G whose Lie algebra is go, i.e., L = {g € G | Ad(g)h = h}°. The group P is
called the canonical parabolic associated to v and P = P"L is a Levi decomposition of P.
It turns out that Cx(u) C P, Ca(u)* C P* and that Ca(u) = (PN Ca(uw))(Ca(uw) N L)
is a Levi decomposition of Cg(u).

A similar construction works in the case of nonsemisimple elements as follows.
Lemma 18. Let G be a connected reductive algebraic group with Lie algebra g, let g € G
be an element with Jordan decomposition g = su, u # 1, and let H = Cg(g). Then

the Levi decomposition P = P“L of the canonical parabolic P associated to u induces a
Levi decomposition H = H*K of H with K = LN H.



SPHERICAL ORBITS 47

Proof. The semisimple element s lies in Cz(u) and u lies in Cx(s)°, which is a reductive
subgroup. Hence, there exists an SLo-triple (e, h, f) of elements of Lie(Cx(s)°) = {= €
g | Ad(s)x = z} where e is the nilpotent element associated to w. It follows that
s € Cg(h) = {y € G| Ad(y)h = h} = L where L° = L. The canonical parabolic P
associated to u contains H = Cx(u) N Cx(s). The subgroup K = LN H is reductive
because it is the centralizer of a semisimple element s € L N Cg(u) (see [St2, Corollary
9.4]). The subgroup
V=P'NH=Cgs(u)*NCx(s)

is a unipotent normal subgroup of H. In order to prove that H = KV is a Levi
decomposition of H and, in particular, that H* =V, it is enough to show that H C KV
because K NV = 1 follows from the Levi decomposition of Cx(u). Let z € H. As
H C Cg(u), there exist unique v € Cix(u)* and ¢ € Ca(u) N L such that z = ot.
Then svs™! € V because V is normal in H, and sts~! € Cg(u) N L because both
t, s € Ca(u)nN L and L is normal in L. Besides, z = szs~!. By the uniqueness of the
decomposition in Cs(u), we necessarily get sts™! =t and svs™! = v, i.e., t € K and
veV. O

Corollary 19. Let G be a connected reductive algebraic group with Lie algebra g, let
g € G be an element with Jordan decomposition g = su, u # 1, and let H = Cg(g).
Then the Levi decomposition P = P“L of the canonical parabolic P associated to u
induces a Levi decomposition H® = H*K° of H°, with K =LNH.

Proof. The corollary follows from H* C H°. [

As we have already observed, the sphericity of G /H depends only on the Lie algebras
of G and H. In particular, for the analysis of the conjugacy class of an element g € G,
it does not matter whether we consider C(g) or its identity component.

Remark 3. Let G; C G2 be reductive algebraic groups and let u be a unipotent element
in G1. Suppose that the conjugacy class of u in Gs is spherical. Then the conjugacy
class of u in G is spherical by [P2, Corollary 2.3, Theorem 3.1].

Again we shall handle the classical and the exceptional cases separately.
1.3.1. Classical type. In this section we shall assume that G is of classical type.

Proposition 20. Let g = su € G with s # 1 and u # 1. If the conjugacy class of g is
spherical, then only the following possibilities may occur:

o G is of type C,, and, up to a central element, g = oru with u = X 2p;
o G is of type B,, and, up to a central element, g = p,u where u = Xo¢ ony1 with

t=1,...,[2].

Proof. We shall use Proposition 17 in order to show that if g is not as in the statement,
then O, cannot be spherical. With notation as in Lemma 18, we shall describe K° and
its action on P“/H" & p" /h“.

Type Ap_1. Since Oy is spherical, s is conjugated, up to a central element, to one of
the gi’s or of the g¢ 1’s (see Table 1). We shall show that necessarily v = 1, leading to
a contradiction. As u is a unipotent element of the centralizer of g (respectively g¢ k),
it can be identified with a pair (uj, ug) € SLg X SL,,—k. It is enough to prove that if
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one of the u; # 1 and the other is equal to 1, then O, is not spherical. Suppose that
u = (u1, 1) with u; spherical with Young diagram of shape X, y for 1 < ¢t < [5} We

2
have:

o p"/b" = Maty X Maty, _p;
o K= {(A, B, C) € GL; x GLg_g; X GL,,_ | det A2det BdetC = 1};
e action of K on p*/h*:

(A, B, C).(P, Q) = (A, PC™', CQA™)

where Y; is a symmetric ¢ x ¢ matrix such that ;> = 1, depending on the choice
of Uuq.

Since Tr(QY:P) is a nontrivial polynomial invariant of the action of K on p*/h*, O, is
not spherical. The case ug # 1 is similar and left to the reader.

Now let G be orthogonal or symplectic. Then, if the conjugacy class of g = sujus is
spherical, then u; and ug are either of shape X; ,, or of shape Zs; ,,,, with u; of shape
Zat,m only if G = SO,,.

Type C,,. Let us distinguish the following possibilities for s:
(i) s = 0. If ug = Xy 0 with ¢ > 1 and ug = 1, we have:

o p"/h" = Mato, ok +;
o K° = 8py, o X SO¢ X Spay_o43
e action of K°: orthosymplectic of Spy,, 95, X SOx.

If t > 2, the orthosymplectic action of Spy,, o, X SOt on Mata,_s;+ cannot have a
dense orbit because it has a nontrivial invariant. Indeed, if X € Mato, 2+, E is the
matrix of the form with respect to which SO; is orthogonal, and if J is the matrix of the
form with respect to which Sp,,, o, is symplectic, then Tr((E ‘X JX)?) is a nontrivial
invariant for the Sp,,, 5, x SO;-action. Then, if u; is of shape X; o1 and ¢ > 2, O, 4
is not spherical. By the symmetry in the roles of u; and us, the same holds if us is of
shape X 2,2 with t > 2.
If uy = X120k and ug = Xy 25,—2k, We have:

° pu/bu o (C2n—2k D (CQk—2 ) (C;
o K° = 8py, o X SPog_2;
e action of K°: standard of Spy,,_,;, @ standard of Spy,_, @ trivial.

It is clear that the action of K° on p“/h* cannot have an open orbit.

(ii) s = cx. Since u € Cg(cy),

Uy U,

Us U,

where [ 51 ZQ } is a spherical unipotent element of Sp,,,_,. In particular, the Young
3| Ua

diagram of u has shape X}, 2, with 1 <k <n —1. We have:
o p'/h" = Cr e Ch
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o K°=C* x SOk X Spay,_ok_2;
e K° acts as follows: (a, 4, B).(v,w) = (aAv,a~ 1 Aw).

This action never has a dense orbit since the product (*vEv)(*wEw) is invariant.
A
(iii) s = ¢. Then necessarily u = { e } where A is a spherical unipotent

element of SL,,. In particular, the Young diagram of u has shape Xy 2, with 1 < k <
[5]. We have:

o p¥/h" = Sym, & Sym,, & Matg n,_or O Mat,,_or , where Sym, is the space of
k x k symmetric matrices;

e K° = GLy x GL, _og;

e K° acts as follows:

(A,B).(Z,L,M,N) = (Y4 AY, ZY;, 'AYy, 'AT LA™, "TA"'M B, BNY}, 'AY},).
This action never has a dense orbit since Tr(Y3, ZY} L) is a nonzero polynomial invariant.

Type D,,. Let us distinguish the following possibilities for s:

(i) s = ¢. This case can be treated as for G of type C,,. In the computations, Sym,
is replaced by Anty, the space of skew-symmetric £ X k matrices. When k& = 1, the
product M N is a nontrivial invariant.

(ii) s = d. If n is odd, the proof follows by noticing that O. = O_4. If n is even, the
conjugacy class of cu is spherical if and only if the conjugacy class of 7(cu) = d7(u) is
spherical. Then the proof follows from (i).

(iii) s = og. If uy = Xos 2k and ug = 1, we have:

o p"/h* = Mato, —ok,2t;
o K° =502, 2 X Spy; X SOz, _4¢;
e the action of K° is the orthosymplectic of SOg,_2k X Spy;.

If uy = Zot 21, and up = 1, we have:

° pu/bu o Mat2n72k,2t D (C2n72k @ (CQt;

o K° =502, 2t X Spy; X SOgp_4¢—3;

e action of K°: orthosymplectic of SOg,—2xr X Spy, @ standard of SOgp_2r @
standard of Sp,,.

The orthosymplectic action of SOg,,—2x X Spy; on Mata,, ok 2+ has a nontrivial invariant,
namely Tr((J ‘X EX)?), unless ¢ = 0 which occurs only if u; = Zat 2k -

If wi = Zpox, the standard action of SOs,_o; has no dense orbit because if v €
C?7=2F then *vEv is a nontrivial invariant. Therefore when us = 1, the conjugacy
class of g is not spherical unless ¢ = u; or g = oy, leading to a contradiction. By the
symmetry in the roles of u; and us, the result follows for G of type D,,.

Type B,,. Let us distinguish the following possibilities for s:
(i) s = pg. Let u = Xop,, withr =2k ifup =1, and r =2n -2k + 1 if u; = 1. We
have:
o p"/b* = Mato,y1-r2¢;
o K° = SOQnJrlfr X Sp2t X Sor74t;
e the action of K° is the orthosymplectic of SOgp 41— X Spoy;.
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Let uw = Zot ., with r =2k if up =1, and » = 2n — 2k + 1 if u; = 1. We have:

° pu/bu o Mat2n+1_7-72t o) (C2n+1—7' D (CQt;

o K°= SOQnJrlfr X Sp2t X SOT741§73;

e the action of K° is orthosymplectic of SOg2y,4+1-_r X Spy, @ standard of SO2p41_»

@ standard of Sp,,.
In both cases, by arguments similar to the previous ones, the action of K° on p“/h“
can never have a dense orbit unless g = p,u where u = Xo 25,41.
1
(ii) s = by. Then, necessarily, u = A where A is a spherical unipotent
tA—l

element of SL,,. In particular the Young diagram of u has shape Xaj 25,41 with 1 < k <
[5]. We have:

e pU/h* =2 C* @ C* @ Anty, ® Anty © Maty ,,—2r ® Mat, ok k;

o Ko GLk X GLn_Qk;

e K° acts on p“/h* as follows:

(A,B).(v,w, Z,L,M,N)
= ("A7, Vi AYw, Yy AY3, ZYy TAY,, TATY LA™Y AT M BT, BNY;, 'AY;)
where Y}, is as above.

This action never has a dense orbit since ‘wY,v is a nonzero polynomial invariant. The
statement of Proposition 20 now follows. 0O

Let us now analyze the remaining possibilities.

Theorem 21. Let g = su be an element of G such that:
o cither G is of type Cp,, s = 0, and u = X1 2p;
e or G is of type B,, s = p, and u is a spherical unipotent element associated
with a Young diagram with two columns.

Then Oy is spherical and well placed.

Proof. We shall show that Oy is well placed and hence spherical by exhibiting an element
z € OyN BwBN B~ for some w such that {(w) + rk(1 — w) = dim O,

Type Cp. Let u = (uy,u2) € Csp, (0k) = Spyyp X SPa, o, Where 1 < k < [5], and let
us distinguish the following cases:

(1) ur =1, ug = Xy 5(n—k)- In this case dim Oy = (4k + 2)(n — k).

(1i) Let us assume k = [%]. Then dimOy = n® +n = {(wg) + rk(1 — wg). Let us
choose the following element M € B™:
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where S = diag(1,—1,1,—1,1,...) is an n x n matrix. Then one can verify that M lies
over wg and that M € O,.

(1ii) Now let us suppose k < [§]. Notice that in this case n — &k > k + 2. Let iagq1
be the following embedding of Sp,; 5 into Sp,,,:
Aokt ‘ Bory1
Agks1 | Bokgr a1 In—2k—1 On—2k-1
Cors1 | Dokt Cok41 ‘ Doy i1
On—2r—1

In72k71

Case (1i) shows that if G = Spyy 1o, ¢’ = opu where u = (u1,u2), ur = 1, uz = X1 2(441),
then Oy contains a matrix M € B~ (Spy,,) lying over wp. In particular this implies
that iog+1 (M) lies in B~ N Biog+1 B where

O2k41 0 —Iopy1 0

Wopsr = 0 In o1 0 Opn—2r—1
DIopya 0 O2k+1 0

0 Op—2k-1 0 In_2p—1

The thesis follows by noticing that isx41 (M) belongs to O4 and that
L(wagt1) + 1k(1 — wapg1) = 4k +2)(n — k) = dim O,.

(2) w1 = X1 2k, ug = 1. In this case dim Oy = 2k(2n — 2k + 1).
(2i) Let us first suppose that n is even and let k = 2 so that dim Oy = n® + n. Let
us choose the following element M € B~ N O,:

S 0
1 1
-1 1 0
) -1 0 1
M= 5
. o1
0 -1 0 -1
. 1 0 -

where S = diag(—1,1,—1,1,...) is an n x n matrix. Since dim Oy = £(wg) + k(1 —wy),
it is enough to show that M lies over wp, and this follows, using Remark 1, from a
straightforward calculation.

(2ii) Now let us suppose k < 5. Case (2i) shows that if G = Spyy, ¢’ = oru where
u = (u1,u2), u1 = X129k, ug = 1, then Oy contains a matrix M € B~ (Spy,) lying
over wy. Using the embedding s of Sp,; into Spy,,, it is immediately seen that iq, (M)
belongs to B~ N B&B where

02k 0 — Iy 0
&= 0 I ok 0 Opn—ok

Iog 0 02 0

0 On_Qk 0 In—2k
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Finally, let us notice that ig) (M) is conjugated to g and that if o is the projection of &
in W, then £(0) + tk(1 — o) = 4kn — 4k* + 2k = dim O,.

Type B,,. Let g = ppu where u = (u1,1), uy is of shape Xog 2, and 1 < k < [n/2].
If k < 3, the class O, is completely determined by the diagram Xy 2,. If n is even,
let ¢, € SOa,41 be a representative of s,, € W(SOa,41). Conjugation by ¢, fixes p,
and induces the automorphism 7 of SOg,, (see the proof of Theorem 12). Therefore if
uy and u} are representatives of the two distinct unipotent conjugacy classes of SOay,
associated to Xy, on, and if u = (uq,1) and o’ = (u}, 1), then v’ € O, and p,u’ € O, 4.
Therefore also for k = 3, the class Oy is completely determined by the diagram Xog 2,
Thus let us denote by Oy, the conjugacy class of g = p,u with u; of shape Xoj, 2,. Then
dim Oy, = 4nk—4k?+2n—2k. Let us first assume that k is maximal, i.e., k = kpax = (5]

Then dim Oy, = n? +n = dim B(SO2;,41)-
1] % 0
Let g, = | 0| -I,]| O where v = 1,0,...,0), ¥ is the n X n matrix with
w )Y _In
diagonal (1/2,0,...,0), first upper off-diagonal (1, 1, ..., 1), first lower off-diagonal
(-1, -1, ..., =1), and O elsewhere. By Remark 1 the element g, lies over wy. As
diag(—1,1, ..., 1) € Co,, ., (pnu), it follows from Remark 2 that g, belongs to Oy, .,

so the assertion is proved for £ maximal.
Let us now assume that 2k < n — 1, i.e., that there are strictly more than two rows
with one box in X 2,. We consider the following embedding of SO4p43 X SO2p—a—2

in SOQn+1:
alla 0] 0
b |t
al|'a|B A B v | A 0/ B 0/
vl A|B |, T —|[0]l0 A|0 B
01 C|D o|C 0|D 0
oo ¢ |o D

Let gar+1 be the representative of the conjugacy class of Oy, in SO4x4+3. One can check
that the embedded image of (gax+1,—1) is a representative of Oy in B~ (SOg,41) and
that it lies over wy = Dokt | 0 € W(SOz2p41). As rk(1 —wy) + L(wg) =

0 | In—2k—1
(2k + 1) + (2k + 1) + 2(n — 2k — 1)(2k + 1) = dim Oy, we have the statement for
k=1,...,[n/2. O

1.3.2.  FExceptional type. In this section we shall assume that G is of exceptional
type. We already recalled that if the conjugacy class Oy of an element g with Jordan
decomposition su is spherical, then both O, and O, are spherical. Besides, as O,
is spherical, dim O, < dim B. Therefore a dimensional argument rules out all the
possibilities except the following:

e g=pizg (1) if g is of type Eg;
o g=qoxp (1) if g is of type Ez;
o g =roxp (1) if g is of type Eg;
o g = faxp, (1) if g is of type Fy4.

The following result excludes the first three cases.
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Proposition 22. If g is of type Eg, E7, or Eg, any spherical conjugacy class of G is
either semisimple or unipotent.

Proof. By the discussion above it is enough to prove that the class of sxg, (1), with
§ = p1, g2, T2, is not spherical. Let H be the centralizer of szg, (1) in G. We shall use
the same notation as in Lemma 18. Let S be a stabilizer in general position for the
action of K on [/¢, where [ = Lie(L) and ¢ = Lie(K). Let cps(X) denote the complexity
of the action of a reductive algebraic group M, with Borel subgroup By, on the variety
X, i.e., epr(X) = mingex codimByy.z. Then, by [P2, Theorem 1.2 (i)],

ca(G/H) = cr(L/K) + cs(p*/h"). (1.6)

We see that in all cases [ = €@ Chg, so that ¢, (L/K) =0 and S = K. In particular, if
g is of type Eg, E7, Eg, then K is of type As, Dg, E7, respectively. By [Brl, Théoreme
1.4] (see also [L, Theorem 1.4]) Dg and E7 have no linear multiplicity free representa-
tions, hence E7 and Eg have no spherical exceptional conjugacy classes that are neither
semisimple nor unipotent.

As far as Eg is concerned, one can check that

P~ P g, b =gs,.

a>o0,
atpBy

therefore dim(p*/h*) = 20. By [Brl, Théoreéme 1.4] there are no multiplicity free
representations of a group of type As on a vector space of dimension 20, hence the
statement. [

Theorem 23. Let g be of type F4 and let O be the conjugacy class of foxg,. Then O
1s spherical and well placed.

Proof. We have: dim O = 28 = {(wo) + rk(1 — wg). We shall show that z(O) = wy,
which implies by Theorem 5 that O is spherical.

The element f5 lies in T C Cg(f1). Besides, C' = Cg(f1) is the subgroup of G of
type C3 x A; with simple roots {as, a3, as} and By. Since (f2)? = 1, it follows that
fo is of the form (s,t) € C3 x A; with ¢ central and s?> = 1. Hence, f2 is conjugated
(up to a central element) in C' to an element of the form (o1,t). By Theorem 16 f5 is
conjugated, up to a central element in C, by an element in the component of type Cs
t0 Sy Sas+2astash for some h € T'. Hence fax_g, (1) is conjugated to

‘éa4‘éa2+2a3+a4hx*ﬁ1(1) € B‘éa4‘éaz+2a3+a4‘éﬁ13 - Bwo‘éazB

for some h € T.

On the other hand, the involution ps = ha,(—1)hay+2a542q.(—1) (notation as in
[Stl, Lemma 28]) is conjugated to fo, since its centralizer is the subgroup of type By
with simple roots {as +2as, a1, ae, @z + aq}. Therefore the element pszg, (1) € Ca(pa)
is a representative of the class O. By Theorem 21 there exists a representative of the
conjugacy class OP41’51(1) in Cg(ps) lying over the element woSas+a,- By Corollary 8
2(O) = wp. Let us finally show that O N BwyB N B~ # &. Let g € G be such that



54 N. CANTARINI, G. CARNOVALE, AND M. COSTANTINI

g fazp,(1)g € BupyB and let g = u,6b be its unique decomposition in U6 B. Then
g~ fazp, (1)g lies in Buig B if and only if

Yugt fotga,—1 () (1),

o ug ! fowg, (Dugd = 6~
with ¢ € C*, lies in BwoB. Notice that u, and xg, (1) commute because (; is the
highest root of g. The root o~1(f3;) is negative, otherwise 2(Oy,) would be wp, which is
impossible by Theorem 5. Then, as in Lemma 14, 6~ u, ! foxg, (1)u,¢ lies in BB N
B-. O

1.4. Classification and remarks

The results of the previous sections can be summarized in the following theorem.
Theorem 24. A conjugacy class O is spherical if and only if it is well placed.

In fact, our results lead also to the following characterization of spherical conjugacy
classes.

Theorem 25. Let O be a conjugacy class in G, z = z(O). Then O is spherical if and
only if dim O = £(z) + rk(1 — 2).

Corollary 26. Let O be a spherical conjugacy class of G and let z = z(O). Let x € O
be an element such that B.x is dense in O. Then B.x = B*.x = O N BZB.

Proof. Theorem 24 and Theorem 5 show that if y lies in O N BZB, then B.y is dense in
O. 1t follows that y belongs to B.x, hence B.x = O N BZB. Besides, U*.x = U.x since
they are irreducible, closed, and have the same dimension. Therefore B*.2 = TU?.x =
TU.x=B.x. O

Let us introduce the map
7 : {Spherical conjugacy classes of G} — W, O+ z(O)

and let us analyze some of its properties. A description of the image of 7 is given in
Tables 2, 3, 4, and 5. In the tables, we use the notation introduced in §1.1.2. When G
is of type B (respectively D), the root system orthogonal to (31 is no longer irreducible:
it consists of three components of type A; if G is of type D4, and of one component of
type A; and one component of type B (respectively D) in the other cases. When G is of
type Dy, we shall define 13 = ;. When G is not of type Dy, we shall denote by p; the
positive root of the component of type A; and by v the highest root of the component
of type B (respectively D). Inductively, for » > 1, we shall denote by p, the positive
root, of the component of type A; and by v, the highest root of the component of type
B (respectively D) of the root system orthogonal to 81, u;,v; for every j=1,...,r — L.

In a similar way, when G is of type C, the root system orthogonal to 7; consists of
one component of type A; and one component of type C. We shall denote by ~4 the
highest short root of the component of type C. Inductively, for » > 1, we shall denote
by ~,., the highest short root of the component of type C of the root system orthogonal
to y1,7; for every j =1,...,r — 1.
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Remark 4. We note that if O is a spherical conjugacy class, then z(0O) is an involution.
The reason for this is that if G is of adjoint type, then each spherical conjugacy class O
coincides with its inverse. For unipotent classes this follows from [Col, Lemma 1.16],
and [Co2, Lemma 2.3]. For the semisimple classes in almost all cases, we are dealing
with involutions in G. In the remaining cases we always have wy = —1, and in this
case every semisimple element is conjugate to its inverse. Finally, for the classes O,
where s # 1 # u, the result follows from the fact that s is an involution and that u is
conjugate to its inverse in Cg(s).

Remark 5. Let 1 : G — G/U and 79 : G/U — G/B be canonical projections. Let
B act on G by conjugation, on G/B by left multiplication, and on G/U as follows:

b(gU) = bgb™'U.

Then 7 and my are B-equivariant maps. In particular, w3 o m; maps every B-orbit of
G to a B-orbit of G/B, i.e., a Schubert cell C,, = B6B/B, for some o € W.

Let O be a spherical conjugacy class and let z = 2(QO). Let B.z be the dense B-orbit
in O. Then dim O = dim B.z = {(z) + rk(1 — z). Besides, m o m1(B.z) = C, and
by [DCP1, Proposition 16.4] dimm(O) = £(z) + rk(1 — z). It follows that the map
p =m|o : O — G/U has finite fibers. We think that the map p could give a relation
between O and the symplective leaves of B~ coming from the quantization of B~ (see
[DCP2)).

Table 3: Unipotent spherical conjugacy classes

Lo O | 2(0) [ O | 2(0) |
|An—1 || Xk,n | 5By - - - 5Bk || |
Zok,2n+1
B, Xok,on+1 58,801 - Sy b < ’(7':,1) Sy v Sympga
2
Zn71,2n+1 Wo
| C, || X2k,2n | 8By - - - 5B ||
D X2k,2n A
n k<2 S$81Su1 + -+ Sup_4 2k,2n S$B1Su1Sv1Spa - - Sup S
Xn,2n SB15v1 -+ - Svpyn_nSan X‘;L,2TL SB15v1 -+ - Svpyp_aSan_1
Eg A 58, 2A, | 581582
3A1 wo
E; Aq 58, 2A¢ 53158,
(3A1)’ 581582 Sas+as+2au+asSas (3A1)" 5B815B25az7
4A1 wWo
Es Aq S8, 2A 581582
3A; 53,585,585 50+ 4A; wo
F4 A 58, A 561582
A+ Ay wo

| Go ” A 5B1 || Ay | wo
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Table 4: Spherical conjugacy classes which are neither semisimple nor unipotent

(o1 Osu ECEN
B || $ = pn, u= (Xak2n,1), k=[n/2 wo
§= Pn, U= (X2k,2n7 1); k< n/2 Sy1 -+ - Syana
Cn S =0k, U = (17X1,2n—2k) SB1 -+ - SBak i
Szo'kau:(Xl,Qkal) SB1 -+ - 5B
| Fa H foxp, (1) | Wo

Table 5: Spherical semisimple conjugacy classes, g of classical type

L g | 0 2(0)
An-1 Oy, S, - .- Sp,
Ogc K SB1 -+ - 5Bk
B, O Soyy oo Sy
1< k< [n/2] '
Op Sy ... 8
[n/2] <k g n 71 Y2(n—k)+1
O, wo
G, Os, Sy Sqp -+ Syl
OCA 581582
OC wo
D, O. (n even) $81Su1 - - Su., yn_oSam
O4 (n even) $B1Suy - -+ Su, y_oSan 1
O. (n odd) 881501 -+ Su(n_5)/2
O4 (n odd) 881501 -+ Su(n_sy/
Oo,
k< n/2 SB15p1SviSpg -+ Spg_1Svi 1Sk
OUn 2 SB15p1Sv1Spg -+ - Svnya_oSpn s 1San_15an

Let us recall that wgy can also be decomposed as a product of reflections corresponding
to mutually orthogonal roots.

Remark 6. We recall that for a B-variety X, the following objects are defined:

P ={f€k(X)\ {0} |b.f = As(b)f, for all b € B}

where A¢ is an element of x(B), the character group of B;

Y :P —x(B), frAg;
[(X) = ¢(P);
r(X) := rank(T'(X));

u(X) = maxdim U.x.
reX
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Here we note that if O is a spherical conjugacy class, then 7(OQ) = rk(1 — 2(0)) and
u(O) = £(2(0)). Indeed, this follows from [P1, Corollary 1, Corollary 2(ii)], Theorem 5,
and [Kn, Lemma 2.1].

Remark 7. Let us recall that a nilpotent orbit O in g is called a model orbit if C[O]
consists exactly of the self-dual representations of G with highest weights in the root
lattice, each occurring once (see [MG2, p. 229]). In this case the corresponding unipotent
conjugacy class O in G is spherical ([Br2], [Po], [V]) and, by Remark 6, rk(1 — z2(0)) =
rk(1—wyp). It follows from the proofs of Theorems 12 and 13 that z2(O) = wq (cf. [MG1,
Table 4] and [AHV]).

2. The proof of the DKP conjecture

In this section we prove the De Concini—-Kac—Procesi conjecture for representations
corresponding to spherical conjugacy classes.

Let ¢ be a positive odd integer greater than one. We will assume that ¢ is a good
integer, i.e., that £ is coprime with the bad primes (for the definition of the bad primes
see [B]) and that G is simply connected.

2.1. Strategy of the proof

Let € be a primitive ¢-th root of unity and let U.(g) be the simply connected quantum
group associated to g, as defined in [DCKP1], with generators E;, F;, K3 with ( in the
weight lattice P and ¢ = 1,...,n. For our purposes it is convenient to introduce the
subalgebra B, of Uc(g) generated by Ei,..., E, and Kg with 8 € P. The representation
theory of this algebra has been deeply investigated in [DCP2], where B & F.[B~].

The center of U.(g) contains a proper, finitely generated subalgebra Zj such that
U:(g) is a finite Zp-module (in particular, it follows that every irreducible U (g)-module
has finite dimension).

For any associative algebra A, let us denote by Spec A the set of the equivalence
classes of the irreducible representations of A. It is worth noticing that Spec Zy =
{ttuytu) |uweU t €T, u € U} ([DCKP2, §4.4]). In [DCKP1], the map
7 : Spec Zg — G, w(t7tu~,tu) = (u~)"*t?u, which is an unramified covering of the
big cell @ = B~ B of G, is considered. Let ¢ be the map obtained by composing 7 with
the central character y : Spec U-(g) — Spec Zp. It follows that, for every g € €2, one
can define a certain finite-dimensional quotient U9 of U.(g) such that if g = p(V'), then
V is a U9-module.

In [DCKP1, §6.1, Proposition (a)] the following crucial result is established:

if g, h € Q are conjugated in G up to a central element, then

U9 and U" are isomorphic. (2.1)

In [DCKP1, §6.8] the following conjecture is formulated.

Conjecture If o € Spec U-(g) is an irreducible representation of U-(g) on a vector
space V' such that ¢(a) belongs to a conjugacy class Oy in G, then dimV is divisible
by g% dim Oy

The De Concini-Kac—Procesi conjecture has been proved in the following cases:

(i) O is a regular conjugacy class ([DCKP2, Theorem 5.1]);
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(ii) G is of type A, and £ = p is a prime ([C1]);
(iii) G is of type A,,, £ = p¥ and O is a subregular unipotent conjugacy class ([C2]);
(iv) G is of type A,, and O is a spherical unipotent conjugacy class ([C3]).

We recall that the subalgebra B, contains a copy of the coordinate ring C[B~] of
B~. Given b € B, let us denote by my the corresponding maximal ideal of C[B~] and
let us consider the algebra A, := B./mpB.. This is a finite-dimensional algebra with
the following properties.

Theorem 27. [DCKP3] If p, ¢ € B~ lie over the same element w € W, then the
algebras A, and Ay are isomorphic.

Theorem 28. [DCKP3| Let p € B~ N BwB be a point over w € W and let A, be the
corresponding algebra. Assume that € is a good integer. Then the dimension of each
irreducible representation of Ay is equal to () trk(1—w))/2

Corollary 29. If p € B~ lies over w € W and o is an irreducible representation of

U-(g) on a vector space V' such that p(o) is conjugated to p, then dim(V') is divisible by
e(f(w)+rk(17w))/2‘

Proof. See [C2, Corollary 2.9]. O
Theorem 24 and Corollary 29 lead to the following result.

Theorem 30. Let g be a simple complex Lie algebra, and let £ be a good integer. If V is
L

a simple U-(g)-module whose associated conjugacy class Oy is spherical, then £2 MOV

divides dim V. O

It was shown in [DCK2, §8] that in order to prove the conjecture it is enough to
consider the exceptional conjugacy classes, that is, the conjugacy classes of exceptional
elements. For convenience of the reader we recall that a semisimple element g € G is
exceptional if its centralizer in G has a finite center. An element g € G is called ex-
ceptional if its semisimple part is exceptional. From the classification of the semisimple
exceptional elements ([K2, Lemma 7.1], [DCK2, §7]) it follows that when g is of classical
type or of type Gg, all the semisimple exceptional elements are spherical. The elements
o and pg in Table 1, with k=1, ..., [%] for g of type C,,, k=2, ..., [%] for g of type
D,,and k =1, ..., n for g of type B,,, are, up to central elements, representatives of
all semisimple, exceptional conjugacy classes. The elements appearing in Table 2, ex-
cept p2 and g3, are, up to central elements, representatives of all spherical, semisimple,
exceptional conjugacy classes for g of exceptional type.

Using the De Concini-Kac reduction theorem ([DCK2, §8]) we can go a bit further
in the proof of the conjecture.

Corollary 31. Let g be of classical type or of type G, and let s be a semisimple element
of G. Then any irreducible representation V of U-(g) lying over Os has dimension
divisible by (3 dim Os

Proof. An irreducible representation of U.(g) lying over a semisimple element of G is
either exceptional or induced by an exceptional semisimple representation of U.(g’)
([DCK2, §8]). By Theorem 15 the De Concini-Kac—Procesi conjecture follows for all
irreducible representations lying over semisimple elements. [
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Corollary 32. Let g be a nonexceptional element of G with Jordan decomposition g =
su such that Oy and O, are spherical. Then any irreducible representation V' of U(g)
lying over O4 has dimension divisible by ¢z dim O,

Proof. Since Oy is spherical, s can be chosen among the nonexceptional elements in
Tables 1 and 2. The case of G of type A,, was dealt with in [C2]. Using [DCK2, §8] we
have:

(1) G is of type C,, and s = ¢y. Then V is induced by an irreducible U (span—2)-
module V' lying over the spherical, unipotent conjugacy class of the element [ g; gi }
€ SPap_a-

(2) G is of type C,, (respectively D) and s = ¢. Then V is induced by an irreducible
U-(sl,)-module V' lying over the unipotent spherical conjugacy class of the element
A € SL,, where A is as in the proof of Proposition 20.

(3) G is of type D,, and s = d = 7(c¢). Then, since Cg(c) is generated by the root
subgroups corresponding to the simple roots a1, ..., a,_1, the centralizer of d in G is
generated by the root subgroups corresponding to the simple roots aq, ..., an_2, Qn,
and V is induced by an irreducible U, (sl,,)-module V' lying over a spherical unipotent
conjugacy class of SL,,.

1

Uy U,

where v/ =

(4) G is of type D, and s = o;. Then u =

Us Uy
U | U,
Us | Us

irreducible U (s02,,—2)-module V' lying over u’.

} is a spherical unipotent element of SOs,_2. Then V is induced by an

(5) G is of type B,, and there are two possibilities:

(i) s = p1 and, as in the previous case, V is induced by an irreducible U, (s02,,—1)-
module V' lying over a spherical unipotent element;

(ii) s = by, and V is induced by an irreducible U (sl,)-module V' lying over the
unipotent spherical conjugacy class of the element A € SL,, where A is as in the
proof of Proposition 20.

(6) G is of type Eg. In this case s = exp(miw;) and, since u commutes with s, u
belongs to the subgroup of type D5 with simple roots ao, ...,as. By [DCK2, §8] V is
induced by an irreducible U (s01p)-module V' corresponding to the conjugacy class of
the element u. Besides, the conjugacy class of u in D5 is again spherical by Remark 3.

(7) G is of type E7. In this case s = exp(miw7) and u belongs to the subgroup of type
E¢ with simple roots aq, ..., as. By [DCK2, §8] V is induced by an irreducible U (eg)-
module V' corresponding to the unipotent spherical conjugacy class of the element u.
The conjugacy class of u in Eg is again spherical by Remark 3.

By Theorem 30 the proof is concluded. O

Remark 8. We point out that Corollary 32 can be generalized to a larger class of repre-
sentations by making use of the De Concini-Kac reduction theorem. In particular the
conjecture follows whenever the following conditions are satisfied:
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(1) s lies in the identity component of Z(Cg(s));

(2) O, is spherical.

When g is of classical type Condition (1) is equivalent to the following conditions in
the corresponding matrix groups:

e G = SOg,41: Cg(s)° contains no copy of type Dy with & > 2, ie., if s is
diagonal, no submatrix of s is conjugated to py with k& > 2;
e G = Sp,y,: Cq(s) contains at most one copy of type Cx with k£ > 1, i.e., if s is
diagonal, no submatrix of s is conjugated to o with k& > 1;
e G =S04,: Cg(s)° contains at most one copy of type Dy with k > 2, ie., if s
is diagonal, no submatrix of s is conjugated to o} with k > 2.
Let us notice that when g is of type A,, Condition (1) is always satisfied ([C2, Theorem
3.4)).

Corollary 33. Any irreducible representation V' of U-(sps) has dimension divisible by
g% dim OV .

Proof. Thanks to the De Concini-Kac reduction theorem, it is enough to consider the
exceptional representations of Ue(sps). Since an exceptional element of Sp, is either
spherical or regular, the De Concini-Kac—Procesi conjecture follows from Theorem 30
and [DCKP2, Theorem 5.1]. O

References

[AHV] J. Adams, J.—S. Huang, D. Vogan, Jr., Functions on the model orbit in Eg, Electron.
J. Represent. Theory 2 (1998), 224-263.

[BC1] P. Bala, R. W. Carter, Classes of unipotent elements in simple algebraic groups, 1,
Math. Proc. Camb. Phil. Soc. 79 (1976), 401-425.

[BC2] P. Bala, R. W. Carter, Classes of unipotent elements in simple algebraic groups, 11,
Math. Proc. Cambridge Philos. Soc. 80 (1976), 1-17.

[B] N. Bourbaki, Groupes et Algébres de Lie, Chapitres 4, 5, et 6, Masson, Paris, 1981.

[Brl] M. Brion, Représentations exceptionelles des groupes semi-simples, Ann. Sci. Ecole
Norm. Sup. 4¢ série 18 (1985), 345-387.

[Br2] M. Brion, Quelques propriétés des espaces homogénes sphériques, Manuscripta Math.
55 (1986), 191-198.

[Br3] M. Brion, Classification des espaces homogénes sphériques, Compositio Math. 63
(1987), 189-208.

[C1] N. Cantarini, Mod-p reduction for quantum groups, J. Algebra 202 (1998), 357—-366.

[C2] N. Cantarini, Spherical orbits and quantized enveloping algebras, Comm. Algebra

27(7) (1999), 3439-3458.

[C3] N. Cantarini, The quantized enveloping algebra Uq(sl(n)) at the roots of unity,
Comm. Math. Phys. 211 (2000), 207-230.

[Cal] R. W. Carter, Simple Groups of Lie Type, Pure Appl. Math., Vol. XXVIII, John
Wiley & Sons, London, New York, Sydney, 1972.

[Ca2] R. W. Carter, Finite Groups of Lie Type. Conjugacy Classes and Complexr Charac-
ters, Pure Appl. Math., John Wiley & Sons, Chichester, 1985.



[CMG]

[Col]
[Co2]

[DCK1]

[DCK2]
[DCKP1]
[DCKP2]

[DCKP3]

[DCL]

[DCP1]

[DCP2]

[E]

[FH]

[H]

[Hul]

[Hu2]

[K1]

[K2]

SPHERICAL ORBITS 61

D. Collingwood, W. McGovern, Nilpotent Orbits in Semisimple Lie Algebras, Van
Nostrand Reinhold Mathematics Series, Van Nostrand Reinhold Co., New York,
1993.

M. Costantini, On the lattice automorphisms of certain simple algebraic groups,
Rend. Sem. Mat. Univ. Padova 90 (1993), 141-157.

M. Costantini, The lattice automorphisms of simple algebraic groups over Fa,
Manuscripta Math. 91 (1996), 1-16.

C. De Concini, V. G. Kac, Representations of quantum groups at roots of one,
in: Operator Algebras, Unitary Representations, Enveloping Algebras, and Invari-
ant Theory (Paris, 1989), Prog. Math., Vol. 92, Birkhduser Boston, Boston, MA,
1990, 471-506.

C. De Concini, V. G. Kac, Representations of quantum groups at roots of 1: reduction
to the exceptional case, Int. J. Modern Phys. 7(1A) (1992), 141-149.

C. De Concini, V. G. Kac, C. Procesi, Quantum coadjoint action, J. Amer. Math.
Soc. 5 (1992), 151-190.

C. De Concini, V. G. Kac, C. Procesi, Some remarkable degenerations of quantum
groups, Comm. Math. Phys. 157 (1993), 405-427.

C. De Concini, V. G. Kac, C. Procesi, Some quantum analogues of solvable Lie
groups, in: Geometry and Analysis (Bombay, 1992), Tata Institute of Fundamental
Research, Bombay, 1995, 41-65.

C. De Concini, V. Lyubashenko, Quantum function algebra at roots of 1, Adv. Math.
108 (1994), 205-262

C. De Concini, C. Procesi, Quantum groups, in: D-Modules, Representation Theory,
and Quantum Groups (Venice, 1992), Lect. Notes Math., Vol. 1565, Springer, Berlin,
1993, 31-140.

C. De Concini, C. Procesi, Quantum Schubert cells and representations at roots of 1,
Algebraic Groups and Lie Groups, Austral. Math. Soc. Lect. Ser., Vol. 9, Cambridge
Univ. Press, 1997, 127-160.

G. B. Elkington, Centralizers of unipotent elements in semisimple algebraic groups,
J. Algebra 23 (1972), 137-163.

W. Fulton, J. Harris, Representation Theory. A First Course, Graduate Texts in
Mathematics, Vol. 129, Springer-Verlag, New York, 1991.

S. Helgason, Differential Geometry, Lie Groups, and Symmetric Spaces, Academic
Press, New York, 1978.

J. Humphreys, Introduction to Lie Algebras and Representation Theory, Second
printing, revised, Graduate Texts in Mathematics, Vol. 9, Springer-Verlag, New
York, Berlin, 1978. Russ. transl.: Ix. Xam¢ppuc, Beedenue 6 meopuio aszebp Jlu u
uz npedcmasaenui, MITHMO, M., 2003.

J. Humphreys, Linear Algebraic Groups, Graduate Texts in Mathematics, Vol.
21, Springer-Verlag, New York, Heidelberg, 1975. Russ. transl.: IIx. Xamdpuc,
Jlunetinne anzebpauveckue epynnu, Hayka, M., 1980.

B. I'. Kan, Aemomopgusmu xoneurozo nopsoxa nosynpocmuns anzebp Jlu, Pynkim.
anaust. u ero npwi. 3 (1969), som. 3, 94-96. Engl. transl.: V. G. Kac, Automorphisms
of finite order of semisimple Lie algebras, Funct. Anal. Appl. 3 (1969), 252-254.

V. G. Kagc, Infinite Dimensional Lie Algebras, Birkhauser, Boston, Basel, Stuttgart,
1983. Russ. transl.: B. I'. Kan, Beckorneunomepruie anzebpu Jlu, Mup, M., 1993.



62
[Kn]
[Kx]
(L]
[MG1]

IMG2]

[P1]
[P2]
[P3]
[P4]

[Po]

[SS]

[St1]

[St2]

[Vl

N. CANTARINI, G. CARNOVALE, AND M. COSTANTINI

F. Knop, On the set of orbits for a Borel subgroup, Comment. Math. Helv. 70 (1995),
285-3009.

M. Kramer, Sphdrische Untergruppen in kompakten zusammenhangenden Liegrup-
pen, Compositio Math. 38 (1979), 129-153.

A. S. Leahy, A classification of multiplicity free representations, J. Lie Theory 8
(1998), 367-381.

W. M. McGovern, Rings of reqular functions on nilpotent orbits, 11: model algebras
and orbits, Comm. Algebra 22 (1994), 765-772.

W. M. McGovern, The adjoint representation and the adjoint action, in: Invariant
Theory and Algebraic Transformation Groups, Vol. II, Encyclopaedia of Mathemat-
ical Sciences, Vol. 131, Springer, Berlin, Heidelberg, New York, 2002, 159-238.

D. Panyushev, Complexity and rank of homogeneous spaces, Geom. Dedicata 34
(1990), 249-269.

D. Panyushev, Complezity and nilpotent orbits, Manuscripta Math. 83 (1994), 223-
237.

D. Panyushev, On spherical nilpotent orbits and beyond, Ann. Inst. Fourier, Grenoble
49 (1999), 1453-1476.

D. Panyushev, Some amazing properties of spherical nilpotent orbits, Math. Z. 245
(2003), 557-580.

B. JI. I[Tonos, Cmszusanue deticmeutl pedykmueHns anzedbpauveckur 2pynn, Mar.
C6opunk 130(172) (1986), Bom. 3, 310-334. Engl. transl.: V. L. Popov, Contrac-
tions of actions of reductive algebraic groups, Math. USSR-Sb. 58 (1987), No. 2,
311-335.

T. A. Springer, R. Steinberg, Conjugacy classes, in: Seminar on Algebraic Groups
and Related Finite Groups, Lect. Notes Math., Vol. 131, Springer, 1970, 167-266.
Russ. transl.: Cemunap no aneebpauvvweckum epynnam, Mup, M., 1973.

R. Steinberg, Lectures on Chevalley Groups, Yale University, Hartford, CT, 1967.
Russ. transl.: P. Crefiubepr, Jexuuu o epynnazx [llesanrre, Mup, M., 1975.

R. Steinberg, Endomorphisms of Linear Algebraic Groups, Mem. Amer. Math. Soc.,
Vol. 80, AMS, Providence, 1968.

9. B. Bunbepr, Caoacrnocms deticmeud pedyxkmusnnz zpynn, PyHKL. aHAI. U €ro
npui. 20 (1986), sem. 1, 1-13. Engl. transl.: E. B. Vinberg, Complexity of actions
of reductive groups, Funct. Anal. Appl. 20 (1986), 1-11.

H. Vélklein, On the lattice automorphisms of the finite Chevalley groups, Ned. Akad.
Wet. Indag. Math. 48 (1986), 213-228.



