
Buscar el Levante por el Poniente:
In Search of Fairness Through Interactivity in

Massively Multiplayer Online Games

Stefano Ferretti (1), Claudio E. Palazzi (1,2), Marco Roccetti (1), Giovanni Pau (2), Mario Gerla (2)

1Dipartimento di Scienze dell’Informazione, Università di Bologna,
Mura Anteo Zamboni 7, 40127 Bologna, Italia

{sferrett, roccetti}@cs.unibo.it

2Computer Science Department,
University of California Los Angeles, Boelter Hall, Los Angeles CA, 90095, USA

{cpalazzi, gpau, gerla}@cs.ucla.edu

Abstract— Ensuring fairness among players engaged in online
games is a challenging task. Yet, it is a fundamental requirement
that can make the difference between having customers that
persist or desist in using this kind of application. Answering to
this demand, we present here an event delivery mechanism
among mirrored game servers able to effectively uplift the
fairness degree during game sessions through the heterogenesis of
ends in targeting interactivity. We also provide extensive results
that sustain our claim.

Keywords- Multiplayer Online Games; Fairness; Interactivity;
Obsolescence; Networked Entertainment.

I. INTRODUCTION

Christopher Columbus’s aim, when he sailed for finding
Catai (ancient China) lands across the Atlantic Ocean, is
perfectly described by the famous claim credited to him:
“Buscar el Levante por el Poniente”, to seek the East by way of
the West. We humbly take inspiration from his genius to
synthesize our work in the title of this paper. The analogy is
represented by the fact that the scheme we here propose
facilitates fairness by aiming at increasing the interactivity
degree in Massively Multiplayer Online Games (MMOGs).

With the term network fairness we refer to the problem of
guaranteeing the same possibility of victory to all the players,
regardless of their subjective network conditions. This is
obviously one of the well known key factors in designing
MMOGs. Indeed, relative delays among players can be
considered as important as absolute ones. If a player receives
game state updates more quickly than another one, she/he will
definitively be able to react more promptly and, thus, to
overwhelm her/his adversary [1, 2].

Local lag and other similar algorithms have been proposed
to ensure fairness (and consistency) among players in MMOGs
[2-6]. The idea behind this kind of approach amounts to
introducing artificial delays in the display of both generated
and received game events. These delays are appropriately
chosen for each client and depend on their subjective client-

server latencies. The aim is that of having each game event
simultaneously displayed, after a total amount of time since its
creation, on all the players’ screens.

Usually, this amount of time corresponds to the longest
transmission latency experienced by the most unlucky player of
the game. In practice, this kind of approach increases game
delays and may jeopardize interactivity as in some case the
unlucky client may be connected very far away from its server
and/or through a slow connection.

Consequently, the efficiency and applicability of the local
lag approach strongly depend on the network conditions and on
the interactivity degree required by the game. Indeed,
especially in the case of a highly interactive MMOG, servers
should be optimally located to efficiently serve a large number
of customers [1]. Yet, guaranteeing both interactivity and full
fairness through local lag can sometimes be achieved only at
the cost of impeding the access to some users whose
connectivity is irremediably affected by large network delays.

A tradeoff relationship thus exists among scalability
(especially in terms of geographical dispersion of the players),
interactivity, and fairness. According to this, interactivity and
fairness are traditionally seen as incompatible requirements in
MMOGs.

Conversely, we claim now that upholding interactivity may
be useful also to the aim of ensuring fairness. To demonstrate
this, we have developed a novel mechanism named Fairness
and Interactivity Loss Avoidance (FILA). Our scheme can be
divided into two complementary sub-components. The first one
exploits the semantics of the game to drop superseded events
and speed up the delivery of game events. The second one
takes advantage of this reduced transmission time to magnify
the efficiency of a local lag-type algorithm in ensuring fairness
without compromising interactivity.

The remainder of the paper is organized as follows. Section
II presents our adopted scalable architecture. Section III
provides fairness definition plus conditions for its achievement.

Section IV describes FILA’ s design. Section V explains our
simulative environment and presents the experimental results.
Finally, Section VI concludes this paper.

II. SCENARIO

A suitable architecture able to efficiently manage large-
scale distributed games may make use of a constellation of
mirrored Game State Servers (GSSs) which cooperate over the
network, in a peer-to-peer fashion, to maintain replicas of the
same game state [7]. Having multiple servers allows each client
to connect in a client-server mode to the closest mirror, thus
reducing the communication latency.

Each GSS receives game events from its engaged players
and forwards them to all the other GSS peers. Moreover, it
gathers all the game events received from the other GSS peers
and sends game state updates to its clients. In essence, this
approach collects the advantages of both centralized and fully
distributed architecture.

Recent studies have demonstrated that exploiting the
semantics of the game can be put to good use to augment
interactivity whilst preserving consistency of the game state
viewed by the various nodes in the system [8, 9, 10, 11]. Some
events, in fact, can lose their significance as time passes: new
actions may make the previous ones irrelevant. For example,
where there is a rapid succession of movements by a single
agent in a virtual world, the event representing the last
destination supersedes the older ones.

Based on this concept, a notion of obsolescence was
defined as the relation between two received events e and e ,
generated at different times t < t , by which the content of
event e supersedes e and the need for its processing. Of
course, e can be defined as obsolete by the arrival of e only if
it is not correlated to other events concurrent with e [8]. In
simple words, think to an event which cannot be considered as
obsolete as further events may come into the picture that
correlate it to the final game state.

The notions of obsolescence and correlation can be used to
improve interactivity along two parallel directions: i)
discarding obsolete game events to speed up the processing of
fresher ones at receiving GSSs, and ii) providing a delivery of
events to receiving GSSs based on correlation order rather than
total order.

III. SYSTEM MODEL AND FORMAL PRELIMINARIES

As previously mentioned, we have network fairness in a
MMOG when all the players on the network simultaneously
receive every game event. Yet, it is very hard to demonstrate
the existence of such a strict property since it would require
contemplating all the possible cases in terms of network
configuration, traffic load, players’ dispersion, accidental
malfunctioning, etc. for all the events during the game.
Moreover, measuring network fairness would only result in
binary outcomes: either achieved or not.

Therefore, to find a useful measure to help one in
comparing different fairness preserving algorithms, a parameter
which evaluates each transmitted game event is needed. We
hence introduce the concept of event-related fairness which
represents a situation when a single event is simultaneously

displayed by all the clients. From here on, when we mention
the fairness degree we intend the percentage of game events
that were delivered achieving event-related fairness.

The following further definitions are needed with the aim of
presenting our fairness preserving approach. As each game
event travels from player to player, we call Overall Latency
(OL) the amount of time elapsed since the generation of a game
event by a player to its delivery at the adversary. We consider
OL as comprised of two different values: the Network
Traversal Latency (NTL) and the Last Hop Latency (LHL), i.e.,
OL = NTL + LHL.

Obviously, both NTL and LHL are measured at the
receiving GSS, as depicted in Fig. 1. Following this model and
considering the set C of clients simultaneously playing in the
same virtual arena, the event-related fairness condition for a
certain event e is satisfied if the following equation holds
(where D is a unique amount of time),

.Ci D (e)OLi �� (1)

Figure 1. Delays definition.

Further, every class of games has a game specific Game
Interactivity Threshold (GIT) that represents the maximum OL
endurable before displaying a game event on each player’ s
screen if one wishes to preserve interactivity. Obviously, the
interactivity requirement is satisfied whenever OL is smaller
than GIT. It is interesting to mention that the GIT value for fast
paced games (i.e. vehicle racing, first person shooter) typically
corresponds to 150-200ms but can be increased in case of slow
paced games (i.e. strategic, role play game) [1, 4, 12, 13].

In the following, we present a mechanism (FILA) which is
aimed at preserving fairness while achieving interactivity. It
steps through two phases. The first phase implements a
proactive control scheme whose aim is that of keeping OLi(e) <
GIT, � i � C. This is accomplished by dropping obsolete
events. In the second phase, a local lag-type algorithm is
employed to add an appropriate artificial delay Gi to each
different OLi(e) so that

.)(GITeOL ii � G (2)

If our mechanism is successful in satisfying (2), then the
event-related fairness condition holds. Needless to say, if a
given event traveling from a player to another one surpasses

IInntteerrnneett

receiving GSS

game event sent between players

NTL

OL

player player

LHL

sending GSS

GIT, then no artificial delays will be added to that event and the
event-related fairness requirement will be not satisfied.

IV. FILA: ACHIEVING FAIRNESS THROUGH INTERACTIVITY

With FILA, game events are orderable: they are marked at
their creation with a generation timestamp and then sent to the
destination. Obviously, this requires the maintenance of a
global conception of time among all the GSSs, which can be
achieved as discussed at length in [8, 14, 15].

The first phase of our scheme takes inspiration from Active
Queuing Management techniques [16] adapting their
discarding algorithm to consider the game event delay at GSSs,
instead of the queue size at routers. In essence, upon every new
game event arrival, each GSS determines the NTL of the
relative event.

This NTL is utilized to calculate a sample employed to
update the value of a variable named avgOL. This variable
represents the average OL that the considered game event is
expected to have when it will finally reach all the players
engaged by that GSS.

With FILA, all the game events are regularly processed and
forwarded while avgOL is smaller than a threshold named tmin
(an alert threshold whose value is smaller than GIT). As soon
as avgOL exceeds tmin, instead, the GSSs drop obsolete events
with a certain probability p which is directly proportional to
avgOL, while neither processing nor forwarding them. Finally,
if avgOL exceeds the subsequent GIT, then p is set equal to 1,
and all obsolete events waiting for being processed are
discarded. Interested readers can find a detailed rationale of the
design choices related to a similar algorithm in [8].

The value of avgOL at iteration n is computed according to
the following low pass filter:

).(11 �� �u� nnnn avgOLsamplewavgOLavgOL (3)

In (3), w is a coefficient that determines how close the
avgOL sequence follows the sample trajectory. Instead, sample
is computed as follows:

}}.{max,min{
_ iGSSCi

LHLDUBGTDsample
�

� (4)

This formula represents an estimation of the maximal
latency }LHL{max iGSS_Ci �

 experienced to reach the most unlucky

player i belonging to the set of all the players connected to that
GSS (C_GSS).

However, we cannot let some irremediably delay-affected
client to excessively impact on (3) raising the values of avgOL.
In this case, we would discard an oversized amount of game
events with no real advantages. For this reason, (4) includes a
global value as a maximal limit for LHL. We term this limit
Delay Upper Bound (DUB).

As DUB represents a global value within the system, an
open problem remains on how to appropriately set it. We report
here on a heuristic we use to dynamically compute DUB. The
formula for its computation is as follows:

},{max NTLGITDUB � (5)

where max{NTL} represents the largest among the NTLs
experienced over all the connections within the entire network.
Obviously, each GSS has to communicate back to all the other
peers the largest NTL experienced at that server. This allows a
global knowledge of the worst NTL value endured by each
GSS.

Finally, the highest among these maximum NTLs can be
univocally determined by each of the GSSs and used to
determine the global DUB. Summarizing, each time a given
GSS receives a new game event from some player connected to
one of its peers, it computes the new value of sample as in (4)
and feeds (3) with it to update the discarding probability p.

The second and final part of our scheme is simply in charge
of equalizing the delay differences among players with a local
lag-type scheme that appropriately computes the value of Gi so
as to satisfy (2).

The aim of the next section is to demonstrate how the
combination of phase one and two is effective to ensure
fairness and interactivity.

V. SIMULATION ASSESSMENT AND RESULTS
It is well known that MMOG service providers should

appropriately position their game servers in such a way that
their target player market would be located within a circle
having 150-180ms of latency diameter [1]. Following this rule
and aimed at creating a configuration able to factually support a
highly interactive MMOG, we have simulated a constellation
of five GSSs deployed across U.S.A. by choosing optimal
market locations.

Clients are supposed to be distributed all over the North
American continent connecting through various access
technology and thus enduring different access delays. We have
focused our attention on the event receiving aspect of a single
GSS (GSS0), pretending that the other GSSs are sending events
to it (without any loss of generality).

1

0

3

4

21

0

3

4

2

4896 kmBoston65 ms4

3870 kmOrlando50 ms3

1650 kmDenver35 ms2

602 kmSan Francisco20 ms1

0 kmLos Angeles0 ms0

Road distanceCityAvg latencyGSS

4896 kmBoston65 ms4

3870 kmOrlando50 ms3

1650 kmDenver35 ms2

602 kmSan Francisco20 ms1

0 kmLos Angeles0 ms0

Road distanceCityAvg latencyGSS

Figure 2. Game servers deployment.

Inspired by the literature [12], the NTL values were chosen
based on a lognormal distribution whose approximate average
was obtained by means of repeated runs of the ping application.
More in detail, game events coming from clients connected to
the sending GSSs (i.e. GSS1–GSS4) and traveling towards
GSS0 experience average latencies as reported in Fig. 2, with a
standard deviation of 10ms. Further, several scenarios were
considered where the values of }LHL{max iGSS_Ci �

 were chosen

for each GSS within the following set [25ms, 50ms, 75ms,
100ms, 125ms, 150ms]. This choice simply derives from the
consideration that clients should be located within a circle
having a maximum latency diameter of 150ms. We assumed to
have 10 clients connected to each GSS, engaged in a fast-paced
game, and generating a new action every 300ms in average.
The average game event size (200 Bytes) was inspired by
literature about games as well [17]. This results in a flow of
game events having 30ms of inter-departing time.

The probability that an event makes obsolete preceding
ones was set to 90%. This represents a realistic scenario for a
vast plethora of possible games (e.g. adventure, strategic,
vehicle race, flight simulator, etc.), where most of the events
are just independent movements. In other words, critical
(correlated) game events that cannot become obsolete have to
be considered only sporadically, such as during collisions or
shots, and may represent even less than the 10% of the whole
set of game events.

As a confirmation of this claim, an extensive study of
players’ behavior on Quake 3 is presented in [1]. In that paper,
a measure of the average number of kill actions per minute as a
function of the median ping time between client and server is
reported. Using those measures we provided in [9] a numerical
explanation that demonstrates how 10% of correlated events
and 90% of obsolescence probability may represent a realistic
scenario for interactive MMOGs. As to the parameters in the
FILA algorithm, we have set w = 1/8 for all the simulations.
The alert threshold tmin was equal to GIT – 100ms.

Each experiment was identically replicated to compare the
outcomes of FILA against the regular local lag algorithm. In
[2], Zander et al. demonstrated that there is a statistically
significant difference between the mean kill rates of player
groups which are affected from diverse client-server latencies.
In essence, lower latencies results in higher mean kill rates and
thus in unfairness. Coherently, we have chosen to evaluate as a
performance parameter the percentage of events that were
delivered by GSS0 to all of its players, thus achieving event
related fairness.

Fig. 3, 4, 5, and 6 show, respectively, four different sets of
experiments, obtained varying the GIT from 150ms to 300ms.
Each set of experiment was comprised of six different
experiments. Each experiment consisted in the transmission of
about 4000 game events which experienced, in the worst case,
a maximal overall latency whose value is reported on the x-axis
of each provided chart.

The leftmost graphs of Fig. 3, 4, 5 and 6 show the
percentage of game events that GSS0 was able to deliver to all
of its engaged players in time to be simultaneously delivered
with an OL lower than GIT. It hence represents the amount of
events which satisfied condition (2) and were thus fairly

processed by all the clients. As can be seen from these graphs,
having a higher GIT improves the efficacy of both the
evaluated schemes since larger local lags can be utilized.
However, regular local lag algorithm experiences a premature
performance decrease when the maximal overall latency
increases even if it is still far from the GIT. Instead, FILA
ensures a good fairness degree for a larger set of overall
latencies.

Obviously, in those configurations where the maximal
overall latency is close to (or surpasses) GIT, both schemes
cannot overwhelm network conditions, thus achieving poor
fairness (and interactivity). Even in this case, however, FILA
behaves better than the regular local lag algorithm. FILA pays
these better results with the drops of some obsolete events.

Specifically, the rightmost charts of Fig. 3, 4, 5, and 6
reveal on the y-axis the percentage of game events which were
discarded by FILA. In all the considered cases, less than 20%
of the game events were dropped and these events were
exclusively obsolete ones.

Results turn out to be even better if we focus only on those
cases where the overall latency is not irremediably high with
respect to GIT. Considering the configurations when the
maximal overall latency is lower than GIT by 35ms or more,
we find that FILA always guarantees more than 86% of fairly
delivered game events with less than 15% of dropped events.

VI. CONCLUSION

The ever increasing number of MMOG subscriptions
demand for new technology aimed at solving the key problems
in online games and ensuring a pleasant experience to
customers. In this context, fairness among players has been
shown to be as important as other issues (i.e. interactivity,
consistency, and scalability).

We have hence designed FILA, an event delivery scheme
enforced among mirrored game servers, which exploits the
notions of obsolescence to ensure fairness while achieving
interactivity. As to the event dropping activity, it should be
mentioned that FILA drops only obsolete events. This reduces
delivery delays without causing inconsistencies in the game
evolution.

As only superseded events are discarded, there is no risk
that different dropping percentages at different servers could
result in some unfairness. This is a further prominent result of
our scheme. We provided experimental outcomes that
demonstrate the efficacy of FILA with various latencies.

0

20

40

60

80

100

90 115 140 165 190 215
Maximal Overall Latency

%
 F

ai
rn

es
s

Regular Local Lag FILA

90 115 140 165 190 215

0
2
4
6
8

10
12
14
16
18
20

%
 D

ro
pp

ed
 E

ve
nt

s

Maximal Overall Latency

Figure 3. Fairness improvement (left) and dropped events (right) with
GIT=150ms.

0

20

40

60

80

100

90 115 140 165 190 215
Maximal Overall Latency

%
 F

ai
rn

es
s

Regular Local Lag FILA

90 115 140 165 190 215

0
2
4
6
8

10
12
14
16
18
20

%
 D

ro
pp

ed
 E

ve
nt

s

Maximal Overall Latency

Figure 4. Fairness improvement (left) and dropped events (right) with
GIT=200ms.

0

20

40

60

80

100

90 115 140 165 190 215
Maximal Overall Latency

%
 F

ai
rn

es
s

Regular Local Lag FILA

90 115 140 165 190 215

0
2
4
6
8

10
12
14
16
18
20

%
 D

ro
pp

ed
 E

ve
nt

s

Maximal Overall Latency

Figure 5. Fairness improvement (left) and dropped events (right) with
GIT=250ms.

0

20

40

60

80

100

90 115 140 165 190 215
Maximal Overall Latency

%
 F

ai
rn

es
s

Regular Local Lag FILA

90 115 140 165 190 215

0
2
4
6
8

10
12
14
16
18
20

%
 D

ro
pp

ed
 E

ve
nt

s

Maximal Overall Latency

Figure 6. Fairness improvement (left) and dropped events (right) with
GIT=300ms.

ACKNOWLEDGMENT

This work is partially supported by the Italian Ministry for
Research via the ICTP/E Grid Initiative and the Interlink
Initiative, the National Science Foundation through grants
CNS-0435515/ANI-0221528, and the UC-Micro Grant Micro
04-05 private sponsor STMicroelectronics.

REFERENCES
[1] G. Armitage, “An Experimental Estimation of Latency

Sensitivity in Multiplayer Quake 3”, in Proc. of ICON, Sydney,
Australia, 2003, pp.137-141.

[2] S. Zander, I. Leeder, G. Armitage, “Achieving Fairness in
Multiplayer Network Games through Automated Latency
Balancing”, in Proc. of ACM SIGCHI ACE2005, Valencia,
Spain, 2005 pp. 117-124.

[3] L. Gautier and C. Diot: “Design and Evaluation of MiMaze, a
Multiplayer Game on the Internet”, Proc. IEEE Multimedia
(ICMCS’ 98), Austin, TX, USA, 1998, pp. 233-236.

[4] L. Pantel, L. C. Wolf, “On the Impact of Delay on Real-Time
Multiplayer Games”, in Proc of NOSSDAV 02, Miami, FL,
USA, 2002, pp. 23-29.

[5] M. Mauve, J. Vogel, V. Hilt, W. Effelsberg, “Local-lag and
Timewarp: Providing Consistency for Replicated Continuous
Applications”, IEEE Transactions on Multimedia, vol. 6, no. 1,
2004, pp. 47-57.

[6] S. Kim, F. Kuester, K. H. Kim, “A Global Timestamp-Based
Approach to Enhanced Data Consistency and Fairness in
Collaborative Virtual Environments”, Multimedia Systems, vol.
10, no. 3, 2005, pp. 220-229.

[7] E. Cronin, A. R. Kurc, B. Filstrup, S. Jamin, “An Efficient
Synchronization Mechanism for Mirrored Game Architectures”,
Multimedia Tools and Applications, vol. 23, no. 1, 2004, pp. 7-
30.

[8] C.E. Palazzi, S. Ferretti, S. Cacciaguerra, M. Roccetti, “On
Maintaining Interactivity in Event Delivery Synchronization for
Mirrored Game Architectures”, Proc. of NIME’04, Dallas, TX,
USA, 2004, 157-165.

[9] C.E. Palazzi, S. Ferretti, S. Cacciaguerra, M. Roccetti,
“Interactivity-Loss Avoidance in Event Delivery
Synchronization for Mirrored Game Architectures”, accepted
with minor revisions in IEEE Transactions on Multimedia.

[10] C.E. Palazzi, S. Ferretti, S. Cacciaguerra, M. Roccetti., “A RIO-
like Technique for Interactivity Loss Avoidance in Fast-Paced
Multiplayer Online Games”, ACM Journal of Computers in
Entertainment, ACM Press, 3, 2, (2005), 1-11.

[11] S. Ferretti, M. Roccetti, “A Novel Obsolescence-based approach
to Event Delivery Synchronization in Multiplayer Games”,
International Journal of Intelligent Games and Simulation, 3, 1,
(2004), 7-19.

[12] M. S. Borella, “Source Models for Network Game Traffic”,
Computer Communications, Elsevier, vol. 23, no. 4, 2000, pp.
403-410.

[13] N. Sheldon, E. Girard, S. Borg, M. Claypool, E. Agu, “The
Effect of Latency on User Performance in Warcraft III”, in Proc.
of NetGames 2003, May 2003. pp. 3-14.

[14] D. L. Mills, “Internet Time Synchronization: the Network Time
Protocol”, IEEE Transactions on Communications, vol. 39, no.
10, 1991, pp. 1482-1493.

[15] P. Ramanathan, K. G. Shin, R. W. Butler, “Fault Tolerant Clock
Synchronization in Distributed Systems”, IEEE Computer, vol.
23, no. 10, 1990, pp. 33-42.

[16] S. Floyd, V. Jacobson, “Random Early Detection Gateways for
Congestion Avoidance”, IEEE/ACM Transactions on
Networking, vol. 1, no. 4, 1993, pp.397-413.

[17] J. Farber, “Network Game Traffic Modelling”, in Proc. of
NetGames 2002, Braunschweig, Germany, 2000,pp.53-57.

