
FILA, a Holistic Approach to Massive Online Gaming: 
Algorithm Comparison and Performance Analysis 

 
Stefano Ferretti(1), Claudio E. Palazzi(1,2), Marco Roccetti(1) ,Giovanni Pau(2), Mario Gerla(2) 

 

1Dipartimento di Scienze dell’Informazione, Università di Bologna,  
Mura Anteo Zamboni 7, 40127 Bologna, Italia 

Phone: +39-051-209-4503 
 

2Computer Science Department, University of California Los Angeles,  
Boelter Hall, Los Angeles CA, 90095, USA 

Phone: +1-310-825-4367 

{sferrett, roccetti}@cs.unibo.it 
{cpalazzi, gpau, gerla}@cs.ucla.edu 

 
ABSTRACT 
The popularity of multiplayer online games has nowadays reached 
millions across the globe capturing the attention of both 
researchers and practitioners. Unfortunately, this kind of 
applications has still to deal with the limitations imposed by some 
unresolved issues. Interactivity, consistency, fairness, and 
scalability are the major requirements that need to be efficiently 
addressed in order to provide an appealing product to a huge 
number of potential customers all over the world. Answering to 
this demand, we describe a holistic approach able to exploit the 
semantics of the game to satisfy the aforementioned requirements. 
We provide extensive and comparative results that demonstrate 
how our scheme efficiently copes with an elevated game traffic 
level. 

Categories and Subject Descriptors 
K.8.0 [Computing Milieux]: Personal Computing — Games 

General Terms 
Algorithms, Measurement, Performance, Design, Human Factors. 

Keywords 
Multiplayer Online Games, Fairness, Interactivity, Consistency, 
Scalability. 

1. INTRODUCTION 
 

A Massively Multiplayer Online Game (MMOG) can be defined 
as a computer game able to support a multitude of players which 
interact each other within the same virtual world, across the 

Internet, and regardless of their geographical locations.  

MMOGs trace their roots to the late ‘70s, when the popularity of 
the Multi-User Dungeon (MUD), a text based role playing 
adventure, escalated from the Essex University to all-over the 
world [1]. Since then, MMOGs have evolved embodying now a 
large class that includes several different kinds of games (e.g., car 
racing, first person shooter, adventure, role play game, strategic).  

Indeed, in the past few years, the popularity of MMOGs has 
exponentially increased over the Internet [2]. Nevertheless, 
Internet latencies have damaged the use of networked games 
which significantly result as slow-paced applications, utilizing the 
client-server paradigm for the network communication, and 
efficiently engaging players only when limited in number and 
located in the same region where the server is positioned.  

The task of providing a pleasant experience to customers becomes 
apodictically more challenging when trying to deploy a large scale 
and highly interactive online game. Indeed, the prominent 
networking key factors in developing MMOGs are represented by:  

• Interactivity (or responsiveness) degree in the game event 
exchange;  

• Consistency of the game state view among all the engaged 
players; 

• Network Fairness ensured in terms of guaranteeing the same 
possibility of victory to all the players regardless of their 
subjective network conditions; 

• Scalability in the number of contemporary players as well as 
in their geographical distribution. 

Regarding the last point, it should be noticed that the interest of 
companies in online gaming emerges from the huge revenues that 
may be generated by a very elevated number of customers. 
Besides, humans are social beings which enjoy the presence of 
others in most of their amusement activities (i.e., team sports, 
movies in theatres) and the competition in challenging their skills 
against real adversaries. 

 



Therefore, in order to ensure success to a MMOG, every time a 
new scheme is proposed as a solution for one of the first three key 
factors, scalability should be ensured (and verified) as well.  

Generalizing this concept, developers should follow a holistic 
approach when designing a new MMOG, considering the whole 
set of requirements and aiming at the intersection of their 
solutions. Addressing only one among the aforementioned 
requirements, in fact, could produce the unexpected and undesired 
result of jeopardizing the others. 

Aimed at supporting interactivity and fairness whilst preserving 
consistency, we have recently proposed Fairness and 
Interactivity-Loss Avoidance (FILA): a novel scheme able to 
facilitate fairness by aiming at increasing the interactivity degree 
[9, 26]. By doing this, FILA contradicts the general belief that 
interactivity and fairness would be incompatible requirements in 
MMOGs. We obtained this result by exploiting the semantics of 
the game and discarding obsolete events with a probability that 
depends on the current interactivity degree as perceived by 
players. 

We wish to show now how our mechanism can be adapted to also 
satisfy the scalability requirement. In particular, we demonstrate 
here that FILA is particularly able to cope with intense game 
traffic generated by a multitude of players sharing the same virtual 
arena.  

The remainder of the paper is organized as follows. Section 2 
discusses MMOG fundamental requirements. Section 3 presents a 
scalable gaming architecture and compares it with other 
traditional architectures for online games. Section 4 provides the 
basics of the FILA approach. Section 5 describes the algorithms 
evaluated in this work. Section 6 explains the simulative 
environment we have used for our experiments. Section 7 presents 
the experimental results. Finally, Section 8 concludes this work. 

2. PROBLEM STATEMENT 
 

The four key requirements listed in Section 1 cannot be 
considered as independent from each other. Aiming at improving 
only one of them, the others may be found negatively affected. 
Before evaluating any new algorithm for MMOGs, we have hence 
to deeply understand the tradeoff relationship that exists among 
interactivity, consistency, fairness, and scalability. 

In particular, interactivity refers to having small delays between 
the generation of a game event and the time at which all the 
clients display that event. Indeed, every class of game is featured 
by a game specific Game Interactivity Threshold (GIT) that 
represents the maximum delay endurable before displaying a 
game event on players’ screens if one wishes to preserve 
interactivity. The typical GIT for fast paced games (i.e., vehicle 
racing, first person shooter) amounts to 150-200ms but this value 
can be increased to even seconds in case of slow paced games 
(i.e., strategic, role play game) [6, 17-20]. 

If we call )e(gt  the generation time of event e and )e(v
it  the 

visualization time of the same event at player i, then interactivity 
is preserved at i during the delivery of e when the following 
condition is satisfied: 

 .GITtt )e(g)e(v
i d�  (1) 

Both consistency and network fairness regards having the same 
and simultaneous game state view in all the nodes of the system. 
Therefore, the same class of techniques is used to achieve each of 
them (or both). Indeed, the easiest way to guarantee consistency 
and fairness is to make the game proceeding through discrete 
locksteps [14]. In other words, the game evolves through step and 
players have to wait their turn before making an action. 
Obviously, this scheme cannot be applied to interactive games. 

In particular, a recent scheme has been devised that is based on 
the introduction of artificial delays in order to simultaneously 
visualize game events on all the players’ screens [4-8]. This kind 
of solution is usually referred to as local lag algorithm. With local 
lag, game advancements are delayed for a sufficient amount of 
time in order to guarantee that all the clients in the system process 
and perceive the generated game events at the same time and in 
the same order.  

Indeed, since the generation time of each event is unique and 
considering C, the set of players, we can say that we have event-
related fairness [9] for an event e if the following condition is 
satisfied. Simply stated, if there is a unique )e(vt  value equal for 
all the players: 

 .,)()( Citt evev
i ��  (2) 

Since a single game event may experience different Overall 
Delays (OD) in its paths from the source to all the diverse players, 
different amounts of artificial delay  should be added by means 
of the local lag algorithm in order to simultaneously display the 
same event e on all the players’ screens so as to satisfy the 
following condition: 

 .Cit)e()e(OD )e(v
ii �� � G  (3) 

A possible value typically chosen for )e(vt  is represented by the 
highest OD experienced in transmitting events amongst nodes. 
When the highest OD is greater than GIT, however, fairness is 
preserved at the cost of jeopardizing interactivity for all the 
players. Conversely, if we use GIT as an upper bound to )e(vt , 
then we can guarantee interactivity but not fairness.  

Consequently, in order to maximize the possibility to obtain both 
interactivity and fairness, )e(vt  should be set as 

 .GITtt )e(g)e(v �  (4) 

Yet, the ODi(e) experienced by an event e when it finally reaches 
client i is composed by several delay components, such as the 
physical latency, the queuing time on routers along the path and 
on game servers, and the processing time.  

Therefore, even when the network latency would allow having 
values of OD, and hence also of )e(vt , lower than GIT, a large 
number of players, generating a huge amount of traffic, may raise 
the value of the other two delay components, thus leading us 
again to the crossroad between fairness and interactivity. 



To conclude, the efficiency and applicability of popular, delayed-
based algorithms, like local lag, strongly depend on the network 
conditions and on the interactivity degree required by the game. 
Yet, guaranteeing both interactivity and full fairness through local 
lag can sometimes be achieved only at the cost of limiting the 
scalability of the game by bounding the number of 
contemporaneous participants and the geographical extension of 
the target player market. 

It hence becomes evident as MMOGs require the use of 
architectural solutions and algorithms to find the most efficient 
tradeoff among interactivity, consistency, fairness and scalability. 

3. ARCHITECTURAL SOLUTIONS 
 

Typically, network architectures supporting MMOGs can be 
distinguished based on three main categories: centralized client-
server, fully distributed, and mirrored game server. The 
centralized client-server architecture represents the simplest 
solution for authentication procedures, security issues, and 
consistency maintenance [10]. Moreover, assuming to have N 
simultaneous players, the generated messages are in the order of 
O(N). On the other hand, the unique bottleneck limits the 
efficiency and scalability of this solution. 

Fully distributed architectures (as peer-to-peer) spread the traffic 
load among many nodes and result in more scalable and failure-
resilient system [5]. However, identical copies of the current game 
state need to be stored at each node; this requires some complex 
coordination scheme among peers able to guarantee the coherence 
of all game state views. Moreover, with fully distributed 
architecture, multicast should be employed to reduce the 
bandwidth requirements, but multicast technology is neither 
generally available nor mature enough for the specific application 
we are here considering. The exchanged messages could hence 
raise to the order of O(N2). Finally, authentication, cheating, and 
general consensus among all the peers are harder to be addressed 
than when a centralized architecture is employed. 

Mirrored game server architectures represent a hybrid solution 
which efficiently embraces all the positive aspects of both 
centralized client-server and fully distributed architectures [12]. 
Based on this approach, Game State Servers (GSSs) are 
interconnected in a peer-to-peer fashion over the Internet and 
contain replicas of the same game state view. Players 
communicate with their closest GSS through the client-server 
paradigm. Each GSS gathers all the game events of its engaged 
players, updates the game state and forwards it regularly to all its 
players and GSS peers.  

The presence of multiple high performance GSSs helps in 
distributing the traffic over the system and reduces the processing 
burden at each node. Moreover, having each player connected to a 
close GSS reduces the impact of the player-dependent access 
technology (e.g., dial-up, cable, DSL) on the total delay 
experienced [13]. In this case, in fact, the communication among 
players results mainly deployed over links physically connecting 
GSSs, which can exploit the fastest available technology (e.g., 
optical fibers) to reduce latency. As a result, this architecture 
helps one in finding better solutions for the tradeoff among 
interactivity, consistency, fairness and scalability.  

Other advantages in employing a mirrored game server 
architecture are the absence of a single point of failure, the 
networking complexity maintained at server side, and the 
possibility to easily implement authentication procedures. Even if 
synchronization is still required to ensure the global consistency 
of the game state held by the various servers, this requirement is 
made easier than in fully distributed architectures thanks to the 
lower number of involved nodes. Assuming to have N players and 
M GSSs, for example, the generated game messages amount to 
O(N+M), which is again O(N) unless considering the unlikely 
case of having more servers than players. 

All these reasons suggest mirrored game server architecture as the 
most appropriate in order to efficiently manage large-scale 
distributed games as they embody the advantages of both client-
server and fully distributed paradigms. 

4. FILA OVER A MIRRORED SERVER 
ARCHITECTURE  
 

FILA can be thought of as comprised of two complementary 
subcomponents. The first one, enforced among GSSs, speeds up 
the delivery of fresh game events by dropping some events which 
have become obsolete since the arrival of more recent ones that 
supersede their content. Interested readers may refer to [15] for a 
deeper discussion on the notion of obsolescence and a way to 
include it in game events. The second component takes advantage 
of this reduced transmission time to magnify the efficiency of a 
local lag-type of algorithm to ensure fairness. FILA utilizes (4) to 
determine the display time of a game event; it thus ensures 
fairness without compromising interactivity. 

To calculate the appropriate  in (3), OD should be determined for 
each player. For this reason, game events are marked at their 
creation with a generation timestamp and then sent to the 
destination. Obviously, a global concept of time has to be 
maintained in the system. This can be achieved through a variety 
of solutions that enable the synchronization of GSSs’  physical 
clocks [21, 22], or by employing new technological 
synchronization devices such as GPS. Thanks to this, GSSs are 
able to monitor the ODs of their engaged players and make them 
available for the FILA algorithm.  

The first part of FILA takes inspiration from Active Queuing 
Management techniques [25] and drops queued obsolete game 
events with a certain probability pd when the average OD 
(avgOD) value increases putting at risk the interactivity of the 
system. The discarding probability pd is directly proportional to 
avgOD and dependent on a constant Pmax as described in [23, 
24]. Instead, the value for avgOD, at iteration n, is computed 
through the low-pass filter showed below, where w is a parameter 
that determines how close the average follows the sample trend: 

 ).avgODsample(wavgODavgOD 1nn1nn �� �u�  (5) 

More in detail, with FILA, all the game events are regularly 
processed and forwarded while avgOD is smaller than an alert 
threshold named tmin. As soon as avgOD exceeds tmin, the GSSs 
drop obsolete events with probability pd, while neither processing 
nor forwarding them. Finally, if avgOD exceeds the subsequent 



tmax (>tmin) threshold, then pd is set equal to 1 and all obsolete 
events are discarded that are waiting for being processed.  

This stabilization mechanism succeeds in reducing ODi(e) as the 
time spent in queue by a certain event is diminished by the spared 
processing time of preceding obsolete events which have been 
dropped without processing nor forwarding them. Moreover, 
since only obsolete events are discarded, FILA fully maintains 
consistency in the game evolution [9, 23]. 

To explain FILA in more details we use the clarifying help of Fig. 
1 which provides the graphical definitions for some terms utilized 
in our explanation: OD, ND (Network Delay), and LHD (Last Hop 
Delay). 

 

First of all, it should be noticed that FILA performs its operations 
on the receiving GSSs. This choice helps us in maintaining a 
simpler control of the exploited game platform. Under that 
circumstance, however, for each event e, GSSs can compute 
ND(e) but not LHD(e). However an estimation of LHD(e) is 
necessary in order to compute OD and utilize it in the algorithm. 
For this reason, each GSS continuously monitors the latencies to 
each of its engaged players and maintains a variable named GSS. 
The value of this variable represents the maximum among the 
latencies from the considered GSS to each of its connected clients 
(this set of clients is named C_GSS) and is as follows: 

 }.LHD{max iGSS_CiGSS �
 O  (6) 

However, we cannot let some irremediably delay-affected client to 
excessively impact on the calculations performed by our scheme. 
Utilizing in FILA an excessively high GSS generated by some 
player connected very far away from the GSS, in fact, would 
result in very high sample (and avgOD) value with respect to GIT. 
Consequently, FILA would increase the aggressiveness of its 
discarding function as perceived by all the players with no 
positive results (the “unlucky” player would still not be able to 
receive game events with delays below the interactivity 
threshold).  

For this reason, we need to consider a Delay Upper Bound (DUB) 
that is used by FILA to limit the impact of “unlucky” players on 
the algorithm. To this aim, we provide below the computation of a 
formula for a fundamental parameter utilized by FILA to handle 
the impact of LHD(e) on the algorithm: 

 }.DUB,{min GSSOV   (7) 

The usage of this parameter  varies depending on the employed 
version of our scheme as detailed in Section 5.  

To determine DUB, instead, we rely on a heuristic that 
dynamically computes its value based on the general network 
condition during the game. Its formula is as follows: 

 },{max NDGITDUB �  (8) 

where max{ND} represents the largest among the NDs 
experienced over all the connections within the entire network. 

Obviously, each GSS has to communicate back to all the other 
peers the largest ND experienced at that server. This allows a 
global knowledge of the worst ND value endured by each GSS. 
Finally, the highest among these maximum NDs can be univocally 
determined by each of the GSSs and used to determine the global 
DUB.  

The second part of FILA is simply in charge of equalizing the 
delay differences among players with a local lag-type scheme that 
appropriately computes the  value shown in (3) so as to satisfy 
(4) whenever possible.  

5. IS FILA A GOOD SOLUTION? 
 

We are going now to empirically demonstrate how the 
combination of the two subcomponents of FILA is effective in 
ensuring fairness and interactivity while allowing a scalable 
number of contemporaneous players. To this aim, four different 
schemes are taken into account: regular local lag (LL), and three 
different versions of FILA (i.e., FILA-A, FILA-B, and FILA-C). 

The first scheme, LL, embodies the traditional local lag scheme 
with no discarding mechanism for obsolete events. Even in this 
case, however, as for all the other compared schemes, the 
algorithm is not allowed to introduce artificial delays if this would 
result in jeopardizing interactivity (i.e., )e(vt  cannot be set greater 
than )e(gt  + GIT). 

FILA-A is the simplest among the three possible versions of this 
scheme. With this algorithm, in fact, no avgOD is maintained and 
no pd is calculated. For coherence with the basics of the algorithm 
anticipated in Section 4, we could say that, in FILA-A, tmin and 
tmax are both set equal to GIT (and both w and Pmax are always 
equal to 1). Moreover, at each iteration of (5), sample is set equal 
to the current ND(e). 

When a GSS receives a game event e from a player connected to 
one of its GSS peers, e has still to travel from the considered GSS 
to the final players. For this reason, our scheme takes into 
consideration the various LHDi(e) by reducing the threshold used 
by the algorithm. Therefore, with FILA-A, each GSS performs 
normal delivery and local lag operations for each game event e 
until the following condition holds: 

 .GIT)e(ND V�d  (9) 

Figure 1. Delay definitions. 

IInntteerrnneett  

receiving GSS 

game event sent between players 

ND LHD 

 OD 

player player 
sending GSS 



When (9) fails, instead, all obsolete events in queue are discarded 
while neither processing nor forwarding them. 

Within FILA-B, instead, the estimation of the impact of LHDi(e) 
is taken into account by diminishing one of the utilized 
thresholds. In particular, we set tmax = GIT – , and tmin < tmax. 
Even with this algorithm, at each iteration of (5), sample is set 
equal to the current ND(e). 

Finally, FILA-C takes into direct account the estimation of the 
LHDi(e) values when generating sample. Therefore, we have tmax 
= GIT (tmin < tmax), and sample is determined by the arrival of a 
new event e by employing  as follows: 

 .)e(ND)e(sample V�  (10) 

Even if similar, the three versions of FILA present substantial 
differences. In essence, FILA-A is an aggressive, yet late, 
approach according to which all the queued obsolete events are 
discarded only when interactivity and fairness have already been 
lost. FILA-B and FILA-C, instead, try to avoid the loss of these 
two properties by preemptively discarding some obsolete game 
events when the delay trend increases over the alert threshold 
tmin. We may hence expect to witness smaller dropping rates with 
FILA-B and FILA-C, as they need to drop all queued obsolete 
events less frequently than FILA-A.  

Indeed, this is a desirable property. In fact, even if obsolete events 
can be sacrificed, they are still part of the game visual 
progression. Dropping too many obsolete events could result in 
jerky rendering caused by imprecise interpolations of the missing 
actions. As a result, annoying artifacts in the game evolution may 
be generated. 

Focusing on contrasting FILA-B against FILA-C, we notice that 
the former includes  in the tmax threshold, while the latter 
utilizes it to compute the sample value. Apparently, the impact of 
 with FILA-C should be smoothened by the low pass filter (5). 

However, since sample is used to compute avgOD, if sample is 
steadily augmented by , then even avgOD results higher.  
Reminding now that the discarding probability pd is directly 
proportional to avgOD, it becomes evident how the use of (10) 
results in higher pd values. We hence expect to find FILA-C more 
aggressive than FILA-B (with a larger amount of dropped events). 

6. EXPERIMENTAL ARCHITECTURE 
 

It is well known that MMOG service providers should 
appropriately position their game servers in such a way that their 
target player market would be located within a circle having 150-
180ms of latency diameter [3]. Following this rule, we have 
simulated the deployment of five GSSs across U.S.A. positioned 
in optimal locations and presenting communication latencies 
among each other reasonably chosen to provide an adequate 
support for a highly interactive MMOG, in terms of both distance 
among the various nodes and number of customers that can be 
served. Clients are thus supposed to be distributed all over the 
North American continent connecting to one of those GSSs 
through various access technologies and enduring different access 
delays. 

For the sake of a deeper comprehension, we have focused our 
attention on the event receiving aspect of a single GSS (GSS0), 
pretending that the other GSSs are sending events to it without 
any loss of generality. 

Following the literature [16], ND values among GSSs have been 
generated based on a lognormal distribution whose approximate 
average was taken from repeated runs of the ping application. 
More in detail, game events coming from players connected to the 
sending GSSs (i.e. GSS1–GSS4) and traveling towards GSS0 
experience latencies with an average as reported in Fig. 2 and a 
standard deviation of 10ms.  

Further, several scenarios were considered where the values of 
}{max

_ iGSSCi
LHD

�

 were chosen for each GSS within the following 

set [25ms, 50ms, 75ms, 100ms, 125ms, 150ms]. This choice 
simply derives from the consideration that clients should be 
located within a circle having a maximum latency diameter of 
150ms. We assumed to have clients connected to each GSS, 
engaged in a fast-paced game, and generating a new action every 
300ms in average. Online game literature also leaded us to utilize 
200B as the average game event size [11]. 

In MMOGs, not all queued or old game events become obsolete 
during the game evolution. Their content may be significant and 
able to drastically alter the game state evolution [15]. Thus, not all 
queued game events can be discarded at a given GSS. The 
probability that an incoming event supersedes preceding ones, 
making them obsolete, was set to 90%. This represents a realistic 
scenario for a vast plethora of possible games (i.e., adventure, 
strategic, car race, flight simulator), where most of the events are 
just independent movements. In other words, critical game events 
that cannot become obsolete have to be considered only 
sporadically, such as during collisions or shots, and may represent 
even less than the 10% of the whole set of game events. A 
coherent and more detailed numerical demonstration for this claim 
can be found in [24]. 

1

0

3

4

21

0

3

4

2

4896 kmBoston65 ms4

3870 kmOrlando50 ms3

1650 kmDenver35 ms2

602 kmSan Francisco20 ms1

0 kmLos Angeles0 ms0

Road distanceCityAvg latencyGSS

4896 kmBoston65 ms4

3870 kmOrlando50 ms3

1650 kmDenver35 ms2

602 kmSan Francisco20 ms1

0 kmLos Angeles0 ms0

Road distanceCityAvg latencyGSS

 
Figure 2. Game server deployment. 



As to the choice of critical parameters in FILA-B and FILA-C 
algorithms, we have set w = 1/8 and Pmax = 0.2 for all the 
simulations. The tmin and tmax variables, instead, change with the 
GIT as explained in Section 5 and, in particular, tmin is always 
100ms smaller than tmax. 

Aimed at testing the scalability of our system, we analyzed 
different configurations with a varying number of players. In 
particular, we considered scenarios where each sending GSS was 
gathering from its engaged players and forwarding to GSS0 an 
amount of game events generated following a lognormal 
distribution [11, 17] with an average of, respectively, 30ms, 20ms, 
and 10ms. We call this parameter Average Inter-Departing Time 
(AIDT). Considering an average inter-generation time of 300ms 
between two subsequent game actions generated by the same 
player, the above AIDT values represent from 50 to 150 
contemporaneous players. 

We have run several set of experiments varying the GIT from 
150ms to 300ms in order to take into account different kinds of 
games [6, 17-19]. Each experiment was identically replicated to 
have a significant comparison among the outcomes of the three 
versions of FILA, plus the regular local lag algorithm. In [4], 
Zander et al. showed that lower latencies result in statistically 
higher mean kill rates and thus in unfairness. Consequently, we 
have chosen to evaluate as a fairness parameter the percentage of 
events that were delivered by our monitored server, GSS0, to all 
of its players. These game events had a visualization time as 
suggested by (4) thus achieving both fairness and interactivity in 
their delivery to all players. 

7. RESULTS 

7.1 Interactivity & Fairness 
 

The charts in Fig. 3 show the percentage of game events that GSS0 
was able to deliver to all of its engaged players satisfying both the 
interactivity and fairness requirements (besides, consistency was 
maintained as well). In particular, four different graphs are 
presented reporting results coming from employing respectively: 
(a) 150ms, (b) 200ms, (c) 250ms, and (d) 300ms as GIT. The 
AIDT value, instead, was set equal to 30ms at each sending GSS 
for all the four set of experiments (a), (b), (c) and (d). Each set of 
experiment was comprised of six different experiments. Each 
experiment consisted in the transmission of about 4000 game 
events which experienced, in the worst case, a maximal overall 
latency whose value is reported on the x-axis of each provided 
chart.  

The outcomes of the three FILA versions are so similar that the 
three corresponding lines are overlapping in most of the 
configurations. In a few cases, however, FILA-C results the best 
performing algorithm. At the same time, it can be noticed that 
significantly higher percentages are ensured by each version of 
FILA with respect to LL over the various end-to-end latencies and 
GIT values. 

Obviously, having a higher GIT improves the efficacy of all the 
evaluated schemes since larger local lags can be utilized. 
However, LL experiences a premature performance decrease when 
the end-to-end latency increases even if it is still far from the GIT. 
Instead, FILA ensures a good fairness level for a larger set of end-

to-end latencies. Obviously, in those configurations where the 
end-to-end latency is close to, or surpasses, GIT (end-to-end 
latency �� ��0ms in Fig. 3.a and end-to-end latency �����PV� LQ�
Fig. 3.b), all the schemes are unable to overwhelm network 
conditions thus achieving poor results. Even in this case, 
however, FILA behaves better than LL. 

INTERACTIVE and FAIR EVENTS 
(a) GIT=150ms

0

20

40

60

80

100

90 115 140 165 190 215
End-to-End Latency (ms)

%
 In

te
ra

ct
iv

e 
an

d 
Fa

ir

LL FILA-A FILA-B FILA-C

INTERACTIVE and FAIR EVENTS 
(b) GIT=200ms

0

20

40

60

80

100

90 115 140 165 190 215
End-to-End Latency (ms)

%
 In

te
ra

ct
iv

e 
an

d 
Fa

ir

LL FILA-A FILA-B FILA-C  
INTERACTIVE and FAIR EVENTS 

(c) GIT=250ms

0

20

40

60

80

100

90 115 140 165 190 215
End-to-End Latency (ms)

%
 In

te
ra

ct
iv

e 
an

d 
Fa

ir

LL FILA-A FILA-B FILA-C

INTERACTIVE and FAIR EVENTS 
(d) GIT=300ms

0

20

40

60

80

100

90 115 140 165 190 215
End-to-End Latency (ms)

%
 In

te
ra

ct
iv

e 
an

d 
Fa

ir

LL FILA-A FILA-B FILA-C  

DROPPED EVENTS;  (a) GIT=150ms

0

5

10

15

20

25

90 115 140 165 190 215

End-to-End Latency (ms)

%
 D

ro
pp

ed
 E

ve
nt

s

FILA-A FILA-B FILA-C

DROPPED EVENTS;  (b) GIT=200ms

0

5

10

15

20

25

90 115 140 165 190 215

End-to-End Latency (ms)

%
 D

ro
pp

ed
 E

ve
nt

s

FILA-A FILA-B FILA-C
 

DROPPED EVENTS;  (c) GIT=250ms

0

5

10

15

20

25

90 115 140 165 190 215

End-to-End Latency (ms)

%
 D

ro
pp

ed
 E

ve
nt

s

FILA-A FILA-B FILA-C

DROPPED EVENTS;  (d) GIT=300ms

0

5

10

15

20

25

90 115 140 165 190 215

End-to-End Latency (ms)

%
 D

ro
pp

ed
 E

ve
nt

s

FILA-A FILA-B FILA-C
 

7.2 On Dropping Game Events 
 

FILA pays its better results with the drops of some obsolete 
events. Specifically, Fig. 4 shows the percentage of game events 
which have been discarded by the various versions of FILA. 
However, in all the considered cases, less than 20% of the game 
events have been dropped. This represents an acceptable value 
since these events are exclusively obsolete ones. 

Figure 3 (a, b, c, d). Interactivity and fairness improvement 
with AIDT equal to 30ms. 

Figure 4 (a, b, c, d). Obsolete events dropped by FILA with 
AIDT equal to 30ms. 



FILA-A resorts to discarding obsolete events only when 
interactivity and fairness have already been lost, moreover, at that 
point, it takes action by discarding all the obsolete events in the 
queue. Therefore, this version of FILA presents the higher 
dropping percentage among the three in most of the 
configurations. Moreover, as expected, FILA-C behaves more 
aggressively than FILA-B and generally discards a higher number 
of obsolete events. 

Results are particularly meaningful if we focus on those scenarios 
where the network latency is not irremediably high with respect to 
GIT. Considering the configurations when the maximal overall 
latency is lower than GIT by 35ms or more, in fact, we find that 
each FILA version always guarantees at least 84% of interactively 
and fairly delivered game events with less than 15% of dropped 
events. 

7.3 Scalability Issues 
 

In order to test scalability, we have decreased AIDT to generate 
scenarios with a higher level of game traffic present in the 
network. In particular, Fig. 5 and Fig. 7 refer to the case with 
20ms of AIDT, while Fig. 6 and Fig. 8 correspond to the case 
where AIDT is equal to 10ms. Again, in each figure we present 
the outcomes for four different GIT values. 

As one can expect, the higher the game traffic, the lower the 
interactivity and fairness degree provided by LL (see Fig. 5 and 
Fig. 6). Instead, not only is FILA able to manage higher traffic, 
but its performance actually improves when AIDT decreases.  

INTERACTIVE and FAIR EVENTS 
(a) GIT=150ms

0

20

40

60

80

100

90 115 140 165 190 215
End-to-End Latency (ms)

%
 I

nt
er

ac
tiv

e 
an

d
 F

ai
r

LL FILA-A FILA-B FILA-C

INTERACTIVE and FAIR EVENTS 
(b) GIT=200ms

0

20

40

60

80

100

90 115 140 165 190 215
End-to-End Latency (ms)

%
 In

te
ra

ct
iv

e 
an

d
 F

ai
r

LL FILA-A FILA-B FILA-C  
INTERACTIVE and FAIR EVENTS 

(c) GIT=250ms

0

20

40

60

80

100

90 115 140 165 190 215
End-to-End Latency (ms)

%
 In

te
ra

ct
iv

e 
an

d 
Fa

ir

LL FILA-A FILA-B FILA-C

INTERACTIVE and FAIR EVENTS 
(d) GIT=300ms

0

20

40

60

80

100

90 115 140 165 190 215
End-to-End Latency (ms)

%
 In

te
ra

ct
iv

e 
an

d 
Fa

ir

LL FILA-A FILA-B FILA-C  

This surprising result has a simple explanation. Higher rates in 
game event transmissions result in generating larger queues at 
GSSs of packets that have not yet been processed. This amounts 
to a crucial problem for LL since the queuing time at router 
increases putting at risk the performance of the system without 
having any countermeasures. With FILA, instead, a larger queue 
of game events at a certain GSS represents also a resource. In fact, 
obsolete game events in queue can be discarded thus reducing the 

time that a subsequent event e will experience in its traveling 
towards the various clients. 

INTERACTIVE and FAIR EVENTS 
(a) GIT=150ms

0

20

40

60

80

100

90 115 140 165 190 215
End-to-End Latency (ms)

%
 In

te
ra

ct
iv

e 
an

d 
Fa

ir

LL FILA-A FILA-B FILA-C

INTERACTIVE and FAIR EVENTS 
(b) GIT=200ms

0

20

40

60

80

100

90 115 140 165 190 215
End-to-End Latency (ms)

%
 In

te
ra

ct
iv

e 
an

d 
F

ai
r

LL FILA-A FILA-B FILA-C  
INTERACTIVE and FAIR EVENTS 

(c) GIT=250ms

0

20

40

60

80

100

90 115 140 165 190 215
End-to-End Latency (ms)

%
 I

nt
er

ac
tiv

e 
an

d 
Fa

ir

LL FILA-A FILA-B FILA-C

INTERACTIVE and FAIR EVENTS 
(d) GIT=300ms

0

20

40

60

80

100

90 115 140 165 190 215
End-to-End Latency (ms)

%
 In

te
ra

ct
iv

e 
an

d
 F

ai
r

LL FILA-A FILA-B FILA-C  

As a proof for our rationale, we can notice in Fig. 7 and Fig. 8 
that the number of obsolete game events dropped by the three 
versions of FILA increases when decreasing AIDT. This is caused 
by higher avgOD values due to the increased traffic, but is also 
allowed by the presence of more game events in queue that FILA 
can exploit to drop obsolete ones. 

DROPPED EVENTS;  (a) GIT=150ms

0
5

10
15
20
25
30
35
40

90 115 140 165 190 215

End-to-End Latency (ms)

%
 D

ro
pp

ed
 E

ve
nt

s

FILA-A FILA-B FILA-C

DROPPED EVENTS;  (b) GIT=200ms

0
5

10
15
20
25
30
35
40

90 115 140 165 190 215

End-to-End Latency (ms)

%
 D

ro
pp

ed
 E

ve
nt

s

FILA-A FILA-B FILA-C
 

DROPPED EVENTS;  (c) GIT=250ms

0
5

10
15
20
25
30
35
40

90 115 140 165 190 215

End-to-End Latency (ms)

%
 D

ro
pp

ed
 E

ve
nt

s

FILA-A FILA-B FILA-C

DROPPED EVENTS;  (d) GIT=300ms

0
5

10
15
20
25
30
35
40

90 115 140 165 190 215

End-to-End Latency (ms)

%
 D

ro
pp

ed
 E

ve
nt

s

FILA-A FILA-B FILA-C
 

Finally, similarly to the scenario with 30ms of AIDT, even with 
AIDT equal to 20ms and 10ms, FILA-A generally discards more 
events than the other two FILA algorithms. The only case when 
this claim is contradicted is when the latency is much lower than 
the considered GIT. In this case, since the high traffic volume in 
the game network, the avgOD can steadily surpass the tmin 

Figure 5 (a, b, c, d). Interactivity and fairness improvement 
with AIDT equal to 20ms. 

Figure 6 (a, b, c, d). Interactivity and fairness improvement 
with AIDT equal to 10ms. 

Figure 7 (a, b, c, d). Obsolete events dropped by FILA with 
AIDT equal to 20ms. 



threshold of FILA-B and FILA-C, making them executing some 
preemptive drops. At the same time, the large divergence between 
latency and GIT makes the situation where avgOD exceeds GIT 
and activates the dropping functionality for FILA-A a very rare 
event. However, even with these configurations, the percentage of 
discarded game events remains still very small for all the FILA 
configurations. 
 

 

DROPPED EVENTS;  (a) GIT=150ms

0
5

10
15
20
25
30
35
40
45
50
55

90 115 140 165 190 215

End-to-End Latency (ms)

%
 D

ro
pp

ed
 E

ve
nt

s

FILA-A FILA-B FILA-C

DROPPED EVENTS;  (b) GIT=200ms

0
5

10
15
20
25
30
35
40
45
50
55

90 115 140 165 190 215

End-to-End Latency (ms)

%
 D

ro
pp

ed
 E

ve
nt

s

FILA-A FILA-B FILA-C
 

DROPPED EVENTS;  (c) GIT=250ms

0
5

10
15
20
25
30
35
40
45
50
55

90 115 140 165 190 215

End-to-End Latency (ms)

%
 D

ro
pp

ed
 E

ve
nt

s

FILA-A FILA-B FILA-C

DROPPED EVENTS;  (d) GIT=300ms

0
5

10
15
20
25
30
35
40
45
50
55

90 115 140 165 190 215

End-to-End Latency (ms)

%
 D

ro
pp

ed
 E

ve
nt

s

FILA-A FILA-B FILA-C
 

 

8. CONCLUSION 
 

Interactivity, consistency, fairness and scalability represent 
fundamental requirements that cannot be ignored when designing 
a new online game. Aside from the quality of the game, in fact, 
the ability of holistically sustain these requirements is crucial to 
determine the success of a MMOG. Unfortunately, as highlighted 
in this work, these requirements are featured with a tradeoff 
relationship that makes the contemporaneous achievement of all 
of them a hard task.  

To this aim, we have designed an event delivery scheme, FILA, 
enforced among replicated game servers which discards obsolete 
events to ensure interactivity and fairness, whilst preserving 
consistency. Since only obsolete events are discarded, there is no 
risk that different dropping percentages at different servers could 
result in some unfairness [18]. 

We have provided extensive experimental results that demonstrate 
the efficacy of FILA with various client-to-client latency ranges. 
We have also contrasted different version of FILA, exposing 
advantages and disadvantages of each of them. Finally, we have 
presented a scalability evaluation of the compared schemes by 
increasing the game traffic level in the system. 

 

 

9. ACKNOWLEDGMENTS 
 

This work is partially supported by the Italian Ministry for 
Research via the ICTP/E-Grid Initiative and the Interlink 
Initiative, the National Science Foundation through grants CNS-
0435515/ANI-0221528, and the UC-CoRe Grant MICRO 05-06 
private sponsor STMicroelectronics. 

10. REFERENCES 
 

[1] Early MUD History, http://www.ludd.luth.se/mud/aber/mud-
history.html 

[2] MMOGCHART.COM, http://www.mmogchart.com  

[3] Armitage G. An Experimental Estimation of Latency 
Sensitivity in Multiplayer Quake 3. In Proceedings of the 
11th IEEE International Conference on Networks (ICON 
2003). Sydney, Australia, 2003, 137-141. 

[4] Zander S., Leeder I., Armitage G. Achieving Fairness in 
Multiplayer Network Games through Automated Latency 
Balancing. In Proceedings of ACM SIGCHI International 
Conference on Advances in Computer Entertainment 
Technology (ACE 2005). Valencia, Spain, 2005. 

[5] Gautier L., Diot C. Design and Evaluation of MiMaze, a 
Multiplayer Game on the Internet. In Proceedings of IEEE 
Multimedia (ICMCS’98). Austin, TX, USA, 1998, 233-236. 

[6] Pantel L., Wolf L. C. On the Impact of Delay on Real-Time 
Multiplayer Games. In Proceedings of the 12th International 
Workshop on Network and Operating Systems Support for 
Digital Audio and Video. Miami, FL, USA, 2002, 23-29. 

[7] Mauve M., Vogel J., Hilt V., Effelsberg W. Local-lag and 
Timewarp: Providing Consistency for Replicated Continuous 
Applications. IEEE Transactions on Multimedia, 6, 1, 
(2004), 47-57. 

[8] Kim S., Kuester F., Kim K. H. A Global Timestamp-Based 
Approach to Enhanced Data Consistency and Fairness in 
Collaborative Virtual Environments. Multimedia Systems, 
Springer-Verlag, 10, 3, (2005), 220-229. 

[9] Ferretti S., Palazzi C. E., Roccetti M., Gerla M., Pau G. 
Buscar el Levante por el Poniente: In Search of Fairness 
Through Interactivity in Massively Multiplayer Online 
Games. In Proceedings of the 2nd  IEEE International 
Workshop on Networking Issues in Multimedia 
Entertainment (NIME'06), CCNC 2006. Las Vegas, USA, 
January 2006. 

[10] Quake Forge Project, http://www.quakeforge.org 

[11] Farber J. Network Game Traffic Modelling. In Proceedings 
of the 1st Workshop on Network and System Support for 
Games (NetGames2002), ACM SIG MM. Braunschweig, 
Germany, 2002, 53-57. 

[12] Cronin E., Kurc A. R., Filstrup B., Jamin S. An Efficient 
Synchronization Mechanism for Mirrored Game 
Architectures. Multimedia Tools and Applications, 23, 1, 
(2004), 7-30. 

[13] Jehaes T., De Vleeschauwer D., Coppens T., Van Doorselaer 
B., Deckers E., Naudts W., Spruyt K., Smets R. Access 

Figure 8 (a, b, c, d). Obsolete events dropped by FILA with 
AIDT equal to 10ms. 



Network Delay in Networked Games. In Proceedings of the 
2nd Workshop on Network and System Support for Games 
(NetGames 2003), ACM SIGCOMM and SIG MM. Redwood 
City, CA, USA, 2003, 63-71. 

[14] Steinman J. S. Scalable Parallel and Distributed Military 
Simulations Using the SPEEDES Framework. In 
Proceedings of 2nd Electronic Simulation Conference 
(ELECSIM95), Internet, 1995. 

[15] Ferretti S., Roccetti M., A Novel Obsolescence-based 
approach to Event Delivery Synchronization in Multiplayer 
Games, International Journal of Intelligent Games and 
Simulation, 3, 1, (2004), 7-19. 

[16] Park K. Willinger W. Self-Similar Network Traffic and 
Performance Evaluation. Wiley-Interscience, 1st Edition, 
2000. 

[17] Borella M. S. Source Models for Network Game Traffic. 
Computer Communications, Elsevier, 23, 4, (2000), 403-
410. 

[18] Zander S., Armitage G. Empirically Measuring the QoS 
Sensitivity of Interactive Online Game Players. In 
Proceedings of Australian Telecommunications Networks & 
Applications Conference 2004 (ATNAC2004). Sydney, 
Australia, 2004, 511-518. 

[19] Fitzek F., Schulte G., Reisslein M. System Architecture for 
Billing of Multi-Player Games in a Wireless Environment 
Using GSM/UMTS and WLAN Services. In Proceedings of 
the 1st Workshop on Network and System Support for Games 
(NetGames2002), ACM SIG MM. Braunschweig, Germany, 
2002, 58-64. 

[20] Sheldon N., Girard E., Borg S., Claypool M., Agu E. The 
Effect of Latency on User Performance in Warcraft III. In 
Proceedings of the 2nd Workshop on Network and System 
Support for Games (NetGames 2003), ACM SIGCOMM and 
SIG MM. Redwood City, CA, USA, 2003. 3-14. 

[21] Mills D. L. Internet Time Synchronization: the Network 
Time Protocol. IEEE Transactions on Communications, 39, 
10, (1991), 1482-1493. 

[22] Ramanathan P., Shin K. G., Butler R. W. Fault Tolerant 
Clock Synchronization in Distributed Systems. IEEE 
Computer, 23, 10, (1990), 33-42. 

[23] Palazzi C. E., Ferretti S., Cacciaguerra S., Roccetti M. On 
Maintaining Interactivity in Event Delivery Synchronization 
for Mirrored Game Architectures. In Proceedings of the 1st 
IEEE International Workshop on Networking Issues in 
Multimedia Entertainment (NIME’04), GLOBECOM 2004. 
Dallas, TX, USA, 2004, 157-165. 

[24] Palazzi C. E., Ferretti S., Cacciaguerra S., Roccetti M. 
Interactivity-Loss Avoidance in Event Delivery 
Synchronization for Mirrored Game Architectures. Accepted 
with minor revisions in IEEE Transactions on Multimedia. 

[25] Floyd S., Jacobson V. Random Early Detection Gateways for 
Congestion Avoidance. IEEE/ACM Transactions on 
Networking, 1, 4, (1993), 397-413. 

[26] Palazzi C. E., Ferretti S., Cacciaguerra S., Roccetti M., ‘‘A 
RIO-like Technique for Interactivity Loss Avoidance in Fast-
Paced Multiplayer Online Games’’, ACM Journal of 
Computers in Entertainment, ACM Press, 3, 2, (2005), 1-11. 

 

 


