Hindawi Publishing Corporation

International Journal of Computer Games Technology
Volume 2009, Article ID 456169, 9 pages
doi:10.1155/2009/456169

Research Article

Enhancing Artificial Intelligence on a Real Mobile Game

Fabio Aiolli and Claudio E. Palazzi

Department of Pure and Applied Mathematics, University of Padova, Via Trieste 63, 35131 Padova, Italy

Correspondence should be addressed to Claudio E. Palazzi, cpalazzi@math.unipd.it

Received 30 May 2008; Accepted 8 September 2008

Recommended by Kok Wai Wong

Mobile games represent a killer application that is attracting millions of subscribers worldwide. One of the aspects crucial to
the commercial success of a game is ensuring an appropriately challenging artificial intelligence (AI) algorithm against which to
play. However, creating this component is particularly complex as classic search Al algorithms cannot be employed by limited
devices such as mobile phones or, even on more powerful computers, when considering imperfect information games (i.e., games
in which participants do not a complete knowledge of the game state at any moment). In this paper, we propose to solve this
issue by resorting to a machine learning algorithm which uses profiling functionalities in order to infer the missing information,
thus making the Al able to efficiently adapt its strategies to the human opponent. We studied a simple and computationally light
machine learning method that can be employed with success, enabling AT improvements for imperfect information games even
on mobile phones. We created a mobile phone-based version of a game called Ghosts and present results which clearly show the
ability of our algorithm to quickly improve its own predictive performance as far as the number of games against the same human
opponent increases.

Copyright © 2009 E. Aiolli and C. E. Palazzi. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly

cited.

1. Introduction

Mobile phones have brought into our lives the possibility
and the willingness to be always reachable by anybody; they
have almost become an extension of ourselves, making us
Homo Mobilis for how much we tend to never separate
from them [1]. Service providers are riding this wave by
continuously offering new appealing services. Among the
others, mobile games represent a great and ever-increasing
source of revenue in the mobile service market. Indeed,
market studies report incomes for the wireless gaming
industry in the order of billions of US dollars worldwide and
with a 40% growth each year [2—4].

Gaming has always been one of people’s favorite digital
applications. Nowadays, three main reasons have enabled its
success even in the mobile market [5]. First, the incredible
proliferation of mobile phones, which have surpassed in
number base line phones in countries such as Finland
and Italy, thus creating hundreds of millions of poten-
tial customers. Second, technological advances have trans-
formed mobile phones from a cordless version of a regular
phone into a hand-held computer able to deliver quality

audio/video and quickly run complex algorithms, as those
required by recent games. Third, the increasing availability
of wireless connectivity (i.e., GPRS, UMTS, Bluetooth, Wi-
Fi) provides the possibility to play online with other people
and allows to create new business models where the game is
bought online and directly downloaded in the mobile phone.

While the trend toward a massive use of mobile games is
out of dispute, several technical problems remain unsolved;
the market success of future (and present) mobile games
also passes through providing valid answers to them. For
instance, a challenging research issue is related to the
availability of an adequate Al algorithm. Indeed, users often
play alone against the AI; this could happen to avoid the
connectivity cost to play against another mobile user, or
because a mobile phone may have gaming capabilities but no
connectivity, or just because the user prefers so. Therefore,
the game has to be endowed with an Al that is fun to play
against: neither too trivial, nor too tough. Unfortunately,
classic searching techniques may not be feasible for the
considered context for two main reasons: (i) a game could be
played on mobile phones with limited computational power,
(ii) these techniques might not function when considering

certain games. Elaborating on this second point, we have
to remember that games can be classified into two main
categories, perfect information games (e.g., Chess) and imper-
fect information games (e.g., Poker), depending on whether
participants have or do not have a complete knowledge of
the game state at any moment. When players have just a very
limited knowledge of the game state, resorting to traditional
state space searches, may result in an AI which behaves
similarly to a random decision maker.

As a case study for this problem, we have created a
mobile phone-based version of an imperfect information
game named Ghosts, a simple board game played by two
opponents. The board game has been invented by Alex
Randolph and is sold in Germany by Drei Magier Spiele.
Its original (German) name is: “Die guten und die bdsen
Geister,” that is, “good and bad ghosts;” for brevity, we simply
name it Ghosts. The game is particularly interesting for our
study as players do not have a complete knowledge of the
game state: they can both see the position of game pieces
on the board, but they cannot see the type of the opponent’s
ones. Depending on this information, different tactics will
be adopted (i.e., attack the opponent’s piece, leave it alone,
run away from it). Therefore, in order to win, a player has
also to infer the type of each of the opponent’s pieces. This
information can be extracted from the player’s behavior, also
keeping in mind that different players can adopt different
strategies, for instance, by resorting more or less frequently
to bluffing.

To this aim, as main research contribution of this work,
we have developed a new kind of Al solution that is able
to adapt the gaming strategy to the current human player
inferring unknown information about the game state. Our
solution employs machine learning techniques to mimic
the human’s ability in intuiting the opponent’s intentions
after several game sessions and is hence particularly helpful
with imperfect information games. Simply, it associates the
behavior features of a player with a presumed type of a
piece; by observing how a player acts in different game
state configurations, the Al becomes able to classify tactics
employed by that player and to adapt to them.

Even if this Al solution represents our main scientific
contribution, while creating our mobile version of the game
Ghosts, we have not overlooked at two practical problems
that are crucial in the successful deployment of a real
mobile game: (i) compatibility with the highest number of
mobile phones in the market and (ii) connectivity among
players’ mobile phones [5]. To this aim, we have evaluated
possible alternatives and finally adopted the state-of-the-
art technology that allows the widest compatibility and
connectivity among existing mobile phones.

The rest of the paper is organized as follows. Since we
developed a real mobile game with an original Al solution,
in Section 2, we discuss development issues that are at
the basis of implementative choices and, in Section 3, we
overview related Al scientific works. Then, in Section 4,
we technically present our developed mobile game. As our
novel Al approach represents the main research contribution
of this work, we devote Section5 to discuss its details.
Section 6 describes the experimental scenario and reports the

International Journal of Computer Games Technology

corresponding outcomes. Finally, in Section 7, we provide a
conclusion and future directions for this work.

2. Technical Development Background

In this section we provide background information about
two technical issues which are very important to take into
account in order to develop a successful mobile game,
namely, compatibility and connectivity.

2.1. Compatibility. The current mobile gaming panorama is
affected by a significant fragmentation problem that pre-
cludes making a game available to the entire mobile market
[6]. This is caused by both the absence of a standard in
terms of software platform for mobile phones [5] and by the
specific characteristics (e.g., screen size) of different phones,
even when produced by the same manufacturer. Indeed, if
game designers wanted to fully exploit the features of a given
device, they should renounce to have that game also running
on entry-level phones. Another practiced solution is that of
developing multiple versions of the same game to have one
version specifically designed for each class of mobile phone;
clearly this solution has a cost.

Currently, we can identify three software platforms that
emerge as the most popular ones when considering mobile
games with connectivity capabilities: Symbian [7], Binary
Runtime Environment for Wireless (BREW) [8], and Java
Micro Edition (Java ME) [9]. The first one is a proprietary
operating system that has been developed by a consortium
among Nokia, Sony Ericsson, Siemens, Panasonic, and
Samsung. As these brands represent a very wide portion of
the global mobile market, Symbian can be considered a very
popular operating system. Symbian applications have also
the advantage of being fast as they are generally written in
C++ and can make use of specific features of the considered
mobile phone. This may require specific programming
skills and raises compatibility issues with other software
platforms.

BREW is a development platform for mobile phones and
it is based on C++. As a main advantage, BREW is located
between the application layer and the operating system of
the mobile phone; this way, it offers a simple interface
to the programmer to handle different system/networking
details. Unfortunately, BREW is not a free platform and this
significantly limits its popularity.

Finally, Java ME is a Java application environment
designed for devices with limited capabilities in terms of
processing power, memory, and graphics. Its Connected
Limited Device Configuration (CLDC) is composed by a
set of libraries specifically designed to run Java applications
on limited devices; this set of libraries is extended by the
Mobile Information Device Profile (MIDP) that embodies
a set of APIs for the GUI, the data storage, and the
networking functionalities. The latest release, MIDP 2.0,
provides specific APIs also to generate 3D graphics for
games. Mobile applications written in Java ME are named
MIDlet and, although they do not run as fast as applications
purposely designed for a particular device or platform, their

International Journal of Computer Games Technology

main advantage is that, potentially, they can be run on any
Java ME-compatible device.

All these platforms have both pros and cons, thus
demonstrating the need for a solution that will enable the
automatic porting of any mobile game on any mobile phone.
However, this is not the aim of this work; we simply note
that currently Java ME with MIDP 2.0 is the solution that
provides the widest portability of the developed software.

2.2. Connectivity. Different communication technologies are
available today on most of mobile phones (e.g., GPRS,
UMTS, Bluetooth, Wi-Fi); thereby, being able to exploit
them has become an important aspect in the success of a
mobile game [5]. The current mobile scenario is dominated
by 2G and 3G (GPRS and UMTS, resp.). Phone service
providers have done huge investments on this technology;
therefore, this communication means present the advantage
of being available almost anywhere. Yet, its bandwidth,
latency, and cost often block users from using it.

Bluetooth connectivity is also very popular today as only
really cheap mobile phones are produced today without
it. Bluetooth was designed to implement personal area
networks (PANs) and, thereby, its bandwidth and latency
also allow to support multimedia applications [10]. Trans-
missions happen only in a ~10 m range, which implies that
players have to be one in front of (or beside) the other
to play together; yet, this proximity in the real world is
often part of the fun of playing together. Finally, Bluetooth
communications are not billed.

Wi-Fi is another communication technology that can
be free of charge (or available at a low fixed cost). Its
transmission range is in the order of 100 m but can be
used as well to play online with other people all around the
world by simply connecting to the Internet through an access
point in proximity [11]. Unfortunately, Wi-Fi capabilities are
currently present only on expensive mobile phones; plus,
while walking in a street, there might not be around any
freely accessible Wi-Fi access point thus impeding its use.

The optimal solution would be that of having the game
enabled to work on any of the aforementioned connectivity
means and choosing, at any moment, the “best” among
the available ones (e.g., the fastest, the cheapest, the most
reliable) [12, 13]. However, if a mobile game producer
decides to create a game with only one connectivity option,
we deem that the chosen one should be Bluetooth as it is
available on almost any new mobile phone and its use is
free of charge. The combination of these two characteristics
makes users willing to use it for their leisure.

3. Artificial Intelligence Related Work

In this paper, we present a novel Al approach for imperfect
information games; we hence deem important to devote this
section to provide a discussion about related work in Al.
The first self-learning gaming program, that is, Checkers,
was created in 1959 and represented a very early demon-
stration of the fundamental concept of Al in games [14].
Nowadays, all video games include some Al that may act

as a virtual opponent or as a component of the game itself.
Yet, the Al of current games show only little advancements if
compared to its ancestors; only for few specific games the Al
has achieved great improvements (e.g., Chess [15]).

As already stated in Section 1, games can be categorized
into two main classes: games where the players possess
perfect information about the current game state (e.g., Chess,
Tic-tac-toe) and games where players can rely on imperfect
information only (e.g., Poker, Rock-paper-scissors). The Al
of perfect information games can easily evaluate a given
game state by just searching all possible continuations to a
fixed depth. For this kind of games, the main problem in
developing an Al is related to the capability of precomputing
correct evaluations of each game state and then storing and
retrieving them in an efficient manner [16-18].

Instead, with imperfect information games, deep search
may not be feasible and storing precomputed evaluations
might not result in significant improvements in the AIs
strength [19, 20]. In this case, techniques like temporal dif-
ference learning are also unsuitable as the intermediate states
of a game are only partially determined [21]. Alternative
solutions have hence to be explored to enhance the level of
the Al For instance, simulation search [22-25] evaluates the
possible next moves by self-playing a multitude of simulated
game sessions, considering the current state as the starting
point and utilizing different values for the indeterministic
parameters (i.e., dice rolls, cards held by the opponent player,
etc.). To generate real-time responses during the game,
these simulations can be run before the game and statistics
can be stored to be promptly available during the game.
Unfortunately, the branching factor of certain games may
considerably limit the effectiveness of this technique.

To this aim, in Section 5 we discuss a new machine
learning approach that mimics the human’s ability in
evaluating important information about the current game
state that goes beyond, for instance, the board position
[26]. In essence, our mechanism models the opponent’s
behavior over several game sessions so as to be able to exploit
the weaknesses and the typical behaviors of the considered
human player.

4. A Representative Case of Imperfect
Information Game: Ghosts

For our study, we need a simple, yet representative exemplar
of imperfect information game. Ghosts embodies a perfect
case as, not only it belongs to this class of games, but it is
also governed by few simple rules, which makes it easier to
appreciate the improvement produced by the employment of
our Al solution.

The rules of Ghosts are listed hereinafter. Two players
have to place 8 ghosts each at the back of a 6 X 6 board as
shown in Figure 1. Each player has 4 good ghosts and 4 bad
ghosts, but the information about which are good and which
are bad is hidden to the opponent player. On each turn,
a player moves one of her/his ghosts one square vertically
or horizontally; if by doing so the ghost is moved onto an
opponent’s ghost, the latter is captured by the former. In

FIGURE 1: Initial setup of Ghosts.

(Recordld 1)

(Recordld 5)

@ecordld 1@

[Recordld 2) [

RecordStore

FIGURE 2: The record management system.

order to win, different possibilities are available to a player:
(1) having all of her/his bad ghosts captured by the opponent
player, (ii) capturing all the good ghosts of the opponent
player, (iii) moving one of her/his good ghosts off the board
from one of the opponent’s corner squares. Clearly, one of
the interesting aspects of Ghosts is its bluffing element which
is differently utilized by different human players.

4.1. Development of Ghosts for Mobile Phones. The develop-
ment of the digital version of Ghosts for mobile phones has
passed through three different phases: creating the GUI and
the basic logic of the game, enabling communication among
two mobile phones, adding the AI with our player profiling
capability. We discuss in this section the first two of these
phases, which are related to the practical implementation of
the game; we leave the third one to the next section as its
research contribution deserves a deeper and different kind of
discussion.

To create the game, we decided to use Java ME. This
choice was motivated by several reasons. First, developing
mobile games through the APIs of MIDP 2.0 is quite
simple. Second, Java ME comes also with an emulator that
facilitates software development before trying it on real
mobile devices. Third, we wanted to create a game with the

International Journal of Computer Games Technology

highest portability on different devices; indeed, we tested our
final game on various mobile phones (Nokia 7610, 6630,
6670, 6260, N70, N95) and it perfectly worked in all cases.

Unfortunately, memorizing data related to a mobile game
cannot be done in a trivial way as we would do with
regular computer-based games. The problem is related to
the employed mobile device; indeed, in our phone, we
had to resort to a specific data structure named Record
Management System (RMS). More in detail, Figure 2 shows
that RMS is modeled on the basis of a simple database where
stored data are organized in records.

The connectivity of the game has been ensured through
Bluetooth. We are currently adding the possibility to exploit
Wi-Fi and we plan to enable GPRS and UMTS in the future;
however, having to choose just one connectivity means to
start with, we preferred Bluetooth since it is available on most
of the mobile phones on the market, its use is free of charge,
and it does not require networking infrastructure (i.e., access
points, game servers) to work.

With Bluetooth connectivity, one of the involved devices
has to act as a server and the other(s) can be client(s). In
our game, which phone acts as a server and which one as
a client is explicitly chosen by the two players when starting
the game session. With the help of Figure 3 we describe the
various phases to initiate a game session among two mobile
phones. First, our Ghosts application has to be started on
both mobile phones to enable the local device. A choice is
made between activating the game as a server or as a client;
then, in the former case, the service is created and waits for
a client, whereas in the latter case, the client has to search
for devices within its transmission range. Once a device is
found, the client searches for a specific service (i.e., the game
server) on that device; if the service is discovered then the
connection is established and messages (e.g., game moves)
can be transmitted in turn from one device to the other in
order to play the game (our game prototype running on a
mobile phone is shown in Figure 4).

5. Enhancing the AI with Player
Profiling Capabilities

The last component of our mobile game is represented by
the AT algorithm that allows players to play in solo mode; it
is also the most interesting from a research point of view.

Problems in game Al are typically grouped with respect
to certain characteristics. One of the most intriguing is
related to how much information is available to the players.
This leads us to distinguish between perfect information
games and imperfect information games. The latter is more
interesting as it represents a more challenging case.

Ghosts embodies a good case study as it falls in the class of
imperfect information games, yet, it is simple enough to be
analyzed. In Ghosts, a player does not have any information
about the type of the opponent’s ghosts (i.e., good or bad);
thereby, any search state space-based technique, for example,
min-max algorithms, will fail. In other words, without any
other heuristic judgment, the behavior of a machine driven
player could not be better than any trivial random player.

International Journal of Computer Games Technology

Local
device

Discovery

MIDlet agent

getlocalDevice ()

getDiscoveryAgent ()

retrieveDevices ()

startInquiry ()

deviceDiscovered ()

searchServices ()

servicesDiscovered ()

getConnectionURL ()

5
Connection
Service Remote (L2CAP or
record connector device stream)

Connector.open ()

getRemoteDevice ()

receive

send

F1GuURrE 3: Connection steps through Bluetooth.

FIGURE 4: Our final Ghosts game running on a mobile phone.

Indeed, in order to plan its moves, an Al algorithm would
certainly benefit from some other source of information
about the type of the opponent’s ghosts (the missing
information). We propose to get this additional information
from the playing style of a player. The basic assumption we
make is that different players have different playing behaviors
(being aggressive, bluffing, etc.) and they tend to move pieces
of a certain type in a similar way when facing similar game
situations. Specifically, our claim is that by knowing the
playing style of a player, it is possible to recognize the type
of a given ghost by its moves. We can then use a machine
learning algorithm [21] to compile a behavior profile of good
and bad pieces of a player. During future game sessions, this
knowledge can be used to predict the type of a ghost in the
board and possibly to define higher level game heuristics, like
min-max algorithms, based on these predictions. This kind

of prediction can be easily seen as a classification problem in
machine learning, as discussed in the following section.

5.1. Machine Learning for Classification. One of the most
important problems in machine learning is classification. In
this setting, given a set of preclassified instances, one wants
to predict the class of new instances never seen before. In the
simplest case we have two labels, say {—1,+1}, denoting that
an instance belongs (+1), or not belongs (—1), to a given
concept (or class). Instances of the problem are described
by d-dimensional vectors, each component containing the
value of a given attribute (feature) relative to the instance. In
general, it is assumed that the instance-class pairs are drawn
according to a fixed (but unknown) probability distribution.
Moreover, the set of preclassified examples, that is, the
training set, is assumed to be drawn according to the same
probability distribution.

Various algorithms have been designed to solve this
problem; they can be grouped into two big families: discrim-
inative and nondiscriminative methods. Given any class, a
nondiscriminative method tries to estimate the probability
of an instance using the training examples; then, it uses the
Bayes rule (or similar, [27]) to estimate the probability of
each class given an instance; finally, through these estimates,
any new instance can be classified with the most likely
class. Note that each class is treated independently and the
estimation of the probability of instances given the class can
be done by using instances of that class only.

A discriminative method tries to directly estimate the
posterior probability of each class given the instance. For this
last estimate, all the examples of the training set have to be

6 International Journal of Computer Games Technology

60 60
50 \ 50 vvvx
g 40 \ § 40 \
= 30 i
A 20 \ a 20 T\
10 \ 10 \
0 0
1 3 5 7 9 1113 1517 19 1 5 9 13 17 21 25 29
Move Move
60 60
50 \ 50 \
§ 40 \ § 40 \
é 30 [é 30
=20 =20 \
10 10 \
0 0
1 7 13 19 25 31 37 1 5 9 13 17 21 25
Move Move
60 60
50 \ 50
;\3 40 \ ;\3 40
§ 30 § 30
] Lo—o—o—o—o—o—o—o—‘ = X
=20 \ =20 \
10 X 10 \
0 0
1 5 9 13 17 21 1 5 9 13 17 21 25 29
Move Move
60 60
50 \ 50 \
;é\ 40 \ g 40 \
=20 \ =20
10 \ 10
0 0
1 3 57 91113 1517 19 1 5 9 13 17 21 25
Move Move
60 60
50 \ 50
§ 40 \ ’0\3 40
é 30 [é 30
=20 =20 \
10 10 \
0 0
1 5 9 13 17 21 25 1 5 9 13 17 21 25 29
Move Move

FIGURE 5: Percentage of error of the prototype-based machine learning algorithm (proportion of times a type of a piece on the board is
wrongly predicted) for 10 different game sessions. The x-axis represents the moves of the player during that game session (the number of
moves for a game varies on different game sessions).

used together. Generally, a nondiscriminative method tends One of the most successful discriminative classification
to be more efficient and computationally less demanding methods is the Support Vector Machine (SVM) [28]. With
than discriminative methods. However, discriminative meth- this method, instances are mapped into a very large feature

ods usually have best performances. space where a linear separator (a hyperplane) is found by

International Journal of Computer Games Technology

the learning algorithm. Advantages of SVM with respect
to previously devised methods, like neural networks, for
example, are the solid theoretical framework on which they
are defined and the small number of hyperparameters that a
user has to tune to use them. Furthermore, since the SVM
solution can be found by optimizing the dual of a convex
constrained quadratic objective function, this solution does
not suffer of local minima as neural networks do. Moreover,
the solution can be expressed in the very simple form of a
linear combination of functions which depend on training
instances in the original (lower dimensional) space.

The problem with SVM is that, since the generated model
is defined on the basis of a subset of training examples, the
evaluation of the decision function can be onerous when
the training set size is big. This makes SVM quite unsuitable
when a fast reaction of the classifying system is expected (e.g.,
in a real-time application) or when the utilized device has
limited computational capabilities. Furthermore, the storage
memory required by the model generated by an SVM is of an
order linear with the cardinality of the training set, and this
could be an issue when devices with a very limited memory
should be used (e.g., mobile devices).

Among nondiscriminative classification methods, proto-
type-based methods are probably the easiest and less com-
putationally demanding. In this method, a prototype is
built for each class representing the common patterns of
instances of the associated class. Specifically, once given a
distance metric between instances, the basic idea is to build
a prototype vector for each class, having the same dimension
of the instances, in such a way to minimize the mean value
of the distances between the prototype and each of the
instances of the class. Once these prototypes are built, a new
instance is classified with the class associated with the closest
prototype. This method is theoretically founded when some
statistical assumptions are made about the distribution of
the examples and is empirically demonstrated to obtain good
performances.

5.2. Prototype-Based Classification in Ghosts . Since our par-
ticular application is thought to work even with very limited
computational resources, we have adopted a prototype-based
classifier as the machine learning methodology. Specifically,
for each player, a prototype of good and a prototype of bad
ghost behavior are trained based on 17 features which have
been considered informative to determine the nature of a
ghost in the game.

In particular, the following features have been chosen: 8
features with binary values representing what was the initial
position of the piece on the board among the eight possible
ones, 5 features representing the moves of the piece during
the game session (if it is the first piece that the player moved,
if it is the second piece that the player moved, the number
of backward, forward, and lateral moves already performed
by that piece), and the remaining 4 features representing
the piece’s behavior when it has been under threat of being
captured (how many times it has reacted by capturing the
opponent piece, how many times it has escaped by moving
to another board position, how many times it has remained

45
40 A
35 1

30 - : : S
25 1 : : e :
20 1 : : e :
15 : : e :
10 : : e :
5 | , , o ,
04
5 10 25 50 80

Training set size

Error (%)

FIGURE 6: Averaged leave-one-out error obtained by the machine
learning algorithm varying the number of game logs used for
training.

on its position, and how many times it has moved from its
square to threat another opponent’s piece).

To build the prototype for a player, our algorithm needs
first to collect data, that is, the training set, from previous
game sessions with the same human player. For each of these
sessions and for each piece a corresponding feature vector is
built according to the criteria above which are based on the
behavior of the piece in the game. The prototype for good
(or bad) pieces is then determined as the average among
the feature vectors representing good (or bad) pieces. More
formally, given G = {g1,..., g} the set of feature vectors for
good pieces of a given player, and B = {by,...,b,} the set of
available feature vectors for bad pieces of the same player, the
prototype vectors are computed as:

1< 1<
PG ==>g, Py = => b, (1)
nia i

Now, let be given a new feature vector f representing the
profile of a piece of unknown type on the board; a badness
score can hence be computed by using the normalized
distance with respect to the player prototypes, that is,

d(f,Pg) —d(f,Pp)
d(f,Pg)+d(f,Pp)’

where d(x, y) is the Euclidean distance between vectors x
and y. Note that the score is always a number between —1
(definitely good) and +1 (definitely bad).

On each move in the middle of a game session, the
prediction of the type of the pieces on the board is performed
in the following way. First, since the exact number of good
and bad pieces (1, and ny, resp.) still on the board is a known
information, a badness score for each of these pieces can be
computed by utilizing (2). Then, the pieces are ranked based
on this score and the n;, highest score pieces are predicted to
be bad pieces.

The error committed in a prediction is computed as
the number of bad pieces which are actually predicted as
good ones. Needless to say, with the ranking method we
used to discriminate between bad and good pieces, this error

s(f) =

(2)

also corresponds to the number of good pieces which are
incorrectly predicted as bad.

6. Experimental Results

In this section, experimental results showing the effectiveness
of our profiling methodology are reported. The experimental
setting consisted in a mobile phone-based version of Ghosts.
A user played a set of 81 games against other human players.
Game logs of these matches, containing the initial state of the
board and all the moves of the two players, have been stored
during the games.

6.1. Evaluation of the Profile Construction in a Single Game
Session. First, we studied the reliability of our profiler during
a game session. Clearly, at the beginning of a game, the
profile cannot be precise as some features of a piece may
still be unavailable or underestimated. Thus, even if the
models generated by our prototype-based machine learning
algorithm were perfect, the correct classification of a piece
may be difficult at the early stage of a game session, given
the low informative degree of its profile. We can expect the
prediction error to decrease whenever the profile becomes
more and more informative and complete. However, this
represents a desirable property as, in general, it is not so
important to have a very low error when the game is at
the very beginning, whereas it becomes crucial as the game
session proceeds.

In particular, plots in Figure 5 give the percentage of
error that affects our machine learning algorithm during
ten single game sessions. Instantaneous values of the error
percentage are provided at each move performed during the
game session. Needless to say, the total number of moves
to conclude a game session is variable; this is why charts in
Figure 5 have different ranges of the values on the x-axis.
Note that 50% of error means that two good (and two bad)
ghosts out of four were wrongly labeled as bad (good), 25%
represents the case with only one good (and one bad) ghost
wrongly labeled, and 0% error is the case when the system
provides a perfect prediction of the type of all the ghosts
in the board. As anticipated, the precision of the predictor
quickly improves as a game session continues and six out of
the ten charts in Figure 5 achieve a percentage of 0% error
during the second half of the game session.

6.2. Evaluation of the Machine Learning Algorithm. In a
second set of experiments, we evaluated the performance
of the machine learning algorithm. This has been done by
estimating the probability to make errors in future match
games. To this end, a leave-one-out procedure has been
used. This measure, very common in the machine learning
community for evaluating the expected performance of a
classifier, provably gives a statistically unbiased estimate of
the expected percentage of mistakes that a classifier will
make. To compute these statistics, for each available game
session log, a model has been generated by removing that
game log from the set and training the prototype-based
classifier on the remaining 80 game logs. Then, the mean

International Journal of Computer Games Technology

error in the left out game log is computed as the proportion
of piece type guess mistakes out of the total guesses during
the game. Finally, all these mean errors have been collected
and averaged to obtain a final estimate of the algorithm’s
performance. In particular, with the considered set of 81
game logs, the leave-one-out estimate resulted in a 26.3%
error.

We also wanted to show how the prototype-based
classifier improves its accuracy as the number of previously
stored game logs increases. To this aim, we have exploited
again the leave-one-out procedure but this time considering
different training set sizes (consisting of 5, 10, 25, 50, 80
game logs). For each chosen training log set sizes, the leave-
one-out procedure has been repeated each time considering
a different left out game log; the averaged resulting error
percentages are reported in Figure 6. As expected, with a
larger size of the training set, the machine learning algorithm
is able to build a more reliable prototype of the player’s
profile, thus improving the performance of the prediction
system.

7. Conclusion and Future Work

The mass adoption of mobile phones in our society has
transformed them from gadgets into commodities. The tech-
nical features of these devices have reached a quality level that
makes them able to run multimedia applications. One of the
most successful mobile applications is certainly represented
by gaming and, in this paper, we discussed technical issues
related to this context. In particular, we have proposed an
original solution that improves the capability of the Al by
allowing it to profile its human opponent and exploit her/his
weaknesses. Our approach is particularly useful for imperfect
information games and for games running on devices with
limited computational capabilities (e.g., mobile phones),
where a pure searching algorithm could not be employed; at
the same time, it can be easily plugged into any standard Al
or temporal difference learning-based algorithm to enhance
its performance.

As a real testbed for our solution, we created a mobile
phone-based game also considering the state-of-the-art
in compatibility and connectivity technology available on
today’s phones. The game that we have chosen for our
experiments is Ghosts, an imperfect information game that
can be either played against another player or against the
Al algorithm. Results gathered during our experimental
evaluation demonstrate that our approach achieves the
desired goal of an effective profiling of the player.

Intentionally, we have chosen a very simple machine
learning technique for our experiments for two main
reasons. First, we wanted to be sure that the chosen
algorithm could be run, producing the desired goal, even
on a device with limited computational capabilities. Second,
our experiments were intended to prove the viability of
our general method and they achieved this goal; in the
future, more complex machine learning algorithms such as,
for instance, SVM [28] can be utilized; also, an extended
set of features to profile the opponent’s behavior could be
evaluated.

International Journal of Computer Games Technology

Another attractive future direction for this work would
be that of applying recent machine learning methods which
can deal with problems different from the classification one.
In fact, it can be noted that the reduction of the Ghosts
game to a classification problem is not the only one possible.
Actually, the real need in the Ghosts game is to decide which
the good and bad pieces are once we have a rank of the
pieces based on their “badness;” then, ad hoc approaches to
learn rankings and preferences (e.g., [29]) can be exploited
to improve the performance of the system.

Finally, we also plan to apply our solution to more
complex imperfect information games such as Invisible Chess
and Kriegspiel which are heterodox chess variation in which
players are not informed of their opponents position and
moves [30, 31].

Acknowledgments

The authors feel indebted toward the anonymous referees,
whose insightful comments and suggestions greatly helped
them in improving the final version of this manuscript. Fur-
thermore, their deep gratitude goes to Federico Giardina and
Ivan Mazzarelli for their technical contribution in developing
the digital version of the game and the experimental setup.

References

[1] “Homo Mobilis,” The Economist, 2008, http://www.econ
-omist.com/specialreports/displaystory.cfm?story_id=
10950487/.

[2] “Cellular Mobile Gaming Grows to EUR 6 Billion in 2006,”
2003, http://www.cellular.co.za/news_2003/101503-mobile_
gaming_grows_to_eur_6_bil.htm.

[3] B. Gibson, “Casual Gamers and Female Gamers to Drive
Mobile Games Revenues over the $10 Billion Mark by 2009,
http://www.juniperresearch.com/shop/viewpressrelease.php?
id=19&pr=16.

[4] ZDNet Personal Tech, “Mobile-game market to boom,” 2004,
http://news.zdnet.com/2100-1040_22-5355648.html.

[5] J. O. B. Soh and B. C. Y. Tan, “Mobile gaming,” Communica-
tions of the ACM, vol. 51, no. 3, pp. 35-39, 2008.

[6] E. Koivisto, “Mobile games 2010,” in Proceedings of the
International Conference on Game Research and Development
(CyberGames °06), pp. 1-2, Murdoch University, Perth, Aus-
tralia, December 2006.

[7] Symbian OS: the Open Mobile Operating System, http://www
.symbian.com/.

[8] Qualcomm Brew, http://brew.qualcomm.com/brew/en/.

[9] “The Java ME Platform—the Most Ubiquitous Applica-
tion Platform for Mobile Devices,” http://java.sun.com/
javame/index.jsp.

[10] Bluetooth.com | The Official Bluetooth® Technology Info
Site, http://www.bluetooth.com/bluetooth.

[11] IEEE 802.11-2007, “IEEE Standard for Information
technology-Telecommunications and information exchange
between systems-Local and metropolitan area networks-
Specific requirements - Part 11: Wireless LAN Medium Access
Control (MAC) and Physical Layer (PHY) Specifications,”
2007.

[12] E. Gustafsson and A. Jonsson, “Always best connected,” IEEE
Wireless Communications, vol. 10, no. 1, pp. 49-55, 2003.

[13] V. Gazis, N. Houssos, N. Alonistioti, and L. Merakos, “On
the complexity of “always best connected” in 4G mobile
networks,” in Proceedings of the 58th IEEE Vehicular Technology
Conference (VIC ’03), vol. 4, pp. 2312-2316, Orlando, Fla,
USA, October 2003.

[14] A. L. Samuel, “Some studies in machine learning using the
game of checkers,” IBM Journal of Research and Development,
vol. 3, no. 3, pp. 211-229, 1959.

[15] M. Campbell, “Knowledge discovery in deep blue,” Communi-
cations of the ACM, vol. 42, no. 11, pp. 65-67, 1999.

[16] V. Allis, A knowledge-based approach of connect-four the game
is solved: white wins, M.S. thesis, Department of Mathematics
and Computer Science, Vrije Universiteit, Amsterdam, The
Netherlands, 1998.

[17] R. Gasser, Efficiently harnessing computational resources for
exhaustive search, Ph.D. thesis, Eidgenossische Technische
Hochschule, Zurich, Switzerland, 1995.

[18] M. Buro, “The Othello match of the year: Takeshi Murakami
vs. Logistello,” International Computer Chess Association Jour-
nal, vol. 20, no. 3, pp. 189-193, 1997.

[19] D. Billings, “The first international RoShamBo programming
competition,” International Computer Games Association Jour-
nal, vol. 23, no. 1, pp. 42-50, 2000.

[20] D. Egnor, “locaine powder,” International Computer Games
Association Journal, vol. 23, no. 1, pp. 33-35, 2000.

[21] T. Mitchell, Machine Learning, McGraw Hill, New York, NY,
USA, 1997.

[22] J. Schaeffer, “The games computers (and people) play,”
Advances in Computers, vol. 50, pp. 189-266, 2000.

[23] D. Billings, L. Pena, J. Schaeffer, and D. Szafron, “Using
probabilistic knowledge and simulation to play poker,” in
Proceedings of the 16th National Conference on Artificial
Intelligence and the 11th Innovative Applications of Artificial
Intelligence Conference (AAAI °99), pp. 697-703, Orlando, Fla,
USA, July 1999.

[24] M. L. Ginsberg, “GIB: steps toward an expert-level bridge-
playing program,” in Proceedings of the 16th International Joint
Conference on Artificial Intelligence (IJCAI *99), pp. 584589,
Stockholm, Sweden, July-August 1999.

[25] B. Sheppard, “Mastering Scrabble,” IEEE Intelligent Systems,
vol. 14, no. 6, pp. 15-16, 1999.

[26] E Aiolli and C. E. Palazzi, “Enhancing artificial intelligence in
games by learning the opponent’s playing style,” in Proceedings
of the Ist IFIP Entertainment Computing Symposium on New
Frontiers for Entertainment Computing, in Conjunction with the
20th IFIP World Computer Congress (ECS °08), pp. 1-10, Milan,
Italy, September 2008.

[27] S. Russell and P. Norvig, Artificial Intelligence: A Modern
Approach, Prentice Hall Series in Artificial Intelligence, Pren-
tice Hall, Englewood Cliffs, NJ, USA, 1995.

[28] V. Vapnik, The Nature of Statistical Learning Theory, Springer,
Berlin, Germany, 1995.

[29] E Aiolli, “A preference model for structured supervised
learning tasks,” in Proceedings of the 5th IEEE International
Conference on Data Mining (ICDM °05), pp. 557-560, Hous-
ton, Tex, USA, November 2005.

[30] A.Bud, D. Albrecht, A. Nicholson, and I. Zukerman, “Playing
invisible chess with information-theoretic advisors,” in Pro-
ceedings of the AAAI Spring Symposium on Game Theoretic and
Decision Theoretic Agents, Stanford, Calif, USA, March 2001.

[31] P. Ciancarini, F. Dalla Libera, and F. Maran, “Decision
making under uncertainty: a rational approach to Kriegspiel,”
Advances in Computer Chess, vol. 8, pp. 277-298, 1997.

