
Smart Access Points on the Road for Online Gaming in

Vehicular Networks

Claudio E. Palazzia, Stefano Ferrettib, Marco Roccettib

aDipartimento di Matematica Pura e Applicata, Università degli Studi di Padova, Italy
bDipartimento di Scienze dell’Informazione, Università di Bologna, Italy

Abstract

Online games represent one of the most important revenue sources for enter-
tainment based companies and a challenging field in multimedia application
research. With vehicular networks poised to become the new wireless fron-
tier of the Internet, car passengers embody the next consumers that will be
targeted by online game providers. Yet, the high mobility and heterogeneity
of vehicular networks pose serious challenges; previous work on online games
demonstrated the importance of the network’s performance in determining
the quality level perceived by consumers. A main problem is related to
competing heterogeneous network traffic generated by real-time multimedia
applications and concurrent bulk data traffic sharing the same access points
along the road. Such problem causes low responsiveness in the gaming appli-
cation and is further exacerbated by the continuous variations in the number
and type of flows, due to the cars’ mobility. To this aim, we show how smart
access points can be deployed in infrastructure-based vehicular networks to
ensure efficient coexistence among heterogeneous types of flow even in pres-
ence of frequent network traffic variations due to the vehicles’ high mobility.
As a result, delivery delays are kept small, satisfying the main requirement
for the deployment of responsive online games.

Key words: Online Games, Smart Access Point, Entertainment, Vehicular
Networks

1. Introduction

Wireless vehicular networks are soon going to be a reality thanks to the
factual interest shown by many Governments and to the market responsive-
ness toward new technology, both for work and entertainment, offered today

Preprint submitted to Journal August 15, 2009



on cars. Indeed, it is no secret that the US and EU governments have re-
served the 5.9 GHz frequency spectrum to implement vehicular networks,
both in infrastructure and ad-hoc mode, through the DSRC/IEEE 802.11p
standard [1]. This suggests that in a few years we will have city streets and
highways mostly covered by wireless connectivity.

Applications run by vehicular users will be both classic ones already uti-
lized every day on home/office PCs (e.g., email, web-surfing, chatting, online
gaming, video streaming) and new ones specifically designed for the vehicular
context (e.g., traffic safety, driving directions, location based data collection,
parking lot payment).

Clearly, such a scenario presents many novel issues that deserve scientific
investigation. In this context, our aim is that of supporting online gaming
even for passengers traveling in cars. We are interested in this class of real-
time multimedia applications both for its strict performance requirements
and for its huge success among consumers.

More in detail, we investigate the coexistence between elastic (TCP-
based) and real-time (UDP-based) applications in infrastructured vehicular
networks and propose a solution able to improve it. In fact, whereas every
computer science student is taught that the lack of congestion control in
UDP-based flows is a potential harm toward TCP-based flows, we show that
in the UDP vs TCP quarrel even the latter represents a source of problems,
since persistent TCP-based flows are responsible for performance deterio-
ration of concurrent UDP-based applications [2]. We already investigated
such problem in home scenarios, where several users in the same house share
the same wireless link for running their online applications [3]. In vehicular
networks, this problem is obviously exacerbated due to the definitely higher
number of users sharing the same wireless link. Moreover, the high mobility
of nodes (i.e., cars) traveling from the coverage area of an access point (AP)
to another one generates continuous variations in the number and type of
flows served by APs along the road.

To address this problem, we propose the use of “smart APs” along the
road, able to regulate heterogeneous transmission flows and make them co-
exist efficiently. With our solutions, the AP continuously snoops transiting
packets of the various flows and computes the maximum data rate at which
each elastic application will be able to transfer their files without incurring
in congestion losses. This data rate is used to compute an appropriate adver-
tised window that is on-the-fly included in transiting ACKs of TCP flows [4].

We name this solution, Smart Access Point with Low Advertised Window

2



(SAP-LAW). As a result of its employment, elastic applications produce a
smooth traffic that efficiently utilizes the available channel without incurring
in congestion losses that would degrade their performances and, at the same
time, does not create queues at the AP that would increase per-packet delays
of real-time applications. A point in favor of this scheme is also the fact that
it entirely operates at the AP. Therefore, changes in the number and type of
flows served by the considered AP are immediately detected and addressed.
Moreover, SAP-LAW does not require changes in the whole Internet, but
just the deployment along the road of APs with SAP-LAW features, which
can happen also gradually.

We demonstrate how SAP-LAW represents a valid solution to find the
best tradeoff solution between the throughput achieved by elastic applications
and the per-packet delay of real-time ones, even in a challenging scenario such
as vehicular networks. In particular, in Section 2 we provide background
information to understand the considered problem. Section 3 outlines our
proposed solution. The experimental assessment and collected results are
shown in Section 4 and Section 5, respectively. Finally, conclusions are drawn
in Section 6.

2. Background

In this section we provide a framework model that highlights the main
delay sources in the considered scenario and explain the tradeoff relation-
ship existing among heterogeneous applications that can be simultaneously
present in this context.

2.1. System Model

Online gaming represents a prominent example of real-time application
as interactivity, i.e., the fast delivery of game events, embodies its main
requirement. At the same time, requirements for available bandwidth and
delivery reliability can be relaxed as games utilize very small packets (even
just few tens of bytes) and can tolerate some packet losses [5].

Every class of game is featured by a peculiar Game Interactivity Thresh-
old (GIT ) that represents the maximum delay endurable before visualizing
a game event on players’ screens if one wishes to preserve interactivity. The
typical GIT for fast-paced interactive games (i.e. vehicle racing, first person
shooter) is around 100 ms, even if this value can be increased up to seconds
in case of slow paced games (i.e., strategic, role play game) [6, 7].

3



If we call tg(e) the generation time of event e and t
v(e)
i the visualization

time of the same event at player i, then interactivity is preserved at i during
the delivery of e when the following condition is satisfied:

t
v(e)
i − tg(e) ≤ GIT. (1)

Beside interactivity, other two important features of online games are rep-
resented by consistency and fairness. The former is related to the uniformity
of the game state evolution seen by all nodes in the system, whereas the
latter refers to providing all players with the same chances to win regardless,
for instance, of networking conditions.

Consistency and fairness share similar goals as, practically, they would
both benefit from having a simultaneous evolution of the game state on all
the nodes of the system. Therefore, the same class of techniques is generally
used to achieve each of them (or both); a prominent example of these common
solutions is represented by local lag techniques, which are based on the local
introduction of different artificial delays in order to contemporary visualize
game events on the screens of all remote players [8, 9].

In essence, since the generation time of each game event is unique and
naming P , the set of players, we can say that we have event-related fair-
ness [10] for event e if the following condition is satisfied; simply stated, if
there is a unique tv(e) value for all the players:

t
v(e)
i = tv(e) ∀i ∈ P. (2)

Since a single game event experiences different overall delivery delays
(DDs) in its path from the source to all the diverse destinations, different
amounts of artificial delay � should be added in order to contemporary visu-
alize the same event e on all the players’ screens. We can hence rewrite (2)
into the following condition:

tg(e) +DDi(e) + �i(e) = tv(e). (3)

A possible value typically chosen for the unique tv(e) is represented by the
highest DD in transmitting events amongst nodes. When the highest DD is
greater than GIT , however, fairness is preserved at the cost of jeopardizing
interactivity for all the players. To maximize the possibility to obtain both
interactivity and fairness, tv(e) should be set as

tv(e) = tg(e) +GIT. (4)

4



Yet, with (4) we may not be able to guarantee fairness for every player
in the system, but only for a subset of players whose interconnections are
featured with DD values smaller than the GIT . In point of this, the best
way to increase the size of this subset of players who experience a fair (and
interactive) gaming experience, passes through providing the online game
system with means for improving the general interactivity degree of the sys-
tem [11]. In essence, by reducing unnecessary computational and networking
overhead the gaming system delivery delays can be generally lowered thus
allowing more players, even located at farther distances, to be accommo-
dated in the same game session while still maintaining the highest DD in
the system below the GIT .

Since the DD plays such a fundamental role in ensuring interactivity,
fairness, and consistency, we further analyze it. The DDi(e) experienced
by an event e when it finally reaches player i is composed by several delay
components; respectively: physical latency ldi(e), queuing time qdi(e) on
nodes along the path, and processing time pdi(e). Therefore, DDi(e) can be
written as

DDi(e) = ldi(e) + qdi(e) + pdi(e). (5)

A very important component in (5) is represented by qdi(e); indeed, as
we show in Section 5, queuing embodies a significant waste of time that can
cause high DD values and jeopardize the perceived performance of the online
gaming application. Even worse, the DD could be not only high but also
highly variable (i.e., having high jitter), thus impeding to players to adapt
to network delays (for instance, constantly anticipating the steering at each
curve when playing car racing games) [7]. This is especially true in vehicular
networks, since APs along the road experience continuous variations in the
number and type of flows that each of them has to serve. Considering its im-
portance, we devote the following subsection to further elaborate on queuing
delay built up at the APs.

2.2. Access Point’s Queuing Delay

As just discussed, the queuing delay qd represents a crucial component in
the DD. Elaborating more on the wastage of time caused by packet queuing,
we can say that queues are built up along the path from the sender to the
receiver when the arriving rate of events at some node is higher than the
serving rate of that node.

5



However, as recently demonstrated by measurements on a real OC48 link,
the capacity of the Internet is generally larger than the aggregate bandwidth
utilized by transiting flows [12]. Moreover, providers are offering today guar-
anteed high speed connectivity to home customers. This implies that the
bottleneck of the connection is generally located at the edge of the path
connecting sender and receiver.

Focusing on online games, we can further support this assumption. As
revenues for online game providers come from the subscription payments of
many satisfied customers, every commercial online game system is generally
supported by adequate resources in terms of connectivity speed, number,
and computational capability of their servers [13]. Moreover, efficient game
server architecture and synchronization can be put to good use to improve
the performance on the wired part of the online game platform [11].

Yet, even when the game network platform is able to bring game events to
the road’s curb with delivery times within the GIT , problems may still arise
at the last hop, which represents the bottleneck in terms of the available
capacity for the connection. In fact, it may happen that the AP received
packets at a higher rate than it can forward to destination. This is especially
true in the case of vehicular networks; indeed, it can happen for several
reasons related to this scenario such as, for instance, the fact that the wireless
medium allows only one node at a time to transmit.

Moreover, interference, errors, fading, and mobility may cause packet
losses which are handled by the MAC protocol through local retransmissions.
These local retransmissions hide error losses to the TCP and are useful to
increment the reliability of the connection. Without them, the TCP would
misinterpret error losses as congestion evidences, thus reducing its sending
rate and decreasing its performance. On the other hand, retransmissions
follow the well known back off mechanism by which an increasing amount
of time is utilized to determine whether a packet has been lost, and hence
retransmit it. The 802.11 MAC protocol performs up to seven retransmis-
sions of short packets (i.e., RTS/CTS, ACKs) and four retransmissions of
long packets (i.e., data packets) [14]. This means that subsequent packets
have to wait in queue until the preceding one, or one of its retransmissions,
finally reaches the receiver and the corresponding ACK is successfully sent
back.

Finally, especially in an open environment such as vehicular networks, it is
very likely to have the same wireless connection shared by several devices and
applications that increase the congestion level and cause queuing. As it is well

6



known, TCP connections continuously probe the channel for more and more
bandwidth until buffers along the path are fully utilized and overflowed. In
presence of persistent TCP connections to support some elastic application,
buffers at the bottleneck will probably be steadily fully utilized, thus queuing
packets, slowing down their delivery time, and deteriorating the performance
of real-time applications such as online games.

3. Smart Access Point With Low Advertised Window

In this section we describe our proposed solution to provide both high
throughput to (TCP-based) elastic applications and to (UDP-based) real-
time ones, even in a highly variable environment such as an infrastructure-
based vehicular network.

3.1. TCP’s sliding window algorithm

Since our proposed solution makes use of regular TCP functionalities,
before presenting it, it is important to briefly summarize how the TCP algo-
rithm for congestion and flow control works [4].

In essence, the rate at which TCP sends out its packet (i.e., the sending
rate) is determined as the minimum between the advertised window and the
current congestion window. The former is determined by the receiver node,
it corresponds to an upper bound to the number of packets that could be
handled by the receiver, and its value is communicated back to the sender
through a specific field in ACK packets. Instead, the latter is continuously
computed by the sender node. Upon any successful transmission demon-
strated by returning ACKs, the congestion window is increased. Thereby,
until a transmitted packet gets lost, the congestion window is steadily aug-
mented, whereas when one or more packets are lost the congestion window
is halved.

As a result, during TCP operations, packets are transmitted at a sending
rate (or sending window) that steadily grows until the congestion window
surpasses the advertised window, or until a packet is lost. Then, in the former
case, the sending rate remains constant and corresponds to the advertised
window; whereas, in the latter case, the sending window is halved before
restarting its growth.

7



3.2. Limiting TCP’s Advertised Window

To find the best solution to the tradeoff relationship existing between the
TCP throughput and the real-time application delays, it is important to no-
tice that when the transmission rate of a TCP sender surpasses the available
bandwidth on the channel, the throughput cannot increase further; rather,
the higher sending speed just generates packet queuing at the bottleneck that
will eventually cause congestion losses and consequent halving of the TCP’s
sending rate.

Therefore, the TCP’s sending rate should be kept high enough to effi-
ciently utilize the available bandwidth but, at the same time, limited in its
growth so as to not utilize buffers. This way, the throughput is maximized by
the absence of packet losses that would halve the congestion window, while
the delay is minimized by the absence of queues.

To determine an appropriate upper bound for the TCP’s sending rate we
should also consider other flows sharing the same bottleneck. Specifically,
the aggregate bandwidth utilized by TCP flows on a given bottleneck at a
given time t should not exceed the total capacity C of the bottleneck link
diminished by the portion of the channel occupied by the concurrent real-time
traffic, UDPTraffic(t), i.e.,

AggregateTCP (t) ≤ C − UDPTraffic(t). (6)

Such aggregate bandwidth should be fairly shared by the TCP flows.
Hence, the maximum sending rate for each TCP flow at time t, namely
TCPFlowRate(t), is represented by

TCPFlowRate(t) =
AggregateTCP (t)

#TCPFlows(t)
. (7)

where #TCPFlows(t) is the number of simultaneously present TCP flows
at time t.

Having determined the appropriate upper bound for a TCP flow’s sending
rate, we need then to find a practical way to enforce it. This is a delicate
issue as proposing a solution that required to modify Internet’s core or the
TCP code on all senders or receivers is clearly not a feasible option. For this
reason we propose to limit the scope of intervention by exploiting existing
features already present on regular TCP. In particular, the advertised window
included in TCP’s ACKs represents the perfect candidate to limit TCP’s
sending rate without having to modify the functioning of the whole Internet.

8



Since the actual sending window is determined as the minimum between
the congestion window and the advertised window, the advertised window
embodies a natural upper bound to the congestion window and is already
implemented in all TCP versions. By appropriately modifying its value, we
can achieve both efficiency and low delays.

With regular TCP, the advertised window is determined by the receiver;
however, the receiver is not in the most suitable place for the modification
that we need to perform. Indeed, to determine the appropriate value for
the advertised window, a comprehensive knowledge about all flows that are
transiting through the bottleneck (i.e., the last hop wireless link) is needed.
Instead, the AP represents the node able to implement our scheme since all
flows have to pass through it. By snooping the channel, the AP can also infer
the number of active TCP connections and the aggregate amount of current
UDP traffic; it can hence easily compute the value of TCPFlowRate(t) as
shown by (7). Therefore, even if the value of the advertised window in TCP’s
ACKs is already established by the receiver, these ACKs have to transit
through the AP, which can hence modify on-the-fly the advertised window
field with TCPFlowRate(t).

In summary, the proposed solution is aimed at enabling an efficient coex-
istence among heterogeneous (i.e., TCP-based elastic and UDP-based real-
time) flows, even in a highly variable environment such as vehicular networks,
by limiting the advertised window of TCP flows through the deployment of
smart APs. For this reason, we name it Smart Access Point with Low Ad-
vertised Window (SAP-LAW).

Finally, a great advantage of SAP-LAW is that it does not require to
have all APs in the network endowed with its mechanism. In fact, APs
implementing SAP-LAW can coexist side by side with regular ones; the for-
mer bringing advantages to their served flows, without affecting the latter.
Therefore, not only requires SAP-LAW very little and feasible modifications
to existing architecture/protocols, but it can also be gradually deployed,
enormously facilitating its adoption.

4. Performance Evaluation

We test SAP-LAW through the NS-2 simulator in a urban-like vehicular
scenario, collecting results for a vehicle transiting in the transmission range
of different APs. The scenario is made more realistic by having other het-
erogeneous traffic sharing each considered AP. Results are collected both for

9



the mobile node and for the other nodes that generate traffic in the network.
More in detail, we consider a portion of road comprising four APs (AP0,

AP1, AP2, AP3), seven wired nodes (W0,W1, . . . ,W7), and seven wireless
ones (N0, N1, . . . , N7). Among the wireless nodes, we monitor N0 while it is
driving through the transmission ranges of the various APs. For the sake
of a clearer description of the simulative configurations, Fig. 1 shows the
network topology for the considered scenario: a block, or a group of blocks,
with 1000 m between any two consecutive corners, around which a car (i.e.,
N0) is traveling.

In the simulations, wired links have a 100 Mbps capacity, whereas wireless
ones have a variable capacity (depending on channel interferences) of circa
19 Mbps. All wired links directly connecting two APs have less than 1 ms
of propagation delay (they are only 1000 m far from each other), whereas all
other wired links have a propagation delay of 20 ms. Buffers in the wired
connections are set equal to 70 packets, which corresponds to the pipe size,
i.e. the bandwidth-RTT product. The TCP’s advertised window is initially
set to a very high value, 550 packets, and remains constant when regular
TCP New Reno and APs are employed, whereas SAP-LAW dynamically and
continuously sets it by employing (7).

Since we are considering a vehicular scenario, we have modified the IEEE
802.11 module available for NS-2 to behave following IEEE 802.11p’s spec-
ifications; coherently, this results in having about 750 m of transmission
range [1]. MAC layer buffers on the APs are set equal to 100 packets as this
is one of the most common values in off-the-shelf APs.

In the simulated scenario, wireless nodes continuously transmit and/or
receive data through certain APs; the distance between these wireless nodes
and their engaged APs is 100 m. The scenario also includes wireless nodes
connected to the various APs so as to have a predetermined background
traffic continuously utilizing these APs and allowing a clearer understanding
of the outcomes. Specifically, the employed application flows are described
in Table 1.

A mobile node, N0, is traveling along the road passing by the coverage
area of each of the APs with a speed of 14 m/s (about 50 Km/h, or 32 Mph);
movement details of N0 are reported in Table 2. When N0 moves into the
coverage area of a new AP, it connects with the new antenna and continues
its operations through Mobile IP’s packet redirection [15]. The mobile node
N0 runs different applications in different sets of simulations, specifically:
a TCP-based FTP or a UDP-based online game. In the former case the

10



Figure 1: Simulated urban vehicular scenario.

11



Table 1: Simulated Flows

From To Home Agent (AP) Flow Type Transport Protocol

W1 N1 AP0 FTP TCP New Reno
N2 W2 AP0 Online gaming UDP
W2 N2 AP0 Online gaming UDP
N3 W3 AP1 Online gaming UDP
W3 N3 AP1 Online gaming UDP
W4 N4 AP2 Video streaming UDP
W5 N5 AP3 FTP TCP New Reno
W6 N6 AP3 Video streaming UDP

Table 2: Movement Details Of The Traveling Node

Time Location Distance AP Description

0.0 s A 0 m AP0 Simulation start
3.0 s B 42 m AP0 Data transmission start
36.8 s C 515 m AP0 Start handoff AP0 −AP1

71.4 s D 1000 m AP1 Min distance from AP1

87.5 s E 1505 m AP1 Start handoff AP1 −AP2

142.8 s F 2000 m AP2 Min distance from AP2

153.7 s G 2152 m AP2 Start handoff AP2 −AP3

214.3 s H 3000 m AP3 Min distance from AP3

224.6 s I 3144 m AP3 Start handoff AP3 −AP0

285.7 s A 4000 m AP0 Min distance from AP0

300.0 s J 4200 m AP0 Simulation end

data flow is mostly unidirectional, from a server in the Internet to N0 (plus
ACKs on the returning path), whereas in the latter case the data flow is
bidirectional; game events go from N0 to a game server in the Internet and
game updates go from the server to N0.

The considered multimedia applications are simulated in a very realistic
way. In fact, the video streaming corresponds to the real trace file of the
movie Star Wars IV in high quality MPEG4 format [16]; frames of different
sizes are hence sent with a 25 fps frequency. Online gaming traffic is inspired
by real traces of the popular Counter Strike action game, and has i) a server-
to-client flow characterized by an inter-departing time of game updates of
200 bytes every 50 ms and ii) a client-to-server flow characterized by an
inter-departing time of game events of 42 bytes every 60 ms [5].

12



As for parameter C in (7), three different values are tested: 18, 19, and
20 (Mbps); however, if not differently stated, C is set equal to 19. Clearly,
the C value has an impact only on SAP-LAW’s performances, whereas it is
not employed when regular protocols and APs are utilized. For the sake of
clarity, in the next sections we identify the configuration employing regular
protocols and APs with the name TCP regular.

5. Results

In this section we assess the performance improvement achieved by SAP-
LAW in a vehicular scenario with infrastructure (see Fig. 1); the considered
metrics are the final goodput achieved by elastic flows (FTP/TCP) and pa-
rameters discussed in Section 2.1 (jitter, DD, and qd) for real-time ones
(gaming/UDP).

5.1. Elastic Flow Evaluation

First, we analyze the case with the mobile node N0 driving around in the
urban scenario downloading a file through FTP/TCP. In particular, Fig. 2
presents the sending window and the channel pipe size (computed as the
RTT-bandwidth product) for a TCP regular (the chart above in the figure)
and for SAP-LAW (the chart below in the figure). The well known saw-tooth
shape is evident for TCP regular; those peaks generally corresponds to a
packet loss due to congestion. Yet, before losing a packet, others were queued
at the bottleneck buffer generating queuing delays that affected simultaneous
real-time applications (as we demonstrate in Section 5.2). Instead, as evident
in the lower chart of Fig. 2, when employing SAP LAW, the sending window
is limited in its growth by the advertised window computed through (7), thus
showing an almost-flat shape and never exceeding the pipe size. As a result,
SAP-LAW avoids congestion, packet losses, and queuing at buffers.

Clearly, regardless of utilizing TCP regular or SAP-LAW, when N0 moves
from the coverage area of a given AP to a new one, a disconnection period
occurs during which the sending window is just 1 packet. In particular, from
left to right of Fig. 2, it is easy to notice when N0 is connected to AP0,
AP1, AP2, AP3, and finally AP0 again. Furthermore, as evident by the lower
chart of Fig. 2, when N0 is in the transmission range of an AP serving no
other FTP/TCP traffic (i.e., AP1 or AP2) the height of SAP-LAW’s sending
window is roughly twice with respect to the case when the engaged AP serves
also another FTP/TCP flow (i.e., AP0 or AP3).

13



Figure 2: TCP’s sending window and link’s pipe size for i) TCP Regular (chart above) and
ii) SAP-LAW with C = 19 (chart below). N0 is moving passing by the various APs while
downloading a file from W0; when engaged with AP0 and AP3, N0 shares the channel with
another TCP flow.

Similarly, if we focus our attention on N5, which is a static wireless node
engaged in a FTP/TCP flow through AP3, we should be able to detect the
passage of N0 through the coverage area of AP3 by noticing a sudden decrease
of N5’s sending window, followed by a sudden increase when N0 leaves. This
is evident in Fig. 3, which shows the sending window of N5, when considering
the TCP regular-case (upper chart in the figure) or when utilizing SAP-LAW
(lower chart in the figure). In particular, the sending window computed
through (7) is halved during the period of time (roughly, 180 s - 220 s) when
the number of simultaneous FTP/TCP flows doubles, passing from one to
two.

Lastly, Fig. 4 reports the average goodput achieved by N0 and N3, con-
sidering TCP regular or SAP-LAW with different values of C. This chart
demonstrates that the goodput decrease due to the employment of SAP-LAW
is negligible, especially if setting C equal to 19 or 20.

5.2. Real-Time Flow Evaluation

Analyzing the performance achieved by real-time applications, we focus
now on parameters relative to the DD described by (5). To this aim, we
compare TCP regular and SAP-LAW by considering two cases: i) N0 moving

14



around while downloading a file through a FTP/TCP session and ii) N0

moving around while engaged in an online game session.
In the first case, we evaluate how N2’s online game session is affected by

the continuous presence of a competing FTP/TCP flow (i.e., N1’s) under the
coverage of the same AP (i.e., AP0) and by the sudden arrival of another
FTP/TCP flow (i.e., N0’s). To this aim, Fig. 5 shows the jitter of the DD
as experienced by the game flow directed from server W2 to the client N2.
As stated in Table 1, this game session has to share the same AP0 with
a FTP/TCP flow; this allows us to appreciate the different performances
achieved by employing TCP regular (leftmost chart in the figure) or SAP-
LAW (rightmost chart in the figure). The charts demonstrate that, when
the game session competes with a FTP flow based on TCP regular, jitter
values result consistently higher, also achieving peaks of ∼60 ms. Instead,
with SAP-LAW, the jitter continuously stays under 12 ms. Only in one case
this does not happen: when the mobile node N0 enters into the coverage
area of the same AP engaging N2. Yet, this single high peak reaches ∼20 ms
whereas with TCP regular we can witness the jitter systematically surpassing
this value. Note that the entrance of N0 in AP0’s coverage area is not so
evident with TCP regular. This happens because the buffer size at any AP
is constant and having it used by one or two FTP/TCP flows does not change
the maximum queuing delay that it can generate.

In the second case, we consider the mobile node N0 running an online
game application engaged with the game server W0, while passing by the
various APs. To this aim, Fig. 6 shows the jitter experienced by the afore-
mentioned game session when employing, from the leftmost chart to the
rightmost one: a) TCP regular, b) SAP-LAW with C = 18, c) SAP-LAW
with C = 19, and d) SAP-LAW with C = 20. As it is evident, SAP-LAW
outperforms TCP regular with all C values. The lowest jitter is experienced
when C = 18 is employed; whereas progressively increasing C causes a (little)
raise of the jitter. This is due to the fact that the bandwidth oscillated on
the wireless channel; yet, it was more often closer to 18 Mbps than to higher
values (i.e., 19 Mbps or 20 Mbps).

As explained in Section 2.1, the qd is a fundamental component in packets’
DD. Indeed, high variations in packets’ DD generally corresponds to high
qd values. This is confirmed also by Fig. 7 where we consider again the same
simulative scenario of Fig. 6 and report the maximum qd value registered
every 5 s by the game events. As it is evident, with TCP regular qd values
are much higher than when employing SAP-LAW and its peaks correspond in

15



simulation time with peaks visible in Fig. 6. In particular, with TCP regular
qd reaches an overall maximum value of 79.21 ms, which represents a huge
amount of time when trying to deliver game events in less than 150 ms from
their generation. This demonstrates one more time how TCP regular would
be affected by continuous gaming interactivity loss, whereas SAP-LAW is
effective in maintaining a smooth gaming flow.

To conclude, we show in Fig. 8, the cumulative function of the DD jitter
for the compared schemes. The difference among the various schemes is
evident, yet we provide also a quantitative evaluation in Fig. 9. In the chart
the height of the columns corresponds to the maximum DD jitter value
associated to the 95 % and 99 % of the cumulative function. It is particularly
interesting to observe that the 99 % of game messages delivered when SAP-
LAW is employed experience very low delay jitter; whereas the same cannot
be said for TCP regular.

6. Conclusions

Vehicular networks represent the next frontier in wireless communica-
tions. Through APs along the road, car passengers will be able to access
the Internet and all their favorite online applications. We can hence expect
to have several heterogeneous applications competing for the same wireless
resources, suddenly appearing and disappearing as cars move.

Whereas it is well known that a mobile environment is deleterious for
TCP-based elastic applications, with this paper we went beyond, showing
also how the vehicular networking conditions are particularly harmful toward
the emerging application of interactive online games and, in general, of real-
time applications, especially when sharing the channel with elastic ones.

In this context, we have evaluated a solution, named SAP-LAW, based
on the deployment of smart APs able to exploit regular features of exist-
ing transport protocols in order to improve the performance of both elastic
and real-time applications. As a result of employing SAP-LAW, heteroge-
neous flows can efficiently coexist even in presence of frequent network traffic
variations due to the vehicular scenario, ensuring at the same time the best
possible throughput and per-packet delay. In particular, the latter embod-
ies the main requirement for the successful deployment of interactive online
games.

Finally, we plan to extend this work in several directions. We would like
to test SAP-LAW in even more complex vehicular scenarios, also considering

16



the benefits achievable by other popular applications that requires small per-
packet delivery delay such as, for instance, video/audio streaming, interactive
storytelling, and alert propagation [17, 18, 19].

7. Acknowledgments

We wish to express our sincere gratitude to Salvatore Frizzoli for his
technical help in setting the experimental testbed.

References

[1] Dedicated Short Range Communications (DSRC) Home. [Online]. Avail-
able: http://www.leearmstrong.com/dsrc/dsrchomeset.htm

[2] anonymous reference due to double blind review.

[3] anonymous reference due to double blind review.

[4] V. Jacobson, “Congestion Avoidance and Control,” in Proc. of ACM
SIGCOMM’88, Stanford, CA, USA, pp. 314-329, Aug 1988.

[5] J. Färber, Traffic Modelling for Fast Action Network Games, Multimedia
Tools and Applications, vol. 23, no. 1, 2004, 31-46.

[6] G. Armitage, “An Experimental Estimation of Latency Sensitivity in
Multiplayer Quake 3,” in Proc. of ICON, Sydney, Australia, pp. 137-
141, Sep 2003.

[7] L. Pantel, L. C. Wolf, “On the Impact of Delay on Real-Time Multi-
player Games,” in Proc. of the 12th ACM NOSSDAV 2002, Miami, FL,
USA, pp. 23-29, May 2002.

[8] S. Zander, I. Leeder, G. Armitage, “Achieving Fairness in Multiplayer
Network Games through Automated Latency Balancing,” in Proc. of
ACM SIGCHI ACE2005, Valencia, Spain, pp. 117-124, 2005.

[9] M. Mauve, J. Vogel, V. Hilt, W. Effelsberg, Local-lag and Timewarp:
Providing Consistency for Replicated Continuous Applications, IEEE
Transactions on Multimedia, vol. 6, no. 1, 2004, 47-57.

[10] anonymous reference due to double blind review.

17



[11] anonymous reference due to double blind review.

[12] H. Jiang, C. Dovrolis, “Why Is the Internet Traffic Bursty in Short (Sub-
RTT) Time Scales?” in Proc. of ACM SIGMETRICS 2005, Banff, AL,
Canada, 2005.

[13] Butterfly Grid Solution for Online Games [Online]. Available:
http://www.butterfly.net

[14] IEEE, “Standard for Wireless LAN Medium Access Control (MAC)
and Physical Layer (Phy) Specifications,” Specifications, ISO/IEC 8802-
11:1999(E), 1999.

[15] anonymous reference due to double blind review.

[16] Movie Trace Files [Online]. Available: http://www-tkn.ee.tu-
berlin.de/research/trace/ltvt.html

[17] L. Egidi, M. Furini, Bringing Multimedia Contents into MP3 Files, IEEE
Communications Magazine, vol. 43, no. 5, May 2005, 90-97.

[18] P. Salomoni, S. Mirri, L. A. Muratori, “YEAST: The Design of a Coop-
erative Interactive Story Telling and Gamebooks Environment,” in Proc.
of the GAMEON’2007 International Conference, Eurosis, Bologna,
Italy, pp. 83-87, Nov 2007.

[19] E. Fasolo, A. Zanella, M. Zorzi “An Effective Broadcast Scheme for
Alert Message Propagation in Vehicular Ad Hoc Networks,” in Proc. of
IEEE ICC 2006, Instanbul, Turkey, pp. 3960-3965, Jun 2006.

18



Figure 3: TCP’s sending window and link’s pipe size for i) TCP Regular (chart above)
and ii) SAP-LAW with C = 19 (chart below). N5 is downloading a file from W5 through
AP3 and shares the channel with another TCP flow (between the mobile node N0 and
W0) from 178.7 s to 234.6 s.

Figure 4: Average goodput achieved by TCP flows of N0 and N3, respectively, when
employing alternatively TCP regular, SAP-LAW with C = 18, SAP-LAW with C = 19,
and SAP-LAW with C = 20.

19



Figure 5: Delivery delay (DD) jitter experienced by the game flow going from server W2

to client N2 when employing TCP regular (leftmost chart in the figure) or SAP-LAW
(rightmost chart in the figure); the game session shares AP0 with another FTP/TCP flow
downloading a file from W1 to N1.

20



Figure 6: Delivery delay (DD) jitter experienced by the game flow going from server W0

to client N0; concurrent TCP flows (when N0 is engaged with AP0 and AP3) employ
alternatively TCP regular (chart 1), SAP-LAW with C = 18 (chart 2), SAP-LAW with
C = 19 (chart 3), and SAP-LAW with C = 20 (chart 4).

21



Figure 7: Maximum queuing delay (qd) values registered every 5 s as experienced by game
events going from server W0 to client N0; concurrent TCP flows (when N0 is engaged with
AP0 and AP3) employ alternatively TCP regular, SAP-LAW with C = 18, SAP-LAW
with C = 19, and SAP-LAW with C = 20.

22



Figure 8: Cumulative function of the delivery delay (DD) jitter experienced by the game
flow going from server W0 to client N0; concurrent TCP flows (when N0 is engaged with
AP0 and AP3) employ alternatively TCP regular, SAP-LAW with C = 18, SAP-LAW
with C = 19, and SAP-LAW with C = 20.

23



Figure 9: Delivery delay (DD) jitter value associated with the 95% and 99% of the cu-
mulative function; game flow going from server W0 to client N0; concurrent TCP flows
(when N0 is engaged with AP0 and AP3) employ alternatively TCP regular, SAP-LAW
with C = 18, SAP-LAW with C = 19, and SAP-LAW with C = 20.

24


