

Abstract—Interactive, mobile online games have recently

become popular thus receiving the attention of researchers.
Mobile games represent a particularly interesting case because of
the proliferation of smart personal devices and the increasing
availability of high speed wireless access points. With this vision,
we propose a holistic solution that enables a top quality online
gaming experience regardless whether the player is wired,
wireless, or even mobile. Main components of this solution are:
i) a synchronization mechanism based on an Internet server
overlay that enables interactivity, fairness, and scalability, and
ii) a smart access point able to support efficient coexistence
between elastic (download) and real-time (game) traffic.

Index Terms—Interactivity, Mobile Online Games, Wireless
Network.

I. INTRODUCTION
IRELESS access points are rapidly increasing in number,
providing people with connectivity in almost all

buildings they enter (e.g. home, work place, cafeteria, etc.)
and all streets they walk and drive in. In this context, mobile
games are gaining attention as their users are increasing in
number [1], [2], [3], [4]. From a research point of view, they
represent a very interesting and challenging topic especially in
wireless environments and when involving many players
simultaneously sharing the same virtual arena.

In this paper we focus on highly interactive mobile games,
i.e., games based on fast action evolution on screen, requiring
prompt reactions by the user and played through an handheld
device with wireless communication capabilities (e.g., PDA,
handheld console, smart cellphone); in particular we discuss
their main requirements.

More in detail, in order to ensure optimal performance to
players we split the problem into two sub-parts which requires
specific solutions applied by different subjects. The first sub-
part regards the communication and synchronization among
game servers and represents the portion of the total
connectivity that can be handled by the online game service
provider (either directly, or through ISP-domain managers).
The second sub-part, is concerned with the links between

Manuscript received October 22, 2007. This work was supported in part by
the Italian MIUR under the DAMASCO initiative.

C. E. Palazzi is with the Dipartimento di Matematica Pura e Applicata of
Università degli Studi di Padova, Via Trieste 63, 35121 Padova, Italy, phone:
+39-049-827-1426; fax: +39-049-827-1499; e-mail: cpalazzi@math.unipd.it.

game servers and their engaged players, thus including also
the last-mile wireless hop, which generally corresponds to the
bottleneck of the connection and may be source of large
queuing delays.

To obtain a holistic solution we propose to proceed through
successive steps and address the two sub-problems
independently. Solutions discussed in this paper complement
each other since their scopes are detached (even if connected)
and, although they generate the best performance results when
combined, they produce benefits even if singularly applied.

In particular, for the first sub-part we propose to exploit a
hybrid architecture combining both the advantages of client-
server and peer-to-peer paradigms. This solution deploys over
the network a constellation of communicating replicated
Game State Servers (GSSs), each of which locally maintains a
vision of the game state [5]. It goes without saying that, within
this architecture, an efficient event synchronization scheme
among GSSs needs to be employed to guarantee a consistent
and responsive evolution of the game state. To this aim, the
semantics of the game can be put to good use in order to
increase the interactivity degree provided to the player:
discarding game events that are superseded by others can free
network resources thus speeding up the delivery of fresh game
events [6].

GSS1
GSS2

GSS5GSS3

Internet

GSS4

GSS1
GSS2

GSS5GSS3

Internet

GSS4

Internet

GSS1
GSS2

GSS5GSS3

Internet

GSS4

GSS1
GSS2

GSS5GSS3

Internet

GSS4

Internet

Fig. 1. Hybrid architecture for distributed game entertainment in
heterogeneous scenarios with mobile users (even car passengers).

Interactive Mobile Gaming over
Heterogeneous Networks

Claudio E. Palazzi, Member, IEEE

W

However, even if this scheme is proficient in maintaining a
high degree of responsiveness among game servers, still
problems may arise at the edges of the considered topology
(see Fig. 1), where users in their homes or cars may be
engaged in an online gaming through an access point (AP).

This represents the aforementioned second part of our
problem. Concurrent traffic may generate queues that build up
at the last (or first) link of the connection, thus delaying the
game event delivery. This problem is worsened in case of
players relying on wireless connectivity, regardless whether
from their homes or while walking/driving along a road. The
wireless medium, in fact, is naturally prone to be shared by
several contemporary users who may interfere with each
other. In addition to the problem discussed above, it has been
recently demonstrated how TCP-based elastic flows (e.g.,
download) can harm the performance of UDP-based real-time
flows (e.g., online gaming) as TCP continuously probes the
channel for more bandwidth, thus eventually generating
queues (delays) on the connection [7].

To address this issue, a smart AP can take advantage of its
knowledge about available wireless network resources and the
on-going traffic in order to appropriately limit TCP’s
advertised windows so as to smoothen the network traffic
progression and avoid queuing delays that would jeopardize
the interactivity of online game applications and, in general, of
any real-time application [8].

The remainder of the paper is organized as follows.
Section II describes main networking issues related to mobile
gaming. In Section III we discuss our proposed architecture to
support interactivity. Section IV presents an experimental
evaluation of the proposed architecture. Finally, Section V
concludes this paper.

II. MOBILE GAMING: BEYOND THE FUN
In this section we discuss and provide a real case example

of main networking challenges related to mobile gaming.

A. Main Networking Requirements
Under a networking point of view, online games are

characterized by five main requirements which are
intrinsically correlated: interactivity, consistency, fairness,
scalability, and continuity. As discussed in the following, one
of them, i.e., interactivity, is particularly important also for its
influence on the other requirements.

Interactivity (or responsiveness) refers to the delay
between the generation of a game event in a node and the time
at which other nodes become aware of that event. In order to
assure an enjoyable playability to the final user, the time
elapsed from the game event generation at a certain node and
its processing time at every other node participating in the
same game session must be kept under a certain interactivity
threshold [9]. Unfortunately, variable congestion conditions in
Internet may suddenly slow down the game fluency on the
screen. Moreover, players in the same virtual arena could be
so numerous that some game server may experience impulsive

computational load and loose interactivity. These problems
are obviously amplified when plunged into a wireless, mobile
scenario.

Consistency regards the simultaneous uniformity of the
game state view in all nodes belonging to the system. The
easiest way to guarantee absolute consistency would be that of
making the game proceed through discrete locksteps. Having
a single move allowed for each player and synchronizing all
the agents before moving toward the next round, for sure
grants absolute consistency but, on the other hand, impairs the
system interactivity. A trade-off between these two attributes
needs thus to be found in order to develop a proficient game
platform.

Fairness, or (networking fairness), is related to provide
every player with the same chances of winning the match,
regardless of different network conditions. In this context,
relative delays have to be considered as important as absolute
ones. Simultaneous game evolution with identical speed
should be guaranteed as much as possible to all participants.
To this aim, it has recently been demonstrated how increasing
the interactivity degree of the game platform may lead also to
improved fairness [10].

Scalability regards the capability of the system in providing
efficient support to a large community of players. Indeed, it is
primary interest of game companies to have huge revenues
generated by a very high number of customers. Besides,
humans are social beings that enjoy the presence of others and
the competition against real adversaries. Yet, especially in the
case of fast-paced games, when the interactivity threshold
cannot be met, scalability is sometimes sacrificed by denying
the access to some users depending on their experienced
delays [11]. Therefore, by sustaining interactivity, one can
also provide a higher scalability degree in terms of both the
number and the geographic dispersion of players allowed to
participate to the same virtual arena.

Continuity is concerned with having game sessions not
interrupted by disconnections, handoffs, or any other
mobility-related issue. Indeed, players would be very
frustrated by having their match continuously interrupted and
re-started (maybe after a while) with new players. To this aim,
the best solution is certainly that of designing games featured
with short game sessions. Moreover, quick/smart handoff
mechanisms could be applied to smoothen the effects of
mobility [12].

B. Delay Matters: A Practical Example
As a practical example of problems related to (different)

delays in online games, we present in Fig. 2 the frame
evolution of an Armagetron game session [13]. The game’s
rules are simple: each player controls a light cycle that leaves
a wall behind it wherever the cycle goes; the cycle cannot stop
and can turn only at 90 degree angles. The goal of the game is
that of having all other players crashing into some wall while
avoiding hitting others' own wall. Speed helps players in
trapping other players; but the only way to speed up a light
cycle is to drive very close to a wall.

In the left column of Fig. 2, there are subsequent frames as
seen by a player, named Cla (blue cycle and wall), who
connected to a certain game server with a 180 ms of round-
trip time (RTT). Instead, frames on the right column
correspond to the game as seen by another player, named Eu
(green cycle and wall), who is connected to the same server
with only a 20 ms of RTT. Frames on the same row relates to
the same instant of the game action; it is hence very easy to
notice the inconsistency between the two game state views by
simply comparing the position of one light cycle with respect
to the other. In particular, during the second and third row of
frames, player Cla believes he has just won (in the left frame
of the second row Cla sees Eu hitting his wall), whereas after
a couple of seconds (last frame row) he realizes that the server
has declared Eu as the winner.

This is a clear sign of inconsistency and unfairness. Player
Cla would surely refrain from renewing his subscription to the
game. Even if the game were free, player Cla would probably
stop playing to avoid the frustration of sure, yet undeserved,
failing.

Fig. 2. Frame sequence of an Armagetron game session: Cla’s view (left
column, blue player) vs Eu’s view (right column, green player); evident lag
differences generate inconsistencies and unfairness.

The reason for this inconsistency and unfairness is in the
different RTT experienced by the two game connections.
Basically, server’s view represent the real game evolution,
whereas Cla and Eu visualize their own information by
combining local player’s movements with (differently
delayed) game server’s updates. As a result, Eu sees the game
action evolving in advance with respect to Cla, as the former
is much closer to the game server than the latter.

III. SMART ARCHITECTURE: A HOLISTIC SOLUTION
In this section we describe the two components of the

proposed holistic solution: i) a smart synchronization
mechanism for Mirrored Game Servers and ii) a smart AP
able to avoid last-mile queuing delays that would jeopardize
interactivity just one step before delivering. For the sake of
clarity, we name this holistic solution Smart Architecture.

A. Fast Synchronization over a Hybrid Architecture
Mirrored game server architectures represent a hybrid

solution which efficiently embraces all the positive aspects of
both centralized client-server and fully distributed
architectures [5]. Based on this approach, GSSs are
interconnected in a peer-to-peer fashion over the Internet and
contain replicas of the same game state view. Players
communicate with their closest GSS through the client-server
paradigm. Each GSS gathers all game events of its engaged
players, updates the game state, and periodically forwards it to
all its players and GSS peers.

The presence of multiple high performance GSSs helps in
distributing the traffic over the system and reduces the
processing burden at each node [14]. Moreover, having each
player connected to a close GSS reduces the impact of the
player-dependent access technology (e.g., dial-up, cable,
DSL) on the total experienced delay [15]. In this case, in fact,
the communication among players results mainly deployed
over links physically connecting GSSs, which can exploit the
fastest available technology (e.g., optical fibers) to reduce
latency. As a result, this architecture helps one in finding
better solutions for the various tradeoff among interactivity,
consistency, fairness, scalability, and continuity.

Even if synchronization is still required to ensure the global
consistency of the game state held by the various servers, this
requirement is made easier with respect to fully distributed
architectures thanks to the lower number of involved nodes.
Moreover smart solution can be devised to speed up this
synchronization process. Indeed, taking inspiration from the
Active Queue Management approach (e.g., RED [16], RIO
[17]) in case of incipient congestion in best effort networks,
the synchronization mechanism among GSSs could exploit the
semantics of the game to discard few game packets to preempt
interactivity loss when intense network traffic or excessive
computational load is slowing down some GSS [6], [18].

For the sake of clarity, in the rest of the paper we refer to
this synchronization mechanism able to discard game events
as Fast Synchronization (FS).

Similar to RED/RIO, FS utilizes a uniformly distributed
dropping function. Yet, the parameter taken under control by
GSSs is the time elapsed from the generation of the game
event, which we name Game Time Delivery (GTD). In fact,
upon each packet arrival, each GSS determines the GTD of
the arrived event, namely sample_GTD, and feeds a low pass
filter to compute the updated average GTD, namely avg_GTD.
When avg_GTD exceeds a certain threshold, the GSS drops
superseded events with a certain probability p, without
processing them. If avg_GTD exceeds a subsequent limit, p is
set equal to 1, and all superseded events waiting for being
processed are discarded.

Indeed, during a game session some events can lose their
significance as time passes, i.e., new actions may make the
previous ones irrelevant. For example, where there is a rapid
succession of movements performed by a single agent in a
virtual world, the event representing the last destination
supersedes the previous ones.

Discarding superseded events for processing fresher ones
may be of great help for delay-affected GSSs, achieving high
interactivity degree without compromising consistency.

To ensure an adequate playability degree even to fast and
furious class of games a further dropping probability function
is provided in order to discard even non-superseded game
events when dropping all the superseded ones is not yet
sufficient to maintain an adequate level of responsiveness.
The two discarding functions are featured with specific
parameters; they work independently one from the other and
take action in sequence with the increasing of the game event
GTDs at the GSSs.

Dropping non-superseded events can be done without
consistency-related consequences only for a category of
games where little inconsistencies are not highly deleterious
for players’ fun (e.g., fast-paced games).

In Fig. 3 we depict the two discarding functions of FS.
Three parameters (and three phases) characterize each of the
twin algorithms: mino, maxo and Pmaxo, for superseded
events, and minv, maxv and Pmaxv for non-superseded ones. In
the graph, the y-axis represents the dropping probability
corresponding to the avg_GTD indicated by the x-axis.
Focusing on superseded events, for values of avg_GTD in [0,
mino) the mechanism performs normal operations, with no
packet drops, while in [mino, maxo) superseded packets are
discarded with a computed probability, and finally in [maxo,
∞) all superseded packets are thrown away. The intervals [0,
minv), [minv, maxv) and [maxv, ∞) define the corresponding
phases for non-superseded game events. The dropping
probabilities are computed as a function of avg_GTD and of,
Pmaxo or Pmaxv, respectively. Persistent situations of low
interactivity degree result in high avg_GTD and hence in high
discarding probabilities. High dropping probability values (for
Pmaxo or Pmaxv) will make the GSS discarding events
without processing or forwarding them, thus helping in
restoring an adequate level of time interaction between
servers.

mino avg_GTD

Pmaxo

1

Dropping
Probability

maxo

Pmaxv

minv maxv

phase 0 phase 1 phase 2 phase 3 phase 4

Fig. 3. Discarding probability functions.

B. A Smart AP Can Save the Interactivity Patrimony
Even if FS coupled with a Mirrored Game Server

architecture is proficient in maintaining a high degree of
responsiveness among game servers (i.e., GSSs), still
problems may arise at the edges of the considered topology,
where users in their homes or along a street may be engaged
in an online game through an AP (see Fig. 1). Concurrent
traffic may generate queues that build up at the AP, thus
delaying the game event delivery and wasting all the
interactivity patrimony created by FS. The applications run in
this context may vary and some of these may be particularly
harmful toward real-time traffic (online games but also video-
streaming, video-chats, etc.). In particular, TCP-based FTP
application for downloading files increases queuing delays to
such an extent that interactivity may be completely
jeopardized [7].

To this aim, to our Smart Architecture we also add a
smart AP that aims at achieving best performance for both
elastic and real-time applications [8] by appropriately limiting
the advertised window for TCP flows. This way, a solution to
the tradeoff relationship existing between TCP throughput and
real-time application delays can be found.

To this aim, it is evident how a technique that exploited
existing features of standard protocols could be easily
implemented in a real scenario. Moreover, an optimal tradeoff
between throughput and low delays could be achieved by
maintaining the sending rate (hence, the sending window) of
TCP flows high enough to efficiently utilize all available
bandwidth but, at the same time, limited in its growth so as to
not utilize buffers. As a result, the throughput would be
maximized by the absence of packet loss, while the delay
would be minimized by the absence of queuing. This can be
achieved through limiting the aggregate bandwidth utilized by
TCP flows just below the total capacity of the bottleneck link
diminished by the portion of the channel occupied by the
simultaneous UDP-based real-time traffic.

In essence, the maximum sending rate for each TCP flows
at time t, namely TCPubrate(t), can be represented by:

)t(TCPflows#

))t(UDPtrafficC()t(TCPubrate −
= (1)

where UDPtraffic(t) is the amount of bandwidth occupied

by UDP-based traffic at time t, #TCPflows(t) is the concurrent
number of TCP flows, and C is the total capacity of the
bottleneck link.

This upper bound can be enforced to all TCP flows sharing
the same wireless link by having the corresponding AP
exploiting to this aim the TCP’s advertised window. Simply,
the actual sending window of a TCP flow is determined as the
minimum between the congestion window and the advertised
window; thereby, having the AP appropriately modifying the
advertised window of passing-through TCP flows would
limiting the factual sending rate of TCP flows under
TCPubrate(t).

To compute (1), a comprehensive knowledge of all the
flows that are transiting through the bottleneck (i.e., the last
hop links) is needed, i.e., the total capacity of the channel, the
aggregate amount of current UDP traffic, and the number of
TCP flows currently active on the wireless link. However, this
information is possessed by the AP as all application flows
have to pass through it.

IV. EXPERIMENTAL EVALUATION
In this section we evaluate through simulations the

interactivity improvement ensured by the discussed holistic
solution, i.e., the Smart Architecture.

A. Simulation Assessment
To evaluate the discussed solution, we have generated game

traffic through a mathematical model so as to have a
lognormal distribution of the GTD values as suggested by
[19]. Then we injected this traffic into a simulative
environment based on the well known NS-2 simulator [20]. In
particular, we have simulated a scenario representing the
topology depicted by Fig. 1, considering seven interconnected
GSSs with a network latency between the two farthest GSSs
of 90ms, i.e., an intra-continental GSS overlay network. To
synchronize the respective game states, every 30ms each GSS
transmit to the other GSSs game updates related to their
engaged clients. Finally, only 90% of simulated game events
could become superseded by successively generated game
events. This represents a realistic setting for a vast plethora of
possible games where critical game events that cannot become
superseded have to be considered only sporadically, such as
during collisions or shots, and may represent even less than
the 10% of the whole set of game events [21].

Results were gathered collecting the total latency
experienced by game events reaching one of the clients
connected through a IEEE802.11g AP to one of the GSS. The
same AP was also in charge of handling traffic coming from
other applications run on different devices that were
simultaneously sharing that wireless link: a UDP-based video
stream, a UDP-based live video chat, and a TCP-based

downloading session. The video stream and video chat
applications were simulated by injecting in NS-2 real traces
corresponding to high quality MPEG4 Star Wars IV and VBR
H.263 Lecture Room-Cam, respectively, as available in [22].

Interactivity represents the main feature determining the
perceived quality of an online game service, even when
players employ PDAs or cellphones. Therefore, in the next
subsection we report results related to the GTD experienced
by game events delivered to the considered mobile gaming
device. The smaller the GTD, the higher the perceived
interactivity.

In particular, in the following charts, REG represents the
case where a regular synchronization scheme is adopted by
GSSs, whereas SMA represents the case employing the
discussed Smart Architecture. Finally, GIT stands for Game
Interactivity Threshold and represents the maximum delay that
a game event can experience from its generation to its delivery
to the gaming device in order to still consider the on-going
gaming session as interactive. As a reference, we have taken
150ms as the GIT, since this is the value suggested by related
scientific literature for interactive online games [9].

B. Results
Focusing on the interactivity benefits provided by the first

component of SMA, i.e., the FS coupled with a Mirrored
Game Server architecture, we show in Fig. 4 the maximum,
the average, and the standard deviation of the delivery time
that game events experience to reach the GSS that supports
the considered player. Basically, the chart reports statistical
values about the time elapsed from the generation of a game
event and its delivery to the GSS that will then forward it to
the considered player.

Clearly, SMA outperforms REG, which demonstrate the
effectiveness of FS in quickly synchronizing GSSs.

Instead, in Fig. 5 we evaluate the impact of the wireless
last-hop on the game interactivity. In particular, the chart
reports statistical values related to time elapsed from the
moment when the AP receives the game update from its GSS
and the moment when the considered player actually receives
it on her/his mobile device. Basically, Fig. 5 highlights the
effectiveness of the smart AP versus a traditional one.

0
50

100
150
200
250
300
350
400

max avg st_dev

Statistical Parameter

Va
lu

e
(m

s)

REG
SMA

Fig. 4. Fast Synchronization’s evaluation: statistical values for the delivery
delay of game events (packets) from their generation to the GSS engaging the
considered player.

0
5

10
15
20
25
30
35
40
45

max avg st_dev

Statistical Parameter

Va
lu

e
(m

s)

REG
SMA

Fig. 5. Smart AP’s evaluation: statistical values for the delivery delay of game
events (packets) from the AP to the considered player.

Clearly, when the smart AP is employed, the delay is

sensibly smaller with respect to the regular case, thus
demonstrating its ability in avoiding queuing delays.

We expect that combining the two components of SMA
will produce a sum of the positive benefits seen in Fig. 4 and
Fig. 5. Indeed, Fig. 6 confirms this expectation. In particular,
Fig. 6 reports the delivery time of 100 subsequent game
events that have to be delivered to the considered player
through the whole gaming platform. The regular configuration
of the game platform (REG) is compared with the
configuration including both FS and smart APs (SME). The
outcome clearly demonstrates how SMA outperforms REG.
Moreover, SMA is able to keep the game event delivery time
almost always under the interactivity threshold (GIT),
exceeding that threshold only sporadically and just slightly.
Conversely, with REG, delivery delays frequently and
significantly exceed the GIT.

This demonstrates the ability of our Smart Architecture
solution in factually ensuring a high interactivity degree to
mobile online gamers.

V. CONCLUSION
Mobile online games are increasing their popularity also

because of the proliferation of personal devices with wireless
connectivity (e.g., smart mobile phones with Wi-Fi
technology), and the increasing availability of high speed
wireless APs. With this vision, we have discussed two
solutions that could be employed solo or together to improve
the interactivity degree of online gaming, even if the user is
playing through a mobile device. These solutions are,
respectively: i) a synchronization mechanism, named FS, for
game servers of a hybrid architecture that exploits the
semantics of the game to support interactivity and ii) a
smart AP able to smooth the transmission rate of elastic traffic
(download) so as to avoid queuing delays that would disrupt
the interactivity patrimony created by FS.

Reported experiments confirm the ability of each of the
aforementioned solutions in reducing the game event delivery
time. This result is further improved when the two solutions
are combined into the proposed Smart Architecture.

0
50

100
150
200
250
300
350
400

1 10 19 28 37 46 55 64 73 82 91 100

Game Packet

La
te

nc
y

(m
s)

GIT
REG
SMA

Fig. 6. Smart Architecture’s comprehensive evaluation: instantaneous
delivery latency of game events (packets) over the whole game platform.

Moreover, the Smart Architecture discussed in this paper is

proficient also at ensuring scalability and fairness as: i) having
several GSSs in the hybrid architecture is helpful to the aim of
supporting scalability as discussed in Section III-A;
ii) ensuring a higher degree of interactivity may be put to
good use to improve also fairness and scalability (see
Section II-A)

Therefore, we can claim that Smart Architecture is a
holistic solution able to support interactivity, fairness, and
scalability. Finally, we suggest to enhance the architecture
also with a smart/quick handoff mechanism as the one
suggested in [12] to address mobility/continuity when
considering games with longer general sessions.

ACKNOWLEDGMENT
The author of this manuscript wishes to express his deep

gratitude towards Prof. Marco Roccetti, Dr. Giovanni Pau,
Prof. Mario Gerla, Prof. Stefano Ferretti, and Dr. Stefano
Cacciaguerra; part of this manuscript is based on data
gathered and/or ideas emerged while collaborating with them
at different times.

REFERENCES
[1] C. Griwodz, “State Replication for Multiplayer Games”, in Proc. of

NetGames2002, Braunschweig, Germany, 2002.
[2] R. M. Mine, J. Shochet, R. Hughston, “Building a Massively

Multiplayer Game for the Million: Disney's Toontown Online”, ACM
Computers in Entertainment (CIE), vol. 1, no. 1, pp. 15-15, 2003.

[3] W. Cai, P. Xavier, S. J. Turner, B. Lee, “A Scalable Architecture for
Supporting Interactive Games on the Internet”, in Proc. of the 16th
Workshop on Parallel and Distributed Simulation, Washington, DC,
USA, May 2002.

[4] C. E. Palazzi, M. Roccetti, S. Ferretti, G. Pau, M. Gerla, “Online Games
on Wheels: Fast Game Event Delivery in Vehicular Ad-hoc Networks”,
in Proc. of 3rd IEEE V2VCOM 2007, IEEE Intelligent Vehicles
Symposium 2007, Istanbul, Turkey, Jun 2007.

[5] E. Cronin, A. R. Kurc, B. Filstrup, S. Jamin, “An Efficient
Synchronization Mechanism for Mirrored Game Architectures”,
Multimedia Tools and Applications, vol. 23, no. 1, pp. 7-30, 2004.

[6] C. E. Palazzi, S. Ferretti, S. Cacciaguerra, M. Roccetti, “Interactivity-
Loss Avoidance in Event Delivery Synchronization for Mirrored Game
Architectures”, IEEE Transactions on Multimedia, vol. 8, no. 4, pp. 847-
879, Aug 2006.

[7] C. E. Palazzi, G. Pau, M. Roccetti, M. Gerla, “In-Home Online

Entertainment: Analyzing the Impact of the Wireless MAC-Transport
Protocols Interference”, IEEE WIRELESSCOM2005, Maui, HI, USA,
Jun 2005.

[8] C. E. Palazzi, S. Ferretti, M. Roccetti, G. Pau, M. Gerla, “What's in that
Magic Box? The Home Entertainment Center's Special Protocol Potion,
Revealed”, IEEE Transactions on Consumer Electronics, vol. 52, no. 4,
pp. 1280-1288, Nov 2006.

[9] L. Pantel, L. C. Wolf, “On the Impact of Delay on Real-Time
Multiplayer Games”, in Proc of the 12th International Workshop on
Network and Operating Systems Support for Digital Audio and Video,
Miami, FL, May 2002.

[10] S. Ferretti, C. E. Palazzi, M. Roccetti, G. Pau, M. Gerla, “FILA, a
Holistic Approach to Massive Online Gaming: Algorithm Comparison
and Performance Analysis”, in Proc. of GDTW 2005, Liverpool, UK, pp.
68-76, Nov 2005.

[11] Rakion. [Online]. Available: http://www.rakion.com/
[12] L.-J. Chen, T. Sun, G. Yang, M Gerla, “USHA: a Simple and Practical

Seamless Vertical Handoff Solution”, in Proc. of the 2006 IEEE
Consumer Communications and Networking Conference (CCNC 2006),
Las Vegas, NV, USA, Jan 2006.

[13] Armagetron: a Tron Clone in 3D. [Online]. Available:
http://armagetron.sourceforge.net/

[14] F. Safaei, P. Boustead, C. D. Nguyen, J. Brun, M. Dowlatshahi,
“Latency Driven Distribution: Infrastructure Needs of Participatory
Entertainment Applications”, IEEE Communications Magazine, Special

Issue on “Entertainment Everywhere: System and Networking Issues in
Emerging Network-Centric Entertainments Systems”, Part I, May 2005.

[15] T. Jehaes, D. De Vleeschauwer, T. Coppens, B. Van Doorselaer, E.
Deckers, W. Naudts, K. Spruyt, R. Smets, “Access Network Delay in
Networked Games”, in Proc. of ACM NetGames 2003, Redwood City,
CA, USA, 2003.

[16] S. Floyd, V. Jacobson, “Random Early Detection Gateways for
Congestion Avoidance”, IEEE/ACM Transactions on Networking,
vol. 1, no. 4, pp. 397-413, 1993.

[17] D. D. Clark, W. Fang, “Explicit Allocation of Best-Effort Packet
Delivery Service”, IEEE/ACM Transactions on Networking, vol. 6,
no. 4, pp.362-373, 1998.

[18] C. E. Palazzi, S. Ferretti, S. Cacciaguerra, M. Roccetti, “A RIO-like
Technique for Interactivity Loss Avoidance in Fast-Paced Multiplayer
Online Games”, ACM Computers in Entertainment, vol.3, no.2, Apr
2005.

[19] K. Park, W. Willinger, Self-Similar Network Traffic and Performance
Evaluation, Wiley-Interscience, 1st Edition, 2000.

[20] The Network Simulator, NS-2. [Online]. Available:
http://www.isi.edu/nsnam/ns/

[21] G. Armitage, “An Experimental Estimation of Latency Sensitivity in
Multiplayer Quake 3”, in Proc. of ICON, pp. 137-141, Sydney,
Australia, Sep-Oct 2003.

[22] Movie Trace Files. [Online]. Available: http://www-tkn.ee.tu-
berlin.de/research/trace/ltvt.html

