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ON FINITE GROUPS IN WHICH CYCLIC SUBGROUPS
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We consider finite groups G for which any two cyclic subgroups of the same order
are conjugate in G. We prove various structure results and, in particular, that any
such group has at most one non-abelian composition factor, and this is isomorphic to
PSL�2� pm�, with m odd if p is odd, or to Sz�22m+1�, or to one of the sporadic groups
M11, M23, or J1.
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INTRODUCTION

In this article we shall study the class of csc-groups in the following sense.

Definition. Let � be a set of prime numbers. A finite group G is called a csc�-group
if given two cyclic subgroups X, Y of G of the same order with ���X�� ⊆ �, then
there exists g ∈ G such that X = Y g. A finite group G is called a csc-group if G is a
csc�-group for � = ���G��.

Similar kinds of problems have often been object of investigation. For
instance, Fitzpatrick [6], using the classification of finite simple groups, proved
that if in a finite group G any two elements of the same order are conjugate,
then G is isomorphic with the symmetric group �n, with n ∈ �1� 2� 3� (see also
Zhang [22], Feit and Seitz [5]). Then in Li [11] there is the classification of finite
groups for which elements of the same order are conjugate or inverse-conjugate.
Similar results, but concerning fusion in AutG, have been obtained in Zhang [23],
Li and Praeger [12, 13]. Stroth [18] considers finite groups G for which any two
isomorphic subgroups are conjugate in G.

The main result of the present article is the following theorem.
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FINITE csc GROUPS 3967

Theorem. Let G be a finite csc-group. Then

F ∗�G� = X1 × X2 × · · · × Xk�

where the �Xi�’s for i ∈ �1� 2� � � � � k� are pairwise coprime and one of the following
holds:

(1) Xi is a cyclic p-group;
(2) Xi is an elementary abelian p-group;
(3) Xi is a non-abelian 2-group such that �1�Xi� and Xi/�1�Xi� are elementary

abelian, and either �Xi� = ��1�Xi��2 or �Xi� = ��1�Xi��3;
(4) Xi � PSL�2� pm� or Xi � SL�2� pm� with p �= 2, pm > 3 and m odd;
(5) Xi � PSL�2� 2m� with 2m > 2;
(6) Xi is one of the sporadic groups M11�M23, or J1.

Moreover, if P is a Sylow p-subgroup of F ∗�G� and P is not cyclic, then P is a Sylow
p-subgroup of G.

We shall also determine further properties of csc-groups, giving a structure
characterization in terms of certain minimal csc-subgroups.

The article is structured as follows. In Section 1, we introduce the notation
and prove some preliminary results. In Section 2, we deal with solvable csc-groups
and Frobenius groups. In Section 3, we classify the simple, almost-simple, and
quasisimple csc-groups. In Section 4, we introduce the notion of monolithic
csc-groups and determine the structure of the generalized Fitting subgroup for these
groups. Finally, in Section 5, we deal with the general case.

All groups in this article are meant to be finite. We shall make use of the
Classification of Finite Simple Groups.

1. NOTATION AND PRELIMINARY RESULTS

We shall denote by � the set of prime numbers and by � a subset of �, then we
put �′ = �\�. If n ∈ � with n ≥ 2, we denote by ��n� the set of primes dividing n.

A �-group is a group G such that ���G�� ⊆ �. If G is a group, O��G� is the
largest normal subgroup of G which is a �-group. If � = �p�, we shall write Op�G�
and Op′�G� instead of O��G� and O�′�G�, respectively. An element g ∈ G is called a
�-element if ���g�� ⊆ �.

We denote by Sylp�G� the set of Sylow p-subgroups of G. Also E�G� denotes
the subgroup of G generated by the quasisimple subnormal subgroups of G,
F ∗�G� = F�G�E�G� is the generalized Fitting subgroup of G and O	�G� is the
largest normal solvable subgroup of G (the solvable radical of G).

We denote by Cn the cyclic group of order n. For short we shall call
quaternions the group of quaternions of order 8.

The following easy fact is essential for induction arguments on the order of G.

Lemma 1.1. Let G be a csc�-group, N a normal subgroup of G, G = G/N . Let
x̄� ȳ ∈G be elements of order r̄ with ��r̄� ⊆ �, and let x� y be preimages of x̄, ȳ in G
such that x and y are ��r̄�-elements. Then �
x�� = �
y��.
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3968 COSTANTINI AND JABARA

Proof. Let r1 e r2 be the orders of x and y, respectively; by hypothesis,
��r1�= ��r2� = ��r̄� ⊆ �. Let m = �r1� r2�, then r̄ divides m, and we may write
r1 =ms1 and r2 = ms2 with �s1� s2� = 1. Suppose for a contradiction that r1 �= r2;
one shoud have s1 �= s2. The subgroups 
xs1� and 
ys2� have the same order and,
since ��m� = ��r̄�⊆ �, they are conjugate in G. But in G one has �
x̄s1�� �= �
ȳs2��,
a contradiction. �

Lemma 1.2. Let G be a csc�-group and let N be a normal subgroup of G. Then G/N
is a csc�-group.

Proof. This follows immediately from Lemma 1.1. �

Lemma 1.3. Let G1, G2 be csc�-groups. Then G1 ×G2 is a csc�-group if and only if
���G1�� ∩ ���G2�� ∩ � = ∅.

Proof. Sufficiency is clear. To prove necessity, assume for a contradiction that
there exists a prime p in ���G1�� ∩ ���G2�� ∩ �. Let 
x1� be a subgroup of order
p of G1 and 
x2� a subgroup of order p of G2. If x1 ∈ Z�G1�, then 
�x1� 1�� ≤
Z�G1 ×G2� is not conjugate to 
�1� x2��; similarly x2 is not in Z�G2�. If we put
G = G1 ×G2, we have CG�
�x1� 1��� = CG1

�x1�×G2, CG�
�1� x2��� = G1 × CG2
�x2�

and CG�
�x1� x2��� = CG1
�x1�× CG2

�x2�. In particular, 
�x1� x2�� has order p and is
conjugate neither to 
�x1� 1�� nor to 
�1� x2��, a contradiction. �

Lemma 1.4. Let G be a csc�-group, and let p ∈ � ∩ ���Z�G���. Then the Sylow
p-subgroups of G are cyclic or isomorphic to generalized quaternions.

Proof. Let P be a Sylow p-subgroup of G, and let x be an element of order p
of Z�G� ∩ P. Then 
x� is the unique subgroup of order p of P, and we conclude
by 5.3.6 in Robinson [15]. �

We denote by Z2�G� the second centre of G, i.e., the subgroup of G such that
Z2�G�/Z�G� = Z�G/Z�G��.

Lemma 1.5. Let G be a csc�-group. Then O��Z�G�� is cyclic and O��Z2�G�� =
O��Z�G��.

Proof. By Lemma 1.4, if p ∈ �, then Op�Z�G�� is cyclic; it follows that O��Z�G��
is cyclic.

To prove the second statement, suppose for a contradiction that for a p∈ �
there exists a p-element x of Op�Z2�G�� not lying in O��Z�G��. Let y ∈ G with
	x� y
 �= 1, then xy = xz for some z ∈ Op�Z�G��. If the order of z is pk, we have

xy
pk = xzp

k = x, so that yp
k ∈ CG�x�; without loss of generality, we may therefore

assume that y is a p-element of G. Then 
x� y� is a noncyclic p-subgroup of G.
By Lemma 1.4, we must have p = 2, and the Sylow 2-subgroups of G are isomorphic
to generalized quaternions.

Let S be a Sylow 2-subgroup of G, and let Z�S� = 
z�; we have �
z�� = 2
and, by hypothesis, 
z� ≤ Z�G�. In G = G/
z�, we have O2�Z�G�� �= 1 so that,
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FINITE csc GROUPS 3969

by Lemma 1.4, the Sylow 2-subgroups of G should be isomorphic to generalized
quaternions. But S = S/
z� is dihedral, a contradiction. �

2. SOLVABLE csc�-GROUPS AND FROBENIUS GROUPS

Lemma 2.1. Let G be a solvable csc�-group. Then for every p ∈ �, G has p-length at
most 1.

Proof. Let G be a counterexample of minimal order. Since every quotient of a
csc�-group is, by Lemma 1.1, a csc�-group, we have �p�G� > 1, and every proper
quotient of G has p-length less or equal 1. By Proposition 9.3.8 in Robinson [15],
N = Op′p�G� is an elementary abelian p-subgroup of G, and there exists a subgroup
H of G such that G = NH and N ∩H = �1�. In H , there is no subgroup of order p,
since this then should be conjugate to every cyclic subgroup of N . Hence H is a
p′-group and G = Opp′�G�, a contradiction. �

Lemma 2.2. Let G be a solvable csc�-group, p ∈ �, and P a Sylow p-subgroup of G.
Then one of the following holds:

(1) P is cyclic;
(2) P is elementary abelian;
(3) p = 2, P has class 2, exponent 4, and P ′ = ��G� = Z�P� = �1�Z�P�� = �1�P�;

moreover, �P� = �Z�P��2 or �P� = �Z�P��3.

Proof. Without loss of generality, we may assume P � G. Otherwise, we consider
G/Op′�G� (which is csc�-group by Lemma 1.2) and use Lemma 2.1. We distinguish
two cases:

(i) P is abelian.
Then P is homocyclic by Theorem VIII.5.8(b) in Huppert and Blackburn [9].

If P is cyclic, then we are done. Let us assume that P is not cyclic, and let pk be
the exponent of P; then there exists n ∈ � with n > 1 such that �P� = pkn. We show
that k = 1. Assume for a contradiction that k > 1. The cyclic subgroups of order
p2 in P are p2n−pn

p�p−1� = pn−1 pn−1
p−1 and are permuted transitively under the action of

H =G/CG��2�P��; but this number is divisible by p since n > 1, while H is a
p′-group: a contradiction.

(ii) P is not abelian.
Then p = 2 by Shult [16, 17]. If P has only one involution, then P is

generalized quaternions of order 2n, say (see 5.3.6 in Robinson [15]). The condition
that all subgroups of order 4 are conjugate in G, gives n = 3, and we are
done. If P has more than one involution, then P is a Suzuki 2-group (following
Definition VIII.7.1 in Huppert and Blackburn [9]), and by Theorem III.7.9 in
Huppert and Blackburn [9] we conclude. �

Remark 2.3. Thompson (see Theorem IX.8.6 in Huppert and Blackburn [9])
proved that if a solvable group G is such that the Sylow 2-subgroups have more
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3970 COSTANTINI AND JABARA

that one involution and all involutions in G are conjugate, then:

(a) The 2-length of G is 1;
(b) The Sylow 2-subgroups of G are homocyclic or Suzuki 2-groups.

On the other hand, Gaschütz and Yen (see Theorem IX.8.7 in Huppert and
Blackburn [9]) proved that if G is a p-solvable group, where p is an odd prime
divisor of �G� and if the subgroups of order p of G are permuted transitively under
the action of AutG, then the p-length of G is 1.

Lemma 2.1 could be obtained by the above mentioned results. We have given
a direct short proof to make the article as self contained as possible.

Remark 2.4. The Sylow 2-subgroups of Sz�2d� and of PSU�3� 2n� admit a
solvable group of automorphisms which permutes transitively their involutions
(see Remark XI.3.7.c in Huppert and Blackburn [10]).

Moreover:

(a) Let S be a Sylow 2-subgroup of Sz�2d�; then �S� = 22d and ��1�S�� = 2d,
and there is an automorphism  ∈ Aut�S� of order 2d − 1 which permutes
transitively the involutions of S. The semidirect product G = S
� is a
csc-group.

(b) Let S be a Sylow 2-subgroup of PSU�3� 2n�; then �S� = 23n and ��1�S�� = 2n,
and there is an automorphism  ∈ Aut�S� of order 2n − 1 which permutes
transitively the involutions of S. The semidirect product G = S
� is not a
csc-group since G/�1�S� is not a csc-group. However, there exists � ∈ Aut�S�
of order 2n + 1 such that 	� �
 = 1, and the semidirect product of S with the
cyclic group 
� �� is a csc-group.

We also observe that the Suzuki 2-groups S such that �S� = ��1�S��2 are
classified in Huppert and Blackburn [9]: they are the groups A�2n� �� of matrices of
the form 

1 a b

0 1 a�

0 0 1




with a� b ∈ GF�2n� and � a nontrivial automorphism of odd order of GF�2n�.
In particular, not all these groups are Sylow subgroups of a simple Suzuki group.

Further information on the structure of 2-groups with automorphism group
acting transitively on the set of involutions may be found in Bryukhanova [4] and
in Wilkens [20].

Let us consider the Galois group � of the field extension GF�pm�/GF�p�;
we have � = 
� � � � GF�pm� → GF�pm�� x �→ xp�, and � is cyclic of order m.
We may consider the following transformation groups of GF�pm�:

(i) A�pm� = �x �→ x + b � b ∈ V�, the translation group, isomorphic to the additive
group of GF�pm�;
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FINITE csc GROUPS 3971

(ii) The semilinear group ��pm� = �x �→ ax� � a ∈ GF�pm��� � ∈ ��;
(iii) The subgroup �0�p

m� = �x �→ ax � a ∈ GF�pm���, normal in ��pm�;
(iv) The semilinear affine group

A��pm� = �x �→ ax� + b � a ∈ GF�pm��� � ∈ �� b ∈ GF�pm���

We note that the group ��pm� is metacyclic, since �0�p
m� � GF�pm�� and

��pm�/�0�p
m� � � are cyclic of order pm − 1 and m, respectively.

Proposition 2.5. Let G be a solvable cscp-group with Op′�G� = �1�. Let P be a Sylow
p-subgroup of G, and suppose P/��P� has order pm. If pm �∈ �52� 72� 112� 232� 34�, then
G/��P� is isomorphic to a subgroup of A��pm�. Moreover, if p �= 2 and m > 1, then
��P� = �1�.

Proof. Let P be a Sylow p-subgroup of G. Since Op′�G� = �1�, by Lemma 2.1,
we have P � G and F�G� = P. If P is cyclic, then G/P is isomorphic to a subgroup
of Aut P, and we are done.

Otherwise, by eventually considering the quotient G/��P�, we may assume
that P is elementary abelian. Then CG�P� = P and G = PH with ��P�� �H�� = 1;
if �P� = pm, we may consider H as a subgroup of GL�m� p�. Let Z be the centre of
GL�m� p�, and let Ĥ = HZ. Since H permutes transitively the subgroups of order p
of P, it follows that Ĥ permutes transitively the elements of order p of P. Therefore,
the group Ĝ = PĤ is a solvable 2-transitive group. Such groups have been classified
by Huppert (see Theorem XII.7.3 in Huppert and Blackburn [10]), and we conclude
that Ĝ is either a subgroup of the semilinear affine group A��pm�, or pm lies in
�32� 52� 72� 112� 232� 34�. If pm = 32, then �Aut P� = 24 · 3, and since P is a Sylow
3-subgroup of G, the order of H is a divisor of 16. But then G is isomorphic to a
subgroup of A��32�.

The last statement follows from Lemma 2.2. �

The following examples explain the structure of the exceptional solvable
csc-groups appearing in the statement of Proposition 2.5.

Example 1. Let P be an elementary abelian group of order 52. There exists a
subgroup H of GL�2� 5� with H � SL�2� 3� such that the semidirect product G=PH
is a csc5-group. Such a G is a Frobenius group and turns out to be a csc-group.

Example 2. Let P be an elementary abelian group of order 72. There exists
a subgroup H of GL�2� 7� with H � GL�2� 3� such that the semidirect product
G=PH is a csc7-group. Such a G is a Frobenius group, but G is not a csc2-group
since H has a subgroup K of index 2 isomorphic to SL�2� 3�, and in H\K there are
elements of order 2.

Example 3. Let P be an elementary abelian group of order 112. There exist
subgroups H1 and H2 of GL�2� 11� with H1 � SL�2� 3� and H2 � SL�2� 3�× C5 such
that the semidirect products G1 = PH1 and G2 = PH2 are csc11-groups. Such groups
are Frobenius groups, and are both csc-groups.
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3972 COSTANTINI AND JABARA

Example 4. Let P be an elementary abelian group of order 232. There exist
subgroups H1 and H2 of GL�2� 23� with H1 � GL�2� 3� and H2 � GL�2� 3�× C11

such that the semidirect products G1 = PH1 and G2 = PH2 are csc23-groups. Such
groups are Frobenius groups, but are not csc2-groups.

Example 5. Let P be an elementary abelian group of order 34. There exist
subgroups H1, H2, and H3 of GL�4� 3� of order 25 · 5, 26 · 5, and 27 · 5,
respectively (such groups are explicitly described in Example XII.7.4 in Huppert
and Blackburn [10]) such that the semidirect products G1 = PH1, G2 = PH2, and
G3 =PH3 are csc3-groups. The structure of the Sylow 2-subgroups of H1, H2, and
H3 shows that G1, G2, and G3 are neither csc2-groups nor Frobenius groups.

Corollary 2.6. Let G be a solvable csc-group such that Op′�G� = �1�, and let P be a
Sylow p-subgroup of G. If �P/��P�� �∈ �52� 112�, then G/P is isomorphic to a subgroup
of ��pm�, where pm = �P/��P��.

Proof. This follows directly from Proposition 2.5 and the discussion in the above
examples. �

Remark 2.7. Let G be a (Frobenius) sharply 2-transitive (here G is not necessarily
assumed to be solvable), and let �F�G�� = pm. If pm �∈ �72� 232�, then G is a
csc-group.

Proof. Sharply 2-transitive groups have been classified by Zassenhaus (see
Theorem XII.9.1, XII.9.4 in Huppert and Blackburn [10]). They are Frobenius
groups, whose kernel P is an elementary abelian p-group and the action of G on P
permutes transitively the elements of P�. The Frobenius complement in such groups
is metacyclic, with 7 exceptions, 4 of which give rise to solvable groups (described
in Examples 1–4), and the remaining are described in the following examples. �

Example 6. Let P be an elementary abelian group of order 112. There exists
a subgroup H of GL�2� 11� with H � SL�2� 5� such that the semidirect product
G=PH is a sharply 2-transitive group. One may check that G is a csc-group.

Example 7. Let P be an elementary abelian group of order 292. There exist
subgroups H1 and H2 of GL�2� 23� with H1 � SL�2� 5�× C7 and H2 � SL�2� 5� such
that the semidirect products G1 = PH1 and G2 = PH2 are Frobenius groups (G1 is
sharply 2-transitive) One may check that G1 are G2 are csc-groups.

Example 8. Let P be an elementary abelian group of order 592. There exist
subgroups H1 and H2 of GL�2� 59� with H1 � SL�2� 5�× C29 and H2 � SL�2� 5�
such that the semidirect products G1 = PH1 and G2 = PH2 are Frobenius groups
(G1 is sharply 2-transitive) One may check that G1 are G2 are csc-groups.

There is a further exceptional case which is not a sharply 2-transitive group,
and which therefore does not appear in Zassenhaus’ list. Such a group comes from
Hering’s list in Hering [7], classifying 2-transitive groups of affine type (see also
Remark XII.7.5 in Huppert and Blackburn [10]).
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FINITE csc GROUPS 3973

Example 9. Let P be an elementary abelian group of order 192. There exist
subgroups H1, H2, and H3 of GL�2� 19� with H1 � SL�2� 5�, H2 � SL�2� 5�×C3,
and H3 � SL�2� 5�× C9, such that G1 = PH1, G2 = PH2, and G3 = PH3 are
csc19-groups. One may check that G1 is a Frobenius group and a csc-group. On the
other hand, from the structure of H2 and H3 it follows that G2 and G3 are neither
csc3-groups nor Frobenius groups. We observe that G3 is a 2-transitive group.

A set of generators for Frobenius complements of the groups described in
Examples 1–4 and 6–8 in terms of matrices of M2�GF�p�� (p ∈ �5� 7� 11� 29� 59�)
is given in Remark XII.9.5 in Huppert and Blackburn [10]. For completeness,
we observe that the matrices (

0 −1
1 0

)
�

(
1 1
16 17

)

with coefficients in GF�19� generate the complement H1 of the csc-group G1 of
Example 9.

Corollary 2.8. Let G be a solvable csc-group, p ∈ ���G��. If P is a Sylow p-subgroup
of G and P is neither cyclic, nor quaternions, then P is normal in G.

Proof. We argue by induction on the order of G. We distinguish two cases:

(i) Op�G� �= �1�.
If in G = G/Op�G�, P is neither cyclic nor quaternions, by induction P � G,

so that P � G. Suppose P is elementary abelian; then if P/Op�G� is cyclic, there
exists x ∈ G\Op�G� of order p, and for every y ∈ Op�G� with y �= 1, the subgroups

x� and 
y� cannot be conjugate in G, a contradiction.

Hence p = 2 and suppose P has the structure as in Lemma 2.2(3). If P/Op�G�
is cyclic of order 4 or quaternions, there would be involutions in both O2�G� and
G\O2�G�, a contradiction. If P/O2�G� is cyclic of order 2, then there are elements
of order 4 both in O2�G� and in G\O2�G�, again a contradiction. Hence in this case
P � G.

(ii) Op�G� = �1�, so that ��F�G��� p� = 1.
If F�G� is cyclic, then G/F�G� is abelian, hence cyclic being a csc-group.

If F�G� = Q8 × Cn (n odd), then, since G is a csc-group, G/F�G� must be a 2′-group,
and again, from the structure of Aut�Q8 × Cn� (and since in a solvable group
CG�F�G�� ≤ F�G�), G/F�G� is abelian, and then cyclic. In both cases we have shown
that G/F�G� is cyclic, and this is not possible by the hypothesis.

So let us suppose that a Sylow q-subgroup Q of F�G� is neither cyclic nor
quaternions. Then by induction and the above reasoning, we deduce Q ∈ Sylq�G�.
We may assume, up to considering the quotient G/��Q�, that Q is elementary
abelian. Then G/CG�Q� has the structure described in Proposition 2.5; in particular,
P centralizes Q. We may, therefore, consider G/Q; proceeding in this way, after a
finite number of steps we are reduced to the case when F�G� is cyclic. This is again
a contradiction.

Hence p divides �F�G�� and P � G. �
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3974 COSTANTINI AND JABARA

Corollary 2.9. Let G be a solvable csc-group. Then the derived length of G is at
most 4.

Proof. We argue by induction on the order of G. If G has at least 2 minimal
normal subgroups N1 and N2, the induction hypothesis applied to G/N1 and to G/N2

gives that both G/N1 and G/N2 have derived length at most 4, and the same holds
for G, since N1 ∩ N2 = �1�.

Let us suppose that G has a unique minimal normal subgroup N . Then N is
a p-group for a certain prime p, so that F�G� is also a p-group. Let P be a Sylow
p-subgroup of G; then F�G� ≤ P and since F�G� is neither cyclic nor quaternions,
also P is neither cyclic nor quaternions. By Corollary 2.8, we have P � G, so that
F�G� = P. By Proposition 2.5 and Corollary 2.9, we have the following cases:

(i) F�G� is elementary abelian of order pm, and G is isomorphic to a subgroup
of A��pm�. In this case, we conclude by observing that A��pm� has derived
length 3.

(ii) F�G� is a 2-group with structure as in Lemma 2.2, and G/��F�G�� is
isomorphic to a subgroup of A��2m�, where �F�G�/��F�G��� = 2m. Then G�3� ≤
��F�G��, and since ��F�G�� is abelian, in this case we are also done.

(iii) �F�G�� = 52 and G/F�G� � SL�2� 3�. Then G satisfies the thesis (see Example 1).
(iv) �F�G�� = 112 and G/F�G� � SL�2� 3� or G/F�G� � SL�2� 3�× C5. Then G

satisfies the thesis (see Example 3). �

3. SIMPLE, ALMOST-SIMPLE, AND QUASISIMPLE csc-GROUPS

We observe that if G is a csc-group, then G has at most ��n� conjugacy classes
of elements of order n, where � denotes Euler’s function. In particular, G has a
unique class of involutions; we shall also use the fact that ��3� = 2 and ��4� = 2.
We start by giving the list of the simple groups with only one class of involutions.
This may be found in Yamaki [21], here we present a more detailed statement.

Proposition 3.1. The non-abelian simple groups with precisely one class of
involutions are those in the following List (A):

(a) Groups of Lie type in odd characteristic:

(a1) PSL�2� q�, q > 3;
(a2) PSL�3� q�;
(a3) PSL�4� q�, q ≡ 5 mod 8;
(a4) PSU�3� q�;
(a5) PSU�4� q�, q ≡ 3 mod 8;
(a6) 3D4�q�;
(a7) G2�q�;
(a8) 2G2�q�, q = 32m+1, m ≥ 1.

(b) Groups of Lie type in characteristic 2:

(b1) PSL�2� q�, q > 2;
(b2) PSL�3� q�;
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FINITE csc GROUPS 3975

(b3) PSU�3� q�, q > 2;
(b4) Sz�q� = 2B2�q�, q = 22m+1, m ≥ 1.

(c) Alternating groups �n, 5 ≤ n ≤ 7.
(d) Sporadic groups:

M11� M22� M23� J1� J3� McL� Ly� O′N� Th = F3�

In the next two lemmas, we determine the simple and almost-simple groups
which are csc-groups. We shall prove them at the same time. Let us introduce the
following list of simple groups List (B):

(a) Groups of Lie type in odd characteristic:

(a1) PSL�2� q�, q > 3, q = pm, m odd;

(b) Groups of Lie type in characteristic 2:

(b1) PSL�2� q�, q > 2;
(b2) PSL�3� 2�;
(b3) Sz�q� = 2B2�q�, q = 22m+1, m ≥ 1;

(c) Alternating group �5;
(d) Sporadic groups M11, M23, J1.

Note that PSL�3� 2� � PSL�2� 7�, �5 � PSL�2� 4� � PSL�2� 5�. Therefore, a simple
group is in the List (B) if and only if it is isomorphic to one in the following List (C):

(i) PSL�2� q�, q ≥ 4, q = pm, m odd if p odd;
(ii) Sz�q�, q = 22m+1, m ≥ 1;
(iii) M11, M23, J1.

Lemma 3.2. The finite simple groups which are csc-groups are those in List (B).

Lemma 3.3. Let S < G ≤ Aut S, with S simple non-abelian. Then G is csc-group if
and only if G is of the form G = S � 
��, where S is isomorphic to PSL�2� q�, q ≥ 4,
q = pm, m odd if p odd, or to Sz�22m+1�, m ≥ 1, and � is a field automorphism of S of
order coprime to �S�.

Note that in particular if G is almost simple with socle S, and G is a csc-group,
then S is a csc-group. To prove Lemma 3.3, we shall use the following result.

Lemma 3.4 (Yamaki [21], Lemma 2). Let S be a simple group with at least 2
conjugacy classes of involutions. Then not all involutions in S are conjugate in Aut S.

Proof of Lemmas 3.2, 3.3. Assume S ≤ G ≤ Aut S, with S simple non-abelian.
If G is a csc-group, then, by Lemma 3.4, S has only one class of involutions hence,
by Proposition 3.1, S is in List (A). For every S in List (A), we determine in which
cases an almost-simple group G with socle S is a csc-group. For root subgroups
we use the notation in Carter [2].
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3976 COSTANTINI AND JABARA

Groups of Lie type in odd characteristic:

(i) S = G2�q�, q = pf odd. Here S has two subgroups of order p which are
not conjugate in Aut S. In fact, if  and � are orthogonal roots, with � long, then
x�1�x��1� and x��1� have centralizers of different order in S, hence 
x�1�x��1�� and

x��1��, which have order p, are not conjugate in Aut S.

(ii) S = 2G2�q�, q = 32m+1, m ≥ 1. If P, P1 are distinct Sylow 3-subgroups
of G, then P ∩ P1 = 1 (Ward [19, Theorem (2)]). Moreover, there are subgroups
X, Y of P of order 3 such that X ≤ Z�P� and Y �≤ Z�P�. Hence X and Y are not
conjugate in Aut S.

(iii) S = 3D4�q�, q = pm, p odd (note that S ≤ P�+
8 �q

3�). We have Aut S =
S � 
��, where � is a field automorphism of order 3m. The elements x1�1�x3�1�x4�1�
and x2�k� for k ∈ GF�q3�� are not conjugate in Aut S (since they are not conjugate
in P�+�q3� and � is a field automorphism), hence 
x1�1�x3�1�x4�1�� and 
x2�1��,
which have order p, are not conjugate in Aut S.

(iv) S = PSU�4� q�, q ≡ 3 mod 8, q = pm, p odd (note that S ≤ PSL�4� q2�).
We have Aut S = PGU�4� q� � 
��, where � is a field automorphism of order 2m.
The elements x1�1�x3�1� and x2�k� for k ∈ GF�q2�� are not conjugate in Aut S
(since they are not conjugate in PGL�4� q�, and � is a field automorphism), hence

x1�1�x3�1�� and 
x2�1��, which have order p, are not conjugate in Aut S.

(v) S = PSL�4� q�, q ≡ 5 mod 8, q = pm, p odd. We have Aut S =
PGL�4� q� � 
�� � 
��, where � is a field automorphism of order m, � is the graph
automorphism. The elements x1�1�x3�1� and x2�k� for k ∈ GF�q�� are not
conjugate in Aut S (since they are not conjugate is PGL�4� q� and 
�� �� fixes the
set �x2�k� � k ∈ GF�q���), hence 
x1�1�x3�1�� and 
x2�1��, which have order p, are
not conjugate in Aut S.

(vi) S = PSL�3� q�, q = pm, p odd. We have Aut S = PGL�3� q� � 
�� � 
��,
where � is a field automorphism of order m, � is the graph automorphism. The
elements x1�1�x2�1� and x1�k� for k ∈ GF�q�� are not conjugate in Aut S (since
x1�1�x2�1� is regular, so that it lies in a unique Sylow p-subgroup of S, while
x1�k� is not regular), hence 
x1�1�x2�1�� and 
x1�1��, which have order p, are not
conjugate in Aut S.

(vii) S = PSU�3� q�, q = pm, p odd (note that S ≤ PSL�3� q2�). We have
Aut S = PGU�3� q� � 
��, where � is a field automorphism of order 2m. In S there
are regular and nonregular unipotent elements of order p. Then, as for PSL�3� q�,
we conclude that there are subgroups X, Y of order p of S which are not conjugate
in Aut S.

(viii) S = PSL�2� q�, q = pm, p odd. We have Aut S = PGL�2� q� � 
��, where
� is a field automorphism of order m. By Huppert [8], Satz 8.5, the groups PSL�2� q�
are groups with partition and the Sylow r-subgroups are cyclic for r �= 2, p. Assume
X and Y are cyclic subgroups of S of the same order k. Then k divides only one
among p� q−1

2 � q+1
2 (which are pairwise coprime), so that X and Y are conjugate in S

unless k = p.

So assume k = p. Then S has only one class of subgroups of order p if and
only if the subgroups of order p in a Sylow p-subgroup P of S are conjugate
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FINITE csc GROUPS 3977

in N�P� (since two distinct Sylow p-subgroups intersect trivially). We may assume
P are the unitriangular upper matrices, and H are the diagonal matrices in S. Then
N�P� = HP, and the unipotent elements in P fall in 2 classes under the action of H .
Therefore, there is a unique class of subgroups of order p in P under H if and only
if GF�q�� = �GF�q���2 GF�p��, i.e., if and only if m is odd.

Therefore, the finite simple group PSL�2� q�, with q = pm, p odd is a csc-group
if and only if m is odd. We note that the group PSL�2� 3� � �4 is a csc-group. Hence
we may state that the groups PSL�2� pm� with odd p are csc-groups if and only if m
is odd.

Now assume S < G ≤ Aut S. We determine in which cases G is a csc-group.
We have Out S � C2 × Cm. By Lucchini et al. [14], Aut S splits over S if and only if
� p

m−1
2 � 2�m� = 1, i.e., if and only if m is odd. So let us first assume m is odd. Then we

know that PSL�2� pm′
� is a csc-group for each divisor m′ of m; we use the following

lemma.

Lemma 3.5. Let S = PSL�2� q�, q = pm, p odd, m odd, q > 3, S < G ≤ Aut S. Then
G is a csc-group if and only if G = S � 
��, where � is the field automorphism of order
k (hence k �m), where ��S�� k� = 1.

Proof. Assume G is a csc-group. Since Out S is cyclic, and the only subgroup of
order 2 in Out S corresponds to PGL�2� q� which always splits over S, we must have
G ∩ PGL�2� q� = 1, so that G = S � 
��, where � = �m/k. Moreover, we must have
��S�� k� = 1. On the other hand, if G = S � 
��, with � = �m/k, with ��S�� k� = 1, then
G is a csc-group, since CS��

m/h� � PSL�2� ph� is a csc-group for each divisor h of m.
�

To conclude the case S = PSL�2� pm�, assume finally that m is even, m= 2n.
Then we have seen that S is not a csc-group, since there are 2 classes of subgroups
of order p. We show that there are no groups G with socle S which are csc-groups.
In this case, Aut S does not split over S, and Out S � C2 × C2n. Let � be the
involution in 
��. Suppose for a contradiction that such a G exists. We note that
G ∩ PGL�2� q� = G ∩ �S � 
��� = 1, since PGL�2� q� splits over S, PGL�2� = S � 
��.
There exists  ∈ G such that 〈 (

1 1
0 1

) 〉
=

〈 (
1 �
0 1

) 〉
�

where � ∈ GF�q��\��GF�q���2, and  must be of the form  = is��
i, for a

certain s ∈ S, �i �= 1 (otherwise, PGL�2� q� = S
� ≤ G, a contradiction). Hence
S <S
��i� ≤ G. Let 	S
��i� � S
 = 2af , with odd f , a ≥ 1. By taking the f -power
of ��i, we get ��j ∈ S
��i�, with 	S
��j� � S
 = 2a. However, if a > 1, the minimal
subgroup of S
��j�/S is S � 
��/S, so that G ≥ S � 
��, a contradiction. Hence
	S
��j� � S
 = 2, i.e., S
��j� = S
��� (which does not split over S). We prove that
there exists an element of order 4 in S
���\S, so in G\S, there is an element of
order 4. This is a contradiction, since S always has elements of order 4, m being
even.

To show that in S
���\S there is an element of order 4, it is enough to exhibit
an element � ∈ PGL�2� q�\S such that ��� has order 2 (if � = i�� then �2 = i��� ).
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3978 COSTANTINI AND JABARA

Suppose pn ≡ 3 mod 4, 2h��pn + 1�, and take u ∈ GF�q�� of order 2h+1. Let

� =
(
u 0
0 1

)
∈ PGL�2� q�\S�

Then

��� =
(
u1+pn 0
0 1

)
�

Since �u1+pn�2 = 1, while u1+pn �= 1, it follows that ��� has order 2.
Suppose pn ≡ 1 mod 4, 2h��pn − 1�, and take u ∈ GF�q�� of order 2h+1. Let

� =
(
0 u
1 0

)
∈ PGL�2� q�\S�

Then

��� =
(
u 0
0 upn

)
∈ PGL�2� q�\S�

Then u2 = u2pn , while u �= upn , hence ��� has order 2.
We now deal with simple groups of Lie type in characteristic 2:

(i) S = 2B2�q�, q = 22m+1, m ≥ 1 (S ≤ Sp4�q�). We have Aut S = S � 
��,
where � is a field automorphism of order 2m+ 1. We can deal with this case in the
same way as in case PSL�2� q�, since S is a group with partition. However, in this
case the cyclic subgroups of order 4 are all conjugate in S, since there are 2 classes
of elements of order 4, and x is not conjugate to x−1 if x has order 4 (the Sylow
2-subgroup has exponent 4). Hence S is a csc-group. We observe that also 2B2�2� �
5 � 4, which is solvable, is a csc-group.

If S < G ≤ Aut S, then G is a csc-group if and only if G = S � 
��, with
�=��2m+1�/k, with ��S�� k� = 1 (since CS��� � 2B2�2

�2m+1�/k� is a csc-group even when
it is not simple).

(ii) S = PSL�3� q�, q = 2m. Let r be a prime divisor of q − 1, and assume
r �= 3. If

x = diag�� � −2�� y = diag�� 1� −1��

then x and y have order r and act in different ways on the projective plane.
In particular, 
x� and 
y� are not conjugate in Aut S. We are left with PSL�3� 2� and
PSL�3� 4�.

We have PSL�3� 2� � PSL�2� 7� which is a csc-group, while Aut�PSL�3� 2�� �
PGL�2� 7� is not a csc-group.

Finally, PSL�3� 4� is not a csc-group since it has 3 classes of elements of
order 3. Moreover, if S < G ≤ Aut S, then G splits over S, since Aut S splits over S,
and G is not a csc-group, since in S there are elements of order 2 and 3.
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FINITE csc GROUPS 3979

(iii) S = PSL�2� q�, q = 2m, m ≥ 2. Here we argue as in the case q odd.
However, here the Sylow 2-subgroup is elementary abelian, so that S is a csc-group.
We note that PSL�2� 2� � �3 is a csc-group. Since Aut S = S � 
��, where � is a
field automorphism, then S < G ≤ Aut S is a csc-group if and only if G = S � 
��,
� in 
�� of order k, with ��S�� k� = 1 (since CS��� � PSL�2� 2m/k� is a csc-group).

(iv) PSU�3� q�, q = 2m, m ≥ 2 (note that S ≤ PSL�3� q2�). We have
Aut S=PGU�3� q� � 
��, where � is a field automorphism of order 2m.

Let r be a primitive prime divisor of 22m − 1: r exists if m = 2 or m ≥ 4. Then
r divides 2m + 1, and r �= 3, since 3 divides 22 − 1. S contains a copy of Cr × Cr :
for a suitable basis of the 3-dimensional vector space over �q2 , the nonsingular
Hermitian scalar product can be represented by the identity matrix. Therefore, the
elements

x = diag�� � −2�� y = diag�� 1� −1�

for  ∈ GF�q2�� of order r are in S, and act in different ways on the projective
plane over GF�q2�. In particular, 
x� and 
y� are not conjugate in Aut S. We are
left with PSU�3� 8�. In this case, there are elements of order 3 in S with centralizers
of different orders.

Alternating groups. We have �5 � PSL�2� 5�, �6 � PSL�2� 9�, so that �5 is
a csc-group, �5 = Aut�5 is not a csc-group since it splits over �5. If G is such
that �6 ≤ G ≤ Aut�6, then G is not a csc-group; �7 is not a csc-group since it has
2 elements of order 3 with centralizers of different order, �7 is not a csc-group, since
it splits over �7.

Sporadic groups. By Conway et al. [3], the groups M11, M23, J1 are csc-groups,
while M22, ON , Ly, Th are not csc-groups (since they contain elements of order 4
with centralizers of different orders) and J3, McL are not csc-groups (since they
contain elements of order 3 with centralizers of different orders). If S < G ≤ Aut S,
then S is not a csc-group since, by Conway et al. [3], G splits over S and 	G � S
 = 2.

The proof of Lemmas 3.2 and 3.3 is completed. �

Lemma 3.6. Let G be a quasisimple csc-group which is not simple. Then
G� SL�2� pm� with p �= 2 and m odd.

Proof. The group SL�2� pm� is certainly a csc-group if PSL�2� pm� is. The groups
SL�2� 2n� and Sz�22n+1� with n ≥ 2 do not admit central extensions, and the same
holds for M11, M23, and J1 (see Conway et al. [3]). Again using Conway et al. [3],
one can check that no nontrivial central extension of Sz�8� is a csc-group. �

4. MONOLITHIC csc-GROUPS

We introduce the following definition.

Definition 4.1. A csc-group is called csc-monolithic (or, simply, monolithic) if either
F ∗�G� is a p-group or F ∗�G� = E�G�.

Lemma 4.2. Let G be a group with a normal elementary abelian subgroup N
of order p2m and such that G/N is isomorphic to a subgroup of �L�2� p2m�
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3980 COSTANTINI AND JABARA

containing SL�2� p2m�. If N = CG�N� and if the action induced by G on N is the natural
one, then G is not a cscp-group.

Proof. Let G0 be the normal subgroup of G containing N such that G0/N �
SL�2� p2m�. It is enough to show that there exists an element of order p in G0\N .
We distinguish two cases.

(i) p �= 2.
Let z be an element of order 2 of G0, and let G = G/N . Then Z�G� = 
z̄�,

and z induces inversion on N . Let x̄ be an element of order 2p of G, and let x be a
preimage of x̄ in G. Then x2p ∈ N , and x has order either 2p or 2p2. If the order of
x is 2p, then x2 ∈ G\N is an element of order p.

If x has order 2p2, then x2p would be a nontrivial element of N , and as such
it should be inverted by xp

2
, a contradiction.

(ii) p = 2.
Let x be an element of order 3 of G0, and let x̄ be the corresponding element of

G = G/N . The minimal polynomial of x̄ as an element of SL�2� 22m� is T 2 + T + 1;
hence CN�x� = �1�, for every y ∈ N , we have yyxyx

2 = 1 and, in particular, 
y� yx� is
a x-invariant subgroup of N .

In G0/N there exists an element ā of order 2 inverting x̄. Let a be a preimage
of ā in G which is a 2-element. Let us fix y ∈ CN�a� such that y �= 1: then �yx�a =
�ya�x

−1 = yx
2 ∈ 
y� yx�. Therefore, if T = 
y� x� a� and L = 
y� yx�, it follows that L is

an elementary abelian normal subgroup of order 4 of T , such that T/L � �3.
As x is an element of order 3 of T acting fixed-point-freely on L, it follows

that T � �4. In particular, in T there exists an element b of order 2 inverting x.
Certainly, b �∈ N . �

Lemma 4.3. Let G be a group with a normal elementary abelian subgroup N of
order 3n. Assume that:

(i) G/N � SL�2� q� with q odd;
(ii) The involutions of G induce inversion on N .

Then G is not a csc3-group.

Proof. It is enough to exhibit an element of order 3 in G\N . Let G = G/N , x̄∈G
be an element of order 6 (such an element exists since the order of SL�2� q� is
divisible by 3 and Z�G� has order 2), and let x be a preimage of x̄ in G. Then
x6 ∈N and x has order 6 or 18. If �x� = 6, then x2 is an element of order 3 not in N .
If �x� = 18, then x6 would be a nontrivial element of N and as such, it would be
inverted by x9, a contradiction. �

Lemma 4.4. Let G be a csc-group, and suppose F ∗�G� is a p-group. Then
G/��F ∗�G�� is isomorphic to a subgroup of the semilinear affine group A��pm�,
where pm = �F ∗�G�/��F ∗�G��� or G is a Frobenius group with kernel F ∗�G� which is
elementary abelian of order p2, and one (and only one) of the following holds:

(i) p = 5 and G/F ∗�G� � SL�2� 3�;
(ii) p = 11 and G/F ∗�G� � SL�2� 3�;
(iii) p = 11 and G/F ∗�G� � SL�2� 3�× C5;
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FINITE csc GROUPS 3981

(iv) p = 11 and G/F ∗�G� � SL�2� 5�;
(v) p = 19 and G/F ∗�G� � SL�2� 5�;
(vi) p = 29 and G/F ∗�G� � SL�2� 5�;
(vii) p = 29 and G/F ∗�G� � SL�2� 5�× C7;
(viii) p = 59 and G/F ∗�G� � SL�2� 5�;
(ix) p = 59 and G/F ∗�G� � SL�2� 5�× C29.

Moreover, F ∗�G� is a Sylow p-subgroup of G whose structure is described in
Lemma 2.2.

Proof. We may assume, up to considering G/��F ∗�G��, that F ∗�G� is elementary
abelian, of order pm say. One then has CG�F

∗�G�� = F ∗�G� and G = G/F ∗�G� acts
on F ∗�G� as a subgroup of GL�m� p�. Since G permutes transitively the subgroups
of order p of F ∗�G�, we may obtain a group G̃ = GZ (where Z is the center of
GL�m� p�) which permutes transitively the elements of order p of F ∗�G�, and such
that G � G̃.

We may apply the already mentioned classification theorem by Hering [7],
see also Remark XII.7.5 in Huppert and Blackburn [10], to conclude that for G̃
there are the following possibilities:

(1) There exist h� k ∈ � with m = kh and SL�k� ph� ≤ G̃ ≤ �L�k� ph�. Since G is
normal in G̃, we must have SL�k� ph� ≤ G ≤ �L�k� ph�. On the other hand,
G is a csc-group, so that, by Lemma 3.2, k = 2, and Lemma 4.2 allows to
exclude this case.

(2) There exists h� k ∈ � with m = kh, G̃ � Sp�k� ph�. Then also G � Sp�k� ph�,
hence, by Lemma 3.2, k = 2, and Lemma 4.2 allows to exclude this case.

(3) We have p = 2, m = 6h, and G̃ � G2�2
h�. Then also G � G2�2

h�, but, by
Lemmas 3.2, 3.3, G2�2

h� is not a csc-group, and this case is excluded.
(4) G̃ contains a normal extraspecial subgroup of order 2m+1. If m = 2, then

p∈ �3� 5� 7� 11� 23� and, by Proposition 2.5 and the observations in Examples 1–4
we are in one of the cases (i)–(iii). If m > 2, then m = 4 and p = 3: this case
cannot occur due to the observations in Example 5.

(5) We have G̃�	� � SL�2� 5�, where G̃�	� denotes the last term of the derived series
of G̃. Then also G

�	� � SL�2� 5� and pm ∈ �34� 112� 192� 292� 592�. We have to
exclude the case pm = 34 by Lemma 4.3, while the other possibilities give rise
to one of the cases (iv)–(ix) (see Examples 6–9).

(6) We have G̃ � �6 and pm = 24; this case cannot occur since �6 is not a
csc-group.

(7) We have G̃ � �7 and pm = 24; this case cannot occur since �7 is not a
csc-group.

(8) We have G̃ � SL�2� 13� and pm = 36; this case cannot occur by Lemma 4.3.
(9) We have G̃ � PSU�3� 32� and pm = 26; this case cannot occur since PSU�3� 32� is

not a csc-group.

We prove the last statement. If G is solvable, since by hypothesis F ∗�G� = F�G� is a
p-group, by Lemma 2.1, it follows that F�G� is a Sylow p-subgroup of G. If G is not
solvable, then G is isomorphic to one of the groups in (iv)–(ix), and from a direct
inspection it follows that again F ∗�G� = F�G� is a Sylow p-subgroup of G.
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3982 COSTANTINI AND JABARA

If p �= 2, then one can show that F ∗�G� is cyclic or elementary abelian using
the same arguments used in the proof of Lemma 2.2. If p = 2, then G/F�G� has odd
order, so that G is solvable by Feit–Thompson; by Lemma 2.2, one concludes that
F�G� has the structure stated in that lemma. �

We have, therefore, proved the following proposition.

Proposition 4.5. Let G be a monolithic csc-group. Then either F ∗�G� = F�G�
and G has the structure described in Lemma 4.4, or F ∗�G� is a simple or quasisimple
group as described in Lemmas 3.2, 3.6 and G/F ∗�G� is cyclic of order coprime to the
order of F ∗�G�. �

5. THE GENERAL CASE

In this section, we prove the theorem stated in the Introduction. We begin by
showing that in the csc-group, at most one composition factor is non-abelian.

Lemma 5.1. Let S1� S2� � � � � Sn be non-abelian simple groups, n ≥ 2. Then the
direct product S = S1 × S2 × · · · × Sn is not isomorphic to a normal subgroup of a
csc-group G.

Proof. By Feit–Thompson, there exists an involution xi ∈ Si for each i = 1� � � � � n.
The subgroups 
�x1� x2� � � � � xn−1� 1�� and 
�x1� x2� � � � � xn−1� xn�� have the same
order, but centralizers of different order in S, hence they are not conjugate in G.

�

Lemma 5.2. Let G be a csc-group. Then at most one composition factor of G is
non-abelian.

Proof. If G is solvable, then the result is clear. Let us suppose that G is
nonsolvable. By Lemma 1.2, without loss of generality, we may assume O	�G� = �1�
and that F ∗�G� = E�G� is a direct product of simple groups. By Lemma 5.1, F ∗�G�
is simple and, since CG�F

∗�G�� ≤ F ∗�G�, we must have CG�F
∗�G�� = �1�. Then

G/F ∗�G� is isomorphic to a subgroup of OutF ∗�G� which, by the classification of
finite simple groups, is solvable. �

Lemma 5.3. Let G be a csc-group with E�G� �= �1�. Then F ∗�G� = O2′�F�G��×
E�G�, ��O2′�F�G���� �E�G��� = 1 and O2�F�G�� has order 1 or 2.

Proof. It is well known that F ∗�G� is a central product of F�G� and E�G�
(see 31.12 in Aschbacher [1]).

Let us first consider the case Z�E�G�� = �1�; then E�G� is simple, and it is the
unique non-abelian composition factor of G. In this case, we clearly have F ∗�G� =
F�G�× E�G�. If p ∈ ��F�G�� ∩ ��E�G��, then, taken x ∈ F�G� and y ∈ E�G� both
of order p, we would have CG�x� nonsolvable since it contains E�G�, while CG�y�
is solvable, E�G� being the unique non-abelian composition factor of G. Therefore,

x� and 
y� are not conjugate in G, a contradiction.

If Z�E�G�� �= �1� then, by Lemma 3.6, �Z�E�G��� = 2, and we conclude by
considering G/Z�E�G��. �
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FINITE csc GROUPS 3983

Lemma 5.4. Let G be a csc-group, and let P be a noncyclic Sylow subgroup of
F�G�. Then P is a (normal) Sylow subgroup of G, and P has the structure described
in Lemma 2.2. Moreover, G/PCG�P� is isomorphic to a subgroup of ��pm�, where
pm = �P/��P�� or P is abelian, with �P� ∈ �52� 112� 192� 292� 592� and G/CG�P� has the
structure of one of the Frobenius complements described in Lemma 4.4(i)–(ix).

Proof. We argue by induction on the order of G. If G is monolithic, we conclude
by Lemma 4.4 and Proposition 4.5. So let N be a minimal normal p′-subgroup
of G, and let P1 ∈ Sylp�G�. If G = G/N , then by induction, we have P1 � G and P1

has the structure described in Lemma 2.2. Since P1 � P1, also P1 has the structure
described in Lemma 2.2. If P = P1, we are done. We show that if we suppose that
P �= P1, then we get a contradiction. We distinguish two cases:

(i) P1 is elementary abelian. Let x ∈ P1\P, and let y be a nontrivial element
of P; clearly, the subgroups 
x� and 
y� have the same order and are not conjugate
in G, a contradiction.

(ii) p = 2, and P1 has the structure described in Lemma 2.2(3). If P1\P
contains an involution, or if P contains an element of order 4, we may conclude
by an argument similar to the one used in the previous case. So let P = �1�P1� =
Z�P1�. Then P centralizes N , and the elementary abelian 2-group P1/P acts faithfully
on N ; since �P1/P� > 2, we cannot have N = E�G�; hence F ∗�G� = F�G�, and N is
a minimal normal q-subgroup of G, N is not cyclic, where q ∈ ��G�\�2�. If Q ∈
Sylq�F�G�� then, since Q is not cyclic, from the previous case we get that Q is an
elementary abelian Sylow q-subgroup of G. By induction, G/CG�Q� has the required
structure, in particular the Sylow 2-subgroups of G/CG�Q� can not be elementary
abelian, a contradiction.

Hence P ∈ Sylp�G�; to prove the last statement, we may assume, up to considering
G/��P�, that P is elementary abelian. Then G/CG�P� is a csc-group, and a p′-group
permuting transitively the cyclic subgroups of P. Again we conclude by using the
above mentioned classification theorem by Hering [7], and the proof of Lemma 4.4.

�

We remark that due to Lemmas 3.2, 3.3, 3.6, 4.4, 5.3, 5.4, the theorem stated
in the Introduction is proved.

To obtain a more detailed classification of csc-groups, we shall use the
following definition and the forthcoming notation.

Definition 5.5. A csc-group G is called minimal in one of the following cases:

(1) F ∗�G� = F�G� and the following conditions hold:

(i) F�G� contains a unique noncyclic Sylow p-subgroup P;
(ii) Every proper normal subgroup of G containing P in not a csc-group;
(iii) ��Op′�G�� ⊆ ��G/F�G��;

(2) G = E�G�;
(3) G is cyclic or metacyclic.
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3984 COSTANTINI AND JABARA

Let p be a prime, and let

p− 1 = ∏
q∈��p−1�

q�q�

be the factorization of p− 1. If m ∈ �∗, we put

�p�m� = ��p− 1� ∩ ���pm − 1�/�p− 1��

and

�p�m� = ∏
q∈�p�m�

q�q�� �p�m� = pm − 1
p− 1

· �p�m��

We remark that �2�m� = 1 and that, in general, �p�m� depends on m mod p− 1.

Lemma 5.6. Let G be a subgroup of A��pm� containing the Fitting subgroup P of
A��pm�, and let us write G = PH with H ≤ ��pm�. Then G is a minimal csc-group
if and only if G is a Frobenius group with complement of order �p�m�. Moreover,
if Z=Z���pm��, then PĤ is a sharply 2-transitive group, where Ĥ = HZ.

Proof. Let � = ��H�, and for a fixed g ∈ P� let C = CH�g�. Let ��p
m� = �0�p

m�
�
with �
�� = m and H0 = H ∩ �0�p

m�.
Suppose for a contradiction that there exists q ∈ �\��H0�. Then a Sylow q

subgroup Q of H is conjugate in ��pm� to a Sylow q-subgroup of 
�. In particular,
Q is cyclic and CP�Q� �= �1�; hence we may assume Q ≤ C. Since H0 and H/H0

are cyclic, if T is a Hall q′-subgroup of H , then T � H and H = TQ. Therefore,
T permutes transitively the subgroups of order p of P, and since T is clearly a
csc-group, PT turns out to be a csc-group, a contradiction to minimality of G.

Therefore, ��H0� = �; if C �= �1� and if r ∈ ��C�, then there exists an element
c of order r in C, and an element x of order r in H0. It follows that 
c� and 
x� are
subgroups of order r of H , not conjugate in H , and this is a contradiction, since H
is a csc-group. Hence C = �1�, and PH is a Frobenius group.

The minimality condition on G and elementary arithmetic considerations give
�H� = �p�m� (in fact O��Z� ≤ H).

We have Z = O��Z�× O�′�Z� and Ĥ = H × O�′�Z�; since H permutes
transitively the subgroups of order p of P, we get that Ĥ permutes transitively the
elements of P�. Moreover, CĤ�g� = C = �1�, and due to the fact that �Ĥ� = pm − 1,
PĤ is a sharply 2-transitive group. �

Remark 5.7. Let G be a subgroup of A��pm� containing the Fitting subgroup of
A��pm�, and let � = ���pm − 1��. If G is a csc-group, and if H is a Hall �-subgroup
of G, then, from the proof of Lemma 5.6, it follows that �H� divides pm − 1.

We introduce the following classes of groups:

(i) ��pm�: the class of subgroups of A��pm� considered in Lemma 5.6.
(ii) � �2m�: the class of groups having a normal subgroup P of order 22m with

P ′ = �1�P� = Z�P� = ��G� of order 2m extended by a cyclic or metacyclic
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FINITE csc GROUPS 3985

group of order 2m − 1 permuting transitively the involutions of P ′ and of P/P ′.
If G∈� �2m� and P = F�G�, then G/P ′ ∈ ��2m�.

(iii) 	�2m�: the class of groups having a normal subgroup P of order 23m with
P ′ =�1�P� = Z�P� = ��G� of order 2m extended by a cyclic or metacyclic
group of order 22m − 1 permuting transitively the involutions of P ′ and of
P/P ′. If G ∈ � �2m� and P = F�G�, then G/P ′ ∈ ��22m�. Moreover, �CG�P

′�� =
2m�2m + 1�.

(iv) 
�p2�: the class of Frobenius groups with elementary abelian kernel of order
p2 and complement isomorphic to SL�2� 3� with p ∈ �5� 11�.

(v) ��p2�: the class of Frobenius groups with elementary abelian kernel of order
p2 and complement isomorphic to SL�2� 5� with p ∈ �11� 19� 29� 59�.

It is straightforward to verify that all groups in the above classes are minimal
csc-groups, with trivial center. We shall refer to these as to (minimal) csc-groups of
type �, 
, �, � , 	, and we shall say that a csc-group is of type � if it is simple or
quasisimple (as described in Lemmas 3.2, 3.6).

Remark 5.8. The order of a p-complement of a groupG in one of the classes��pm�,
� �2m�, 	�pm�,
�p2�, or ��592� is �p�m�, and it is therefore the least possible. On the
other hand, if G ∈ ��p2� with p ∈ �11� 19� 29�, then a p-complement of G has order
5 · �11�2�, 3 · �19�2�, and 2 · �29�2�, respectively.
Remark 5.9. From the groups of type �, 
, �, � , 	, only those of type 	 are
not Frobenius groups, and only those of type � are not solvable.

Remark 5.10. Each class ��pm�, 
�p2�, ��p2�, � �2m�, 	�2m� clearly contains,
up to isomorphisms, a finite number of groups. Moreover, the following classes
contain just one group:

a) ��pm� if �m� pm − 1� = 1;
b) � �2m� if �m� 2m − 1� = 1;
c) 	�2m� if �22m�m� = 1;
d) 
�p2�;
e) ��p2�.

Lemma 5.11. Let G be a minimal csc-group. If G �= E�G�, and if P is the unique
noncyclic Sylow p-subgroup of F�G�, then, if G = G/Op′�F�G��, one of the following
holds:

(1) F�G� is an elementary abelian p-group of order pm, and G belongs to one of the
classes ��pm�, 
�p2�, or ��p2�;

(2) F�G� is a non-abelian 2-group; in this case, if �F�G�′� = 2m, then G belongs to one
of the classes � �2m� or 	�2m�.

Proof. The proof follows immediately from the definition of minimal csc-group
and Lemmas 5.4, 5.6. �

Remark 5.12. It is not difficult to show that under the hypothesis and with the
notation of Lemma 5.11, if G ∈ 
�p2�, then Op′�G� is a (possibly trivial) 3-group,
and if G ∈ ��p2�, then Op′�G� = �1�.
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3986 COSTANTINI AND JABARA

Lemma 5.13. Let G be a csc-group with E�G� �= �1�. Then E�G� is a Hall subgroup
of G and a minimal csc-group. Moreover, there exists in G a complement R of E�G�
which is a solvable csc-group (and such that ��E�G��� �R�� = 1).

Proof. We prove that E�G� is a Hall subgroup of G by induction on the order of
G/E�G�.

By Lemma 5.3, F ∗�G� = O2′�F�G��× E�G�. If O2′�F�G�� �= �1�, we conclude
by the induction hypothesis applied to G/O2′�F�G��. On the other hand,
if O2′�F�G�� = �1�, then F ∗�G� = E�G� is simple (we may in fact without loss of
generality assume Z�E�G�� = �1� by considering G/Z�E�G��), and we conclude by
Lemma 3.3.

The existence of R follows by the Schur–Zassenhaus theorem. Morever, R is
solvable by Lemma 5.2, and a csc-group since R � G/E�G�. �

Lemma 5.14. Let G be a csc-group, and let P be a noncyclic Sylow p-subgroup of
F�G�. Then there exists a Hall subgroup H of G containing P, such that H is a minimal
csc-group. Any subgroup of G with the same properties is conjugate to H in G.

Proof. We make induction on the order of G. If E�G� �= �1� then, by Lemma 5.13,
in G there exists a complement R of E�G�. Applying to R the inductive hypothesis,
and observing that all complements of E�G� are conjugate in G, we conclude.

We may, therefore, assume F ∗�G� = F�G� and write F�G� = P × T . If T = �1�,
then G is a monolithic csc-group, and we are done by Lemma 4.4. So let T �= �1�,
and put G = G/T . Then P ∈ Sylp�F�G�� (in fact P ∈ Sylp�G� by Lemma 5.4). By the
inductive hypothesis applied to G, we get that P is contained in a Hall subgroup H
of G, such that H is a csc-group, and every pair of such subgroups are conjugate
in G. Let K be the preimage of H in G, and let � = ��H�. Since O�′�T� � K and
��O�′�T��� �K/O�′�T��� = 1, we may apply the Schur–Zassenhaus theorem to conclude
that K contains a Hall �-subgroup H and that every Hall �-subgroup of K is
conjugate to H . Since P � G and p ∈ �, clearly P � H ; but H is a Hall �-subgroup
of G, so that H is a Hall �-subgroup of G. Moreover, by what have been said above,
any Hall �-subgroup of G is conjugate to H .

If q ∈ �\�p�, and if Q ∈ Sylq�F�H�� then, since q divides the order of H/T ,
Q must be cyclic. Therefore, P is the unique noncyclic Sylow subgroup of F�H�, and
by construction H is a minimal csc-group. �

Definition 5.15. If G is a csc-group, we denote by �csc�G� (or simply by �csc)
the set of primes p ∈ ��G� such that the Sylow p-subgroup of F�G� is not cyclic.
We denote by Hp�G� (or simply by Hp) one of the Hall subgroups of G described
in Lemma 5.14.

Lemma 5.16. Let G be a csc-group, and let p ∈ �csc�G�. If P ∈ Sylp�F�G��, then
CG�P�Hp is normal in G.

Proof. We argue by induction on the order ofG. We may assume, up to considering
G/��P�, thatP is elementaryabelian,oforderpm say. Let G=G/CG�P�, and let Hp be
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FINITE csc GROUPS 3987

the image of Hp in G. It is enough to show that Hp � G. We distinguish three cases:

(i) Hp/Op′�Hp� ∈ ��pm�. In this case, G is isomorphic to a subgroup of ��pm�, and
since Hp contains a Hall �

(
pm−1
p−1

)
-subgroup of G, we easily obtain Hp � G.

(ii) Hp/Op′�Hp� ∈ 
�p2�. In this case, Hp � SL�2� 3� is a direct factor of G.
(iii) Hp/Op′�Hp�∈��p2�. Also in this case, Hp � SL�2� 5� is a direct factor of G. �

Lemma 5.17. Let G be a csc-group, and let p� q ∈ �csc with p �= q. Then
��Hp�� �Hq�� = 1, and HpHq = HqHp is a Hall subgroup of G.

Proof. We argue by induction on the order of G. Let P ∈ Sylp�F�G�� and Q ∈
Sylq�F�G��, by Lemma 5.4, P ∈ Sylp�G� and Q ∈ Sylq�G�. Let R be a Hall �p� q�′-
subgroup of F ∗�G� (see Lemma 5.3); we have 	P� R
 = �1� and 	Q�R
 = �1�, and if
R �= �1�, we conclude by considering G/R.

Therefore, we may assume F ∗�G� = P ×Q and that P and Q are elementary
abelian (otherwise, we conclude by considering G/��P� or G/��Q�). Then we
have CHp

�P� = P and CHq
�Q� = Q, so that Hp and Hq are monolithic csc-groups.

We observe that if �P� = pm and �Q� = qn, then the number of cyclic subgroups of
order pq of P ×Q is � = pm−1

p−1 · qn−1
q−1 .

Let us first consider the case when Hp ∈ ��pm� and Hq ∈ ��qn�. By Lemma 5.4,
G/CG�P� is isomorphic to a subgroup of ��pm� and HpCG�P� � Hp/P is a Hall
subgroup of G/CG�P� which is normal by Lemma 5.16. Therefore, �G/CG�P�� =
r · �Hp/P� and, by Lemma 4.4 and Remark 5.7, r divides �p− 1�m (and clearly
��Hp�� r� = 1); we may write r = r1r2 with ��r1� ⊆ ���Hp�� and �r1� r2� = 1. Similarly,
we get �G/CG�Q�� = s · �Hq/Q� and s = s1s2 with ��s1� ⊆ ���Hq�� and �s1� s2� = 1.
Hence �G/F�G�� = r2 · s2 · �Hp� · �Hq�. Moreover, it is easy to show that G/HpCG�P�
is cyclic, so that there is a (normal) subgroup N1 in G of index r2 containing Hp,
Hq, and CG�P�; since G permutes transitively the cyclic subgroups of order pq of
P ×Q and �r2� �� = 1, also N1 has this property. Similarly, there exists a (normal)
subgroup N2 in G of index s2 containing Hp, Hq, and CG�Q�, and satisfying the same
property. If we put N = N1 ∩ N2, then F�G� ≤ N and �G/F�G�� = �Hp/P� · �Hq/Q�, so
that �G� = �Hp� · �Hq�. The fact that �Hp/P� = �p�m� · pm−1

p−1 and �Hq/Q� = �q�n� · qn−1
q−1

shows that ���Hp/P�� ∩ ���Hq/Q�� = ∅, and therefore, ���Hp�� ∩ ���Hq�� = ∅.
If one of Hp and Hq belongs to one of the classes 
 or �, then it is clear that

the other must lie in the class � and, arguing as before (and taking into account
Remark 5.8), we conclude that ���Hp�� ∩ ���Hq�� = ∅.

Due to the fact that �N � = �Hp� · �Hq�, it follows that N = HpHq, and then HpHq

is a (Hall) subgroup of G. �

Let G be a csc-group. If �csc�G� = �p1� p2� � � � � pt�, then we denote by H�G�
or simply by H the subgroup Hp1

Hp2
· · ·Hpt

of G. Clearly, H�G� is a Hall subgroup
of G, and it is easy to check that it is a csc-group.

Lemma 5.18. Let G be a csc-group, and let H = H�G�. Then there exists a (possibly
trivial) Hall subgroup H0 of G such that:

(i) ��H�� �H0�� = 1 and ��E�G��� �H0�� = 1;
(ii) G = H0HE�G�;
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(iii) The Sylow subgroups of H0 are cyclic; in particular, H0 is a cyclic or metacyclic
csc-group.

Proof. To prove the statement, it is enough to show that if we put � = ���H�� ∪
���E�G���, then there exists a Hall �′-subgroup in G. We argue by induction on the
order of G.

If E�G� �= �1�, then, by Lemma 5.13, E�G� is a Hall subgroup of G,
and we may write G = E�G�R with E�G� ∩ R = �1�: then we conclude by
considering R. We may, therefore, assume E�G� = �1� (and F ∗�G� = F�G�). Let � =
���F�G���\���H��, and let T be a Hall �′-subgroup of F�G�. If T = �1�, then the
Sylow subgroups of F�G� are cyclic, hence, since G is a csc-group, every Sylow
subgroup of G is cyclic, and we are done.

Otherwise, by the inductive hypothesis applied to G = G/T , there exists a Hall
subgroup H0 in G with the required properties.

If G = H0, then G is solvable and certainly in G there is a Hall �′-subgroup.
Otherwise, let H be the preimage of H0 in G. Then H is solvable, and therefore,
H has a Hall �′-subgroup H0; we conclude by observing that �′ ⊆ ���H��, so that H0

is a Hall �′-subgroup of G.
To prove (iii), we observe that a group with cyclic Sylow subgroups is cyclic

or metacyclic (see 10.1.10 in Robinson [15]) and that such a group is csc-group. �

From the previous lemmas, we obtain the following characterization of
csc-groups.

Proposition 5.19. Let G be a csc-group. Then G is the product of its Hall minimal
csc-subgroups. Moreover, among these factors, at most one is nonsolvable, and at most
one is cyclic or metacyclic. �

Remark 5.20. In fact, at most one among the factors lies in one of the classes

, �, � , and 	, since the groups in 
, �, � , and 	 are of even order, and
the components have pairwise coprime order by Lemma 5.18. It also follows from
Proposition 5.19 that if G is a csc-group, then the Sylow subgroups of G/F ∗�G� are
cyclic or quaternions.

We conclude with a series of examples.

Example 10. Let A be an elementary abelian group of order 4 and B ∈ ��53�
(B is a Frobenius group with elementary abelian kernel of order 53 and complement
of order 31). Let 
x� be a cyclic group of order 3, and let x act on A in such a way
that A
x� ∈ ��22�, and on B so that B
x� is (isomorphic) to a subgroup of A��53�.
We have H2�G� = A
x� and H5�G� = B; note that H2�G� is not normal in G but
CG�A�H2�G� � G.

Example 11. Let A be a Frobenius group with elementary abelian kernel of
order 52 and complement isomorphic to quaternions. Let B be a Frobenius group
with elementary abelian kernel of order 113 and complement cyclic of order 7 · 19.
If 
x� is of order 3n, with n ≥ 1, we can make x act on A so that A
x�/
x3� ∈ 
�52�.
We make x act on B so that B
x�/
x3� is isomorphic to a subgroup of A��113�,
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and we consider the semidirect product G1 = �A× B�
x�. It easily follows that G1

is a csc-group, Z�G1� = 
x3�, H5�G1� = A
x�, and H11�G1� = B; note that if n ≥ 2,
then ��F�G��� �G/F�G��� = 3 �= 1.

If we let x act trivially on B (keeping the same action of x on A as above),
then we may construct another group G2 = �A× B�
x�. Obviously, �G1� = �G2�, but
G1 �� G2.

Example 12. We give an example of a group which is not a csc-group. Let A be
elementary abelian of order 8, B a Frobenius group with elementary abelian kernel
of order 113 and complement of order 19, and let 
x� be of order 7. We make
x act on A so that A
x� ∈ ��23� and on B so that B
x� ∈ ��113�. Then G = �A×
B�
x� permutes transitively the cyclic subgroups of order 2 of O2�G� and the cyclic
subgroups of order 11 of O11�G�. However, G is not a csc-group, since it does not
permute transitively the 72 · 19 cyclic subgroups of order 22 of F�G�.

Example 13. Let A ∈ ��292�, and let B be a Frobenius group with elementary
abelian kernel of order 113 and complement of order 19. If 
x� is of order 7, we can
make x act on A so that A
x� is a Frobenius group, and on B so that B
x� ∈
��113�. Then G = �A× B�
x� is a nonsolvable csc-group. We have F ∗�G� = F�G�,
H29�G�=A, and H11�G� = B
x�.

Example 14. Let A � Sz�8�, and let B ∈ ��113�. Let 
x� be of order 3, and let
x act on A as a (field) automorphism and on B so that B
x� is (isomorphic to) a
subgroup of A��113�. Then G = �A× B�
x� is a nonsolvable csc-group. We have
E�G� = A, F ∗�G� = E�G�× O11�G�; moreover, H11�G� = B and H0�G� = 
x�.
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