SGPEMv2 Developer Manual

for version 1.0, 8 September 2006

Filippo Paparella (ironpipp@gmail .com)

Paolo Santi (psanti@studenti.math.unipd.it)
Matteo Settenvini (matteo@member.fsf.org)
Marco Trevisan (evenjn@gmail.com)

Djina Verbanac (betalgez@yahoo.com)

Luca Vezzaro (lvezzaro@studenti.math.unipd.it)

mailto:ironpipp@gmail.com
mailto:psanti@studenti.math.unipd.it
mailto:matteo@member.fsf.org
mailto:evenjn@gmail.com
mailto:betalgez@yahoo.com
mailto:lvezzaro@studenti.math.unipd.it

This is SGPEMv2 Developer Manual (version 1.0, 8 September 2006).

Copyright (©) 2005-2006 University of Padova, dept. of Pure and Applied Mathematics
Permission is granted to copy, distribute and/or modify this document under the terms of
the GNU Free Documentation License, Version 1.2 or any later version published by the Free
Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover
Texts. A copy of the license is included in the section entitled “GNU Free Documentation
License”.

Table of Contents

History....... oottt 1
1 Directoryoverview...........ooveeieeeen.. 2
2 Writing documentation..................... 3
2.1 Formal documents and draft proposals........................ 3
2.1.1 Introduction.............. ..o 3

2.1.2 Technical document format.............................. 3

2.2 Documenting code........... ..o 4
2.2 1 CHFcode. ..o 4

222 Pythoncode......... . .. 4

2.3 Reporting anomalies................ 5
2.3.1 Roles solving anomalies 7

3 Codingstyle.............iiiiiiii.. 9
3.1 Editors...... ..o 9
3.2 Coding In CA .o 9
321 CH+ Coding Style.o 9

3.2.2 C+H+ Coding Conventionscovuviinnna... 11

4 Committing changes...................... 14
4.1 Introduction and goals............., 14
4.2 Repository layout 14
4.3 DBasiC SVIL USAZE « . o v v oe ettt e e e e 15
4.4 Gold rules on committingooo i 15
4.5 How to write good log messages 16
4.6 Conflicts resolution........... 16

5 Using the Mailing List 17
5.1 Introduction and goals.......... 17
5.2 About the language, some useful conventions................. 17
5.3 Steer the wheel 17
5.4 A democratic diSCUuSSIONoii e 18
5.5 Keeping the archives clean 18
5.6 Diving in technicalities 18

6 Writing your own plugins 20
Appendix A License........................ 21
A.1 Addendum: How to use this License for your documents 27

Concept Index...........cvviiieeiinnnnnn.. 28

History 1

History

2006, February 21st, — Djina Verbanac
Added anomaly classes in the subsection anomaly solving process.

2006, February 7th, — Matteo Settenvini
Added subsection about the anomaly solving process. Fixed C++ code con-
ventions about how to document classes, and the note about static non-const
members in classes.

2006, February 2nd, — Luca Vezzaro
Updated coding style with a point on static non-POD objects.

2006, January 27th, — Matteo Settenvini, Djina Verbanac
Add section about conventions to be followed when documenting anomalies.

2006, January 27th, — Luca Vezzaro
Added entry on initialization lists and C-style comments in C++ Coding Style
section.

2006, January 26th, — Matteo Settenvini
Added reference subsection about documenting code. Added decisional and
communicative norms.

2006, January 26th, — Djina Verbanac
Added section about the writing of documentation

2006, January 24th, — Luca Vezzaro
Updated some code snippets whose style were inconsistent with our coding
rules. Added the point on operator overloading to the coding conventions.

2005, December 26th, — Matteo Settenvini
Changed directory layout for ‘src’. Added ‘swe/prototypes’ to repository
layout. Added one more convention about C++ header files and their licensing.

2005, December 11th — Matteo Settenvini
Added sources’ directory description and repository usage guidelines. Included
full FDL license text.

2005, November 8th — Matteo Settenvini
First draft of this document

Chapter 1: Directory overview 2

1 Directory overview

If you need to work on SGPEM sources, you'll probably be interested in understanding how
this package directory structure is organized.

What follows is the tree you'll find after uncompressing the SGPEM tar archive.
‘config/’ Files used by Autotools while configuring and compiling SGPEM.

‘data/’ Various data SGPEM will use at runtime, like icons, images, XML DTDs, User
Interface (‘“*.ui’) definition files, and so on.

‘doc/’ Inside this directory you’ll find the User and Developer Manuals, like the one
you're reading, ready to be compiled.

‘desktop/’
The desktop menu entries for FreeDesktop compliant Desktop Environments.

‘distro/’ Files used to prepare a package for a specific platform, maybe containing the
installer data.

‘ma/’ M4 macros used by Autoconf.

‘po/’ Here are stored the Gettext PO catalogs. If you are a translator, you should
first look here in order to localize SGPEM into your language.

‘src/’ The source files of SGPEM.

Chapter 2: Writing documentation 3

2 Writing documentation

2.1 Formal documents and draft proposals

2.1.1 Introduction

For writing and editing technical documents we use a subsection of the free (as in speech)
office suite OpenOffice.org 2.0.0, namely OpenOffice.org Writer.

We sporadically also use other parts of the suite, such as OpenOffice.org Calc for calcu-
lations and charts, and OpenOffice.org Impress for presentations.

2.1.2 Technical document format
All technical documents must respect the style and formats explained hereafter.

o All the documents start with a Cover Page : The cover page contains in the right corner
the logo, name and address of the company. In the middle of the page there’s the title
of the specific technical document. Under the title goes the acronym of the project
(SGPEMv2), followed by the version of the document.

Versions use the format ‘x.y’, where both ‘x’ and ‘y’ are integers. Minor changes to
the document, like grammatical and spelling corrections comport the increment of ‘y’,
while structural or significant changes (for example, changing the way to resolve a
specific problem) comport the increment of ‘x’.

After the version number, it comes the date of the last modification made to the
technical document. At the end of the cover page it should be reported the status
of the document, either Formal or Informal, followed by one of the tags Fxternal or
Internal.

The footer of the cover page should contain the name of the Author of that technical
document.

e The page after the cover page has to contain:

1. Distribution List: to whom the document goes. It includes the Surname and Name
of the person to be reached by the document, along with the role of that person.

2. History of changes: where to trace the changes made to the document, including
the date of the edit, the person who made the change, and the reason(s) of it.

3. List of Approved Versions: here are traced all the approved versions of the docu-
ment, reporting the date and the name of the person who approved that particular
revision.

e An Abstract has to follow the List of Approved Versions: it’s a short one-liner of what
the document is about.

e On a new page, there’s a Table of Contents that shows all the Headings in the file.

If the document includes a lot of figures, then after the Table of Contents there should
be an Mlustration Index.

e After that, every document has to start with the Introduction section, where it will be
described the purpose of the document and the purpose of the product, along with a
list of used References to other documents or resources.

Chapter 2: Writing documentation 4

e Other parts of the document are specific to the technical document itself, and therefore
should be managed by the editor. Mostly, the general structure for the more com-
mon documents can be found at http://www.math.unipd.it/ tullio/IS-1/2005/
Progetto/Documenti.html (in Italian).

In the ‘docs/misc/’ directory of the Subversion repository, there’s an OpenOffice.org
template with some already defined styles you should inherit from. Its name is
‘templatedocument.ott’.

e At the end of every document there should be a Glossary. The Glossary is a file on
its own (usually, ‘docs/externals/Glossary.odt’ off the repository), so new entries
must be inserted into this latter.

Every technical document should “include” the afore mentioned file. Please refer to
the OpenOlffice.org manual about Sections to know how to do so. The Glossary will so
be linked to the current document dinamically, and every change done on the Glossary
will reflect in an automatic update in every referer.

In this way all the technical documents are always able to have the latest up-to-date
and synchronized revision of the Glossary.

e The Header of all pages, except the one on the cover page, contains:

e in the left corner, the name of the company;
e in the right corner, the chapter number and name.

e The Footer of every page, except on the cover page, contains:

e in the left corner, the title of the document followed by the date of the last modi-
fication;
e in the right corner it contains the number of the page due to the total number of
pages.
To make it easier to abide these rules, please remember to inherit from the template
document. It lays down a foundation for all the style guidelines mentioned above.

2.2 Documenting code

In order to generate documentation straight from the source code:

2.2.1 C++ code

Please refer to Doxygen manual (http://www.stack.nl/"dimitri/doxygen/
manual.html) in order to learn how to use this automatic tool for extracting
documentation from code.

Every function, class, class member, class method, and enumeration in code should be
documented, less of trivial static global functions visible only to the current compilation
unit.

In particular, for functions and methods, you should use \param and \return to describe
respectively parameters and return value.

2.2.2 Python code

It is usually possible to annotate Python classes so that calling the __doc__ method

of an object returns its documentation string. Please refer to the Python manual at
http://www.python.org/ to learn more of it.

http://www.math.unipd.it/penalty z@ ~tullio/penalty z@ IS-1/penalty z@ 2005/penalty z@ Progetto/penalty z@ Documenti.html
http://www.math.unipd.it/penalty z@ ~tullio/penalty z@ IS-1/penalty z@ 2005/penalty z@ Progetto/penalty z@ Documenti.html
http://www.stack.nl/penalty z@ ~dimitri/penalty z@ doxygen/penalty z@ manual.html
http://www.stack.nl/penalty z@ ~dimitri/penalty z@ doxygen/penalty z@ manual.html
http://www.python.org/

Chapter 2: Writing documentation 5)

However, if we want to generate good documentation straight from code, with the
help of Doxygen, we should use the ‘#’ documenting style. Please look at the end of
http://www.stack.nl/"dimitri/doxygen/docblocks.html for an example.

2.3 Reporting anomalies

Note: sometimes we will refer to an anomaly with the less-formal term “bug”.

Anomaly documentation is divided in two parts. The first part concerns the Anomaly
Investigation and the second one the Anomaly Resolution. All informations about anomalies
are held in the document named ‘AnomalyRecords.odt’. If you find an anomaly you should
start a new page via a page-break, and create a header as follows:

1D
Summary

Severity

Identification number of the anomaly, a unique integer
A one-liner with a summary of the anomaly

This field describes the impact of a bug.

‘Blocker’ Blocks development and/or testing work

‘Critical’
crashes, loss of data, severe memory leak

‘Major’ major loss of function
‘Minor’ minor loss of function, or other problem where easy workaround is
present

‘Trivial’ cosmetic problem like misspelled words or misaligned text

‘Enhancement’
Request for enhancement

Anomaly Class

Reporter

This field contains the name of the class to which the anomaly belongs to.
There is no need to describe the function of this classes, because as you can see
the names are self explanatory.

‘Extra (superfluous)’
‘Missing’
‘Ambiguous’
‘Inefficient’
‘Improvement needed’
‘Not conforming to standards’
‘Risk-prone’
not wrong but there are known, safer, alternative methods

‘Incorrect’

‘Not implementable’
‘Safety’

‘Not adequately documented’

Name and email of the person who discovered the anomaly

http://www.stack.nl/penalty z@ ~dimitri/penalty z@ doxygen/penalty z@ docblocks.html

Chapter 2: Writing documentation 6

Date of Identification
Timestamp at which the anomaly was identified

Milestone

Document

Status

The milestone affected by the anomaly (e.g., m0.1)

Document (with version number) affected by the anomaly (e.g., Tecnical Spec-
ification, Product Definition, code, documentation, .. .).

Please choose one and only one of the following states.

These are used before reaching a resolution:

‘UNCONFIRMED’

‘NEW’

‘ASSIGNED’

‘REOPENED’

This bug has recently been added to the database. Nobody has
validated that this bug is true. The manager will usually confirm
this bug, changing its state to ‘NEW’, but in case the bug existance
is quite clear, any stakeholder can mark it as such.

The anomaly may be marked also ‘RESOLVED’ by the manager, if it
is ‘INVALID’, ‘DUPLICATE’ or so on, but not ‘RESOLVED FIXED’.

This bug has recently been added to the assignee’s list of bugs and
must be processed. Bugs in this state may be accepted, and become
‘ASSIGNED’, passed on to someone else, and remain ‘NEW’, or it can
be made also ‘RESOLVED’.

This bug is not yet resolved, but is assigned to the proper per-
son. From here bugs can be given to another person and be-
come ‘ASSIGNED’ with a different assignee, or resolved and become
‘RESOLVED’.

This bug was once resolved, but the resolution was deemed incor-
rect. For example, a bug is ‘REOPENED’ when more information
shows up and the bug is now reproducible. From here bugs are
either marked ‘ASSIGNED’ or ‘RESOLVED’.

Instead, after a resolution, the state should change to one of:

‘RESOLVED’

‘VERIFIED’

‘CLOSED’

A resolution has been taken, and it is awaiting verification by QA.
From here bugs are either re-opened and become ‘REOPENED’, are
marked ‘VERIFIED’, or are closed for good and marked ‘CLOSED’.

QA has looked at the bug and the resolution and agrees that the ap-
propriate resolution has been taken. Bugs remain in this state un-
til the product they were reported against actually ships, at which
point they become ‘CLOSED’.

The bug is considered dead, the resolution is correct. Any zombie
bugs who choose to walk the earth again must do so by becoming
‘REOPENED’.

Chapter 2: Writing documentation 7

Assigned to
Who’s working to resolve this anomaly, name and email. Usually, it’s initially
left empty.

Description and comments
Latin creativity at work — text describing the reasons for assuming the presence
of an anomaly. Please be as clear as possible. Unfortunately, giving guidelines
in this sense is quite difficult . . .

As for follow-ups, always start with the name of the editor, email and the
timestamp of the comment, assigning a numerical ID to it. An example of a
comment would be:

-- Comment #1, Slartibartfast <slarti@go.eu>, 2006 Jan 27th - 16:13 --
Okay, I’11l go and fix the time-space continuum on last Friday 17th.
Just give me the time to put the gas in my spaceship, will you?

Important: please report it clearly in a new comment if you change any field of
the anomaly header.
When the anomaly is resolved, a footer is added to it, with:

Date Timestamp of the resolution date

Resolution
Choose one and only one of these tags. Please remember to change bug state
accordingly and to report you've done so in a comment.

‘FIXED’ A fix for this bug is checked into the tree and tested.
‘INVALID’ The problem described is not a bug.
‘WONTFIX’ The problem described is a bug which will never be fixed.

‘DUPLICATE’
The problem is a duplicate of an existing bug. Marking a bug
duplicate requires the bug# of the duplicating bug and will at least
put that bug number in the description field.

‘WORKSFORME’
All attempts at reproducing this bug were futile, and reading the
code produces no clues as to why the described behavior would
occur. If more information appears later, the bug can be reopened.

‘MOVED’ The problem was specific to a related product whose bugs are
tracked in another bug database. The bug has been moved to that
database.

Fixed by Usually it’s the same person as the assignee.

2.3.1 Roles solving anomalies
When solving an anomaly, we mostly follow the pattern therein explained:

1. Anybody, having any role, can report an anomaly about the work done by someone
else. It doesn’t make a lot of sense reporting a bug about what you’re doing: you just
fix it and carry on.

Chapter 2: Writing documentation 8

It may be sensible to report problems about your work only if you discover them in a
second moment, when you don’t cover the same role anymore, so the assignee would
be different by the reporter.

2. The discussion starts. Usually the verifier will check the anomaly exists, but if enough
people confirm the bug, the manager can decide to mark the bug as ‘NEW’ as well.

3. Once it is clear who’s the responsible for fixing the anomaly, the manager assign the
bug to them, marking it as ‘ASSIGNED’.

4. A fix/patch may come up from different sources, even by the reporter, but only the
assignee can apply it to the tree and mark the bug as ‘SOLVED’. They take full respon-
sability of the fix.

5. The verifier does the needed QA (Quality Assurance), and then either reopens the bug
or marks it as ‘VERIFIED’.

6. When and only if the product ships, a ‘VERIFIED’ anomaly may become ‘CLOSED’, by
hand of the manager.

Chapter 3: Coding style 9

3 Coding style

In this chapter we explore some self-imposed coding standards we tried to follow when
coding SGPEM. If you plan to extend it in any way, you should conform to the guidelines
explained thereafter.

3.1 Editors

IDEs are a bad choice, since usually they leave your directory dirty, and full of temporary
or project files. Please avoid their use if not strictly necessary.

A good choice for an editor is GNU Emacs, but every other editor that both insert spaces
instead of tabulation characters and has a good Unicode support will do.

Your files should be in “UNIX mode”; that is, only a char is used for a newline. On
DOS-based systems, usually two chars are employed: the newline char and the carriage
return one. Failure to check your text files are correctly saved wastes space and others’
patience, so please take care.

This command usually fixes the problem (note: run it as it is only if no binary files are

present in the current directory!):
for i in *; do tr -d ’\r’ < $i > $i.d; mv $i{.d,}; done

Using spaces instead of tabs in indentation is useful to ensure that your file will be cor-
rectly shown if another developer on another machine opens it with Emacs, Vim, Notepad,
or what else he likes. A good idea is to use an editor which substitutes the character
with spaces. Most UNIX editors indent text files cleverly. The tab size is set to 2, the
FEmacs default.

You may want to set indent-tabs-mode to nil in your ‘$HOME/.emacs’ initialization
file. It’s an option you can find via customize-group £ill.

GNU Emacs has another nice property: it can automatically indent code in a whole
region for you, with M-x indent-region. Moreover, if you can get accustomed to it, you
can activate the automatic indentation while in a programming mode, by typing C-c C-a.
Experienced programmers find it saves quite a lot of time, but we guess it’s just a matter
of taste.

3.2 Coding in C++

SGPEM is mostly written in C++, an Object Oriented language ideated by Bjarne Strous-
trup and standardized in 1998 by ISO. Here are explained some guidelines you should keep
well in mind if you want to contribute to this project.

3.2.1 C++ Coding Style

These are some notes on coding style, and things you should keep in mind whenever extend-
ing SGPEM source code. Patches to the source that don’t uniform to these guidelines are
likely to be rejected and need rework. Coding styles are highly subjective and are often the
cause of harsh holy wars. Here we try also to give a rationale of these choices, supporting
our statements.

1. Left curly braces go on a newline, respect to the statement that comes before them.
Right curly braces are to be put into a newline too. It may make you feel uneasy at

Chapter 3: Coding style 10

first, but this behaviour is preferable because it clearly let you identify code blocks.
Moreover, it is observed that putting left curly braces on the same line of a statement
isn’t a rule you always follow: a lot of exceptions are raised by particular situations,
like: “should my brace go on the same line after a class initialization list? and after
a for loop declaration? what happens after namespaces declaration?” So it’s best to
stick to a well known practice and put it always on a newline. A lot of complex software
projects follow this rule because it also increases manutenibility: keep in mind that you
aren’t writing code for yourself, but for others to read.

2. The return type for every function goes on a line, while the function name and its
parameters go on the following, without any leading space. This makes easier to grep
the source. For example, if you're searching for a declaration of int foo::bar() in-
side a large directory, grepping for: ‘°/~foo::bar/g’’ will immediately pop out the
correct result, whereas, if you didn’t follow this rule, you would have searched for
©/foo::bar/g’’, thus finding all recurrences of the function in the code, even function
calls.

3. Use the following example to understand how we want you to space expressions:

type var = expl OP (exp2 OP funl(exp3));
And for parameters, the following spacing is preferable:
function(parl, par2 = value, ...)

4. Please define pointers like type* var instead of type *var.

5. Labels go indented on the same level of the containing code block. For example:

switch(x)
{
case 1:

// foo
case 2:

// bar
default:

// baz
}

Remember that also public, protected and private are labels.
6. Put incomplete class declarations before their interface, documenting it. For example:

/*xx \brief I’m a useless class

*
* This class is completely useless.
*/
class C;
/7 [...]
class C
{
public:
/7 [...]

};

Chapter 3: Coding style 11

7. All header files of the libs and the engine follow a common model. Try to adhere to
it by looking at existing headers. Document them fully, even if it is tedious, using a
Doxygen-like syntax. The payback will be high, we assure you.

8. Class names are composed of UpperCamelCase words. Member functions are composed
of lowercase words, separated by an underscore, since both the STL and Gtk— use this
convention. Member data are lowercase words (can be separated by an underscore).
Enums members are lowercase and they have a prefix that tells something about their
function, e.g., in an enum named signal, “signal_x*;”. Macro names are written all in
capital.

9. Private member object and function names always begin with an underscore. Public
and protected ones don’t.

10. Some (broken?) versions of autotools had problems with extensions other than ‘.cc’
for C++ implementation files (e.g. automake didn’t produce correct implicit rules for
them). Consequently, in order to avoid problems, we require you to use the following
extensions:

e ‘.cc’: C++ implementation files
e ‘.hh’: C++ header files

e ‘.tcc’: Template implementation files

You can also add to the end of your ‘~/.emacs’ the line:
(add-to-list ’auto-mode-alist (cons "\\.tcc\\’" ’c++-mode))
to automatically associate the ‘.tcc’ extension to the ‘c++-mode’.
11. Constructor initialization list uses the following format:
C::C(T1 argl, T2 arg2, ...)
ml(argl), m2(arg2)...
{

//...
}

3.2.2 C++ Coding Conventions

Some common rules you should keep in mind when writing new code:

1. Never use std: :cout/cerr if you can do without them. Use printf () and fprintf ()
from cstdio instead,so that marking strings for gettext translation will be easier.

2. Don’t use “using” directives into the global space, even in a ‘. cc’, and neither in other
namespaces. If you don’t keep this in mind, you're buying to everybody a (big) problem.
“using” makes sense at the beginning of a function to improve code readability, and
you should be specific:

1. “using namespace std;” is bad
2. “using std::string;” is good
3. When treating long template names, remember that typedef (along with typename

as needed) are your best friends, expecially at the beginning of class declarations or
function definitions.

4. “Syscalls” are evil for portability. Thread calls can sometimes escape this rule (since
they’re quite different from system to system, and GNU/Linux ones are really good),

Chapter 3: Coding style 12

but remember that every UNIX/Win32/Solaris/etc. native call you use means extra-
work somewhere in the near future. If a portable toolkit we’re using provides the same
functionality, it should be preferred to a system call.

5. You should start all your source files, both header and implementation ones, with a
license notice, like this (no leading white lines):
// path/from/topsrcdir/file.ext - Copyright <year>, University

// of Padova, dept. of Pure and Applied
// Mathematics

//

// This file is part of SGPEMv2.

//

// This is free software; you can redistribute it and/or modify

// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2 of the License, or

// (at your option) any later version.

// SGPEMv2 is distributed in the hope that it will be useful,

// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with SGPEMv2; if not, write to the Free Software
// Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA

The style you use to comment this out obviously changes with the language you're
employing.

6. Only exportable classes and functions inside a library should be marked with correct
visibility attribute (usually a macro we defined as SGP_DLLEXPORT). All the others are
marked with ‘--visibility=hidden’ from the compiler, and aren’t available outside
the DSO (Dynamic Shared Object) they live in, so that they don’t clutter the DSO
namespace.

7. When you do something, remember to update the ChangeLog. This is essential. More
on this on Chapter 4 [Committing changes|, page 14.

8. Remember macros for inclusion at the beginning of header files, as well in template
implementation files. In the latter case, you may want to include the template imple-
mentation files in the corresponding header files. An example of a correct inclusion
directive is:

#ifndef HELLO_WORLD_HH
#define HELLO_WORLD_HH 1

// interface definitions

#endif
9. Please follow this order when declaring a class interface:

1. Incomplete declarations of nested classes and friend functions / classes declara-
tions.

Typedefs

3. Enums

Chapter 3: Coding style 13

10.

11.

12.

13.
14.

15.

4. Non-static member functions
5. Static member functions

6. Static constant data members
7. Variable data members

Static non-const public data members shouldn’t exist. Nested classes go declared out-
side their containing class. For example:

class C;
class C
{
class D;
/...
};
class C::D
{
/...
+;

The order for visibility should be: public, then protected, then private.

Use operator overloading with care, only define overloaded operators if the use of that
operator is a natural way to perform a particular operation on the object(s). In case
operator overloading is considered the best choice, a lot of operators should still be
avoided due to their profound integration with the language, and their tendency to lead
to ugly bugs. Some examples of these operators are: the casting operator, operator
delete, operator new, operator

The C++ standard library is your best friend. For example, if you need to allocate some
temporary variable on the heap, use an auto_ptr<> that does the right thing even when
an exception is raised, and that respects RAII (Resource Acquisition Is Initialization).

Also using extensively algorithms like for_each and copy greatly helps.

Use glib: :ustring in place of std::string as often as possible, to ensure Unicode
support.

If you need a smart pointer, be sure to check out glib: :RefPtr<>.

"C-style" comments are useful but are also problematic when you need a fast way to ex-
clude code from execution. Since this kind of comments cannot nest, C-style comments
cannot be used to exclude code already commented with these old-way comments. For
this reason there is no need to complicate our lifes with two styles of comments, the
C++ comment (//) is more than enough, and typing isn’t a problem since most editors
support batch-commenting for multiple lines of code.

Never use global static variables of non-POD (Plain Old Data) type. The reason why
not doing this is fundamental, and it is well described, along with a possible alternative
here: http://www.parashift.com/c++-faq-lite/ctors.html#faq-10.12.

http://www.parashift.com/penalty z@ c++-faq-lite/penalty z@ ctors.html#faq-10.12

Chapter 4: Committing changes 14

4 Committing changes

SGPEM sources are held in a repository managed by Subversion. This is not an intro-
duction on how to use this tool. For that, you should refer to its own manual, located
at http://svnbook.red-bean.com/. Rather, it sets some “best practices” you ought to
follow committing changes to the repository.

4.1 Introduction and goals
The Subversion repository, commonly referred to just as “repository”, is the place where
all the material produced within this project will live.

There is a strong need to maintain an history of development data, even on plain docu-
mentation, whether it is a proprietary file format describing an UML chart, or some lovely
C source code.

Mantaining versioned files for everything makes developers more free to cut, modify,
hack, and revamp them, with the safety that older versions can always be fetched again.

This document describes some guidelines for maintaining the repository as clean as
possible, by defining some restrictive rules that developers must respect in order to avoid
abusing of the customizability this tool offers.

4.2 Repository layout
The layout you’ll find inside the repository will be:

‘swe/branches’
This is the same as tags, except that commits are allowed inside the branch.
Please refer to common development models to decide what should or should
not be done inside a branch. Note that branching isn’t something everybody
should do: it should be agreed together with the project administrator.

The format of a branch is:
<version_number>-r<revision_number>--<branch_name>
Example:
1.2-r164--guirestyle

‘swe/docs’
(subdirectories: ‘internals’, ‘externals’, ‘manuals’, ‘misc’)
Contains all drafts intended for the developers. This directory doesn’t support
tagging and branching because drafts has “eternal” life. If needs arise, they’ll
rather need to be renamed appending their version to their filename (-01, -02,
etc.).

‘swe/prototypes’
A number of explorative prototypes we’ve set up to assess availability and
workingness of needed technologies.

‘swe/tags’

It contains copies of the ‘trunk/’ directory. Note that tagging the trunk di-
rectory reflects in a double space only for your local working copy, while it is

http://svnbook.red-bean.com/

Chapter 4: Committing changes 15

a O(1) operation for the server. Changes and commits are NOT allowed here.
Please note that tagging must be agreeded with project administrator.

The format of a tag is:
<version_number>
Example:
1.0

‘swe/trunk’
(subdirectories: ‘doc’, ‘src’, ...)

This is the main development area where source files are held. Usually, official
releases spin off the trunk. For a list of the directories layed out therein, please
refer to Chapter 1 [Directory overview], page 2.

4.3 Basic svn usage

In your daily use of the repository you will mostly need to know a very small subgroup of
svn commands. Other ones are usually for fine tuning operations (like setting file binary
flags, keyword expansion, managing the repository tree, etc.), which are tasks carried out
by the repository administrator.

Here there’s a quick reference about such commands:

‘svn checkout http://svn.thgnet.it/swe/drafts’
Downloads a copy of the current ‘drafts/’ directory contents. Checking out
the root repository dir (‘swe/’) may result, in near future, to a big download,
as branch and tags will be stored inside the root directory.

‘svn update (short form: svn up)’
Recursively updates the current directory to the latest revision. Use option ‘-r
N’ to update to a specific revision.

‘svn status’
Shows the status of your working copy against the repository.

‘svn diff’ Shows differences in unified diff format between your working copy and the base
version of the current revision selected (usually it means the latest). If you want
to compare two different revisions you can add a ‘-r N:M" parameter.

‘svn lock filename’
Locks a file so that everybody except the lock owner can’t commit over it. This
is particularly useful for binary files: you should always try to acquire a lock
before starting editing.

4.4 Gold rules on committing

A versioning system, by definition, records everything that goes through it. So it may be
a good idea not to commit garbage or make changes that will probably be rejected by the
team. The repository mustn’t be used as a temporary file storage system (so just don’t use
it to transfer files from work to home or vice-versal).

When you commit something, it should be an acceptable piece of work. Of course, it
can happen that later inspection demonstrates it’s better to revert some changesets, but
that’s the purpose of having a centralized versioning system.

Chapter 4: Committing changes 16

Avoid big commits altogether. A detailed description of your intentions should hit the
mailing list before even starting to write such a patch. Then, committing your work must
happen via small incremental patches.

Also please avoid making structural tree changes (creating, moving, removing, renaming
directories) without asking first the repository administrator.

Everything can be reverted by svn, but that’s not an excuse for sloppiness.

4.5 How to write good log messages

Be as descriptive as possible, concisely. If your changeset was discussed on the mailing list
or at a meeting, make a clear reference to it.

Please be consistent with the message format. Use a clean english language, employing
only abbreviations contained in the glossary document.

Always prepend a dash (—) for each changeset description, followed by a space. This
will make clear, in case of line wrapping, what is part of the list and what is simply a new
line.

Every sentence must end with a full stop. If a particular description is composed by
several sub-descriptions, use a colon (‘:’), and use a tab space to indent the inner list.

You can use only one level of nesting for lists. If you need more, you are probably making
an oversized commit.

An example of the log format is the following:

- Change description 1.

- Change description 2:

<tab> - Part 1 of change description 2.

<tab> - Part 2 of change description 2.

- Change description 3. This particular change has a very long message
describing this atomic commit.

4.6 Conflicts resolution

As in any other concurrent development system, conflicts may happen. this will be de-
manded to the official Subversion Book (ch. 3 sect. 5.4) for an explanation on how to
handle them. We will just quote something to keep well in mind, however:

In the end, it all comes down to one critical factor: user communication. When
users communicate poorly, both syntactic and semantic conflicts increase. No
system can force users to communicate perfectly, and no system can detect
semantic conflicts. So there’s no point in being lulled into a false promise that
a locking system will somehow prevent conflicts; in practice, locking seems to
inhibit productivity more than anything else.

Version Control with Subversion, a.k.a. “T'he Subversion Book”

Chapter 5: Using the Mailing List 17

5 Using the Mailing List

5.1 Introduction and goals

This mailing list (often referred from now on simply as “ML”) has been created with the
specific aim of coordinating the effort of the members of our Software Engineering steering
committee.

This chapter focuses on describing a set of guidelines of what should be considered best
practices whenever writing to the ML, in order to avoid possible troubles and thornful
outcomes.

This very chapter (an approved draft) you're reading can be amended too. For more
informations, please refer to the corresponding subsection, called “A democratic discussion”.

5.2 About the language, some useful conventions

The English language (either the UK or the US one, but the slangwords) is believed to be
the best choice to deliver our internal drafts and user manuals, while the external ones are
kept in Italian to help our Customer in his revision work.

The decision of internally using the English language descends from two considerations:

1) English is probably the most widely used language in the world (at least taking in
account geographical extension). Making an effort to use it correctly during the development
of this project is a good training ground for the future, and makes SGPEMv2 usable also by
non-Italian speakers.

2) It encourages you to use a cleaner and simplier form, since you're writing in a foreign
language: you actually have to think about what you’re doing in a more careful way; not
only to express your ideas, but also to express your ideas in a way you can be understood.
Most people that don’t read again what they typed if writing in their mothertongue, usually
look through an email composed in English at least twice, in order to check out for grammar
mistakes. Therefore, it often makes easier to find also conceptual disasters.

Please avoid strong words or offensive language. They don’t help the discussion anyway,
they represent a waste of bytes on the server, and at least some of us consider them to be
childish behaviour.

If some of us ask you to explain what you meant, or correct your grammar, please don’t
lose your temper or feel blue: we’re all here to learn.

As a side note, we encourage the use of the "singular they" as a neutral form. You can
find a nice article on this by searching Wikipedia.

This doesn’t forbid you to use Italian for normal communications over the ML.

5.3 Steer the wheel

Most discussions start with a draft, like this. The talking then goes on amendating the doc-
ument and, when no-one opposes it anymore, the draft is marked as an approved guideline,
and everybody is meant to (as strictly as possible) conform to it.

Exceptions or revisions to guidelines due to a rework done by some other process pertain
to the KA (Knowledge Area) of Process Improvement (see SWEBOK 9).

Chapter 5: Using the Mailing List 18

The committer could ask for some particular modalities in carrying out this procedure,
although unlikely (usually, it’s an internal task).

This draft is hence subject to change in this aspect.

5.4 A democratic discussion

Of course, not everybody has to agree with everyone else on every subject. We're just
humans, after all; we’re entitled to our opinion. Hence, it may be necessary, at times, to
set up a votation.

In a votation, if ‘n’ options are available, each voter has ‘n*10’ points expendable. They
can thus weight their decision prioritizing one or more of the listed choices, and distributing
these points as they wish. The highest scoring option wins the votation. In case of even
scores, ballot can happen until a clear decision has been reached.

Usually a maximum time to amendate a draft or to vote is declared; if no further points
to discuss are raised in such time, the document is marked as agreed. The minimum number
of days for a votation / to amend a draft is set to three.

5.5 Keeping the archives clean

If, by writing your response, you’'ve to comment on things that pertain to different KAs, or
if the discussion requires to be "branched" over different subjects, please also start a new
thread, change the subject line, and split your own letter, even if the answer to a question
just takes two lines.

Not only this makes easier to search throughout the archives; it makes easier for others
to reply only to those matters that concern they, tidily continuing the tree structure of
threads.

5.6 Diving in technicalities

E-mails should be sent out text-only, not in HTML format. This makes them faster to
download, store, manipulate, and it even saves us from kaki-on-pink kitsch backgrounds.
Moreover, text-only mails are (almost always) monospaced; this allows the more aestethical-
inclined of us to integrate ASCII-art in them, like handmade diagrams.

Virtually all email clients available let you choose how you want to send your messages
to a certain address: if in HTML, plain-text or both. Please choose plain-text only.

Another important thing to keep in mind, is to set your encoding to UTF-8. This makes
interoperability between different and exotic encodings possible by using a standard base.
Yes, even between different operating systems, like the one called “98” and the one named
“2000” ;-).

A simple discussion shouldn’t be marked in whatever way: it has just a meaningful
subject. For example: “hello, world!” is a bad subject; it doesn’t tell much of the contents
of the message, besides that probably it has some form of salute into it. Also, a line like
“i’ve a problem” is a bad one: it could be a problem in installing an operating system, in
finding a bug in a program, or in carrying out the rubbish and feeding the cat.

An example of a good subject is “Possible buffer overflow in recursive-sort.cc:374”. Also
“How can I stuff my cat with friskies?” is a good one, albeit maybe a little bit off topic.

Chapter 5: Using the Mailing List 19

For documents like this, a subject line of the form “(draft) <description>” is a good
choice. It makes it easily recognizable, and it’s like automatically asking for people to
amend.

Approved drafts are marked with a date, and are copied in a separate directory of the
repository (tipically, a ‘doc’ subdirectory). A quick TeXinfo rewrite can be performed if
need arises, or if someone is willing to spend five minutes doing so.

Every approved document contains the full text correctly amended (whereas, during the
discussion just snippets of it are changed by diff), and starts with a date and a progressive
number in its header. The header should be in the form:

(approved draft) #xxxx, [<area>]
Initially submitted by: <Name Surname>
On date: <YYYY, Month DD>
Approved by:

<Name Surname 1>

<Name Surname 2>

Rejected by:
<Name Surname 1>

Reason of refusal:
<description of the reason>
Finally approved on date: <YYYY, Month DD>

Of course, the ‘rejected by’ list should ideally be empty, or just listing ‘nobody’. The
subject area is up to the writer to purpose, wisely. Different areas are instantiated as need
arises. Please don’t create a forest of areas; it’s no use whatsoever.

Have fun, and ...

... happy hacking!

Chapter 6: Writing your own plugins

6 Writing your own plugins

TODO: write me.

20

Appendix A: License 21

Appendix A License

GNU Free Documentation License
Version 1.2, November 2002

Copyright (©) 2000,2001,2002 Free Software Foundation, Inc.
51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and
useful document free in the sense of freedom: to assure everyone the effective freedom
to copy and redistribute it, with or without modifying it, either commercially or non-
commercially. Secondarily, this License preserves for the author and publisher a way
to get credit for their work, while not being considered responsible for modifications
made by others.

This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public
License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals
providing the same freedoms that the software does. But this License is not limited to
software manuals; it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a
notice placed by the copyright holder saying it can be distributed under the terms
of this License. Such a notice grants a world-wide, royalty-free license, unlimited in
duration, to use that work under the conditions stated herein. The “Document”,
below, refers to any such manual or work. Any member of the public is a licensee, and
is addressed as “you”. You accept the license if you copy, modify or distribute the work
in a way requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the Document or
a portion of it, either copied verbatim, or with modifications and/or translated into
another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that
could fall directly within that overall subject. (Thus, if the Document is in part a
textbook of mathematics, a Secondary Section may not explain any mathematics.) The
relationship could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position regarding
them.

Appendix A: License 22

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released
under this License. If a section does not fit the above definition of Secondary then it is
not allowed to be designated as Invariant. The Document may contain zero Invariant
Sections. If the Document does not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may
be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented
in a format whose specification is available to the general public, that is suitable for
revising the document straightforwardly with generic text editors or (for images com-
posed of pixels) generic paint programs or (for drawings) some widely available drawing
editor, and that is suitable for input to text formatters or for automatic translation to
a variety of formats suitable for input to text formatters. A copy made in an otherwise
Transparent file format whose markup, or absence of markup, has been arranged to
thwart or discourage subsequent modification by readers is not Transparent. An image
format is not Transparent if used for any substantial amount of text. A copy that is
not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without
markup, Texinfo input format, LaTEX input format, SGML or XML using a publicly
available DTD, and standard-conforming simple HTML, PostScript or PDF designed
for human modification. Examples of transparent image formats include PNG, XCF
and JPG. Opaque formats include proprietary formats that can be read and edited
only by proprietary word processors, SGML or XML for which the DTD and/or
processing tools are not generally available, and the machine-generated HTML,
PostScript or PDF produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, “Title Page”
means the text near the most prominent appearance of the work’s title, preceding the
beginning of the body of the text.

A section “Entitled XYZ” means a named subunit of the Document whose title either
is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in
another language. (Here XYZ stands for a specific section name mentioned below, such
as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve
the Title” of such a section when you modify the Document means that it remains a
section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to
be included by reference in this License, but only as regards disclaiming warranties:
any other implication that these Warranty Disclaimers may have is void and has no
effect on the meaning of this License.

2. VERBATIM COPYING

Appendix A: License 23

You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies, and
that you add no other conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further copying of the copies
you make or distribute. However, you may accept compensation in exchange for copies.
If you distribute a large enough number of copies you must also follow the conditions
in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.
3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of
the Document, numbering more than 100, and the Document’s license notice requires
Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all
these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
the back cover. Both covers must also clearly and legibly identify you as the publisher
of these copies. The front cover must present the full title with all words of the title
equally prominent and visible. You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve the title of the
Document and satisfy these conditions, can be treated as verbatim copying in other
respects.

If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue the
rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a computer-network location from which
the general network-using public has access to download using public-standard network
protocols a complete Transparent copy of the Document, free of added material. If
you use the latter option, you must take reasonably prudent steps, when you begin
distribution of Opaque copies in quantity, to ensure that this Transparent copy will
remain thus accessible at the stated location until at least one year after the last time
you distribute an Opaque copy (directly or through your agents or retailers) of that
edition to the public.

It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you
with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of
it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any,

Appendix A: License 24

O

N.

O.

be listed in the History section of the Document). You may use the same title as
a previous version if the original publisher of that version gives permission.

List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five
of the principal authors of the Document (all of its principal authors, if it has fewer
than five), unless they release you from this requirement.

State on the Title page the name of the publisher of the Modified Version, as the
publisher.

Preserve all the copyright notices of the Document.

Add an appropriate copyright notice for your modifications adjacent to the other
copyright notices.

Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

Include an unaltered copy of this License.

Preserve the section Entitled “History”, Preserve its Title, and add to it an item
stating at least the title, year, new authors, and publisher of the Modified Version
as given on the Title Page. If there is no section Entitled “History” in the Docu-
ment, create one stating the title, year, authors, and publisher of the Document
as given on its Title Page, then add an item describing the Modified Version as
stated in the previous sentence.

Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given in
the Document for previous versions it was based on. These may be placed in the
“History” section. You may omit a network location for a work that was published
at least four years before the Document itself, or if the original publisher of the
version it refers to gives permission.

For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title
of the section, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

Preserve all the Invariant Sections of the Document, unaltered in their text and
in their titles. Section numbers or the equivalent are not considered part of the
section titles.

Delete any section Entitled “Endorsements”. Such a section may not be included
in the Modified Version.

Do not retitle any existing section to be Entitled “Endorsements” or to conflict in
title with any Invariant Section.

Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify
as Secondary Sections and contain no material copied from the Document, you may at
your option designate some or all of these sections as invariant. To do this, add their

Appendix A: License 25

titles to the list of Invariant Sections in the Modified Version’s license notice. These
titles must be distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but
endorsements of your Modified Version by various parties—for example, statements of
peer review or that the text has been approved by an organization as the authoritative
definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be
added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by arrangement
made by the same entity you are acting on behalf of, you may not add another; but
you may replace the old one, on explicit permission from the previous publisher that
added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you
include in the combination all of the Invariant Sections of all of the original documents,
unmodified, and list them all as Invariant Sections of your combined work in its license
notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined
work.

In the combination, you must combine any sections Entitled “History” in the vari-
ous original documents, forming one section Entitled “History”; likewise combine any
sections Entitled “Acknowledgements”, and any sections Entitled “Dedications”. You
must delete all sections Entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various
documents with a single copy that is included in the collection, provided that you
follow the rules of this License for verbatim copying of each of the documents in all
other respects.

You may extract a single document from such a collection, and distribute it individu-
ally under this License, provided you insert a copy of this License into the extracted
document, and follow this License in all other respects regarding verbatim copying of
that document.

Appendix A: License 26

7. AGGREGATION WITH INDEPENDENT WORKS

10.

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called
an “aggregate” if the copyright resulting from the compilation is not used to limit the
legal rights of the compilation’s users beyond what the individual works permit. When
the Document is included in an aggregate, this License does not apply to the other
works in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one half of the entire aggregate, the Document’s Cover
Texts may be placed on covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form. Otherwise they
must appear on printed covers that bracket the whole aggregate.

TRANSLATION

Translation is considered a kind of modification, so you may distribute translations
of the Document under the terms of section 4. Replacing Invariant Sections with
translations requires special permission from their copyright holders, but you may
include translations of some or all Invariant Sections in addition to the original versions
of these Invariant Sections. You may include a translation of this License, and all the
license notices in the Document, and any Warranty Disclaimers, provided that you
also include the original English version of this License and the original versions of
those notices and disclaimers. In case of a disagreement between the translation and
the original version of this License or a notice or disclaimer, the original version will
prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “His-
tory”, the requirement (section 4) to Preserve its Title (section 1) will typically require
changing the actual title.

TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly
provided for under this License. Any other attempt to copy, modify, sublicense or
distribute the Document is void, and will automatically terminate your rights under
this License. However, parties who have received copies, or rights, from you under this
License will not have their licenses terminated so long as such parties remain in full
compliance.

FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.
See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
specified version or of any later version that has been published (not as a draft) by
the Free Software Foundation. If the Document does not specify a version number of
this License, you may choose any version ever published (not as a draft) by the Free
Software Foundation.

http://www.gnu.org/copyleft/

Appendix A: License 27

A.1 Addendum: How to use this License for your
documents

To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:

Copyright (C) year your name.

Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.2

or any later version published by the Free Software Foundation;

with no Invariant Sections, no Front-Cover Texts, and no Back-Cover
Texts. A copy of the license is included in the section entitled ‘‘GNU
Free Documentation License’’.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
“with... Texts.” line with this:

with the Invariant Sections being list their titles, with
the Front-Cover Texts being list, and with the Back-Cover Texts
being list.
If you have Invariant Sections without Cover Texts, or some other combination of the
three, merge those two alternatives to suit the situation.
If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU
General Public License, to permit their use in free software.

Concept Index

Concept Index

A

CHt 9
coding conventions.............. 11
coding style 9
coding, style........ 9
committing............. oL 15
conflicts. ... 16

D

directory layout 2, 14
documentation i 3
documenting C++code 4
documenting Python code 4
draft proposals 3

E

28
F
FDL, GNU Free Documentation License....... 21
formal documents.............. 3
H
history of changes............................. 1
L
locking files 15
log MesSSages.ovii 16
mailing list.......... 17
MErgingoovuuiiiiiiiiiia. 16
TePOSItOTY ..ot 14, 15
source code organization 2
SUDVErSION . . .o oottt 14

	History
	Directory overview
	Writing documentation
	Formal documents and draft proposals
	Introduction
	Technical document format

	Documenting code
	C++ code
	Python code

	Reporting anomalies
	Roles solving anomalies

	Coding style
	Editors
	Coding in C++
	C++ Coding Style
	C++ Coding Conventions

	Committing changes
	Introduction and goals
	Repository layout
	Basic svn usage
	Gold rules on committing
	How to write good log messages
	Conflicts resolution

	Using the Mailing List
	Introduction and goals
	About the language, some useful conventions
	Steer the wheel
	A democratic discussion
	Keeping the archives clean
	Diving in technicalities

	Writing your own plugins
	License
	Addendum: How to use this License for your documents

	Concept Index

