
FILA in Gameland, A Holistic Approach to a Problem of Many Dimensions

Stefano Ferretti,Università di Bologna
Claudio E. Palazzi, Università di Bologna and University of California, Los Angeles,

Marco Roccetti, Università di Bologna, and
Giovanni Pau and Mario Gerla, University of California, Los Angeles

Multiplayer online games have now become popular with millions
across the globe, capturing the attention of both researchers and
practitioners. Unfortunately, online games still have to deal with
the limitations imposed by some unresolved issues. Interactivity,
consistency, fairness, and scalability are the major requirements
that need to be addressed efficiently in order to provide an
appealing product to a huge number of potential customers
worldwide. To answer this demand, we describe a holistic
approach that can exploit the semantics of the game to satisfy the
aforementioned requirements. We provide extensive and
comparative results that demonstrate how our scheme copes
efficiently with an elevated level of game traffic.

Categories and Subject Descriptors: K.8.0 [Computing Milieux]:
Personal Computing — Games

General Terms: Algorithms, Design, Human Factors,
Measurement, Performance

Additional Key Words and Phrases: Multiplayer online games,
fairness, interactivity, consistency, scalability

This work was partially supported by the Italian Ministry for Research via
the ICTP/E-Grid Initiative and the Interlink Initiative, the National Science
Foundation under grants CNS-0435515/ANI-0221528, and the UC-CoRe
grant MICRO 05-06 private sponsor STMicroelectronics.

Authors’ addresses: S. Ferretti, C.E. Palazzi, and M. Roccetti, Dip. di
Scienze dell’ Informazione, Univ. di Bologna,
Mura Anteo Zamboni 7, 40127 Bologna, Italia; C.E. Palazzi, G. Pau, and M.
Gerla, Computer Science Dept., Univ. of California, Los Angeles,
Boelter Hall, Los Angeles, CA, 90095; email: {sferrett, roccetti}@cs.unibo.it
{cpalazzi, gpau, gerla}@cs.ucla.edu

1. INTRODUCTION
A massively multiplayer online game (MMOG) can be defined as
a computer game able to support a multitude of players who
interact with each other within the same virtual world, across the
Internet, and regardless of geographical location.

MMOGs trace their roots to the late 1970s, when the popularity of
the Multi-User Dungeon (MUD), a text-based role-playing
adventure game spread from Essex University to the entire world

[http://www.ludd.luth.se/mud/aber/mud-history.html]. Since then,
MMOGs have evolved, now embodying a large class that includes
several kinds of games (e.g., car racing, first-person shooter,
adventure, role-play, and strategic).
Indeed, in the past few years, the popularity of MMOGs over the
Internet has increased exponentially
[http://www.mmogchart.com]. Nevertheless, Internet latencies
have limited the use of networked games, largely as a result of
slow-paced applications, utilizing the client-server paradigm for
network communication, and engaging players only when limited
in number and located in the same region where the server is
positioned.

The task of providing a pleasant experience to players becomes
hugely more challenging when trying to deploy a large scale and
highly interactive online game. Indeed, the outstanding key
factors in developing networked MMOGs are as follows:

• Interactivity (or responsiveness): the degree to which this
occurs in the game event exchange.

• Consistency: a shared view of the game state among all the
engaged players.

• Network fairness: a guarantee that all players have the same
chance of winning, regardless of their subjective network
conditions;

• Scalability: assurance that the number of simultaneous
players as well as their geographical distribution will be
properly scaled.

Regarding the last point, the interest of companies in online
gaming is due to the huge revenues that may be generated by a
very large number of customers. Besides, humans are social
beings who enjoy the presence of others in most of their
amusements (e.g., team sports, movies in theatres) and in
challenging their skills against real adversaries.

So in order to ensure success, every time a new solution for one
of the first three key factors is proposed, scalability should be
ensured (and verified) as well.

To generalize, developers should follow a holistic approach when
designing a new MMOG, and take the whole set of requirements
into consideration. Addressing only one could produce an
unexpected and undesired result and jeopardize the others.

With the goal of supporting interactivity and fairness while
preserving consistency, we propose a novel scheme called
Fairness and Interactivity-Loss Avoidance (FILA) that facilitates
fairness by increasing the degree of interactivity [Ferretti et al.

2006; Palazzi et al. 2005]. By doing so, FILA contradicts the
general belief that interactivity and fairness are incompatible
requirements in MMOGs. We obtained this result by exploiting
the semantics of the game and discarding obsolete events with a
probability that depends on the current degree of interactivity as
perceived by players.

We will show how our mechanism can be adapted to satisfy the
scalability requirement. In particular, we will demonstrate that
FILA is particularly able to cope with the intense game traffic
generated by a multitude of players sharing the same virtual
arena.

The remainder of the article is organized as follows: Section 2
discusses MMOG’s fundamental requirements; Section 3 presents
a scalable gaming architecture and compares it with other
traditional architectures for online games; Section 4 provides the
basics of the FILA approach; Section 5 describes and evaluates
the algorithms; Section 6 explains the simulation environment for
our experiments; Section 7 presents experimental results; and
Section 8 concludes.

2. PROBLEM STATEMENT
The four key requirements listed in the Introduction cannot be
considered independent of each other. If we aim to improve only
one of them, the others may be affected negatively. Before
evaluating a new algorithm for MMOGs, we have to understand
in a deep way the tradeoffs among interactivity, consistency,
fairness, and scalability.

In particular, interactivity means having small delays between the
generation of a game event and the time at which all the players
display that event. Indeed, if interactivity is to be preserved, every
class of game must have a game-specific game interactivity
threshold (GIT) that represents the maximum delay allowable
before displaying a game event on the players’ screens. The
typical GIT for fast-paced games (e.g., racing vehicles, first-
person shooter) is 150 to 200ms, but this value can be increased to
seconds in slow paced-games (e.g., strategic, role-playing games)
[Pantel and Wolf 2002; Borella 2000; Zander.and Armitage
2004; Fitzek et al. 2002; Sheldon et al. 2003].

If we call)e(gt the generation time of event e and)e(v
it the

visualization time of the same event at player i, then interactivity
is preserved at i during the delivery of e when the following
condition is satisfied:

 .GITtt)e(g)e(v
i ≤− (1)

Both consistency and network fairness require the same and
simultaneous game state view in all the nodes of the system.
Hence the same class of techniques is used to achieve each of
them (or both). Indeed, the easiest way to guarantee consistency
and fairness is to make the game proceed through discrete
locksteps [Steinman 1995]. In other words, the game evolves
through steps and players have to wait their turn to act.
Obviously, this scheme cannot be applied to interactive games.

In order to show game events on the screens of all the players
simultaneously, a scheme based on the introduction of artificial
delays was devised recently [Zander et al. 2005; Gautier and Diot
1998; Pantel and Wolf 2002; Mauve et al. 2004; Kim et al. 2005].

This kind of solution is usually referred to as the local lag
algorithm. With local lag, advances in the game are delayed for a
sufficient amount of time to guarantee that all the players in the
system process and perceive the game events at the same time and
in the same order.

Indeed, since the time to generate each event is unique and
considering the set of players, C, we can say that we have event-
related fairness [Ferretti et al. 2006] for an event e if the
following condition is satisfied, i.e., simply, that if there is a
unique)e(vt value equal for all the players, then

 .,)()(Citt evev
i ∈∀= (2)

Since a single game event may experience different overall delays
(OD) in its path from the source to all the diverse players,
different amounts of artificial delay δ should be added by means
of the local lag algorithm to simultaneously display the same
event e on all the players’ screens, to satisfy the following
condition:

 .)()()()(CiteeODt ev
ii

eg ∈∀=++ δ (3)

A possible value typically chosen for)e(vt is represented by the
highest OD experienced in transmitting events among the nodes.
When the highest OD is greater than GIT, however, fairness is
preserved at the cost of jeopardizing interactivity for all the
players. Conversely, if we use GIT as an upper bound of)e(vt ,
then we can guarantee interactivity but not fairness.

Consequently, in order to maximize the possibility of obtaining
both interactivity and fairness,)e(vt should be set as

 .GITtt)e(g)e(v += (4)

Yet the ODi(e) experienced by event e when it finally reaches
client i is made up of several delay components such as physical
latency, queuing time on routers along the path and on game
servers, and processing time.

Therefore, even when network latency allows having values of
OD, and hence also of)e(vt lower than GIT, a large number of
players generating a huge amount of traffic may raise the values
of the other two delay components, again leading to the crossroad
between fairness and interactivity.

To conclude, the efficiency and applicability of popular, delayed-
based algorithms like local lag depend strongly on the network
conditions and on the degree of interactivity required by the
game. Yet guaranteeing both interactivity and full fairness
through local lag can sometimes only be achieved at the cost of
limiting the scalability of the game by restricting the number of
contemporaneous participants and the geographical extent of the
target player market.

It has become evident that to find the most efficient tradeoffs
among interactivity, consistency, fairness, and scalability,
MMOGs require architectural solutions and algorithms.

3. ARCHITECTURAL SOLUTIONS
Typically, network architectures that support MMOGs can be
distinguished on three main categories: the centralized client-
server, fully distributed architecture, and the mirrored game
server. The centralized client-server architecture represents the
simplest solution for authentication procedures, security issues,
and consistency maintenance [http://www.quakeforge.org].
Moreover, assuming there are N simultaneous players, the
messages generated are on the order of O(N). On the other hand,
the unique bottleneck limits the efficiency and scalability of this
solution.

Fully distributed architectures (peer-to-peer) spread the traffic
load among many nodes, resulting in a more scalable and failure-
resilient system [Gautier and Diot 1998]. However, identical
copies of the current game state must be stored at each node; and
this requires a complex coordination scheme among peers able to
guarantee the coherence of all game state views. Moreover, with a
fully distributed architecture, multicast should be employed to
reduce the bandwidth requirements; but multicast technology is
neither generally available nor mature enough for the specific
application we are considering here (the messages exchanged
could rise to the order of O(N2)). Finally, authentication, cheating,
and general consensus among all the peers are easier to address
when a centralized architecture is employed.

Mirrored game server architectures represent a hybrid solution
that efficiently embraces all the positive aspects of both
centralized client-servers and fully distributed architectures
[Cronin et al. 2004]. Based on this approach, game state servers
(GSSs) are interconnected in a peer-to-peer fashion over the
Internet and contain replicas of the same game state view. Players
communicate with their closest GSS through the client-server
paradigm. Each GSS gathers all the game events of its engaged
players, updates the game state, and forwards it regularly to all its
players and GSS peers.

The presence of multiple high performance GSSs helps to
distribute the traffic over the system and reduce the processing
burden at each node. Moreover, having each player connected to a
close by GSS reduces the impact of the player-dependent access
technology (e.g., dial-up, cable, DSL) on the total delay [Jehaes et
al. 2003]. In this case, in fact, communication among players was
mainly deployed over links physically connecting GSSs, which
can exploit the fastest available technology (e.g., optical fibers) to
reduce latency. As a result, this architecture helps in finding better
solutions for the tradeoffs among interactivity, consistency,
fairness, and scalability.

Absence of a single point of failure, networking complexity
maintained at server side, and the possibility of implementing
authentication procedures are other advantages in employing a
mirrored game server architecture. Even if synchronization is still
required to ensure the global consistency of the game state held
by the various servers, this requirement is made easier than in
fully distributed architectures, thanks to the lower number of
nodes involved. Assuming N players and M GSSs, for example,
the game messages generated amount to O(N+M), which is again
O(N), unless considering the unlikely case of more servers than
players.

All these reasons suggest that the mirrored game server
architecture is the most appropriate to efficiently manage large-

scale distributed games, as it embodies the advantages of both
client-server and fully distributed paradigms.

4. FILA OVER A MIRRORED SERVER
ARCHITECTURE
FILA can be thought of as comprised of two complementary
subcomponents. The first one, enforced among GSSs, speeds up
the delivery of fresh game events by dropping events that have
become obsolete since the arrival of the more recent ones.
Interested readers may refer to Ferretti and Roccetti [2004] for a
deeper discussion of the notion of obsolescence and a way to
include it in game events. The second component takes advantage
of the reduced transmission time to magnify the efficiency of a
local lag-type algorithm to ensure fairness. FILA utilizes the work
of Zander et al. [2005] to determine the display time of a game
event; and thus ensures fairness without compromising
interactivity.

To calculate the appropriate δ in Eq. (3), the OD should be
determined for each player. For this reason, game events are
marked with a generation timestamp at their creation and then
sent to the destination. Obviously, a global concept of time has to
be maintained in the system, which can be achieved through a
variety of solutions that enable the synchronization of GSSs’
physical clocks [Mills 1991; Ramanathan et al. 1990], or by
employing new synchronization devices such as GPS. Hence
GSSs can monitor the ODs of their engaged players and make
them available for the FILA algorithm.

The first component of FILA is inspired by the so-called active
queuing management techniques [Floyd and Jacobson 1993]. It
drops queued obsolete game events with probability pd when the
average OD (avgOD) value increases, putting the interactivity of
the system at risk. The probability of discarding, i.e., pd , is
directly proportional to avgOD and depends on a constant Pmax,
as described in the work of Palazzi et al. [2004] and Palazzi et al.
[2006]. Instead, the value for avgOD at iteration n is computed
through the low-pass filter shown below, where w is a parameter
that determines how closely the average follows the sample trend:

).avgODsample(wavgODavgOD 1nn1nn −− −×+= (5)

Moreover, with FILA, all game events are regularly processed
and forwarded when avgOD is smaller than the threshold alert,
called tmin. As soon as avgOD exceeds tmin, the GSS drops
obsolete events with probability pd, and does not process or
forward them. Finally, if avgOD exceeds the subsequent tmax
(>tmin) threshold, then pd is set equal to 1, and all obsolete events
waiting for processing are discarded.

This stabilization mechanism succeeds in reducing ODi(e)
because the time spent in queue by an event is decreased due to a
gain in processing time, which is the result of the preceding
obsolete events being dropped without being processed or
forwarded. Moreover, since only obsolete events are discarded,
FILA maintains full consistency as the game evolves [Ferretti et
al. 2006; Palazzi et al. 2004].

To explain FILA in more detail, see Figure 1, which provides the
graphical definitions for some of the terms in our work, namely:
OD, ND (network delay), and LHD (last hop delay).

First, note that FILA performs its operations on the receiving
GSS. This choice makes it easier to maintain control of the game
platform. However, for each event e, the GSS can compute ND(e)
but not LHD(e). But it is necessary to estimate LHD(e) in order to
compute OD and use it in the algorithm. For this reason, each
GSS continuously monitors latencies for each of its players and
maintains a variable called λGSS. The value of this variable
represents the maximum among the latencies from the GSS to
each of its connected clients (this set of clients is called C_GSS),
as follows:

 }.LHD{max iGSS_CiGSS ∈
=λ (6)

However, we cannot let an irremediably delay-affected client
impact our scheme’s calculations too much. In FILA, utilizing an
excessively high λGSS generated by a player very far from the GSS
results in a very high sample (and avgOD) value with respect to
GIT. Consequently, the aggressiveness of FILA’s discarding
function would increase, as perceived by all the players, with no
positive results. (The “unlucky” player would still not be able to
get game events with delays below the interactivity threshold.)

Hence we need to consider a delay upper bound (DUB), which is
used by FILA to limit the impact of “unlucky” players on the
algorithm. Toward this goal, we provide the computation of a
formula for a fundamental parameter utilized by FILA to handle
the impact of LHD(e) on the algorithm:

 }.DUB,{min GSSλσ = (7)

How the parameter σ varies will depend on which version of our
scheme, as detailed in Section 5, is used.

Instead, to determine DUB, we rely on a heuristic that computes
its value dynamically, based on the general condition of the
network during the game; the formula follows:

 },{max NDGITDUB −= (8)

Where max{ND} represents the largest ND over all the
connections in the entire network.

Obviously, each GSS has to communicate the largest ND at that
server back to all the other peers. This allows global knowledge
of the worst ND value at each GSS. Finally, the highest among the
maximum NDs can be univocally determined by each GSS and
used to determine the global DUB.

The second part of FILA is simply in charge of equalizing the
delay differences among players via a local lag-type scheme that
appropriately computes the δ value shown in Eq.(3) so as to
satisfy Eq. (4) whenever possible.

5. IS FILA A GOOD SOLUTION?
We will now empirically demonstrate how the combination of the
two subcomponents of FILA is effective in ensuring fairness and
interactivity while allowing a scalable number of
contemporaneous players. To this aim, four different schemes are
taken into account: regular local lag (LL) and three versions of
FILA (i.e., FILA-A, FILA-B, and FILA-C).

The first scheme, LL, embodies the traditional local lag scheme
with no discarding mechanism for obsolete events. Even in this
case, however, as for all the other schemes above, the algorithm is
not allowed to introduce artificial delays if this results in
jeopardizing interactivity (i.e.,)e(vt cannot be set greater than

)e(gt + GIT).

FILA-A is the simplest among the three schemes. With this
algorithm no avgOD is maintained and no pd is calculated. To
cohere with the basics of the algorithm anticipated in Section 4,
we could say that, in FILA-A, tmin and tmax are both set equal to
GIT (and both w and Pmax are always equal to 1). Moreover, at
each iteration of Eq. (5), sample is set equal to the current ND(e).

When a GSS receives a game event e from a player connected to
one of its GSS peers, e still has to travel from that GSS to the
final players. For this reason, our scheme takes into account the
various LHDi(e) by reducing the threshold used by the algorithm.
Therefore, with FILA-A, each GSS performs normal delivery and
local lag operations for each game event e until the following
condition holds:

 .GIT)e(ND σ−≤ (9)

When Eq.(9) fails, all obsolete events in queue are discarded
instead, and they are neither processed nor forwarded.

In FILA-B, the estimation of the impact of LHDi(e) is taken into
account by diminishing one of the utilized thresholds instead, In
particular, we set tmax = GIT – σ and tmin < tmax. Even with this
algorithm, at each iteration of Eq.(5), sample is set equal to the
current ND(e).

Finally, FILA-C takes the estimation of the LHDi(e) values
directly into account when generating sample. Hence we have
tmax = GIT (tmin < tmax), and sample is determined by the
arrival of a new event e by employing σ as follows:

 .)e(ND)e(sample σ+= (10)

Fig.1. Delay definitions.

IInntteerrnneett

receiving GSS

game event sent between players

ND LHD

 OD

player player
sending GSS

Even when they are similar, the three versions of FILA still differ
in substantial respects. In essence, FILA-A is an aggressive, yet
slow, approach, in which all the queued obsolete events are
discarded only after interactivity and fairness have already been
lost. FILA-B and FILA-C try to avoid the loss of these two
properties by preemptively discarding some obsolete game events
when the trend in delay increases over the threshold alert, tmin.
Hence we may expect to witness smaller dropping rates with
FILA-B and FILA-C, as they need to drop all queued obsolete
events less frequently than FILA-A.

This is a desirable property. In fact, even if obsolete events can be
sacrificed, they are still part of the game’s visual progression.
Dropping too many obsolete events could result in jerky rendering
caused by imprecise interpolations of the missing actions. As a
result, annoying artifacts in the game’s evolution may be
generated.

When we contrast FILA-B with FILA-C, we see that the former
includes σ in the tmax threshold, while the latter utilizes it to
compute the sample value. The impact of σ on FILA-C should be
smoothed by the low-pass filter (Eq.(5)). However, when sample
is steadily augmented by σ, then even avgOD results are higher,
since sample is used to compute avgO. Recall that the discarding
probability pd is directly proportional to avgOD, so we can see
how the use of Eq.(10) results in higher pd values. Hence we
expect to find FILA-C more aggressive than FILA-B (with a
larger number of dropped events).

6. EXPERIMENTAL ARCHITECTURE
It is well known that MMOG service providers should position
their game servers in such a way that their target player market is
located within a circle with a 150 to 180ms latency diameter
[Armitage 2003]. Following this rule, we have simulated the
deployment of five GSS across North America, positioned in
optimal locations with communication latencies that provide
adequate support for a highly interactive MMOG in both the
distances between the nodes and the number of customers that can
be served. Thus, clients are supposed to be distributed all over the
North America, connecting to a GSS through various access
technologies with different access delays.

For the sake of deeper understanding, we focus our attention on
the event-receiving aspect of a single GSS (GSS0), supposing that
the other GSSs are sending events to it without any loss of
generality.

Following the literature [Park and Willinger.2000], ND values
among GSSs were generated based on a lognormal distribution
whose approximate average was taken from repeated runs of the
ping application. Further, game events from players connected to
the sending GSSs (i.e., GSS1 to GSS4) and traveling towards GSS0
experienced latencies with an average reported in Figure 2 and a
standard deviation of 10ms.

Further, several scenarios were considered in which the values of
}{max

_ iGSSCi
LHD

∈
 were chosen for each GSS within the following

set [25ms, 50ms, 75ms, 100ms, 125ms, 150ms]. This choice
simply derives from the consideration that clients should be
located within a circle with a maximum latency diameter of
150ms. We assume that clients are connected to each GSS, are
engaged in a fast-paced game, and generate a new action every

300ms, on average. Online game literature suggested that we
utilize 200B as the size of the average game event [Farber 2002].

In MMOGs, not all queued or old game events become obsolete
while the game evolves. Their content may be significant and
drastically alter the evolution of the game state [Ferretti and
Roccetti 2004]. Thus, not all queued game events can be
discarded at a given GSS. The probability that an incoming event
supersedes preceding ones, making them obsolete, is set to 90%.
This represents a realistic scenario for a vast plethora of possible
games (e.g., adventure, strategic, car race, flight simulator), where
most of the events are just independent movements. In other
words, critical game events that cannot become obsolete have to
be considered only sporadically, e.g., during collisions or shots,
and may represent even fewer than 10% of the whole set of game
events. A coherent and more detailed numerical demonstration for
this claim can be found in the work of Palazzi et al. [2006].

1

0

3

4

21

0

3

4

2

4896 kmBoston65 ms4

3870 kmOrlando50 ms3

1650 kmDenver35 ms2

602 kmSan Francisco20 ms1

0 kmLos Angeles0 ms0

Road distanceCityAvg latencyGSS

4896 kmBoston65 ms4

3870 kmOrlando50 ms3

1650 kmDenver35 ms2

602 kmSan Francisco20 ms1

0 kmLos Angeles0 ms0

Road distanceCityAvg latencyGSS

As to the choice of critical parameters in FILA-B and FILA-C
algorithms, we have set w = 1/8 and Pmax = 0.2 for all the
simulations. The tmin and tmax variables, instead, change with
the GIT, as explained in Section 5 and, in particular, tmin is
always 100ms smaller than tmax.

Aimed at testing the scalability of our system, we analyzed
different configurations with a varying number of players. In
particular, we considered scenarios where each sending GSS was
gathering from its engaged players and forwarding to GSS0 an
amount of game events generated following a lognormal
distribution [Farber 2002; Borella 2000] with an average of,
respectively, 30ms, 20ms, and 10ms. We call this parameter
average inter-departing time (AIDT). Considering an average
inter-generation time of 300ms between two subsequent game
actions generated by the same player, the above AIDT values
represent from 50 to 150 contemporaneous players.

We ran several sets of experiments varying the GIT from 150ms
to 300ms in order to take into account different kinds of games
[Pantel and Wolf 2002; Borella 2000; Zander and Armitage 2004;

Fig. 2. Game server deployment.

Fitzek et al. 2002]. Each experiment was identically replicated to
obtain a significant comparison among the outcomes of the three
versions of FILA, plus the regular local lag algorithm. Zander et
al. [2005] shows that lower latencies result in statistically higher
mean kill rates, and thus in unfairness. Consequently, we have
chosen to evaluate as a fairness parameter the percentage of
events that were delivered by our monitored server, GSS0, to all
of its players. These game events had a visualization time
suggested by Eq.(4) thus achieving both fairness and interactivity
in the delivery to all players.

7. RESULTS

7.1 Interactivity and Fairness
The charts in Figure 3 show the percentage of game events that
GSS0 was able to deliver to all of its engaged players, satisfying
both the interactivity and fairness requirements (consistency was
maintained as well). Four graphs are presented reporting results
from employing, respectively, (a) 150ms, (b) 200ms, (c) 250ms,
and (d) 300ms as GIT. The AIDT value is equal to 30ms at each
sending GSS for all the four sets of experiments (a), (b), (c), and
(d). Each set is comprised of six experiments. Each experiment
consists in the transmission of about 4000 game events that
experienced, in the worst case, a maximal overall latency whose
value is reported on the x-axis of each chart.

The outcomes of the three FILA versions are so similar that the
three corresponding lines overlap in most of the configurations. In
a few cases, however, FILA-C provides the best performance
algorithm. At the same time, significantly higher percentages are
ensured by each version of FILA with respect to LL over the
various end-to-end latencies and GIT values.

Since larger local lags can be utilized, it is obvious that a higher
GIT will improve the efficacy of all the schemes. However, LL
experiences a premature decrease in performance when the end-
to-end latency increases, even if it is still far from the GIT.
Instead, FILA ensures a good fairness level for a larger set of end-
to-end latencies. However, in configurations where the end-to-end
latency is close to, or surpasses, GIT (end-to-end latency ≥ 140ms
in Figure 3a) and end-to-end latency ≥ 190ms in Figure 3b), none
of the schemes are able to overwhelm network conditions, and so
get poor results. Even in this case, however, FILA behaves better
than LL.

INTERACTIVE and FAIR EVENTS
(a) GIT=150ms

0

20

40

60

80

100

90 115 140 165 190 215
End-to-End Latency (ms)

%
 In

te
ra

ct
iv

e
an

d
Fa

ir

LL FILA-A FILA-B FILA-C

INTERACTIVE and FAIR EVENTS
(b) GIT=200ms

0

20

40

60

80

100

90 115 140 165 190 215
End-to-End Latency (ms)

%
 In

te
ra

ct
iv

e
an

d
Fa

ir

LL FILA-A FILA-B FILA-C

DROPPED EVENTS; (a) GIT=150ms

0

5

10

15

20

25

90 115 140 165 190 215

End-to-End Latency (ms)

%
 D

ro
pp

ed
 E

ve
nt

s

FILA-A FILA-B FILA-C

DROPPED EVENTS; (b) GIT=200ms

0

5

10

15

20

25

90 115 140 165 190 215

End-to-End Latency (ms)

%
 D

ro
pp

ed
 E

ve
nt

s

FILA-A FILA-B FILA-C

Fig. 3 (a, b, c, d). Improvement in interactivity and fairness with
AIDT equal to 30ms.

INTERACTIVE and FAIR EVENTS
(c) GIT=250ms

0

20

40

60

80

100

90 115 140 165 190 215
End-to-End Latency (ms)

%
 In

te
ra

ct
iv

e
an

d
Fa

ir

LL FILA-A FILA-B FILA-C

INTERACTIVE and FAIR EVENTS
(d) GIT=300ms

0

20

40

60

80

100

90 115 140 165 190 215
End-to-End Latency (ms)

%
 In

te
ra

ct
iv

e
an

d
Fa

ir
LL FILA-A FILA-B FILA-C

DROPPED EVENTS; (c) GIT=250ms

0

5

10

15

20

25

90 115 140 165 190 215

End-to-End Latency (ms)

%
 D

ro
pp

ed
 E

ve
nt

s

FILA-A FILA-B FILA-C

DROPPED EVENTS; (d) GIT=300ms

0

5

10

15

20

25

90 115 140 165 190 215

End-to-End Latency (ms)

%
 D

ro
pp

ed
 E

ve
nt

s

FILA-A FILA-B FILA-C

7.2 Dropping Game Events
FILA rewards its better outcomes by dropping some obsolete
events. Specifically, Figure 4 shows the percentage of game
events that have been discarded by the various versions of FILA.
However, in all these cases, less than 20% of the game events
were dropped. This represents an acceptable value, since these
events are exclusively obsolete ones.

FILA-A discards obsolete events only when interactivity and
fairness have already been lost. Moreover, at that point, it
discards all the obsolete events in the queue. Therefore, this
version of FILA has the highest percentage of drops of the three
in most configurations. And as expected, FILA-C behaves more
aggressively than FILA-B, and generally discards a higher
number of obsolete events.

Fig. 4 (a, b, c, d). Obsolete events dropped by FILA with AIDT
equal to 30ms.

The results are particularly meaningful if we focus on those
scenarios where network latency is not irremediably high with
respect to GIT. Considering the configurations where the maximal
overall latency is lower than GIT by 35ms or more, we find that
each FILA version always guarantees at least 84% of interactively
and fairly delivered game events with less than 15% dropped
events.

7.3 Scalability Issues
In order to test scalability, we decreased AIDT to generate
scenarios with a higher level of game traffic in the network. In
particular, Figures 5 and. 7 refer to the case with 20ms of AIDT,
while Figures 6 and 8 correspond to the case where AIDT is equal
to 10ms. Again, in each figure we show the outcomes for four
different GIT values.

As expected, the higher the game traffic, the lower the
interactivity and fairness degree provided by LL (see Figures 5
and 6). In contrast, not only does FILA manage higher traffic, but
its performance actually improves when AIDT decreases.

INTERACTIVE and FAIR EVENTS
(a) GIT=150ms

0

20

40

60

80

100

90 115 140 165 190 215
End-to-End Latency (ms)

%
 In

te
ra

ct
iv

e
an

d
Fa

ir

LL FILA-A FILA-B FILA-C

INTERACTIVE and FAIR EVENTS
(b) GIT=200ms

0

20

40

60

80

100

90 115 140 165 190 215
End-to-End Latency (ms)

%
 In

te
ra

ct
iv

e
an

d
Fa

ir

LL FILA-A FILA-B FILA-C
INTERACTIVE and FAIR EVENTS

(c) GIT=250ms

0

20

40

60

80

100

90 115 140 165 190 215
End-to-End Latency (ms)

%
 In

te
ra

ct
iv

e
an

d
Fa

ir

LL FILA-A FILA-B FILA-C

INTERACTIVE and FAIR EVENTS
(d) GIT=300ms

0

20

40

60

80

100

90 115 140 165 190 215
End-to-End Latency (ms)

%
 In

te
ra

ct
iv

e
an

d
Fa

ir

LL FILA-A FILA-B FILA-C

This surprising result has a simple explanation. Higher rates in
game event transmissions result in generating larger queues of
packets at GSSs that have not yet been processed. This amounts
to a crucial problem for LL, since the queuing time at the router
increases, putting the performance of the system at risk without
any countermeasures. With FILA, however, a larger queue of
game events at a GSS also represents a resource. In fact, obsolete
game events in queue can be discarded, thus reducing the time
that a subsequent event e will experience in its travel towards
various clients.

INTERACTIVE and FAIR EVENTS
(a) GIT=150ms

0

20

40

60

80

100

90 115 140 165 190 215
End-to-End Latency (ms)

%
 In

te
ra

ct
iv

e
an

d
Fa

ir

LL FILA-A FILA-B FILA-C

INTERACTIVE and FAIR EVENTS
(b) GIT=200ms

0

20

40

60

80

100

90 115 140 165 190 215
End-to-End Latency (ms)

%
 In

te
ra

ct
iv

e
an

d
Fa

ir

LL FILA-A FILA-B FILA-C
INTERACTIVE and FAIR EVENTS

(c) GIT=250ms

0

20

40

60

80

100

90 115 140 165 190 215
End-to-End Latency (ms)

%
 In

te
ra

ct
iv

e
an

d
Fa

ir

LL FILA-A FILA-B FILA-C

INTERACTIVE and FAIR EVENTS
(d) GIT=300ms

0

20

40

60

80

100

90 115 140 165 190 215
End-to-End Latency (ms)

%
 In

te
ra

ct
iv

e
an

d
Fa

ir

LL FILA-A FILA-B FILA-C

As proof for our rationale, we can see in Figures 7 and 8 that the
number of obsolete game events dropped by the three versions of
FILA increases when AIDT decreases. This is caused by higher
avgOD values due to increased traffic, but also by the presence of
more game events in queue that FILA can exploit in order to drop
the obsolete ones.

DROPPED EVENTS; (a) GIT=150ms

0
5

10
15
20
25
30
35
40

90 115 140 165 190 215

End-to-End Latency (ms)

%
 D

ro
pp

ed
 E

ve
nt

s

FILA-A FILA-B FILA-C

DROPPED EVENTS; (b) GIT=200ms

0
5

10
15
20
25
30
35
40

90 115 140 165 190 215

End-to-End Latency (ms)

%
 D

ro
pp

ed
 E

ve
nt

s

FILA-A FILA-B FILA-C

DROPPED EVENTS; (c) GIT=250ms

0
5

10
15
20
25
30
35
40

90 115 140 165 190 215

End-to-End Latency (ms)

%
 D

ro
pp

ed
 E

ve
nt

s

FILA-A FILA-B FILA-C

DROPPED EVENTS; (d) GIT=300ms

0
5

10
15
20
25
30
35
40

90 115 140 165 190 215

End-to-End Latency (ms)

%
 D

ro
pp

ed
 E

ve
nt

s

FILA-A FILA-B FILA-C

Finally, and similarly to the scenario with 30ms of AIDT, even
with AIDT equal to 20ms and 10ms, FILA-A generally discards
more events than the other two FILA algorithms. The only case
where this claim is contradicted is when the latency is much lower
than the GIT being considered. In such case, due to the high
volume of traffic in the game network, the avgOD can steadily
surpass the tmin thresholds of FILA-B and FILA-C, causing them
to execute some preemptive drops. At the same time, the large
divergence between latency and GIT makes the situation where

Fig. 5 (a, b, c, d). Improvements in interactivity and fairness
with AIDT equal to 20ms.

Fig. 6 (a, b, c, d). Improvements in interactivity and fairness
with AIDT equal to 10ms.

Fig. 7 (a, b, c, d). Obsolete events dropped by FILA with
AIDT equal to 20ms.

avgOD exceeds GIT and activates the drop function for FILA-A a
very rare event. However, even with these configurations, the
percentage of discarded game events still remains very small for
all the FILA configurations.

DROPPED EVENTS; (a) GIT=150ms

0
5

10
15
20
25
30
35
40
45
50
55

90 115 140 165 190 215

End-to-End Latency (ms)

%
 D

ro
pp

ed
 E

ve
nt

s

FILA-A FILA-B FILA-C

DROPPED EVENTS; (b) GIT=200ms

0
5

10
15
20
25
30
35
40
45
50
55

90 115 140 165 190 215

End-to-End Latency (ms)

%
 D

ro
pp

ed
 E

ve
nt

s

FILA-A FILA-B FILA-C

DROPPED EVENTS; (c) GIT=250ms

0
5

10
15
20
25
30
35
40
45
50
55

90 115 140 165 190 215

End-to-End Latency (ms)

%
 D

ro
pp

ed
 E

ve
nt

s

FILA-A FILA-B FILA-C

DROPPED EVENTS; (d) GIT=300ms

0
5

10
15
20
25
30
35
40
45
50
55

90 115 140 165 190 215

End-to-End Latency (ms)

%
 D

ro
pp

ed
 E

ve
nt

s

FILA-A FILA-B FILA-C

8. CONCLUSION
Interactivity, consistency, fairness, and scalability are
fundamental requirements that cannot be ignored when designing
a new online game. Aside from the quality of the game, the ability
to holistically sustain these requirements is crucial to make
MMOG a success. Unfortunately, as highlighted in this work,
these requirements involve tradeoffs that make the
contemporaneous achievement of all of them a hard task.

To this aim, we designed an event delivery scheme, FILA, among
replicated game servers that discards obsolete events to ensure
interactivity and fairness, while preserving consistency. Since
only obsolete events are discarded, there is no risk that different
percentages in dropped obsolete events at different servers could
result in unfairness [Zander and Armitage 2004].

We have provided extensive experimental results that demonstrate
the efficacy of FILA with various client-to-client latency ranges.
We have also contrasted different version of FILA, showing the
advantages and disadvantages of each of them. Finally, we have
presented a scalability evaluation of our schemes by increasing
the game traffic level in the system.

REFERENCES
ARMITAGE, G. 2003. An experimental estimation of latency
sensitivity in Multiplayer Quake 3. In Proceedings of the 11th

IEEE International Conference on Networks (ICON 2003,
Sydney, Australia).137-141.
BORELLA, M. S. 2000. Source models for network game traffic.
Comput. Commun. 23, 4 (2000), 403-410.

CRONIN, E., KURC, A.R., FILSTRUP, B., AND JAMIN, S. 2004. An
efficient synchronization mechanism for mirrored game
architectures. Multimedia Tools Appl. 23, 1 (2004), 7-30.
EARLY MUD HISTORY. http://www.ludd.luth.se/mud/aber/mud-
history.html.
FARBER, J. 2002. Network game traffic modelling. In Proceedings
of the 1st Workshop on Network and System Support for Games
(NetGames2002, Braunschweig, Germany). ACM, New York. 53-
57.
FERRETTI, S. AND ROCCETTI, M. 2004. A novel obsolescence-
based approach to event delivery synchronization in multiplayer
games. Int. J. Intell. Games Simul. 3, 1 (2004), 7-19.
FERRETTI, S., PALAZZI, C. E., ROCCETTI, M., GERLA ,M., AND PAU,
G. 2006. Buscar el Levante por el Poniente: In search of fairness
through interactivity in massively multiplayer online games. In
Proceedings of the 2nd IEEE International Workshop on
Networking Issues in Multimedia Entertainment (NIME'06,
CCNC, Las Vegas, NV, Jan.).
FITZEK, F., SCHULTE, G., AND REISSLEIN, M. 2002. System
architecture for billing of multiplayer games in a wireless
environment using GSM/UMTS and WLAN services. In
Proceedings of the 1st Workshop on Network and System Support
for Games (NetGames2002, Braunschweig, Germany). ACM,
New York, 58-64.
FLOYD, S. AND JACOBSON, V. 1993. Random early detection
gateways for congestion avoidance. IEEE/ACM Trans.
Networking 1, 4 (1993), 397-413.
GAUTIER, L. AND DIOT, C. 1998. Design and evaluation of
MiMaze, a multiplayer game on the Internet. In Proceedings of
IEEE Multimedia (ICMCS’98, Austin, TX). 233-236.
JEHAES, T., DE VLEESCHAUWER, D., COPPENS, T., VAN
DOORSELAER, B., DECKERS, E., NAUDTS, W., SPRUYT, K., AND
SMETS, R. 2003. Access network delay in networked games. In
Proceedings of the 2nd Workshop on Network and System Support
for Games (NetGames 2003, Redwood City, CA). ACM, New
York, 63-71.
KIM, S., KUESTER, F., AND KIM, K. H. 2005. A global timestamp-
Bbased Aapproach to Eenhanced data consistency and fairness in
collaborative virtual environments. Multimedia Syst. 10, 3 (2005),
220-229.
MAUVE, M., VOGEL, J., HILT, V., AND EFFELSBERG, W. 2004.
Local-lag and timewarp: Providing consistency for replicated
continuous applications. IEEE Trans. Multimedia 6, 1 (2004), 47-
57.
MILLS, D. L. 1991. Internet time synchronization: The network
time protocol. IEEE Trans. Commun. 39, 10 (1991), 1482-1493.
MMOGCHART.COM. http://www.mmogchart.com.
PALAZZI, C. E., FERRETTI, S., CACCIAGUERRA, S., AND ROCCETTI,
M. 2004. On maintaining interactivity in event delivery:
Synchronization for mirrored game architectures. In Proceedings
of the 1st IEEE International Workshop on Networking Issues in
Multimedia Entertainment (NIME'04, GLOBECOM 2004. Dallas,
TX).157-165.

Fig. 8 (a, b, c, d). Obsolete events dropped by FILA with AIDT
equal to 10ms.

PALAZZI, C. E., FERRETTI, S., CACCIAGUERRA, S., AND ROCCETTI,
M. 2005. A RIO-like technique for interactivity loss avoidance in
fast-paced multiplayer online games. ACM J. Comput.
Entertainment 3, 2 (2005), 1-11.
PALAZZI, C. E., FERRETTI, S., CACCIAGUERRA, S., AND ROCCETTI,
M. Interactivity-loss avoidance in event delivery synchronization
for mirrored game architectures. IEEE Trans. Multimedia 8, 4,
(2006), 874-879.
PANTEL, L. AND WOLF, L. C. 2002. On the impact of delay on real-
time multiplayer games. In Proceedings of the 12th International
Workshop on Network and Operating Systems Support for Digital
Audio and Video (Miami, FL). 23-29.
PARK, K. AND WILLINGER, W. 2000. Self-Similar Network Traffic
and Performance Evaluation. 1st ed. Wiley-Interscience.
QUAKE FORGE PROJECT. http://www.quakeforge.org.
RAMANATHAN, P., SHIN, K. G., AND BUTLER, R. W. 1990. Fault
tolerant clock synchronization in distributed systems. IEEE
Computer 23, 10 (1990), 33-42.

SHELDON, N., GIRARD, E., BORG, S., CLAYPOOL, M., AND AGU, E.
2003. The effect of latency on user performance in Warcraft III.
In Proceedings of the 2nd Workshop on Network and System
Support for Games (NetGames 2003, Redwood City, CA). ACM,
New York.3-14.
STEINMAN, J. S. 1995. Scalable parallel and distributed military
simulations using the SPEEDES framework. In Proceedings of
the 2nd Electronic Simulation Conference (ELECSIM95).
ZANDER, S., LEEDER, I., AND ARMITAGE, G. 2005. Achieving
fairness in multiplayer network games through automated latency
balancing. In Proceedings of ACM SIGCHI International
Conference on Advances in Computer Entertainment Technology
(ACE 2005, Valencia, Spain).
ZANDER, S. AND ARMITAGE, G. 2004. Empirically measuring the
QoS sensitivity of interactive online game players. In Proceedings
of Australian Telecommunications Networks & Applications
Conference (ATNAC2004, Sydney, Australia). 511-518.

