
 1 

Interactivity-Loss Avoidance in Event Delivery Synchronization  
for Mirrored Game Architectures 

 

Claudio E. Palazzi(1,2), Stefano Ferretti(1), Stefano Cacciaguerra(1), Marco Roccetti(1)* 
1Dipartimento di Scienze dell’Informazione, Università di Bologna,  

Mura Anteo Zamboni 7, 40127 Bologna, Italia 
2Computer Science Department, University of California Los Angeles,  

Boelter Hall, Los Angeles CA, 90095, USA 
{cpalazzi, sferrett, scacciag, roccetti}@cs.unibo.it 

 

Abstract 
Since the expansion of their market and their challenging requirements, Massively Multiplayer Online Games are 

gaining increasing attention in the scientific community. One of the key factors in this kind of application is 

represented by the ability to rapidly deliver game events among the various players over the network. Employing in 

this context Mirrored Game Server architecture and adapting RED (Random Early Detection) techniques borrowed 

from network queuing management, we are able to show sensible benefits in upholding interactivity and scalability, 

whilst preserving game state consistency and game evolution fluency at the player’s side.  

Keywords 
Massively Multiplayer Online Game, Online Entertainment, Event Delivery Service, Interactivity, Consistency. 

EDIC: 7-CONS, 3-VRAR, 3-QUAL. 
 

1. Introduction 

In the last decade, thanks to their impressive progression in plunging players into terrifically realistic 

and capturing virtual worlds, online games have expanded their market with a persistent and accelerating 

growth. Nowadays, Massively Multiplayer Online Games (MMOGs) are further extending the boundaries 

of what has been defined “the tenth art” with the possibility of contemporary engaging millions of players 

located all over the world. Unfortunately, MMOG is a highly interactive application, characterized by 

strict real time requirements, harder than those accomplishable by traditional Internet protocols [1]. 

It is widely accepted that a suitable architecture able to efficiently manage large-scale distributed 

games may make use of a constellation of mirrored Game State Servers (GSSs), which are deployed over 

the network in a limited number [2]. GSSs maintain replicas of the same game state view. Having 

multiple replica servers allows each client to connect in a Client-Server fashion to the closest mirror, thus 

reducing the communication latency. Each GSS assembles all game events of its engaged players, creates 

                                                 
* Contact Author. 



 2 

an updated game state, and then forwards it to all the other GSS peers. Prominent advantages of this 

approach are the absence of a single point of failure, having the networking complexity maintained by the 

servers, and the possibility to implement authentication. Nevertheless, synchronization schemes are still 

required to ensure the global consistency of the game state hold by the various servers. 

Highly interactive applications as MMOGs are extremely sensitive to delays in event deliveries. In 

case of an intense traffic in the network or when excessive computational loads are slowing down some 

GSSs, the responsiveness of the system may be jeopardized. A proficient synchronization algorithm for 

MMOGs should be able to face both these two situations in order to preserve a high level of interactivity 

and an identical contemporary view of the game state among all the nodes in the system.  

We present a novel synchronization mechanism able to uplift the playability degree of MMOGs by 

maintaining the event delivery delays under a human-perceptivity threshold. The core element at the basis 

of our scheme is the adoption of proactive queue management techniques [3] combined with the use of 

the semantics of the game [4]. In essence, events that can be considered obsolete since the arrival of 

fresher ones may be discarded at a given GSS utilizing a dropping probability which depends on the 

perceived responsiveness at that GSS. Limiting the number of game events in the system provides two 

beneficial results: it alleviates the processing burden and reduces the impact of network latency on 

playability. As a consequence, the game event delivery time results minimized.  

The remainder of this paper is organized as follows. Section 2 reviews principal works in the field of 

online game interactivity. In Section 3, we discuss some design issues at the basis of our work and in 

Section 4 we present our novel scheme. The simulative environment and the corresponding results are 

provided, respectively, in Sections 5 and 6. Finally, Section 7 concludes the paper.  

2. Related Work 

Several research works have already brought contributions to the factual development of efficient 

synchronization schemes. Compression and aggregation consider networking having a dominant position 

when dealing with the delays and thus with the playability of a MMOG [5]. These schemes, however, pay 



 3 

the achieved communication latency benefits with increased computational costs. Moreover, aggregation 

wastes time delaying the transmission of the available events while waiting for other ones to aggregate. 

In the attempt to reduce both the traffic load in the network and the computational cost to process 

each game event, Interest Management techniques have been devised for games where generated events 

are relevant only for a small fraction of users [6]. A tradeoff relationship exists between the amount of 

computation spared at the destination by receiving only a limited number of packets and that one 

expended at the sending GSS to implement the filtering scheme.  

Slightly detaching playability from the real responsiveness of the network, optimistic algorithms can 

be utilized to avoid delay perception. In case of lousy interactivity among GSSs, in fact, an optimistic 

approach executes events before really knowing if ordering would require processing other on-the-way 

events first. Game instances are thus processed without waiting for other possibly coming packets. 

Rollback based techniques are exploited to reestablish the consistency of the game state. Time Warp and 

Trailing State Synchronization represent exemplars of this class of algorithms [2, 7].  

Dead Reckoning is a latency hiding method that utilizes a reduced frequency in sending update 

packets while compensating the lack of information with prediction techniques [8]. However, predicted 

actions are not always trustworthy. Therefore, convergence techniques have sometimes to be exploited to 

recover from provisional instances of the game having some momentary inconsistencies.  

3. Background 

3.1. Interactivity vs Consistency 

Distributed multiplayer games are characterized by two main requirements which cannot be 

considered as independent one from the other: interactivity and consistency. The former refers to the 

delay between a game event generation in a node and the time at which the other nodes become aware of 

that event. Indeed, in order to guarantee interactivity, the external stimuli generated by players have to be 

processed under a human-perceptivity threshold.  

Consistency, instead, regards the contemporary uniformity of the game state view in all the nodes of 



 4 

the system. The easiest way to guarantee full consistency is to make the game proceed through discrete 

locksteps. At each step, each node waits until having received all the actions from the other participants; 

then a new instance of the game is produced. However, the larger the delay while waiting for actions from 

all the players, the smaller the interactivity degree. This is a factual demonstration that a tradeoff 

relationship exists between interactivity and full consistency when designing online game schemes. 

3.2. Obsolescence and Correlation 

Full Consistency can be attained through the use of a completely reliable, totally ordered event 

delivery scheme [9]. On the other hand, this approach increments complexity and delays. Waiting for the 

arrival of the next action in the processing sequence, while having successive events ready in queue, may 

sensibly slow down the evolution of the game, jeopardizing interactivity.  

In recent studies, we have demonstrated that exploiting the semantics of the game can be put to good 

use to relax the requirements for reliability and total order delivery, thus augmenting interactivity [4, 10]. 

Some events, in fact, can lose their significance as time passes: new actions may make the previous ones 

irrelevant. For example, where there is a rapid succession of movements by a single agent in a virtual 

world, the event representing the last destination supersedes the older ones. Obsolescence can hence be 

defined as the relation between two received events e  and e , generated at different times t  < t , by 

which the existence of event e  diminishes the importance of e  and the need for its processing, without 

affecting consistency. Dropping obsolete events instead of processing and forwarding them to other nodes 

clearly reduces the delays, thus speeding up the execution of fresher events.  

To define a game event as obsolete, we have to be sure that consistency would not be weakened. To 

this aim, we also have to take into consideration the notion of correlation. Two events, say e  and e*, are 

correlated if the final game state depends on their execution order. Correlation has to be taken into 

account to determine the obsolescence of an event. In fact, it might be the case when e  would make 

obsolete a previous event e  but a further event e*, correlated to e  and temporary interleaved between e  

and e , breaks this relationship of obsolescence. Hence, correlated events are the only ones that really 

need to be delivered in the same order as generated. Instead, the total order delivery requirement can be 



 5 

relaxed in case of non-correlated events.  

Finally, it is worth mentioning that other alternative event ordering strategies exist (e.g., causal and 

FIFO orders). However, they are generally not suitable for capturing the peculiar notions of obsolescence 

and correlation. Interested readers may refer to [4] where examples are provided of correlated events that 

are also concurrent and hence cannot be delivered according to FIFO or causal ordering strategies. 

4. A Novel Scheme for Interactivity-Loss Avoidance: ILA-RED 

Hereinafter, we present two possible ways to exploit the notions of obsolescence and correlation to 

gain interactivity: Interactivity Restoring and Interactivity-Loss Avoidance. 

4.1. Interactivity Restoring: “Healing after illness” 

In a previous study, an obsolescence-based scheme was developed aimed at restoring interactivity 

after having already lost it [4]. Specifically, according to this scheme (hereinafter referred to as ON-OFF), 

during the game event delivery, each GSS measures the interval of time between the generation and the 

arrival of every game event it receives; the resulting value is named Game Time Difference (GTD). This 

GTD is then compared to a predefined constant named Game Interaction Threshold (GIT) and, until the 

former value is lower than the latter, normal delivery operations are performed. Conversely, when the 

GTD value exceeds the GIT, the GSS turns on a stabilization mechanism which exploits the obsolescence 

notion to drop obsolete messages so as to bring the GTD back within the GIT (referred to as phase ON). 

Since only obsolete events are discarded, this stabilization mechanism reduces the GTD without causing 

inconsistencies in the game evolution. Needless to say, a global conception of time must be maintained by 

all the GSSs, for example by exploiting a variety of solutions able to synchronize their physical clocks 

[11, 12], or by employing new technological synchronization devices such as GPS. 

4.2. Interactivity-Loss Avoidance: “Prevention is better than cure” 

Interactivity-Loss Avoidance takes inspiration from the well known Random Early Detection (RED) 

algorithm, a proactive congestion avoidance mechanism enforced at routers [3], and tries to preempt the 

loss of interactivity before it may happen (hereinafter the scheme is referred to as ILA-RED).  



 6 

In particular, according to ILA-RED (see Fig. 1), when receiving a packet, each GSS determines the 

GTD of the relative event and feeds a low pass filter to update the average of the GTDs, called avg_GTD. 

When avg_GTD exceeds the min threshold (referred to as phase 1), the GSS drops obsolete events with a 

certain probability p, while neither processing nor forwarding them. If avg_GTD exceeds the subsequent 

max limit (referred to as phase 2), p is set equal to 1, and all the obsolete events waiting for being 

processed are discarded; max represents the human perceptivity threshold and thus corresponds to the 

aforementioned GIT. The dropping probability p is a function of avg_GTD and Pmax as shown in (1).  

 
min)(max

min)(avg_GTDPmax
p

�

�u
  (1) 

Persistent situations of low interactivity result in large values of avg_GTD and, hence, in high 

discarding probabilities. An elevated dropping probability will make the GSS discard events without 

processing or forwarding them, thus helping in preventing the loss of an adequate level of time interaction 

between servers. Interested readers can find a detailed rationale for the algorithm design choices in [10]. 

5. ILA-RED: A Simulation Assessment 

To evaluate our scheme, we have simulated a general Mirrored Game Server architecture comprising 

a variable number of GSSs. For the sake of a deeper comprehension, we have focused our attention on the 

event receiving aspect of a single GSS (GSS0), pretending that the others are sending events to it. 

Following the literature [13], the values of the network latencies among the GSSs have been obtained 

based on a lognormal distribution having the average and standard deviation values as shown in Fig. 2. 

We carried out several simulation experiments (30) varying the number of sender servers from 4 to 7.  

Based on the assumption that each client connects to the closest GSS to limit the impact of the client-

GSS latency on the total delay experienced by game events, we have assumed to have the client-GSS 

latency portion already comprised in the network latencies among the GSSs. The event generation rate at 

each GSS follows a lognormal distribution as inspired by literature about games and varies from a normal 

traffic situation to an intensively loaded one [14]. In particular, different experiments have been 

conducted with an Average Interval Departure Time (AIDT) between two subsequent events varying 



 7 

from 30ms (intense game traffic) to 60ms (moderate game traffic), while having the standard deviation 

constantly equal to 10ms. Finally, the average event size was set equal to 200 Bytes. 

The probability that an event makes obsolete preceding ones was set to 90%. This represents a 

realistic scenario for a vast plethora of possible games (i.e. adventure, strategic, car race, flight simulator, 

etc.), where most of the events are just independent moves. In other words, critical (correlated) game 

events that cannot become obsolete have to be considered only sporadically, such as during collisions or 

shots, and may represent even less than the 10% of the whole set of game events.  

As a confirmation of this claim, an extensive study of players’ behavior on Quake 3 is presented in 

[15]. In that paper, a measure of the average number of kill actions per minute as a function of the median 

ping time between client and server is reported. In particular, it is shown that when the 80% of players is 

located within 180ms of range from the server, an average of kill actions per minute is achieved which 

varies in the interval from 1.60 to 3.25. Considering the median of this interval (2.425) we obtain 0.04 kill 

events per second. With an AIDT of 60ms at client side [14, 16], 16.67 game events are generated every 

second. Therefore, the resulting percentage of kill events over the whole set of game actions amounts to 

just 0.24%. Pessimistically assuming that a kill event can be issued only after an average number of 40 

correlated actions (e.g., various shots, movements of the character into the location where it will be shot 

or out of the position where it would have been shot) we get 9.6% of critical events. Therefore, 10% of 

correlated events and 90% of obsolescence probability represent a realistic configuration for online games 

simulations. Nevertheless, for the sake of completeness, we have also carried out a set of experiments 

with an obsolescence probability set equal to 50%. Obviously, an obsolescence probability of 50% 

implies an even more frantic game with an incredible increase of critical (correlated) game actions. 

Parameters highlighted in Fig. 1 were set as follows: Pmax = 0.2, min = 50ms and max = 150ms 

(equivalent to the GIT in the ON-OFF scheme). Special attention should be devoted to the chosen value 

for max. Recent studies, in fact, have demonstrated that players who are actively involved in a fast paced 

online game must experience network delays that lie below 150ms [15–17]. Further, based on these 

studies, it is now common knowledge that a game service provider should place game servers armed with 



 8 

a network radius around 150-180ms on the Internet to satisfy their target player market. The contribution 

of our scheme becomes relevant whenever a distributed game architecture is deployed based on the above 

assumptions of topological locality. Obviously, if network latencies massively surpass the 150ms 

threshold, interactivity is hardly guaranteed. Nevertheless, also in this negative case, our proposed scheme 

is useful to alleviate the problem. Moreover, the 150ms limit holds for games like vehicle racing, first 

person shooter, etc., but could be increased to 300ms in case of strategic and role play games [17]. 

We have replicated each experiment to compare the outcomes of three different synchronization 

schemes: our proposed ILA-RED scheme, the ON-OFF mechanism [4], and the conventional OFF 

approach (having neither obsolete events drops nor other algorithms to restore interactivity). 

6. ILA-RED: Simulation Results 

We intend to demonstrate the benefits that can be attained by implementing an event-discarding 

algorithm in case of a trend toward an increase in GTDs. To this aim, in Fig. 3 we compare the percentage 

of events arrived at GSS0 with a GTD value larger than the GIT; in other words, the non-interactive 

events. As observable, both ILA-RED and ON-OFF outperform the conventional OFF scheme, 

independently of the number of sending GSSs. 

6.1. ILA-RED vs ON-OFF: A Comparative Evaluation 

The interactivity results above were obtained by ILA-RED with a percentage of discarded events 

ranging from 10% to 14% (depending on the number of the servers). Slightly worse interactivity was 

obtained by ON-OFF at a cost of from 25% to 35% of discarded events. This is a very important 

advantage obtained when utilizing ILA-RED w.r.t. ON-OFF. In fact, even if obsolete events can be 

sacrificed to gain a better interactivity, they are still part of the game visual progression. Dropping too 

many obsolete events could result in jerky rendering and temporary interruptions of the image/video flow 

on the player’s screen. These artifacts and unpredictable gaps in the game evolution could be annoying 

for customers and should be avoided whenever possible.  

Another advantage of ILA-RED, when compared to ON-OFF, is represented by its ability in 



 9 

guaranteeing a more uniform and fluent progression of the game. In essence, event drops in ILA-RED are 

not concentrated only during phase 2: they rather fall more uniformly over the whole game session 

through some phase 1 interludes. These benefits are confirmed by our measurements. In Fig. 4, the great 

difference between the histograms clearly shows that the preemptive, probabilistic dropping action of 

ILA-RED in phase 1 strongly reduces the number of times interactivity is lost and needs to be recovered 

by resorting to phase 2, where, instead, all obsolete events are discarded (with a probability equal to 1).  

Finally, Fig. 5 shows the occurrence of bursts of non-interactive events for both ILA-RED and ON-

OFF. This represents the number of times that two or more game events were consecutively received with 

a GTD greater than the GIT. As Fig. 5 demonstrates, the number of these bursts during the game is 

sensibly smaller when ILA-RED is employed. 

6.2. Sensitivity Analysis as a Function of the Game Traffic Intensity 

We aim at finding the breakeven point in the performance curves between ILA-RED and ON-OFF. 

As can be seen in Fig. 6, the difference in the number of discarded game events between ILA-RED and 

ON-OFF progressively diminishes as we increase the AIDT value. With AIDT = 60ms, in fact, these two 

synchronization schemes present comparable amounts of discarded events; moreover, the great advantage 

against the OFF scheme has been sensibly reduced (see Fig. 7). Nevertheless, obsolescence based 

discarding schemes still present lower average and standard deviation of the GTDs, as shown in Table 1.  

Two main reasons lie at the basis of this outcome. First, having lower game event generation rates 

decreases both latencies in the network and queuing time at the receiving GSS, thus naturally improving 

the interactivity degree, yet without any external intervention. Second, both ILA-RED and ON-OFF 

schemes rely on discarding obsolete events when the interactivity level decreases. Consequently, to be 

effective, these schemes require droppable obsolete events queued at the GSS while the server is 

experiencing lousy interactivity. This accumulation of events waiting for being processed is more likely 

to happen with more intense game traffic (i.e., lower AIDT values). 



 10 

6.3. Sensitivity Analysis as a Function of the Obsolescence Probability  

ILA-RED requires the presence of droppable obsolete game events to take action. Therefore, not only 

are its benefits more evident in case of high game traffic, but its efficacy depends on the percentage of 

potential obsolete events. This claim is confirmed by Fig. 8, where we report the outcome of our 

simulations in terms of non-interactive events, as a function of different obsolescence probabilities (i.e., 

50%, 90%). In order to understand more clearly where the performance improvement of both ON-OFF 

and ILA-RED over OFF scheme is coming from, we also present in Fig. 9 the average waiting time that 

game events experience in queue at GSS0 before being processed. Finally, the corresponding percentages 

of discarded game events are reported in Fig. 10. 

7. Conclusion and Future Work 

To guarantee a pleasant game experience to online players engaged by MMOGs, a high interactivity 

degree, as well as a uniform view of the game, has to be provided. To this aim, an efficient 

synchronization scheme among Mirrored Game Servers should be implemented as basic solution. We 

have proposed a proactive event discarding mechanism, named ILA-RED, which relies on the 

discrimination of obsolete events as an innovative way to meet the aforementioned requirements. 

Experimental results confirmed the efficacy of our scheme. 

Finally, one of the main contributions of our work is represented by the original idea of adapting 

proactive queue management techniques to maintain interactivity in MMOGs. To this aim, the utilization 

of RED-like techniques should be considered as a proof-of-concept and several alternatives may be 

considered [18–21]. In particular, a scheme that permits to determine the target queue size as, for 

instance, Adaptive RED [22] may represent a good candidate for future investigations in the field of 

online games. 

Acknowledgments 
This research was conducted with a financial support from the Italian MIUR via the Interlink Project. We are indebted to the 
anonymous referees of the IEEE Transactions on Multimedia for their helpful review of this article. 

References 

[1] S. Wright, S. Tischer, “Architectural Considerations in Online Game Services over DSL Networks”, in Proc. IEEE 
International Conference on Communications - (ICC'04), IEEE Communications Society, Paris, France, 2004, pp.1380-1385. 



 11 

[2] E. Cronin, A. R. Kurc, B. Filstrup, S. Jamin, “An Efficient Synchronization Mechanism for Mirrored Game Architectures”, 
Multimedia Tools and Applications, vol.23, no.1, 2004, pp.7-30. 

[3] S. Floyd, V. Jacobson, “Random Early Detection Gateways for Congestion Avoidance”, IEEE/ACM Transactions on 
Networking, vol.1, no.4, 1993, pp.397-413. 

[4] S. Ferretti, M. Roccetti, “A Novel Obsolescence-based approach to Event Delivery Synchronization in Multiplayer Games”, 
International Journal of Intelligent Games and Simulation, vol.3, no.1, 2004, pp.7-19. 

[5] S. Singhal, M. Zyda, Networked Virtual Environments: Design and Implementation, Addison Wesley, 1999. 

[6] K. L. Morse, L. Bic, M. Dillencourt, “Interest Management in Large-Scale Virtual Environments”, Presence, vol.9, no.1, 
2000, pp.52-68. 

[7] D. R. Jefferson, “Virtual Time”, ACM Transaction on Programming Languages and Systems, vol.7, no.3, 1985, pp.404-425. 

[8] S. Srinivasan, “Efficient data consistency in HLA/DIS++,” in Proc. 1996 Winter Simulation Conf., 1996, pp. 946–951. 

[9] D. R. Cheriton, D. Skeen, “Understanding the Limitations of Causal and Totally Ordered Multicast”, in Proc. of the 14th 
Symposium on Operating System Principles (SOSP '93), Asheville, NC, 1993, pp.44-57. 

[10] C. E. Palazzi, S. Ferretti, S. Cacciaguerra, M. Roccetti, “On Maintaining Interactivity in Event Delivery Synchronization for 
Mirrored Game Architectures”, in Proc. of the 1st IEEE NIME'04, GLOBECOM 2004, Dallas, TX, 2004, pp.157-165. 

[11] D. L. Mills, “Internet Time Synchronization: the Network Time Protocol”, IEEE Transactions on Communications, vol.39, 
no.10, 1991, pp.1482-1493. 

[12] P. Ramanathan, K. G. Shin, R. W. Butler, “Fault Tolerant Clock Synchronization in Distributed Systems”, IEEE Computer, 
vol.23, no.10, 1990, pp.33-42. 

[13] K. Park and W. Willinger, Self-Similar Network Traffic and Performance Evaluation, Wiley-Interscience, 1st Edition, 2000. 

[14] J. Farber, “Network Game Traffic Modelling”, in Proc. of NetGames2002, Braunschweig, Germany, 2000, pp.53-57. 

[15] G. Armitage, “An Experimental Estimation of Latency Sensitivity in Multiplayer Quake 3”, in Proc. of ICON, Sydney, 
Australia, 2003, pp.137-141. 

[16] M. S. Borella, “Source Models for Network Game Traffic”, Computer Communications vol.23, no.4, 2000, pp.403-410. 

[17] F. Fitzek, G. Schulte, M. Reisslein, “System Architecture for Billing of Multi-Player Games in a Wireless Environment 
Using GSM/UMTS and WLAN Services”, in Proc. of NetGames2002, Bruanschweig, Germany, 2002, pp.58-64. 

[18] W. Feng, D. Kandlur, D. Saha, K. Shin, “A Self-Configuring RED Gateway”, in Proc. of IEEE Infocom, New York, NY, 
1999, pp.1320-1328. 

[19] W. Feng, D. Kandlur, D. Saha, K. Shin, “Blue: A New Class of Active Queue Management Algorithms,” Tech. Rep. UM 
CSE-TR-387-99, 1999. 

[20] D. Lapsey, S. Low, “Random Early Marking for Internet Congestion Control”, in Proc. of IEEE Globecom, Rio de Janeiro, 
Brasil, 1999, pp.1747–1752. 

[21] S. S. Kunniyur, R. Srikant, “An Adaptive Virtual Queue (AVQ) Algorithm for Active Queue Management”, IEEE/ACM 
Transactions on Networking, vol.12, no.2, 2004, pp.286–299. 

[22] S. Floyd and R. Gummadi and S. Shenker, “Adaptive RED: An Algorithm for Increasing the Robustness of RED”, 
http://www.icir.org/floyd/papers/adaptiveRed.pdf. 
 

 
Figure 1: Discarding probability function. 

G SS 0

G SS 1

G SS 2
G SS 4G SS 3

G SS 5

G SS 6

G SS 7

a:15  sd:15

a:40  sd:15 a:75  sd:30 a:90  sd:10

a:80  sd:20

a:30  sd:15

a:100  sd:25

P rocessing 
&  D elivery

a: latency average (m s) sd: latency standard devia tion (m s)L egend:  
 Figure 2: The adopted configuration. 



 12 

0

10

20

30

40

50

60

70

4 5 6 7
Number of Sending GSSs

%
 o

f G
TD

s 
ov

er
 G

IT
 

OFF ON-OFF ILA-RED  
Figure 3: Percentage of events with GTD over GIT; 

AIDT = 30ms. 

0

20

40

60

80

100

120

140

4 5 6 7
Number of Sending GSSs

# 
A

ct
iv

at
io

ns
 o

f O
N

 / 
P

ha
se

2

ON-OFF ILA-RED  
Figure 4: # of activations of phase ON and phase 2 for 

ON-OFF and ILA-RED respectively; AIDT = 30ms. 

0

20

40

60

80

100

120

140

4 5 6 7
Number of Sending GSSs

# 
of

 B
ur

st
s 

of
  

no
n-

In
te

ra
ct

iv
e 

E
ve

nt
s 

 

ON-OFF ILA-RED  
Figure 5: # of bursts of non-interactive events;  

AIDT = 30ms. 

0

5

10

15

20

25

30

35

40

30 45 60

AIDT (ms)

%
 o

f D
ro

pp
ed

 E
ve

nt
s

ON-OFF ILA-RED  
Figure 6: Percentage of dropped events;  

7 sending GSSs. 

0

10

20

30

40

50

60

70

4 5 6 7
Number of Sending GSSs

%
 o

f G
T

D
s 

ov
er

 G
IT

 

OFF ON-OFF ILA-RED  
Figure 7: Percentage of events with GTD over GIT; 

AIDT = 60ms. 

0

10

20

30

40

50

60

70

90% 50%
Obsolescence Probability

%
 o

f G
TD

s 
ov

er
 G

IT

OFF ON-OFF ILA-RED  
Figure 8: Percentage of events with GTD over GIT; 

AIDT = 30ms; 7 sending GSSs. 

4 sending GSSs 5 sending GSSs 6 sending GSSs 7 sending GSSs  
OFF ON-OFF ILA-RED OFF ON-OFF ILA-RED OFF ON-OFF ILA-RED OFF ON-OFF ILA-RED 

MAX 328 326 326 328 325 325 319 286 286 340 328 325 
MIN 88 88 88 88 88 88 87 87 86 92 91 90 
AVG 144 133 133 154 142 142 153 142 142 169 155 154 

ST DEV 42 29 29 41 29 28 40 29 29 42 27 27 
Table 1: Maximum, minimum, average and standard deviation of the GTDs (ms); AIDT = 60ms. 

0

20

40

60

80

100

120

90% 50%
Obsolescence Probability

A
vg

 Q
ue

ui
ng

 T
im

e 
(m

s)
  

OFF ON-OFF ILA-RED  
Figure 9: Average queuing time of game events at GSS0. 

0

5

10

15

20

25

30

35

40

90% 50%
Obsolescence Probability

%
 o

f D
ro

pp
ed

 E
ve

nt
s

ON-OFF ILA-RED

 

 
Figure 10: Percentage of dropped events;  

AIDT = 30ms; 7 sending GSSs. 

 


