
 
 

  
Abstract—Interactive, mobile online games have recently 

become popular thus receiving the attention of researchers. 
Mobile games represent a particularly interesting case because of 
the proliferation of smart personal devices and the increasing 
availability of high speed wireless access points. With this vision, 
we propose a holistic solution that enables a top quality online 
gaming experience regardless whether the player is wired, 
wireless, or even mobile. Main components of this solution are: 
i) a synchronization mechanism based on an Internet server 
overlay that enables interactivity, fairness, and scalability, and 
ii) a smart access point able to support efficient coexistence 
between elastic (download) and real-time (game) traffic. 
 

Index Terms—Interactivity, Mobile Online Games, Wireless 
Network. 
 

I. INTRODUCTION 
IRELESS access points are rapidly increasing in number, 
providing people with connectivity in almost all 

buildings they enter (e.g. home, work place, cafeteria, etc.) 
and all streets they walk and drive in. In this context, mobile 
games are gaining attention as their users are increasing in 
number [1], [2], [3], [4]. From a research point of view, they 
represent a very interesting and challenging topic especially in 
wireless environments and when involving many players 
simultaneously sharing the same virtual arena.  

In this paper we focus on highly interactive mobile games, 
i.e., games based on fast action evolution on screen, requiring 
prompt reactions by the user and played through an handheld 
device with wireless communication capabilities (e.g., PDA, 
handheld console, smart cellphone); in particular we discuss 
their main requirements. 

More in detail, in order to ensure optimal performance to 
players we split the problem into two sub-parts which requires 
specific solutions applied by different subjects. The first sub-
part regards the communication and synchronization among 
game servers and represents the portion of the total 
connectivity that can be handled by the online game service 
provider (either directly, or through ISP-domain managers). 
The second sub-part, is concerned with the links between 
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game servers and their engaged players, thus including also 
the last-mile wireless hop, which generally corresponds to the 
bottleneck of the connection and may be source of large 
queuing delays. 

To obtain a holistic solution we propose to proceed through 
successive steps and address the two sub-problems 
independently. Solutions discussed in this paper complement 
each other since their scopes are detached (even if connected) 
and, although they generate the best performance results when 
combined, they produce benefits even if singularly applied. 

In particular, for the first sub-part we propose to exploit a 
hybrid architecture combining both the advantages of client-
server and peer-to-peer paradigms. This solution deploys over 
the network a constellation of communicating replicated 
Game State Servers (GSSs), each of which locally maintains a 
vision of the game state [5]. It goes without saying that, within 
this architecture, an efficient event synchronization scheme 
among GSSs needs to be employed to guarantee a consistent 
and responsive evolution of the game state. To this aim, the 
semantics of the game can be put to good use in order to 
increase the interactivity degree provided to the player: 
discarding game events that are superseded by others can free 
network resources thus speeding up the delivery of fresh game 
events [6].  
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Fig. 1.  Hybrid architecture for distributed game entertainment in 
heterogeneous scenarios with mobile users (even car passengers). 
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However, even if this scheme is proficient in maintaining a 
high degree of responsiveness among game servers, still 
problems may arise at the edges of the considered topology 
(see Fig. 1), where users in their homes or cars may be 
engaged in an online gaming through an access point (AP).  

This represents the aforementioned second part of our 
problem. Concurrent traffic may generate queues that build up 
at the last (or first) link of the connection, thus delaying the 
game event delivery. This problem is worsened in case of 
players relying on wireless connectivity, regardless whether 
from their homes or while walking/driving along a road. The 
wireless medium, in fact, is naturally prone to be shared by 
several contemporary users who may interfere with each 
other. In addition to the problem discussed above, it has been 
recently demonstrated how TCP-based elastic flows (e.g., 
download) can harm the performance of UDP-based real-time 
flows (e.g., online gaming) as TCP continuously probes the 
channel for more bandwidth, thus eventually generating 
queues (delays) on the connection [7].  

To address this issue, a smart AP can take advantage of its 
knowledge about available wireless network resources and the 
on-going traffic in order to appropriately limit TCP’s 
advertised windows so as to smoothen the network traffic 
progression and avoid queuing delays that would jeopardize 
the interactivity of online game applications and, in general, of 
any real-time application [8]. 

The remainder of the paper is organized as follows. 
Section II describes main networking issues related to mobile 
gaming. In Section III we discuss our proposed architecture to 
support interactivity. Section IV presents an experimental 
evaluation of the proposed architecture. Finally, Section V 
concludes this paper. 

 

II. MOBILE GAMING: BEYOND THE FUN 
In this section we discuss and provide a real case example 

of main networking challenges related to mobile gaming. 

A. Main Networking Requirements 
Under a networking point of view, online games are 

characterized by five main requirements which are 
intrinsically correlated: interactivity, consistency, fairness, 
scalability, and continuity. As discussed in the following, one 
of them, i.e., interactivity, is particularly important also for its 
influence on the other requirements. 

Interactivity (or responsiveness) refers to the delay 
between the generation of a game event in a node and the time 
at which other nodes become aware of that event. In order to 
assure an enjoyable playability to the final user, the time 
elapsed from the game event generation at a certain node and 
its processing time at every other node participating in the 
same game session must be kept under a certain interactivity 
threshold [9]. Unfortunately, variable congestion conditions in 
Internet may suddenly slow down the game fluency on the 
screen. Moreover, players in the same virtual arena could be 
so numerous that some game server may experience impulsive 

computational load and loose interactivity. These problems 
are obviously amplified when plunged into a wireless, mobile 
scenario.  

Consistency regards the simultaneous uniformity of the 
game state view in all nodes belonging to the system. The 
easiest way to guarantee absolute consistency would be that of 
making the game proceed through discrete locksteps. Having 
a single move allowed for each player and synchronizing all 
the agents before moving toward the next round, for sure 
grants absolute consistency but, on the other hand, impairs the 
system interactivity. A trade-off between these two attributes 
needs thus to be found in order to develop a proficient game 
platform. 

Fairness, or (networking fairness), is related to provide 
every player with the same chances of winning the match, 
regardless of different network conditions. In this context, 
relative delays have to be considered as important as absolute 
ones. Simultaneous game evolution with identical speed 
should be guaranteed as much as possible to all participants. 
To this aim, it has recently been demonstrated how increasing 
the interactivity degree of the game platform may lead also to 
improved fairness [10]. 

Scalability regards the capability of the system in providing 
efficient support to a large community of players. Indeed, it is 
primary interest of game companies to have huge revenues 
generated by a very high number of customers. Besides, 
humans are social beings that enjoy the presence of others and 
the competition against real adversaries. Yet, especially in the 
case of fast-paced games, when the interactivity threshold 
cannot be met, scalability is sometimes sacrificed by denying 
the access to some users depending on their experienced 
delays [11]. Therefore, by sustaining interactivity, one can 
also provide a higher scalability degree in terms of both the 
number and the geographic dispersion of players allowed to 
participate to the same virtual arena. 

Continuity is concerned with having game sessions not 
interrupted by disconnections, handoffs, or any other 
mobility-related issue. Indeed, players would be very 
frustrated by having their match continuously interrupted and 
re-started (maybe after a while) with new players. To this aim, 
the best solution is certainly that of designing games featured 
with short game sessions. Moreover, quick/smart handoff 
mechanisms could be applied to smoothen the effects of 
mobility [12]. 

B. Delay Matters: A Practical Example 
As a practical example of problems related to (different) 

delays in online games, we present in Fig. 2 the frame 
evolution of an Armagetron game session [13]. The game’s 
rules are simple: each player controls a light cycle that leaves 
a wall behind it wherever the cycle goes; the cycle cannot stop 
and can turn only at 90 degree angles. The goal of the game is 
that of having all other players crashing into some wall while 
avoiding hitting others' own wall. Speed helps players in 
trapping other players; but the only way to speed up a light 
cycle is to drive very close to a wall. 



 
 

In the left column of Fig. 2, there are subsequent frames as 
seen by a player, named Cla (blue cycle and wall), who 
connected to a certain game server with a 180 ms of round-
trip time (RTT). Instead, frames on the right column 
correspond to the game as seen by another player, named Eu 
(green cycle and wall), who is connected to the same server 
with only a 20 ms of RTT. Frames on the same row relates to 
the same instant of the game action; it is hence very easy to 
notice the inconsistency between the two game state views by 
simply comparing the position of one light cycle with respect 
to the other. In particular, during the second and third row of 
frames, player Cla believes he has just won (in the left frame 
of the second row Cla sees Eu hitting his wall), whereas after 
a couple of seconds (last frame row) he realizes that the server 
has declared Eu as the winner. 

This is a clear sign of inconsistency and unfairness. Player 
Cla would surely refrain from renewing his subscription to the 
game. Even if the game were free, player Cla would probably 
stop playing to avoid the frustration of sure, yet undeserved, 
failing.  
 

 

 

 

 
Fig. 2.  Frame sequence of an Armagetron game session: Cla’s view (left 
column, blue player) vs Eu’s view (right column, green player); evident lag 
differences generate inconsistencies and unfairness. 

 

The reason for this inconsistency and unfairness is in the 
different RTT experienced by the two game connections. 
Basically, server’s view represent the real game evolution, 
whereas Cla and Eu visualize their own information by 
combining local player’s movements with (differently 
delayed) game server’s updates. As a result, Eu sees the game 
action evolving in advance with respect to Cla, as the former 
is much closer to the game server than the latter.  

 

III. SMART ARCHITECTURE: A HOLISTIC SOLUTION 
In this section we describe the two components of the 

proposed holistic solution: i) a smart synchronization 
mechanism for Mirrored Game Servers and ii) a smart AP 
able to avoid last-mile queuing delays that would jeopardize 
interactivity just one step before delivering. For the sake of 
clarity, we name this holistic solution Smart Architecture. 

A. Fast Synchronization over a Hybrid Architecture 
Mirrored game server architectures represent a hybrid 

solution which efficiently embraces all the positive aspects of 
both centralized client-server and fully distributed 
architectures [5]. Based on this approach, GSSs are 
interconnected in a peer-to-peer fashion over the Internet and 
contain replicas of the same game state view. Players 
communicate with their closest GSS through the client-server 
paradigm. Each GSS gathers all game events of its engaged 
players, updates the game state, and periodically forwards it to 
all its players and GSS peers. 

The presence of multiple high performance GSSs helps in 
distributing the traffic over the system and reduces the 
processing burden at each node [14]. Moreover, having each 
player connected to a close GSS reduces the impact of the 
player-dependent access technology (e.g., dial-up, cable, 
DSL) on the total experienced delay [15]. In this case, in fact, 
the communication among players results mainly deployed 
over links physically connecting GSSs, which can exploit the 
fastest available technology (e.g., optical fibers) to reduce 
latency. As a result, this architecture helps one in finding 
better solutions for the various tradeoff among interactivity, 
consistency, fairness, scalability, and continuity. 

Even if synchronization is still required to ensure the global 
consistency of the game state held by the various servers, this 
requirement is made easier with respect to fully distributed 
architectures thanks to the lower number of involved nodes. 
Moreover smart solution can be devised to speed up this 
synchronization process. Indeed, taking inspiration from the 
Active Queue Management approach (e.g., RED [16], RIO 
[17]) in case of incipient congestion in best effort networks, 
the synchronization mechanism among GSSs could exploit the 
semantics of the game to discard few game packets to preempt 
interactivity loss when intense network traffic or excessive 
computational load is slowing down some GSS [6], [18]. 

For the sake of clarity, in the rest of the paper we refer to 
this synchronization mechanism able to discard game events 
as Fast Synchronization (FS). 



 
 

Similar to RED/RIO, FS utilizes a uniformly distributed 
dropping function. Yet, the parameter taken under control by 
GSSs is the time elapsed from the generation of  the game 
event, which we name Game Time Delivery (GTD). In fact, 
upon each packet arrival, each GSS determines the GTD of 
the arrived event, namely sample_GTD, and feeds a low pass 
filter to compute the updated average GTD, namely avg_GTD. 
When avg_GTD exceeds a certain threshold, the GSS drops 
superseded events with a certain probability p, without 
processing them. If avg_GTD exceeds a subsequent limit, p is 
set equal to 1, and all superseded events waiting for being 
processed are discarded. 

Indeed, during a game session some events can lose their 
significance as time passes, i.e., new actions may make the 
previous ones irrelevant. For example, where there is a rapid 
succession of movements performed by a single agent in a 
virtual world, the event representing the last destination 
supersedes the previous ones. 

Discarding superseded events for processing fresher ones 
may be of great help for delay-affected GSSs, achieving high 
interactivity degree without compromising consistency.  

To ensure an adequate playability degree even to fast and 
furious class of games a further dropping probability function 
is provided in order to discard even non-superseded game 
events when dropping all the superseded ones is not yet 
sufficient to maintain an adequate level of responsiveness. 
The two discarding functions are featured with specific 
parameters; they work independently one from the other and 
take action in sequence with the increasing of the game event 
GTDs at the GSSs. 

Dropping non-superseded events can be done without 
consistency-related consequences only for a category of 
games where little inconsistencies are not highly deleterious 
for players’ fun (e.g., fast-paced games). 

In Fig. 3 we depict the two discarding functions of FS. 
Three parameters (and three phases) characterize each of the 
twin algorithms: mino, maxo and Pmaxo, for superseded 
events, and minv, maxv and Pmaxv for non-superseded ones. In 
the graph, the y-axis represents the dropping probability 
corresponding to the avg_GTD indicated by the x-axis. 
Focusing on superseded events, for values of avg_GTD in [0, 
mino) the mechanism performs normal operations, with no 
packet drops, while in [mino, maxo) superseded packets are 
discarded with a computed probability, and finally in [maxo, 
∞) all superseded packets are thrown away. The intervals [0, 
minv), [minv, maxv) and [maxv, ∞) define the corresponding 
phases for non-superseded game events. The dropping 
probabilities are computed as a function of avg_GTD and of, 
Pmaxo or Pmaxv, respectively. Persistent situations of low 
interactivity degree result in high avg_GTD and hence in high 
discarding probabilities. High dropping probability values (for 
Pmaxo or Pmaxv) will make the GSS discarding events 
without processing or forwarding them, thus helping in 
restoring an adequate level of time interaction between 
servers. 
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Fig. 3.  Discarding probability functions. 
 

B. A Smart AP Can Save the Interactivity Patrimony 
Even if FS coupled with a Mirrored Game Server 

architecture is proficient in maintaining a high degree of 
responsiveness among game servers (i.e., GSSs), still 
problems may arise at the edges of the considered topology, 
where users in their homes or along a street may be engaged 
in an online game through an AP (see Fig. 1). Concurrent 
traffic may generate queues that build up at the AP, thus 
delaying the game event delivery and wasting all the 
interactivity patrimony created by FS. The applications run in 
this context may vary and some of these may be particularly 
harmful toward real-time traffic (online games but also video-
streaming, video-chats, etc.). In particular, TCP-based FTP 
application for downloading files increases queuing delays to 
such an extent that interactivity may be completely 
jeopardized [7]. 

To this aim, to our Smart Architecture we also add a 
smart AP that aims at achieving best performance for both 
elastic and real-time applications [8] by appropriately limiting 
the advertised window for TCP flows. This way, a solution to 
the tradeoff relationship existing between TCP throughput and 
real-time application delays can be found. 

To this aim, it is evident how a technique that exploited 
existing features of standard protocols could be easily 
implemented in a real scenario. Moreover, an optimal tradeoff 
between throughput and low delays could be achieved by 
maintaining the sending rate (hence, the sending window) of 
TCP flows high enough to efficiently utilize all available 
bandwidth but, at the same time, limited in its growth so as to 
not utilize buffers. As a result, the throughput would be 
maximized by the absence of packet loss, while the delay 
would be minimized by the absence of queuing. This can be 
achieved through limiting the aggregate bandwidth utilized by 
TCP flows just below the total capacity of the bottleneck link 
diminished by the portion of the channel occupied by the 
simultaneous UDP-based real-time traffic.  

In essence, the maximum sending rate for each TCP flows 
at time t, namely TCPubrate(t), can be represented by: 
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where UDPtraffic(t) is the amount of bandwidth occupied 

by UDP-based traffic at time t, #TCPflows(t) is the concurrent 
number of TCP flows, and C is the total capacity of the 
bottleneck link. 

This upper bound can be enforced to all TCP flows sharing 
the same wireless link by having the corresponding AP 
exploiting to this aim the TCP’s advertised window. Simply, 
the actual sending window of a TCP flow is determined as the 
minimum between the congestion window and the advertised 
window; thereby, having the AP appropriately modifying the 
advertised window of passing-through TCP flows would 
limiting the factual sending rate of TCP flows under 
TCPubrate(t). 

To compute (1), a comprehensive knowledge of all the 
flows that are transiting through the bottleneck (i.e., the last 
hop links) is needed, i.e., the total capacity of the channel, the 
aggregate amount of current UDP traffic, and the number of 
TCP flows currently active on the wireless link. However, this 
information is possessed by the AP as all application flows 
have to pass through it.  

 

IV. EXPERIMENTAL EVALUATION 
In this section we evaluate through simulations the 

interactivity improvement ensured by the discussed holistic 
solution, i.e., the Smart Architecture. 

A. Simulation Assessment 
To evaluate the discussed solution, we have generated game 

traffic through a mathematical model so as to have a 
lognormal distribution of the GTD values as suggested by 
[19]. Then we injected this traffic into a simulative 
environment based on the well known NS-2 simulator [20]. In 
particular, we have simulated a scenario representing the 
topology depicted by Fig. 1, considering seven interconnected 
GSSs with a network latency between the two farthest GSSs 
of 90ms, i.e., an intra-continental GSS overlay network. To 
synchronize the respective game states, every 30ms each GSS 
transmit to the other GSSs game updates related to their 
engaged clients. Finally, only 90% of simulated game events 
could become superseded by successively generated game 
events. This represents a realistic setting for a vast plethora of 
possible games where critical game events that cannot become 
superseded have to be considered only sporadically, such as 
during collisions or shots, and may represent even less than 
the 10% of the whole set of game events [21]. 

Results were gathered collecting the total latency 
experienced by game events reaching one of the clients 
connected through a IEEE802.11g AP to one of the GSS. The 
same AP was also in charge of handling traffic coming from 
other applications run on different devices that were 
simultaneously sharing that wireless link: a UDP-based video 
stream, a UDP-based live video chat, and a TCP-based 

downloading session. The video stream and video chat 
applications were simulated by injecting in NS-2 real traces 
corresponding to high quality MPEG4 Star Wars IV and VBR 
H.263 Lecture Room-Cam, respectively, as available in [22]. 

Interactivity represents the main feature determining the 
perceived quality of an online game service, even when 
players employ PDAs or cellphones. Therefore, in the next 
subsection we report results related to the GTD experienced 
by game events delivered to the considered mobile gaming 
device. The smaller the GTD, the higher the perceived 
interactivity. 

In particular, in the following charts, REG represents the 
case where a regular synchronization scheme is adopted by 
GSSs, whereas SMA represents the case employing the 
discussed Smart Architecture. Finally, GIT stands for Game 
Interactivity Threshold and represents the maximum delay that 
a game event can experience from its generation to its delivery 
to the gaming device in order to still consider the on-going 
gaming session as interactive. As a reference, we have taken 
150ms as the GIT, since this is the value suggested by related 
scientific literature for interactive online games [9]. 

B. Results 
Focusing on the interactivity benefits provided by the first 

component of SMA, i.e., the FS coupled with a Mirrored 
Game Server architecture, we show in Fig. 4 the maximum, 
the average, and the standard deviation of the delivery time 
that game events experience to reach the GSS that supports 
the considered player. Basically, the chart reports statistical 
values about the time elapsed from the generation of a game 
event and its delivery to the GSS that will then forward it to 
the considered player.  

Clearly, SMA outperforms REG, which demonstrate the 
effectiveness of FS in quickly synchronizing GSSs. 

Instead, in Fig. 5 we evaluate the impact of the wireless 
last-hop on the game interactivity. In particular, the chart 
reports statistical values related to time elapsed from the 
moment when the AP receives the game update from its GSS 
and the moment when the considered player actually receives 
it on her/his mobile device. Basically, Fig. 5 highlights the 
effectiveness of the smart AP versus a traditional one. 
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Fig. 4.  Fast Synchronization’s evaluation: statistical values for the delivery 
delay of game events (packets) from their generation to the GSS engaging the 
considered player.  
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Fig. 5.  Smart AP’s evaluation: statistical values for the delivery delay of game 
events (packets) from the AP to the considered player. 

 
Clearly, when the smart AP is employed, the delay is 

sensibly smaller with respect to the regular case, thus 
demonstrating its ability in avoiding queuing delays. 

We expect that combining the two components of SMA 
will produce a sum of the positive benefits seen in Fig. 4 and 
Fig. 5. Indeed, Fig. 6 confirms this expectation. In particular, 
Fig. 6 reports the delivery time of 100 subsequent game 
events that have to be delivered to the considered player 
through the whole gaming platform. The regular configuration 
of the game platform (REG) is compared with the 
configuration including both FS and smart APs (SME). The 
outcome clearly demonstrates how SMA outperforms REG. 
Moreover, SMA is able to keep the game event delivery time 
almost always under the interactivity threshold (GIT), 
exceeding that threshold only sporadically and just slightly. 
Conversely, with REG, delivery delays frequently and 
significantly exceed the GIT. 

This demonstrates the ability of our Smart Architecture 
solution in factually ensuring a high interactivity degree to 
mobile online gamers.  

 

V. CONCLUSION 
Mobile online games are increasing their popularity also 

because of the proliferation of personal devices with wireless 
connectivity (e.g., smart mobile phones with Wi-Fi 
technology), and the increasing availability of high speed 
wireless APs. With this vision, we have discussed two 
solutions that could be employed solo or together to improve 
the interactivity degree of online gaming, even if the user is 
playing through a mobile device. These solutions are, 
respectively: i) a synchronization mechanism, named FS, for 
game servers of a hybrid architecture that exploits the 
semantics of the game to support interactivity and ii) a 
smart AP able to smooth the transmission rate of elastic traffic 
(download) so as to avoid queuing delays that would disrupt 
the interactivity patrimony created by FS. 

Reported experiments confirm the ability of each of the 
aforementioned solutions in reducing the game event delivery 
time. This result is further improved when the two solutions 
are combined into the proposed Smart Architecture. 
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Fig. 6.  Smart Architecture’s comprehensive evaluation: instantaneous 
delivery latency of game events (packets) over the whole game platform. 

 
Moreover, the Smart Architecture discussed in this paper is 

proficient also at ensuring scalability and fairness as: i) having 
several GSSs in the hybrid architecture is helpful to the aim of 
supporting scalability as discussed in Section III-A; 
ii) ensuring a higher degree of interactivity may be put to 
good use to improve also fairness and scalability (see 
Section II-A) 

Therefore, we can claim that Smart Architecture is a 
holistic solution able to support interactivity, fairness, and 
scalability. Finally, we suggest to enhance the architecture 
also with a smart/quick handoff mechanism as the one 
suggested in [12] to address mobility/continuity when 
considering games with longer general sessions. 
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