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Multiplayer online games have now become popular with millions 
across the globe, capturing the attention of both researchers and 
practitioners. Unfortunately, online games still have to deal with 
the limitations imposed by some unresolved issues. Interactivity, 
consistency, fairness, and scalability are the major requirements 
that need to be addressed efficiently in order to provide an 
appealing product to a huge number of potential customers 
worldwide. To answer this demand, we describe a holistic 
approach that can exploit the semantics of the game to satisfy the 
aforementioned requirements. We provide extensive and 
comparative results that demonstrate how our scheme copes 
efficiently with an elevated level of game traffic. 
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1. INTRODUCTION 
A massively multiplayer online game (MMOG) can be defined as 
a computer game able to support a multitude of players who 
interact with each other within the same virtual world, across the 
Internet, and regardless of geographical location.  

MMOGs trace their roots to the late 1970s, when the popularity of 
the Multi-User Dungeon (MUD), a text-based role-playing 
adventure game spread from Essex University to the entire world 

[http://www.ludd.luth.se/mud/aber/mud-history.html]. Since then, 
MMOGs have evolved, now embodying a large class that includes 
several kinds of games (e.g., car racing, first-person shooter, 
adventure, role-play, and strategic). 
Indeed, in the past few years, the popularity of MMOGs over the 
Internet has increased exponentially 
[http://www.mmogchart.com]. Nevertheless, Internet latencies 
have limited the use of networked games, largely as a  result of 
slow-paced applications, utilizing the client-server paradigm for 
network communication, and engaging players only when limited 
in number and located in the same region where the server is 
positioned.  

The task of providing a pleasant experience to players becomes 
hugely more challenging when trying to deploy a large scale and 
highly interactive online game. Indeed, the outstanding key 
factors in developing networked MMOGs are as follows:  

• Interactivity (or responsiveness): the degree to which this 
occurs in the game event exchange.  

• Consistency: a shared view of the game state among all the 
engaged players. 

• Network fairness: a guarantee that all players have the same 
chance of winning, regardless of their subjective network 
conditions; 

• Scalability: assurance that the number of simultaneous 
players as well as their geographical distribution will be 
properly scaled. 

Regarding the last point, the interest of companies in online 
gaming is due to the huge revenues that may be generated by a 
very large number of customers. Besides, humans are social 
beings who enjoy the presence of others in most of their 
amusements (e.g., team sports, movies in theatres) and in 
challenging their skills against real adversaries. 

So in order to ensure success, every time a new solution for one 
of the first three key factors is proposed, scalability should be 
ensured (and verified) as well.  

To generalize, developers should follow a holistic approach when 
designing a new MMOG, and take the whole set of requirements 
into consideration. Addressing only one could produce an 
unexpected and undesired result and jeopardize the others. 

With the goal of supporting interactivity and fairness while 
preserving consistency, we propose a novel scheme called 
Fairness and Interactivity-Loss Avoidance (FILA) that facilitates 
fairness by increasing the degree of interactivity [Ferretti et al. 

 



2006; Palazzi et al. 2005]. By doing so, FILA contradicts the 
general belief that interactivity and fairness are incompatible 
requirements in MMOGs. We obtained this result by exploiting 
the semantics of the game and discarding obsolete events with a 
probability that depends on the current degree of interactivity as 
perceived by players. 

We will show how our mechanism can be adapted to satisfy the 
scalability requirement. In particular, we will demonstrate that 
FILA is particularly able to cope with the intense game traffic 
generated by a multitude of players sharing the same virtual 
arena.  

The remainder of the article is organized as follows: Section 2 
discusses MMOG’s fundamental requirements; Section 3 presents 
a scalable gaming architecture and compares it with other 
traditional architectures for online games; Section 4 provides the 
basics of the FILA approach; Section 5 describes and evaluates 
the algorithms; Section 6 explains the simulation environment for 
our experiments; Section 7 presents experimental results; and 
Section 8 concludes.  

2. PROBLEM STATEMENT 
The four key requirements listed in the Introduction cannot be 
considered independent of each other. If we aim to improve only 
one of them, the others may be affected negatively. Before 
evaluating a new algorithm for MMOGs, we have to understand 
in a deep way the tradeoffs among interactivity, consistency, 
fairness, and scalability. 

In particular, interactivity means having small delays between the 
generation of a game event and the time at which all the players 
display that event. Indeed, if interactivity is to be preserved, every 
class of game must have a game-specific game interactivity 
threshold (GIT) that represents the maximum delay allowable 
before displaying a game event on the players’ screens. The 
typical GIT for fast-paced games (e.g., racing vehicles, first-
person shooter) is 150 to 200ms, but this value can be increased to 
seconds in slow paced-games (e.g., strategic, role-playing games) 
[Pantel and Wolf  2002; Borella 2000; Zander.and Armitage 
2004; Fitzek  et al. 2002; Sheldon et al. 2003]. 

If we call )e(gt  the generation time of event e and )e(v
it  the 

visualization time of the same event at player i, then interactivity 
is preserved at i during the delivery of e when the following 
condition is satisfied: 

 .GITtt )e(g)e(v
i ≤−  (1) 

Both consistency and network fairness require the same and 
simultaneous game state view in all the nodes of the system. 
Hence the same class of techniques is used to achieve each of 
them (or both). Indeed, the easiest way to guarantee consistency 
and fairness is to make the game proceed through discrete 
locksteps [Steinman 1995]. In other words, the game evolves 
through steps and players have to wait their turn to act. 
Obviously, this scheme cannot be applied to interactive games. 

In order to show game events on the screens of all the players 
simultaneously, a scheme based on the introduction of artificial 
delays was devised recently [Zander et al. 2005; Gautier and Diot 
1998; Pantel and Wolf 2002; Mauve et al. 2004; Kim et al. 2005]. 

This kind of solution is usually referred to as the local lag 
algorithm. With local lag, advances in the game are delayed for a 
sufficient amount of time to guarantee that all the players in the 
system process and perceive the game events at the same time and 
in the same order.  

Indeed, since the time to generate each event is unique and 
considering the set of players, C, we can say that we have event-
related fairness [Ferretti et al. 2006] for an event e if the 
following condition is satisfied, i.e., simply, that if there is a 
unique )e(vt  value equal for all the players, then 

 .,)()( Citt evev
i ∈∀=  (2) 

Since a single game event may experience different overall delays 
(OD) in its path from the source to all the diverse players, 
different amounts of artificial delay δ should be added by means 
of the local lag algorithm to simultaneously display the same 
event e on all the players’ screens, to satisfy the following 
condition: 

 .)()( )()( CiteeODt ev
ii

eg ∈∀=++ δ  (3) 

A possible value typically chosen for )e(vt  is represented by the 
highest OD experienced in transmitting events among the nodes. 
When the highest OD is greater than GIT, however, fairness is 
preserved at the cost of jeopardizing interactivity for all the 
players. Conversely, if we use GIT as an upper bound of )e(vt , 
then we can guarantee interactivity but not fairness.  

Consequently, in order to maximize the possibility of obtaining 
both interactivity and fairness, )e(vt  should be set as 

 .GITtt )e(g)e(v +=  (4) 

Yet the ODi(e) experienced by event e when it finally reaches 
client i is made up of several delay components such as physical 
latency, queuing time on routers along the path and on game 
servers, and processing time.  

Therefore, even when network latency allows having values of 
OD, and hence also of )e(vt  lower than GIT, a large number of 
players generating a huge amount of traffic may raise the values 
of the other two delay components, again leading to the crossroad 
between fairness and interactivity. 

To conclude, the efficiency and applicability of popular, delayed-
based algorithms like local lag depend strongly on the network 
conditions and on the degree of interactivity required by the 
game. Yet guaranteeing both interactivity and full fairness 
through local lag can sometimes only be achieved at the cost of 
limiting the scalability of the game by restricting the number of 
contemporaneous participants and the geographical extent of the 
target player market. 

It has become evident that to find the most efficient tradeoffs 
among interactivity, consistency, fairness, and scalability, 
MMOGs require architectural solutions and algorithms. 



3. ARCHITECTURAL SOLUTIONS 
Typically, network architectures that support MMOGs can be 
distinguished on three main categories: the centralized client-
server, fully distributed architecture, and the mirrored game 
server. The centralized client-server architecture represents the 
simplest solution for authentication procedures, security issues, 
and consistency maintenance [http://www.quakeforge.org]. 
Moreover, assuming there are N simultaneous players, the 
messages generated are on the order of O(N). On the other hand, 
the unique bottleneck limits the efficiency and scalability of this 
solution. 

Fully distributed architectures (peer-to-peer) spread the traffic 
load among many nodes, resulting in a more scalable and failure-
resilient system [Gautier and Diot 1998]. However, identical 
copies of the current game state must be stored at each node; and 
this requires a complex coordination scheme among peers able to 
guarantee the coherence of all game state views. Moreover, with a 
fully distributed architecture, multicast should be employed to 
reduce the bandwidth requirements; but multicast technology is 
neither generally available nor mature enough for the specific 
application we are considering here (the messages exchanged 
could rise to the order of O(N2)). Finally, authentication, cheating, 
and general consensus among all the peers are easier to address 
when a centralized architecture is employed. 

Mirrored game server architectures represent a hybrid solution 
that efficiently embraces all the positive aspects of both 
centralized client-servers and fully distributed architectures 
[Cronin et al. 2004]. Based on this approach, game state servers 
(GSSs) are interconnected in a peer-to-peer fashion over the 
Internet and contain replicas of the same game state view. Players 
communicate with their closest GSS through the client-server 
paradigm. Each GSS gathers all the game events of its engaged 
players, updates the game state, and forwards it regularly to all its 
players and GSS peers.  

The presence of multiple high performance GSSs helps to 
distribute the traffic over the system and reduce the processing 
burden at each node. Moreover, having each player connected to a 
close by GSS reduces the impact of the player-dependent access 
technology (e.g., dial-up, cable, DSL) on the total delay [Jehaes et 
al. 2003]. In this case, in fact, communication among players was 
mainly deployed over links physically connecting GSSs, which 
can exploit the fastest available technology (e.g., optical fibers) to 
reduce latency. As a result, this architecture helps in finding better 
solutions for the tradeoffs among interactivity, consistency, 
fairness, and scalability.  

Absence of a single point of failure, networking complexity 
maintained at server side, and the possibility of implementing 
authentication procedures are other advantages in employing a 
mirrored game server architecture. Even if synchronization is still 
required to ensure the global consistency of the game state held 
by the various servers, this requirement is made easier than in 
fully distributed architectures, thanks to the lower number of 
nodes involved. Assuming N players and M GSSs, for example, 
the game messages generated amount to O(N+M), which is again 
O(N), unless considering the unlikely case of more servers than 
players. 

All these reasons suggest that the mirrored game server 
architecture is the most appropriate to efficiently manage large-

scale distributed games, as it embodies the advantages of both 
client-server and fully distributed paradigms. 

 

4. FILA OVER A MIRRORED SERVER 
ARCHITECTURE  
FILA can be thought of as comprised of two complementary 
subcomponents. The first one, enforced among GSSs, speeds up 
the delivery of fresh game events by dropping events that have 
become obsolete since the arrival of the more recent ones. 
Interested readers may refer to Ferretti and Roccetti [2004] for a 
deeper discussion of the notion of obsolescence and a way to 
include it in game events. The second component takes advantage 
of the reduced transmission time to magnify the efficiency of a 
local lag-type algorithm to ensure fairness. FILA utilizes the work 
of Zander et al. [2005] to determine the display time of a game 
event; and thus ensures fairness without compromising 
interactivity. 

To calculate the appropriate δ in Eq. (3), the OD should be 
determined for each player. For this reason, game events are 
marked with a generation timestamp at their creation and then 
sent to the destination. Obviously, a global concept of time has to 
be maintained in the system, which can be achieved through a 
variety of solutions that enable the synchronization of GSSs’ 
physical clocks [Mills 1991; Ramanathan et al. 1990], or by 
employing new synchronization devices such as GPS. Hence 
GSSs can monitor the ODs of their engaged players and make 
them available for the FILA algorithm.  

The first component of FILA is inspired by the so-called active 
queuing management techniques [Floyd and Jacobson 1993]. It 
drops queued obsolete game events with probability pd when the 
average OD (avgOD) value increases, putting the interactivity of 
the system at risk. The probability of discarding, i.e., pd , is 
directly proportional to avgOD and depends on a constant Pmax, 
as described in the work of  Palazzi et al. [2004] and Palazzi et al. 
[2006]. Instead, the value for avgOD at iteration n is computed 
through the low-pass filter shown below, where w is a parameter 
that determines how closely the average follows the sample trend: 

 ).avgODsample(wavgODavgOD 1nn1nn −− −×+=  (5) 

Moreover, with FILA, all game events are regularly processed 
and forwarded when avgOD is smaller than the threshold alert, 
called tmin. As soon as avgOD exceeds tmin, the GSS drops 
obsolete events with probability pd, and does not process or 
forward them. Finally, if avgOD exceeds the subsequent tmax 
(>tmin) threshold, then pd is set equal to 1, and all obsolete events 
waiting for processing are discarded.  

This stabilization mechanism succeeds in reducing ODi(e) 
because the time spent in queue by an event is decreased due to a 
gain in  processing time, which is the result of  the preceding 
obsolete events being dropped without being processed or 
forwarded. Moreover, since only obsolete events are discarded, 
FILA maintains full consistency as the game evolves [Ferretti et 
al. 2006; Palazzi et al. 2004]. 



To explain FILA in more detail, see Figure 1, which provides the 
graphical definitions for some of the terms in our work, namely: 
OD, ND (network delay), and LHD (last hop delay). 

 

First, note that FILA performs its operations on the receiving 
GSS. This choice makes it easier to maintain control of the game 
platform. However, for each event e, the GSS can compute ND(e) 
but not LHD(e). But it is necessary to estimate LHD(e) in order to 
compute OD and use it in the algorithm. For this reason, each 
GSS continuously monitors latencies for each of its players and 
maintains a variable called λGSS. The value of this variable 
represents the maximum among the latencies from the GSS to 
each of its connected clients (this set of clients is called C_GSS), 
as follows: 

 }.LHD{max iGSS_CiGSS ∈
=λ  (6) 

However, we cannot let an irremediably delay-affected client 
impact our scheme’s calculations too much. In FILA, utilizing an 
excessively high λGSS generated by a player very far from the GSS 
results in a very high sample (and avgOD) value with respect to 
GIT. Consequently, the aggressiveness of FILA’s discarding 
function would increase, as perceived by all the players, with no 
positive results. (The “unlucky” player would still not be able to 
get game events with delays below the interactivity threshold.) 

Hence we need to consider a delay upper bound (DUB), which is 
used by FILA to limit the impact of “unlucky” players on the 
algorithm. Toward this goal, we provide the computation of a 
formula for a fundamental parameter utilized by FILA to handle 
the impact of LHD(e) on the algorithm: 

 }.DUB,{min GSSλσ =  (7) 

How the parameter σ varies will depend on which version of our 
scheme, as detailed in Section 5, is used.  

Instead, to determine DUB, we rely on a heuristic that computes 
its value dynamically, based on the general condition of the 
network during the game; the formula follows: 

 },{max NDGITDUB −=  (8) 

Where max{ND} represents the largest ND over all the 
connections in the entire network.  

Obviously, each GSS has to communicate the largest ND at that 
server back to all the other peers. This allows global knowledge 
of the worst ND value at each GSS. Finally, the highest among the 
maximum NDs can be univocally determined by each GSS and 
used to determine the global DUB.  

The second part of FILA is simply in charge of equalizing the 
delay differences among players via a local lag-type scheme that 
appropriately computes the δ value shown in Eq.(3) so as to 
satisfy Eq. (4) whenever possible.  

5. IS FILA A GOOD SOLUTION? 
We will now empirically demonstrate how the combination of the 
two subcomponents of FILA is effective in ensuring fairness and 
interactivity while allowing a scalable number of 
contemporaneous players. To this aim, four different schemes are 
taken into account: regular local lag (LL) and three versions of 
FILA (i.e., FILA-A, FILA-B, and FILA-C). 

The first scheme, LL, embodies the traditional local lag scheme 
with no discarding mechanism for obsolete events. Even in this 
case, however, as for all the other schemes above, the algorithm is 
not allowed to introduce artificial delays if this results in 
jeopardizing interactivity (i.e., )e(vt  cannot be set greater than 

)e(gt  + GIT). 

FILA-A is the simplest among the three schemes. With this 
algorithm no avgOD is maintained and no pd is calculated. To 
cohere with the basics of the algorithm anticipated in Section 4, 
we could say that, in FILA-A, tmin and tmax are both set equal to 
GIT (and both w and Pmax are always equal to 1). Moreover, at 
each iteration of Eq. (5), sample is set equal to the current ND(e). 

When a GSS receives a game event e from a player connected to 
one of its GSS peers, e still has to travel from that GSS to the 
final players. For this reason, our scheme takes into account the 
various LHDi(e) by reducing the threshold used by the algorithm. 
Therefore, with FILA-A, each GSS performs normal delivery and 
local lag operations for each game event e until the following 
condition holds: 

 .GIT)e(ND σ−≤  (9) 

When Eq.(9) fails, all obsolete events in queue are discarded 
instead, and they are neither processed nor forwarded. 

In FILA-B, the estimation of the impact of LHDi(e) is taken into 
account by diminishing one of the utilized thresholds instead,  In 
particular, we set tmax = GIT – σ and tmin < tmax. Even with this 
algorithm, at each iteration of Eq.(5), sample is set equal to the 
current ND(e). 

Finally, FILA-C takes the estimation of the LHDi(e) values 
directly into account when generating sample. Hence we have 
tmax = GIT (tmin < tmax), and sample is determined by the 
arrival of a new event e by employing σ as follows: 

 .)e(ND)e(sample σ+=  (10) 

Fig.1. Delay definitions. 
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Even when they are similar, the three versions of FILA still differ 
in substantial respects. In essence, FILA-A is an aggressive, yet 
slow, approach, in which all the queued obsolete events are 
discarded only after interactivity and fairness have already been 
lost. FILA-B and FILA-C try to avoid the loss of these two 
properties by preemptively discarding some obsolete game events 
when the trend in delay increases over the threshold alert, tmin. 
Hence we may expect to witness smaller dropping rates with 
FILA-B and FILA-C, as they need to drop all queued obsolete 
events less frequently than FILA-A.  

This is a desirable property. In fact, even if obsolete events can be 
sacrificed, they are still part of the game’s visual progression. 
Dropping too many obsolete events could result in jerky rendering 
caused by imprecise interpolations of the missing actions. As a 
result, annoying artifacts in the game’s evolution may be 
generated. 

When we contrast FILA-B with FILA-C, we see that the former 
includes σ in the tmax threshold, while the latter utilizes it to 
compute the sample value. The impact of σ on FILA-C should be 
smoothed by the low-pass filter (Eq.(5)). However, when sample 
is steadily augmented by σ, then even avgOD results are higher, 
since sample is used to compute avgO. Recall that the discarding 
probability pd is directly proportional to avgOD, so we can see 
how the use of Eq.(10) results in higher pd values. Hence we 
expect to find FILA-C more aggressive than FILA-B (with a 
larger number of dropped events). 

6. EXPERIMENTAL ARCHITECTURE 
It is well known that MMOG service providers should position 
their game servers in such a way that their target player market is 
located within a circle with a 150 to 180ms latency diameter 
[Armitage 2003]. Following this rule, we have simulated the 
deployment of five GSS across North America, positioned in 
optimal locations with communication latencies that provide 
adequate support for a highly interactive MMOG in both the 
distances between the nodes and the number of customers that can 
be served. Thus, clients are supposed to be distributed all over the 
North America, connecting to a GSS through various access 
technologies with different access delays. 

For the sake of deeper understanding, we focus our attention on 
the event-receiving aspect of a single GSS (GSS0), supposing that 
the other GSSs are sending events to it without any loss of 
generality. 

Following the literature [Park and Willinger.2000], ND values 
among GSSs were generated based on a lognormal distribution 
whose approximate average was taken from repeated runs of the 
ping application. Further, game events from players connected to 
the sending GSSs (i.e., GSS1 to GSS4) and traveling towards GSS0 
experienced latencies with an average reported in Figure 2 and a 
standard deviation of 10ms.  

Further, several scenarios were considered in which the values of 
}{max

_ iGSSCi
LHD

∈
 were chosen for each GSS within the following 

set [25ms, 50ms, 75ms, 100ms, 125ms, 150ms]. This choice 
simply derives from the consideration that clients should be 
located within a circle with a maximum latency diameter of 
150ms. We assume that clients are connected to each GSS, are 
engaged in a fast-paced game, and generate a new action every 

300ms, on average. Online game literature suggested that we 
utilize 200B as the size of the average game event [Farber 2002]. 

In MMOGs, not all queued or old game events become obsolete 
while the game evolves. Their content may be significant and 
drastically alter the evolution of the game state [Ferretti and 
Roccetti 2004]. Thus, not all queued game events can be 
discarded at a given GSS. The probability that an incoming event 
supersedes preceding ones, making them obsolete, is set to 90%. 
This represents a realistic scenario for a vast plethora of possible 
games (e.g., adventure, strategic, car race, flight simulator), where 
most of the events are just independent movements. In other 
words, critical game events that cannot become obsolete have to 
be considered only sporadically, e.g., during collisions or shots, 
and may represent even fewer than 10% of the whole set of game 
events. A coherent and more detailed numerical demonstration for 
this claim can be found in the work of Palazzi et al. [2006]. 
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As to the choice of critical parameters in FILA-B and FILA-C 
algorithms, we have set w = 1/8 and Pmax = 0.2 for all the 
simulations. The tmin and tmax variables, instead, change with 
the GIT, as explained in Section 5 and, in particular, tmin is 
always 100ms smaller than tmax. 

Aimed at testing the scalability of our system, we analyzed 
different configurations with a varying number of players. In 
particular, we considered scenarios where each sending GSS was 
gathering from its engaged players and forwarding to GSS0 an 
amount of game events generated following a lognormal 
distribution [Farber 2002; Borella 2000] with an average of, 
respectively, 30ms, 20ms, and 10ms. We call this parameter 
average inter-departing time (AIDT). Considering an average 
inter-generation time of 300ms between two subsequent game 
actions generated by the same player, the above AIDT values 
represent from 50 to 150 contemporaneous players. 

We ran several sets of experiments varying the GIT from 150ms 
to 300ms in order to take into account different kinds of games 
[Pantel and Wolf 2002; Borella 2000; Zander and Armitage 2004; 

Fig. 2. Game server deployment. 



Fitzek et al. 2002]. Each experiment was identically replicated to 
obtain a significant comparison among the outcomes of the three 
versions of FILA, plus the regular local lag algorithm. Zander et 
al. [2005] shows that lower latencies result in statistically higher 
mean kill rates, and thus in unfairness. Consequently, we have 
chosen to evaluate as a fairness parameter the percentage of 
events that were delivered by our monitored server, GSS0, to all 
of its players. These game events had a visualization time 
suggested by Eq.(4) thus achieving both fairness and interactivity 
in the delivery to all players. 

7. RESULTS 

7.1 Interactivity and Fairness 
The charts in Figure 3 show the percentage of game events that 
GSS0 was able to deliver to all of its engaged players, satisfying 
both the interactivity and fairness requirements (consistency was 
maintained as well). Four graphs are presented reporting results 
from employing, respectively, (a) 150ms, (b) 200ms, (c) 250ms, 
and (d) 300ms as GIT. The AIDT value is equal to 30ms at each 
sending GSS for all the four sets of experiments (a), (b), (c), and 
(d). Each set is comprised of six experiments. Each experiment 
consists in the transmission of about 4000 game events that 
experienced, in the worst case, a maximal overall latency whose 
value is reported on the x-axis of each chart.  

The outcomes of the three FILA versions are so similar that the 
three corresponding lines overlap in most of the configurations. In 
a few cases, however, FILA-C provides the best performance 
algorithm. At the same time, significantly higher percentages are 
ensured by each version of FILA with respect to LL over the 
various end-to-end latencies and GIT values. 

Since larger local lags can be utilized, it is obvious that a higher 
GIT will improve the efficacy of all the schemes. However, LL 
experiences a premature decrease in performance when the end-
to-end latency increases, even if it is still far from the GIT. 
Instead, FILA ensures a good fairness level for a larger set of end-
to-end latencies. However, in configurations where the end-to-end 
latency is close to, or surpasses, GIT (end-to-end latency ≥ 140ms 
in Figure 3a) and end-to-end latency ≥ 190ms in Figure 3b), none 
of the schemes are able to overwhelm network conditions, and so 
get poor results. Even in this case, however, FILA behaves better 
than LL.  
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Fig. 3 (a, b, c, d). Improvement in interactivity and fairness with 
AIDT equal to 30ms. 
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7.2 Dropping Game Events 
FILA rewards its better outcomes by dropping some obsolete 
events. Specifically, Figure 4 shows the percentage of game 
events that have been discarded by the various versions of FILA. 
However, in all these cases, less than 20% of the game events 
were dropped. This represents an acceptable value, since these 
events are exclusively obsolete ones. 

FILA-A discards obsolete events only when interactivity and 
fairness have already been lost. Moreover, at that point, it 
discards all the obsolete events in the queue. Therefore, this 
version of FILA has the highest percentage of drops of the three 
in most configurations. And as expected, FILA-C behaves more 
aggressively than FILA-B, and generally discards a higher 
number of obsolete events. 

Fig. 4 (a, b, c, d). Obsolete events dropped by FILA with AIDT 
equal to 30ms. 



The results are particularly meaningful if we focus on those 
scenarios where network latency is not irremediably high with 
respect to GIT. Considering the configurations where the maximal 
overall latency is lower than GIT by 35ms or more, we find that 
each FILA version always guarantees at least 84% of interactively 
and fairly delivered game events with less than 15% dropped 
events. 

7.3 Scalability Issues 
In order to test scalability, we decreased AIDT to generate 
scenarios with a higher level of game traffic in the network. In 
particular, Figures 5 and. 7 refer to the case with 20ms of AIDT, 
while Figures 6 and 8 correspond to the case where AIDT is equal 
to 10ms. Again, in each figure we show the outcomes for four 
different GIT values. 

As expected, the higher the game traffic, the lower the 
interactivity and fairness degree provided by LL (see Figures 5 
and 6). In contrast, not only does FILA manage higher traffic, but 
its performance actually improves when AIDT decreases.  
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This surprising result has a simple explanation. Higher rates in 
game event transmissions result in generating larger queues of 
packets at GSSs that have not yet been processed. This amounts 
to a crucial problem for LL, since the queuing time at the router 
increases, putting the performance of the system at risk without 
any countermeasures. With FILA, however, a larger queue of 
game events at a GSS also represents a resource. In fact, obsolete 
game events in queue can be discarded, thus reducing the time 
that a subsequent event e will experience in its travel towards 
various clients. 

INTERACTIVE and FAIR EVENTS 
(a) GIT=150ms

0

20

40

60

80

100

90 115 140 165 190 215
End-to-End Latency (ms)

%
 In

te
ra

ct
iv

e 
an

d 
Fa

ir

LL FILA-A FILA-B FILA-C

INTERACTIVE and FAIR EVENTS 
(b) GIT=200ms

0

20

40

60

80

100

90 115 140 165 190 215
End-to-End Latency (ms)

%
 In

te
ra

ct
iv

e 
an

d 
Fa

ir

LL FILA-A FILA-B FILA-C  
INTERACTIVE and FAIR EVENTS 

(c) GIT=250ms

0

20

40

60

80

100

90 115 140 165 190 215
End-to-End Latency (ms)

%
 In

te
ra

ct
iv

e 
an

d 
Fa

ir

LL FILA-A FILA-B FILA-C

INTERACTIVE and FAIR EVENTS 
(d) GIT=300ms

0

20

40

60

80

100

90 115 140 165 190 215
End-to-End Latency (ms)

%
 In

te
ra

ct
iv

e 
an

d 
Fa

ir

LL FILA-A FILA-B FILA-C  

As proof for our rationale, we can see in Figures 7 and 8 that the 
number of obsolete game events dropped by the three versions of 
FILA increases when AIDT decreases. This is caused by higher 
avgOD values due to increased traffic, but also by the presence of 
more game events in queue that FILA can exploit in order to drop 
the obsolete ones. 
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DROPPED EVENTS;  (c) GIT=250ms
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Finally, and similarly to the scenario with 30ms of AIDT, even 
with AIDT equal to 20ms and 10ms, FILA-A generally discards 
more events than the other two FILA algorithms. The only case 
where this claim is contradicted is when the latency is much lower 
than the GIT being considered. In such case, due to the high 
volume of traffic in the game network, the avgOD can steadily 
surpass the tmin thresholds of FILA-B and FILA-C, causing them 
to execute some preemptive drops. At the same time, the large 
divergence between latency and GIT makes the situation where 

Fig. 5 (a, b, c, d). Improvements in interactivity and fairness 
with AIDT equal to 20ms. 

Fig. 6 (a, b, c, d). Improvements in interactivity and fairness 
with AIDT equal to 10ms. 

Fig. 7 (a, b, c, d). Obsolete events dropped by FILA with 
AIDT equal to 20ms. 



avgOD exceeds GIT and activates the drop function for FILA-A a 
very rare event. However, even with these configurations, the 
percentage of discarded game events still remains very small for 
all the FILA configurations. 
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DROPPED EVENTS;  (c) GIT=250ms
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8. CONCLUSION 
Interactivity, consistency, fairness, and scalability are 
fundamental requirements that cannot be ignored when designing 
a new online game. Aside from the quality of the game, the ability 
to  holistically sustain these requirements is crucial to make 
MMOG a success. Unfortunately, as highlighted in this work, 
these requirements involve tradeoffs that make the 
contemporaneous achievement of all of them a hard task.  

To this aim, we designed an event delivery scheme, FILA, among 
replicated game servers that discards obsolete events to ensure 
interactivity and fairness, while preserving consistency. Since 
only obsolete events are discarded, there is no risk that different 
percentages in dropped obsolete events at different servers could 
result in unfairness [Zander and Armitage 2004]. 

We have provided extensive experimental results that demonstrate 
the efficacy of FILA with various client-to-client latency ranges. 
We have also contrasted different version of FILA, showing the 
advantages and disadvantages of each of them. Finally, we have 
presented a scalability evaluation of our schemes by increasing 
the game traffic level in the system. 
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