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ABsTRACT. — We give criteria for a wreath product to have complemented subgroup-lattice.
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A group G is called a K-group if its subgroup lattice ¢(G) is a complemented lattice.
For basic information concerning K-groups we refer the reader to [9, §3 n. 1]. While
finite simple groups are K-groups, [2], and while the structure of solvable K-groups is
well understood [11], a characterization of all finite K-groups is still missing. The purpose
of the present paper is to give a contribution in this direction, by establishing several
criteria for a wreath product G of L by H, G = L1 H, to be a K-group.

The paper is divided in 4 sections. Section 1 contains preliminaries of general nature
and shows how to reduce the classification of K-groups to the case where the solvable
radical S(G) ot G is trivial. In section 2, we give relevant structural information on the H-
invariant subgroups of the interval [B/4B], where B is the base group of G and 4B is the
diagonal subgroup of B: Propositions 2.3 and 2.4 are central for our applications. In
section 3 and 4 are presented several criteria which guarantee that a wreath product is a
K-group; particular relevance in this regard have Theorems 3.2, 3.5, 3.8 and 4.2.

The notation is mainly standard; in case of special symbols, we shall define them when
first needed in the course of exposition. We emphasize that throughout the paper H
stands for a transitive permutation group of degree #» > 2 on a set 2 whose elements are
either the digits 1,2, ..., # or the right cosets H;b with H; the stabilizer of 7 and » € H.
All groups are meant to be finite.

1. We recall that in a K-group G, an interval [E/D] is a complemented lattice as soon
as D is a Dedekind subgroup ([9], 2.1) and E is a dual-Dedekind subgroup ([9], 2.4) of G;
moreover it A < B < G with A normal in G and B subnormal in G, then the Frattini
subgroup @(B/A) is trivial. In particular the generalized Fitting subgroup F*(G) is a
direct product of simple groups. Useful in this context is the well known statement:

(1.1) Let A be a nilpotent subnormal subgroup of a group G. Then A°PD(G)/P(G) is a

direct product of minimal normal subgroups of G/ ®(G) and has a complement in G| D(G)
[4, 12],



240 M, COSTANTINI - G. ZACHER

Prorosrtion 1.1. Let S be a solvable subnormal subgroup of G. Then G is a K-group if
and only if G/S© is a K-group and &(G/F;(S€)) = 1 for all terms of the ascending Fitting
series of SC.

Proor, The necessity is clear. Conversely, let G be a minimal counterexample. Then
§ # 1 and, since &(G) =1, by (1.1) we have G = F(§°) : C, where F(§%) is a direct
product of minimal normal subgroups, while C 2 G/F(5%) is a K-group. But then, by [9]
3.1.9, G itself is a K-group, a contradiction.

CororLary 1.2, The group G is a K-group if and only if:
1) G/S(G) &5 a K-group, and
i) (G/F;(8(G)) =1 for all i’s.

As one may note, Corollary 1.2 reduces the study of K-groups essentially to the
semisimple case.

CoroLLary 1.3. Let G be a K-group and N2 G. Then N is a K-group if and only if
N/S(N) is a K-group.

Proor, Assume N/S(N) a K-group and N a minimal counterexample. Then S(N) # 1
and, since G/F(5(N)) is a K-group, such is N/F(S(N)). Moreover @(N) < &(G) = 1 so
that, by (1.1), N = F(§(N)): C, with F(S(N)) a direct product of minimal normal
subgroups of N, while C is a K-group. But then N is a K-group by [9] 3.1.9, a
contradiction.

By Corollary 1.3, if R is subnormal in $(G) and G is a K-group, then R is a K-group.

Given a non-trivial group L, let L be the group of all functions of Qin L, group which
can be identified with the direct product B of # copies of L, B=L; x --- x L,. The
position f%(w) = f(w’ ") defines a right action of » on L2, The semidirect product G of B
by H defined by (f, 5)(f1, b1) = (g, bb1), with g = #7, is called the wreath product of L by
H and is denoted by G = L1 H = B : H. The group B = L* is called the base group and
the subgroup 4B of constant functions is called the dizgonal subgroup. The group H
permutes the elements of {L,, ..., L, } via conjugation according to the rule L? = L. We
recall that H; = 1, C(B) = Z(B), C(H) = Z(H) x 4B, No(H) = H x 4B, while H; is
the normalizer as well as the centralizer of L; in H.

(1.2)  Given G = L1 H, assume S(L) # L. Then &(G) < $(G) = S(B) = (S(L))”.

Proor. We have G/S(B) 2 (L/S(L)) 1 H and S(G) N B = S(B); hence S(G)/S(B) <
< CG/L@{B}(B/S(B)) E B/S(B), since S(L) ?5 F

ProrosiTioN 1.4. Giver G = L1 H we have
a) if G is a K-group then (L/S(L)) 1 H, H and S(L) are K-groups. L itself is a K-group if
(and only if) L/S(L) is a K-group.



K-GROUPS AND WREATH PRODUCTS 241

b) G is a K-group if and only if (L/S(L)) V H is a K-group and ®((L/F;(S(L)) 1 H) = 1 for
all i’s.

Proor. 4) Since G/S(B) = (L/S(L)) ' H and H = G/B, they are K-groups and, by
Corollary 1.3, such is S(B) and so is S(L). Also, again by Corollary 1.3, B is a K-group if
and only if B/S(B) is a K-group, so that L is a K-group if and only if L/S(L) is a K-group.

b) By Proposition 1.1, G is a K-group if and only if G/S(B) is a K- group and

&(G/F;(S(B))) = 1 for all #’s, and we are done since G/F;(S5(B)) = (L/F;(S(L)))

Given a group G and a subgroup X, the interval [G/X] is called monocoatomic with
coator M if M is the unique maximal subgroup of G containing X. For later references we
recall the following criterion established in [2].

ProrositionN 1.5. Let {{G/X;1}, be a family of monocoatomic intervals with {M;}, the
family of its coatoms. Then G is a K-group if each X; is a K-group and (0; M))pig = 1,
P(G) being the group of all autoprojectivities of G.

2. Given G = L H and a non-empty subset I of Q, set 4y = {{x1,...,%,) €B|x; =x;

for all 7,7 € I}. Thus 4; is the subgroup of B of all functions constant on I: we

have 4 = A( x Lp) x [T Ly = LINH and, for A€ H, 42 =4p = A( x L) X
kel kgl kel

X [ Lg = 4( x L) x [] L. The following intersection formulas hold for non-
kgIb kel kgIb
empty subsets I, | of Q

Ay ifIn J #0
(%) NG =9 A x L) x A x L) x [[ Ly ifInJ=0
kel ke] kEIU]

The map X +— X N B defines an isomorphism of [G/H] onto the lattice [B/1]y of H-
invariant subgroups of B; in what follows we are mainly interested in describing the
structure of maximal subgrc:-ups as well of maximal H-invariant subgroups of B. If one
puts [, ={fel?|f()=1}, then L;aL,AB=B and X—XNL;, defines an
isomorphism of [B/4B] — [L,/1]14s. For T < B we set T* = x T%, with 7, : B— L,
the projection map, and Ty = :'>e<1' T, T; =L,NT<T.T is called a standard subgroup ot B
if T = T%( = T,;) and non-standard otherwise: since (4B)* = B, all elements of [B/4B]
different from B are non-standard subgroups. Clearly a standard subgroup T of B is H-
invariant if and only if T? = T, for all /s and it is a maximal standard H-invariant
subgroup of B if moreover T;<: L;.

According to [10, §1], to get a maximal subgroup F in [B/4B] one can proceed in the
following way: consider in B an H-invariant standard subgroup S=35; x --- x §,,

§? =84, with §; maximal normal in L; and set F=Rx [[Ly, u={rs}

kdu
R=(S, xS AL, x L;). Then F is a maximal subgroup of B cnntaﬁlmg AB. We are
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now interested in determining the structure of Fy. To this end, we introduce the set Uf of
all subsets of Q of cardinality 2. On U we define a relation ~ by setting

(%%) u ~ v if there exist sequences #g,..., %, inU and by,...,h; iIn H, # > 0,

such that Mfi_l =y; and u;_1 Nu; # O forall 7 > 0.
Clearly ~ is an equivalence I‘Elﬂtiﬂﬂ and it is an H-congruence [3, Exercise 1.5.4], in
the sense that # ~ v if and only if #* ~ 2”: hence H acts on the quotient space If/ ~. We
note that # ~ v implies » = #” for some b € H.

Lemma 2.1, Given u € U, let V be the congruence class of u and let V' = {U;},.; be
the orbit of V in U/ ~. Then

ﬂ) zf{?? 5} = E/{f and {F,EI} = MJ.«‘, with E:, _f & L then :}f’

b) fori € I, set Q; := X vC Q. Then {Q;},.; is a complete system of (imprimitivity)
vel, '

blocks for H with Q,=Q; if and only if i=j, Hy =Hgq, |I|=|H:Hg)|
|2, | = |Hg, +H, |,» € Q.

c) leti € I be such that u € U;, and let r € u. Then Q; is the intersection of all blocks for
H containing u or, equivalently, if u = {H,,H,x}, then Q; = {H,b | h € (H,,x)}, 2;i5a
minimal block [3, Example 1.5.1] #f and only if H,<- (H,, x).

Proor. a) Let b€ H be such that U4’ =U,. Then {r,s}" ~ {r,5'}, so that
{r, s} = {r,s}"" for a certain #' € H; but then {r,s} ~ {r,s'}, ie. U; = U, and j = 7.

b) Assume r € ;N Q;. Then {r,s} € U;, {r, 5’} € U, for certain s, ', so by a), i = 7.
Let » € Hp andletb{b—b{ Then @, = Qb v =2, s01 =4, andb{%’:b{-

ﬂEEA’
¢) Let Q be the intersection of all blocks containing #, and suppose 2 C Q;. Then

there exists a v € U; such that vQ. Since # ~ v, there are sequences (#;), (b;) as in ( * *).
Hence there exists 7 such that #;,_; € Q, but #; € Q, but this is a contradiction, since
iy = z::f’gj 1,smthat.(2ﬁ£2 D w1 Nu; # . Therefore 2; = Q. If » € u and we identify »
with {Hr,H,,x} (for a certain x € H \ H,), then the minimal block containing # has
setwise stabilizer the subgroup (H,,x) € [H/H,] [3, Theorem 15A], that is
Q;={H,h | h € (H,,x)}. The conclusion follows.

For simplicity and without loss of generality, further on we shall assume that
u = {1,r} and call U, the congruence class of #.

LEMMA 2.2. Set 2, = U o F= A4, Then
veld|
a) FHul = .FHHI = Aﬂﬁ

N v/ S
b) Fufﬂj }b — FH,{_I] — ngzlih

ProoF. @) We have Hy, = Hg, by Lemma 2.1 4). For » € Hy,, we get F* = A, with
u ~ u’; soif (#,), (b;) are sequences as in (* *), using ( % ) we get

FAFP > Ay A" A A, _p > Ao,
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Since Ag, is Ho, -invariant, we get Fgﬂl > Ag,. But since 21 = U 4, also the other
inclusion holds. b B
b) F‘[Hﬂllﬁ' = F{Hul}ﬁ O — ( N\ Fx) = zﬂd;

_?EHHI h IEHH.E

ProrosiTiON 2.3. Set H= U Hgh;, withhy =1, F = 4,. Then

1<i<m

a) Fip= % A( X Lk)E L7 AB < Fy, Pg A L; = 1
1sism el

b) there exists an order-inverting embedding ¢ of [H/Hy] into [B/ABly such that
XPNL; =1 forall i’s, if X # H;.
c) if L is simple non-abelian, then (FyH)c = 1.

PrOOF. @¢) Fu= A Fy 4 = /}Fﬁ' = ﬁdfﬁ = X A x Lp)=L" using
Lemma 2.2 4). igm TOT R aim e

b) For X € [H/H,;] consider the imprimitivity system {Q;} ..,
Then the map ¢ : X~ x  A( x L) has the required properties.

\Si<m ke

¢) Set N = (FgH)g. Then NAB =1, hence N < Cs(B) = 1.

determined by X.

CoroLLARY 2.4. Let T be an element of [B/ABly such that L; = L, /L; AT is simple
non-abelian. Then _T is a maximal element in [B/ABly if and only if
T/Ty= x dA( x L), wherem = |H : Hg, | and {Q;} is a complete system of minimal

1<i<m ke

blocks for H, afforded by an R € [H/H,] such that H,<- R.

Proor. The sufficiency is clear from our previous discussion. Assume now that T is a
maximal element in [B/4Bly. Since T # B, there exists # = {1,7} such that

T/Ty < F/Ty = 4,T¢/Te = ATL; x L,) x ] Le<-B/Ty. So T < Fy € [B/4Bly; implies

ey
T = Fy and T /T, has the indicated structure by Proposition 2.3 4). Moreover, since T is

maximal H-invariant, according to Lemma 2.1¢), @, = {H;/ | h € R}, with H; < R. The
conclusion follows.

CoroLLARY 2.5. Let F= 4, u = {H,,H x}. Then
a) Fy = 4B if and only if H = (H,,x) i.e. x € UM;, H; < M;< H.
b) if H is primitive and L is a non-abelian simple group then [B/ABly has length 1.

Proor. 4) By Proposition 2.3 a), Fiy = 4B if and only if Hp, = (H,,x) = H.
b) follows from Corollary 2.4.

Remark 2.1. We note that in general if [B/ 4By has length 1, then H is primitive and
L is simple, since then, by Proposition 2.3 5), we have H;<-H and, if S<L, then
SV H € [B/4Bly. However, in the other direction, if L is not assumed to be non-abelian,



244 M, COSTANTINI - G. ZACHER

then [B/4Bly may have length greater than 1. Consider the following example: let
L=C, H=1{(12...n)). Then H; = {1}<-H if and only if # is prime. Assume now
n = 3. Then the cardinality » of [B/4Bly is

h=<2 ifp= —1mod3
4 if p= 1 mod 3

and [B/4B]y has length 1 if and only if p = —1 mod 3.

In general, if # is an odd prime ¢, then [B/4B]y has length 1 if and only if g is a
primitive divisor of p?~! — 1, that is if and only if ¢ # p and ¢ does not divide p’ — 1 for
1 <i<qg—1 (see [6]).

To the expression Fyg = Ly x --- x L,, in Proposition 2.3 4), where L, stands for

A( x L) we can associate, via conjugation, the transitive permutation representation
ke

 : H — Sym(#2) of degree 7. In the next lemma we collect some useful properties of 6.

LemMma 2.6. We bave:

a) ker@ = (Hg,)y and, if H=H/ker6, then G=FyH/ker0=Fy:H=L1H,
with H a transitive permutation group of degree deg H = |H : Hg, | < deg H acting on
the complete system of blocks {1 for H on Q.

b) i#f ®(G) = 1 and H is a K-group, then for any normal subgroup N of FyH contained
in ker 0, d(FyH/N) = 1.

Proor. ) We have Hz = 1 and Nj(L;) = Cg(Ly), so that G = L1 H.
b) Set M = {X<-FyH |N < X}, Mgy ={X<H |[N< X} and M = {FaX | X €
€ Myn}; then FuX<:FgH, FuX AH = X and M C M., Thus x’\ Y <ker@A (/\ ¥) £

{Hﬁ(ﬁY) A Y = Nsince ®(H/N) = 1.
H.N

Turorem 2.7. Given a group L consider G = LYH. Let S; be a maximal normal
subgroup of L; with L; = L;/S; non-abelian, §? =S8, for each i and S =51 X -+ X 8,
Then a T in [B/SAB) is H-invartant if and only if T = B or there exists a complete system of
blocks {2} 1<;<,, for H on Q such that T[S = X A( x Ly,

1<i<m  kefd;

Proor. Assume T to be H-invariant in [B/S4B], and T # B. We have §; < T}, hence
S =Ty < T < T =B and by Corollary 2.4 there exists F = §4,, with » = {H,, Hx}
and H; < (H,, x) such that Fy is a maximal element of [B/4B|y, T/S < Fg/S= x L,

1<i<m

where E-=A(é:><g L,;.) L. By Lemma 2.6, (Fy/S) :Q=EEH:G, m:degﬁ=
e

= |H :Hp, | < degH. Let G be a counterexample with H of minimal degree. If
m=1, then T/§= [;, a contradiction. Hence m>2. In G=L1H we have
AB< T < T*=Bie T is a proper element of [B/4Bly. By minimality, there exists a

complete system of blocks {€;}, .., for H, s < msuch that T/S = 1 ;ﬂfﬂ(éxﬂ Lk) Letd
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be the cardlnallty of Q;. Then each block €; is the union of d convenient blocks of {£,}:
Q= U @ and so Q; (thought as a subset of @) is a block @ for H with

1<i<d

Q| =d|Hg, : Hy| and T/S = X, A( x Lg)= L*, a contradiction. The converse is
clear by Proposition 2.3 5). S e

(2.1) Given G = L1 H, we have (4B x H)¢ = 1 if and only if Z(L) = 1.

Proor. Z(L) =2 Z(4B) < 4B x H and since Z(4B) < G, (4B x H)g # 1 if Z(L) # 1.
Assume now Z(L) =1 and (UBx H)g=N# 1. If NAB=1 we get N < Cg(B) <B,
ie. N<Z(B), a contradiction. So D=NAB# 1 and since N < 4B x H we have
D< (4B x HYAB=4Band D « G. Take An0n- -trivial element (d, ..., d) € D and pick
l#(fh ,...,1)EB.ThEI1(€1, ,...,1) (d,...,d)(f], i 1) = (a”” d)ED
ie.dY =dforall ¢; € Lsod € Z(L) = 1, a contradiction. Theref:}re N= 1.

3. We begin with

LeMMA 3.1. Let L be a simple non-abelian group and assume that H has a maximal core-
free subgroup My. For R < My, let Hp denote the (faithful) right coset representation of H
afforded by R. Then Gg = L Hg is a K-group if and only if H is a K-group.

Proor. We begin with R = My. By Corollary 2.5 5), 4B is a maximal element in
[B/4Bly;, hence 4B x H is a maximal K-subgroup of Gg, since 4B = L. By (2.1)
(4B x H)g = 1, hence by Proposition 1.5, G is a K-group. For R < My, assume that
Gg is a counterexample and choose R with | H : R| # 1 minimal. Thus R # M, and we
can take # = {R, Rx} with R<: (H,,x) = A < M. Then for F = 4,, Fy, is, by Corollary
2.4, a maximal element in [B/4Bly,, hence Fy, Hr< G. According to Lemma 2.6,
Fy, Hg ~]1H, with H~H since ker@=Ay=1 and degH=|H: Al <
< |H:R|=degHg. By the minimality assumption, L) H is a K-group and by
Proposition 2.3 ¢), (Fg,Hr)c = 1. But then by Proposition 1.5, Gg is a K-group, a
contradiction.

Tueorem 3.2. Let L be a given group such that L/S(L) is a direct product of simple
groups and let H be a group with a maximal core-free subgroup My. Then for every R < M,,

Gg is a K-group if and only if H is a K-group and &(G/F,($(B))) = 1 for all i’s.

Proor. The necessity follows from Proposition 1.4 «); actually, in our case, L itself is a
K-group by Corollary 1.3, since L/S(L) is a K-group by [2]. Conversely, by Proposition
1.4 b), we may assume S(L) =1, 7e. L=35; x --- x §,, §;’s simple non-abelian groups.
We have to investigate Gg = L1 Hg = B: Hg = (By x -+- x B,) : Hg, B; the base group
of §; 1 Hg, with H a K-group. If # = 1, the conclusion follows by Lemma 3.1. We assume
now ¢>1 and use induction on #. Thus B;: Hg is a K-group for all /’s, where

=By x -+ x B; x --- x B,. Assume, to begin, R = My and set F; = 4B, x B;Hxg.
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Since, by Corollary 2.5, 4B; x Hr < B;HR, F; is a maximal K-subgroup of Gg. Now by
(2.1) (F;)e = B;, so NF g = K\B = 1 and therefore by Proposition 1.5, Gy is a K-
group. For a contradiction, assume that there exists an R < Mj such that Gr is not a K-
group; choose R such that | H : R | is minimal. From what just seen, R # M,. Let x be
an element of My such that R< (H,,x) = A < My; set u = {R, Rx} and for a fixed
1 <7< ¢, consider M; = 4,<- B; and define M; = M, x B;. Then M;<-B and (M iVHy 18
a maximal element of [B/4B; x --- x AB,], (see Propositon 2.3 and Corollary 2.4),
thus (M;)g. Hr<: G. According to Lemma 2.6, (M) Hg/ker6; ~ L1 H, [ =~ L; here
kerf; = Ay =1 and degH = |H: A| < |H : R|. So, by the minimality assumption,
X, = (M), Hg is a maximal K- subgroup of Gg. Since, by Proposition 2.3 ¢),
(Mg, Hr)G = B; and A IB =1, by Proposition 1.5, Gg is a K-group, a contra-
diction.

We recall that given a permutation group L on a set I, the group G = L) H becmm]es
a permutation group on I via the product action by setting p¥) (w) = (p(e? )Y Sl
The group G turns out to be a primitive group as soon as L is primitive not regular (see [3,

2.7A10).

Corovvary 3.3. Let {H;} e, t > 2, be a family of simple non-abelian primitive

permutation groups on the sets Q; and let L; = H; x H; be the primitive permutation group
on the set I'; = {AH; x Hy)bh | b € L;}. Then

a) H=H W (Hy 1 (H30--+) ) in its product action is a primitive K-group;
b) H=L11 (L1 s 1:-+)--+) in its product action is a primitive K-group.

PrROOF. a) for ¢ = 2 the primitive group H; ! H, is a K-group by Lemma 3.1. Using
induction, H 1 (H3 ? - - - ) is a primitive K-group, hence the primitive group H is also a K-
group by Theorem 3.2.

b) L; is a primitive K-group, since 4(H; x H;)<-L,. Thus, by Theorem 3.2, L { L,
is a K-group and, as in case 4), with an induction argument, one reaches the con-
clusion.

We like to point out that Corollary 3.3 in combination with Theorem 3.2 allows to
construct further examples of K-groups.

PrOPOSITION 3.4, Let L be a group such that L/S(L) is simple and H a dirvect product of
simple groups. Then G = L H is a K-group if and only if ®L/FASL) 1 H) = 1 forall i's.

Proor. The necessity follows from Proposition 1.4 4). For the converse, we note that
H is a K-group and by Proposition 1.4 5), we may assume S(L) = 1. Pick # = {1,7},
F = 4,, so that F<- B and FyH<: G. For a contradiction, assume that G is not a K- -group,

and take a counterexample with minimal degH. Applying Lemma 2.6, we get
FyH = L) H x ker 8, since H = ker § x R, and deg H < deg H. By minimality reasons,
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[1H is a K-group, hence FyH itself and by Proposition 2.3 ¢) (MyH)g = 1. So by
Proposition 1.5, G is a K-group, a contradiction.

THEOREM 3.5. Let L be a group such that L/S(L) is simple and H be a group whose
proper normal subgroups are solvable. Then G = L H is a K-group if and only if H is a K-
group and P(G/F,(S(B))) = 1 for all i’s.

Proor. The necessity follows from Corollary 1.2 and (1.2). For the converse, by
Proposition 1.4 ), we may assume L simple non-abelian. For a contradiction assume G is
a counterexample with deg H minimal and pick # = {1,7} such that 4B < F = 4,<-B
and FyH<- G. Since by Lemma 2.6 FyH /ker0 =~ L1 H, L =~ L and deg H < deg H, by
minimality reasons FyH /ker 6 is a K-group. Since S(L{ H) = S(B) by (1.2) and S(B) = 1,
we get S(L1H) = 1, (FyH)e = S(Fi;H) = ker 0, hence D(FyH) < ker . But now by
Lemma 2.6 b) ®&(FyH/F;(ker#)) = 1 for all /s and so by Proposition 1.1, FyH is a
maximal K-subgroup of G. Since (FyyH)¢; = 1 by Proposition 2.3 ¢), by Proposition 1.5 G
is a K-group, a contradiction (note that in the case H = ker#, 7/e. Fy = 4B, then
ABx H<-B:H and 4B x H= L x H is a K-group).

We recall that a transitive permutation group H is 2-transitive if the stabilizer H; has
orbits of the same length on 2\ {1}. By a theorem of Wielandt [7, Theorem 3.1 4] a >-
transitive group is either primitive, or a Frobenius group.

CoROLLARY 3.6. Let L be a group such that L/S(L) is simple and H a 3-transitive

permutation group. Then G =LYH is a K-group if and only if H is a K-group and
S(G/F;(S(B))) = 1 for all i’s.

Proor. This follows from Theorems 3.2 and 3.5, since a Frobenius K-group is

necessarily solvable (if the Frobenius complement has even order, then it has exactly one
element of order 2 [3, Theorem 3.4A]).

Let us denote with A the class of (simple) groups of Lie type such that G(g) € X,
g=p, f> 1, if for each divisor d of  and each prime divisor 7 of d, the interval
[G(p?) ] G(p?/*)] is monocoatomic and G(p?/") is simple (non-abelian). In [1] one can find
a list of groups which are members of the class X. In the following we shall denote by ¢
the field automorphism of G(g) induced by x+— .

Lemma 3.7. Grven Gy = Golg) € X and y € (¢), set G =Gy : (w). If r is a prime
divisor of f and Golg'") < M< Golg), then the interval [GUH/Gylg"""H{w)"] is
monocoatomic with coatom M"H {y)".

Proor. GU1H = Gylg)" ()" : H. Since MY =M, [Gylg)ly)/Gold*"){w)] is
monocoatomic with coatom M {); but then [Gg(q)” ()" /Go(g*/")" w”]y is monocoatomic
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with coatom M”{w)”, hence [Gylg)" (y}" : H/Golq!")" {w)” : H] is monocoatomic with
coatom M" {y/)" : H.

TueoreM 3.8. Given Go = Golg) € X, g =P/, let w be an element of (), where ¢ is
the field automorphism of Gy induced by x+— xP and set G = Gy : (w), G = Gl H where H
is etther primitive, or a group with all its proper normal subgroups solvable. Then G is a K-
group tf and only if (G/Gy)" is a direct product of minimal H-invariant subgroups and H is a
K-group.

Proor. If G is a K-group, then G/Gg ~ (w)!H is a K-group; in particular
d((y) 1 H) = 1 and so the necessity follows from (1.1). Conversely, since (G/Gy)” is a
direct product of minimal H-invariant subgroups, |y | is square-free. Let G be a
counterexample with minimal ¢. Let # be a prime divisor of |w|. By Lemma 3.6,
[G/Golg"")" (w)"H] is monocoatomic with coatom M"(y)"H. Now (M” (w)'H) s A
A Golg)” =1 and since Cx(G") = Z(G”) = 1, we get (M"{y)"H)= = 1. We claim that
Golg"")(w)"H is a K-group. Set () = (), x (y),, with v, of order ». By minimality and
Theorems 3.2, 3.5, (Gy(g"/") : (,)) L H is a K-group. Moreover (Gy(g'/") : (w,)) L H acts

n (w,)" as H, hence (w,)” is a completely reducible (Gy(g/") : {(y,.)) | H-module. But
then, by [9, Lemma 3.1.9], Gy(4"/"){w) t H is a K-group. According to Proposition 1.5, G
is a K-group, a contradiction.

~ Note that if in the primitive group H one replaces H, with an R < H;, then
Gr = G Hp is still a K-group as soon as (G/Gy)!" ™! is a completely reducible H-
module and H is a K-group: in fact still Theorem 3.2 applies in the proof.

- CoroLrary 3.9. Ler Gy = Golg) € X, g=p/ and y € (p). If G= Gy : (w), then
G = GUlA, (resp. G1S,,) is a K-group if and only if |y | is square-free and (n, |y |) = 1.

By Theorem 3.8, G is a K-group if and only if (G/Gg)” as an A,-group (resp. S,,-
group) is a direct product of minimal normal subgroups, and this is the case if and only if
| | is square-tree and (|w |, #) = 1 [8, 5.3.4].

4. In this last section we deal with the case L = S(I). As usual G = L H.

Lemma 4.1. Let L be a solvable group and U a minimal normal subgroup of L. Denote
by U the base group of UVH. Then U is a minimal normal subgroup of G if and only if
U« Z({L).

Proor. If U < Z(L), then AN(U"‘!) 4G, and A(U") < U. Assume now U A Z(L) = 1.
If H=UHh,, h=1,then U=Ux U? x ... x U, Let N be a minimal normal

{ =
subgroup of G with N < U. Take a non-trivial element x € N, hence x = x1x -+ - x,,,
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x; € U for all 7’s, and without loss of generality we may assume x; # 1.
Pick a geL\CL(U); then xf# x;, hence 1# x{x7' =x¢x"' € NAU. Thus
(x%x‘l'l)f‘ =U<N, hence U"=U <N.

TueorREM 4.2. Given a solvable group L, then G = L1 H is a K-group if and only if L
and (L/L') H are K-groups.

Proor. By Proposition 1.4 4), S(L) = L is a K-group, and so is G/(L")" = (L/L')  H.
For the converse, let G be a minimal counterexample. Then L is not nilpotent, since
&(L) = 1 implies L' = 1. Let U be a minimal normal subgroup of L contained in L' # 1.
If U is the base group of Ul H, G/U = (L/U) ! H is a K-group for minimality reasons. If
U< Z(L), G=U x L/U  H is a K-group, a contradiction. So U A Z(L) = 1; by Lemma
4.1, U is a minimal normal subgroup of G and we get G = U : L/U { H, but then by [9,
3.1.9], G is a K-group, a contradiction.

COROLLARY 4.3. For a solvable group L, L1 A, (resp. L1 S,,) is a K-group if and only if
L is a K-group and (|L/L' |, n) = 1.

Proor. The conditions (|L/L'|,#) =1 and L a K-group implies that (L/L')" is a
completely reducible A,-module (resp. §,-module) [8, 5.3.4].

COROLLARY 4.4. Any twisted wreath product G of the alternating group A,, by A, in
which A,, is twisted by the point-stabilizer A,_ is a K-group, except when m =3 orm = 4
and 3 | n.

Proor. By [5,3.4], G = A,, 1 A, and the conclusion follows from Theorem 3.2, 3.5
and Corollary 4.3.
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