
1

TCP Libra: Derivation, Analysis, and Comparison
with Other RTT-fair TCPs

Gustavo Marfia∗, Claudio E. Palazzi†, Giovanni Pau∗, Mario Gerla∗, Marco Roccetti‡
∗ Computer Science Department

University of California, Los Angeles, CA, 90095
e-mail:{gmarfia∣gpau∣gerla}@cs.ucla.edu

† Dipartimento di Matematica Pura e Applicata
Università degli Studi di Padova, 35121, Padova, Italia

e-mail: cpalazzi@math.unipd.it
‡ Dipartimento di Scienze dell’Informazione

Università di Bologna, 40126, Bologna, Italia
e-mail: roccetti@cs.unibo.it

Abstract— The Transmission Control Protocol (TCP), the most
widely used transport protocol over the Internet, has been
advertised to implement fairness between flows competing for
the same narrow link. However, when session round-trip-times
(RTTs) radically differ, the share may be anything but fair. This
RTT-unfairness represents a problem that severely affects the
performance of long-RTT flows and whose solution requires a
revision of TCP’s congestion control scheme. To this aim, we
discuss TCP Libra, a new transport protocol able to ensure
fairness and scalability regardless of the RTT, while remaining
friendly towards legacy TCP. As main contributions of this paper,
i) we focus on the model derivation and show how it leads to the
design of TCP Libra; ii) we analyze the role of its parameters and
suggest how they may be adjusted to lead to asymptotic stability
and fast convergence; iii) we perform model-based, simulative,
and real testbed comparisons with other TCP versions that have
been reported as RTT-fair in literature. Results demonstrate the
ability of TCP Libra in ensuring RTT-fairness while remaining
throughput efficient and friendly towards legacy TCP.

I. INTRODUCTION

Traffic control functionalities in the Internet are provided
by the Transmission Control Protocol (TCP) in an end-to-
end fashion. TCP addresses three major issues: reliability, flow
control and congestion control [1]. To achieve the third goal,
TCP adapts the sending rate to avoid network overflow. The
most popular versions, TCP New Reno and TCP SACK [2],
implement a congestion control algorithm which falls into the
AIMD (Additive Increase, Multiplicative Decrease) family of
algorithms and whose very basic concepts can be summarized
as follows:
∙ when a packet loss is detected, the TCP sender decreases

its sending window by half;
∙ when a packet is successfully delivered, the TCP sender

increases its sending window by one over the sending
window.

TCP’s feedback for the successful delivery of a packet is
embodied by a returning acknowledgement (ACK). As a result,
competing TCP senders with different end-to-end propagation
delays will typically receive feedbacks at different rates and
adapt their sending rate at a different pace. This phenomenon

determines the RTT-bias, or RTT-unfairness, of TCP New
Reno and TCP SACK. A number of TCP variants have been
designed to limit the effects of this problem and to improve
scalability over gigabit links. Most of them adopt a proactive
approach based on monitoring packets’ RTT and reacting to its
increase in an attempt to avoid network congestion [3]. This
behavior is justified by the assumption of a strong correlation
between packet loss and RTT increase prior to the loss event.
Yet, this dependency has been proven to be weak in [4], RTT
probes may still be too coarse to correctly foresee congestion
[5]. Examples of algorithms that fit into this category are TCP
Vegas [6], TCP DUAL [7] and FAST TCP [8], [9].

Instead, we have chosen a different approach, named TCP
Libra1, by which, even if the sending window is controlled
based on RTT measurements, the main trigger for window
changes remains the packet loss [10]. Even if our scheme
takes into account the delay information, it does not use it
to lower the sending rate; rather, the RTT information is used
to delay just the speed increase of the sending rate. In essence,
TCP Libra delays the moment at which congestion will occur,
instead of just preventing congestion in the network.

The contributions of this work include the complete deriva-
tion of the TCP Libra algorithm, an analysis of its stability
bounds, the validation of the algorithm implemented both in
Matlab, in NS2, and in the Linux stack, even through the
comparison with other RTT-fair schemes.

The rest of the paper is organized as follows. In Section II
and Section III we present the state of the art in RTT-fairness
and TCP modeling, respectively. The congestion control algo-
rithm of TCP Libra is introduced in Section IV, along with a
subsection dedicated to a stability analysis of Libra. A model
based comparison with other RTT-fair schemes is performed
in Section V. Experimental assessment and results are reported
in Section VI and in Section VII, respectively. Finally, con-
clusions and future work are presented in Section VIII.

1Libra in Latin means scale, thus indicating a balance between the sessions.

2

II. ADDRESSING RTT-UNFAIRNESS: RELATED WORK

A detailed mathematical model for the TCP throughput
at steady state, including the Fast Retransmit–Fast Recovery
phases and TCP’s timeout impact, was first introduced by
Padhye et al. in [11].

In [12]–[15] the congestion control problem is expressed
as a utility maximization problem, where the network utility
function is represented by the sum of utilities of each single
source, and the constraints are given by links’ interconnections
and capacities. This flow of work shows that TCP stability can
be achieved in the aforementioned network model if the TCP
utility function is concave.

A further substantial advancement in developing the theory
for network congestion control is exploited in the primal/dual
modeling approach [16]. The theoretical results have been used
to drive the design of an enhanced AQM technique, namely
Random Early Mark (REM), and of a new transport protocol,
namely FAST TCP. More in detail, the latter implements a
congestion control mechanism, based on queuing time, which
achieves network stability and high utilization in multi-gigabit
networks [8], [9], [17], [18].

The RTT-bias was first experimentally observed in [19]. The
authors propose a solution for this problem based on a constant
window increase algorithm. Henderson in [20] and Henderson
et al. [21] show that such solution leads to instability and
thus RTT-unfairness. This is especially true for links with long
propagation delays and small buffers such as satellite links.

To this aim, a few works have recently proposed new
RTT-fair TCPs. Among the most relevant ones, TCP Hybla
[22] implements a constant increase algorithm and provides
RTT-fairness under a certain stability bound. TCP Vegas [6]
provides good RTT-fairness but disregards friendliness. FAST
TCP [8], [9] increases TCP Vegas’ stability bounds, but with
a behavior that results either too timid or too aggressive when
coexisting with legacy TCP protocols (e.g., TCP New Reno
and TCP SACK).

Finally, CUBIC [23] features a linear RTT-fairness that
claims to improve BIC [24]. In particular, CUBIC tries to
decouple the window growth from the returning ACK process
(a similar approach is proposed also by H-TCP [25]). With
CUBIC, the window size is a function of the time elapsed
since the last packet loss, thus allowing higher efficiency
(in terms of total bandwidth utilization) in case of long fat
RTTs and reducing, even if not completely eliminating, the
throughput dependency from the RTT. Indeed, the throughput
still corresponds to the ratio between the window size and the
RTT, where two flows with similar packet loss trend may have
the same window but different RTTs.

Instead, as we discuss in Section IV, our approach takes into
account the RTT information to dynamically adapt the speed
increase of the sending rate. This allows to further improve
the RTT-fairness while preserving efficiency.

III. TCP MODEL BACKGROUND

In this section we review the background necessary to inter-
pret the end-to-end congestion control problem as a network
utility maximization problem [26]. We show how TCP New

Reno fits in this model and why it prevents fair RTT behavior.
Needless to say, the following discussion about TCP New
Reno model holds also for other similar protocols such as
TCP SACK.

A. Network Model and Optimization Problem

The network is modeled as a finite set of nodes N and links
L of finite capacity, which connect the nodes in N . We define
c as the vector of link capacities where each row (cl, l ∈ L)
represents the capacity of link l ∈ L. S is the set of sources
that accesses network resources, typically a subset of N and
L. Routing matrix R has entry one in position (i, j) if link
i is utilized by source j, zero otherwise. Each source r ∈ S
is characterized by its transmission rate, xr(t). The aggregate
flow at link l is defined as the sum of the contributions from
all sources that use that link:

yl(t) =
∑
r

Rlrxr(t− �flr) (1)

where �flr is the forward delay from source r to link l. We
define price to be the marginal cost (or penalty) per unit flow
that a source incurs in sending that flow increment. Intuitively,
a link sends an increased price, as a feedback signal, when
congestion is detected.

The aggregate price seen by source r is:

�r(t) =
∑
l

Rlrpl(t− � blr) (2)

where � blr is the backward delay in the feedback path from
link l to source r, pl(t) is the price signal sent by link l at time
t. We also define the marginal link price fl(y) as the marginal
cost for sending traffic at rate yl =

∑
r:l∈r xr on link l.

Let’s now suppose we are able to define a function that
describes precisely the return that each source r experiences
when sending data at rate xr. In fact, it is very difficult
to understand which is the real advantage for a user when
sending at a certain rate. The function that describes this
advantage is defined in economics as a utility function. The
utility function of a congestion control scheme shapes its
equilibrium properties, such as the equilibrium sending rate
and its fairness properties.

We now have all the ingredients to state the optimization
problem we want to address:

maxxV (x) (3)

subject to: {
R x ≤ c

xr ≥ 0, ∀r ∈ S,
(4)

where V (x) =
∑
r Ur(xr)−

∑
l

∫∑
s:l∈s xs

0
fl(y)dy. By def-

inition
∫∑

s:l∈s xs
0

fl(y)dy is the total cost incurred at resource
l for pushing the contributions from all sources that utilize l
(i.e.

∑
s:l∈s xs represents the aggregate flow pushed through

l). Thus, V (x) is the net gain, i.e. the net utility of sources S,
which must be maximized.

3

Theorem 3.1: [26] [27] Under the assumptions:
1) Ur(xr) is a continuously differentiable, non-decreasing,

strictly concave function;
2) fl(y) is a non-decreasing, continuous function;

starting from any initial condition {xr(0) ≥ 0}, the distributed
congestion control algorithm,

ẋr = kr(xr)(U
′
r(xr)− �r(t)) (5)

(where kr(x) is any non-decreasing, continuous function such
that kr(x) > 0, ∀xr > 0) will converge to the unique solution
of (3) (4). In other words, x(t) → x̂ as t → ∞, where x̂ is
the unique solution to (3) (4).

Intuitively, we can identify packet loss or end-to-end delay
as �r(t) and the algorithm’s behavior as U ′r(xr) in (5). A high
packet loss or end-to-end delay, according to (5), provokes a
lower sending rate and viceversa.

The right-hand side of (5) represents the r-th component of
∇V (x), to which the multiplicative term kr(xr) was added.
Normally, in the conventional gradient method, kr(xr) = 1.
There is no harm, however, in introducing a non-decreasing
function that acts as a gradient amplifier. More intuitively, the
quantities that appear in the expression are:

1) kr(xr), the stepsize of the algorithm. As mentioned
earlier, this term is an amplification factor that determines
the amount by which the algorithm moves towards the
solution at each step. This term determines the speed of
convergence and the stability of the algorithm.

2) (U ′r(xr)−�r(t)), the direction in which the algorithm is
proceeding, searching for a solution (stable point).

A detailed proof of convergence can be found in [26].
However, we notice that the function with the derivative shown
on the right hand side of (5) is concave by construction. The
multiplicative term does not change the value xr that nullifies
the gradient. Thus, the gradient method leads to the unique
optimum of function V (x).

In brief, Theorem 3.1 states that in the absence of feedback
delay, any congestion control algorithm that can be mapped
into a concave utility function attains global asymptotic sta-
bility.

B. TCP New Reno

Let’s now consider the fluid model for congestion control
of TCP New Reno. From here on we will follow the notation:
∙ The r subscript means we are considering the r-th source.
∙ xr(t) is the rate of the connection at time t.
∙ wr(t) is the window size of the connection at time t.
∙ ˜RTT r is the average RTT.
∙ �r(t) is the probability of loss at time t.
∙ ar, the increase factor, is a constant that in TCP New

Reno is set to 1.
∙ br, the decrease factor, is a constant that in TCP New

Reno is set to 1/2.
TCP New Reno increments the window by 1/wr(t) per each

received ACK, hence the window increases as xr(t)
wr(t)

(1−�r(t)).
Similarly, every three consecutive duplicate ACKs (i.e. a
packet loss indication), the window is cut by half. The rate

of this event is xr(t)�r(t). The window then decreases at
a rate of xr(t)�r(t)wr(t)/2. We now may write the fluid
model for congestion control for an AIMD-like congestion
control scheme (e.g., TCP New Reno) under the assumption
that RTTr(t) = ˜RTTr, wr(t) = xr(t) ˜RTT r, and taking in
account feedback delays:

ẋr(t) =
xr(t− ˜RTT r)

˜RTT r
(ar

1− �r(t)
xr(t) ˜RTT r

−br�r(t)xr(t) ˜RTT r)

(6)
In (6) we consider that a window update at time t is

determined by the window state at time t− ˜RTT r, because of
feedback delay. This non-linear differential equation models
the throughput of the r-th flow.

TCP New Reno implements an approximate gradient algo-
rithm for the resolution of the congestion control problem. In
terms of (5), and considering the feedback delay as negligible,
we can write [26]:

ẋr = ar((
br
ar

)x2r(t) +
1

RTT 2
r

)(
1

br
ar
RTT 2

r x
2
r(t) + 1

− �r(t))

(7)
The above expression fits into the mathematical framework

introduced in Section III-A. Observing the structure of (7) and
comparing it with (5) we have:

U ′r(xr)− �t(t) = (
1

br
ar
RTT 2

r x
2
r(t) + 1

− �r(t)) (8)

Integrating in xr the term U ′r(xr), the utility function of TCP
New Reno follows:

U(xr) =
1
˜RTT r

√
ar
br

tan−1(

√
br
ar

˜RTT rxr) (9)

By observing (9) we note that setting ar = c ˜RTT
2

r (with
c some constant value) would produce an RTT-independent
utility function. This solution is discussed in [19]–[21]. The
main drawbacks may be summarized in a slow convergence
speed to the fair share and a decreased stability of the protocol.
In the following we introduce TCP Libra’s design, which leads
to fast convergence and stable behavior; we intuitively justify
the former and analytically demonstrate the latter.

IV. THE TCP LIBRA ALGORITHM

In previous literature, Floyd et al. in [19] and Henderson
in [20] prove that the simple constant increase approach
proposed earlier for RTT-fairness fails. This simple approach
consists in multiplying the congestion window by the square
of the RTT during the additive increase portion of the TCP
algorithm. Even though this approach claims to make TCP’s
utility function RTT-independent, it fails for stability reasons,
as Kelly proved in [12].

In the rest of this section we show how TCP Libra’s utility
function is not free from RTT components, as the reader might
at this point expect; yet, we prove that TCP Libra, with a
correct setting of its parameters, can achieve a good stability

4

region. Intuitively, what TCP Libra does is to take into account
how close the flow is to overflowing the network with packets.
This is measured by observing how close the current RTT is
to the maximum experienced RTT: the closer these two values
are, the slower the congestion window will grow and congest
the network.

A. Enhancing TCP New Reno

The feedback control system for regular TCP New Reno is
described in (6), where xr is the state variable, �r is the input
to the system, ar and br are control parameters that can be
tuned. The new terms âr and b̂r that we propose in TCP Libra
and that substitute ar and br are:

âr =
�r ˜RTT

2

r

T0 + ˜RTT r
ar, (10)

b̂r =
T1

T0 + ˜RTT r
br. (11)

Please note that compared to the solution discussed in [19]–
[21] we here have two new entries, the coefficients �r and
T1/(T0 + ˜RTT r), where T0 and T1 are constants.

In brief:

�r = k1Cre
−k2

RTTr(t)−RTTminr
RTTmaxr −RTTminr (12)

where k1 and k2 are constants, Cr is the capacity of the
narrow link seen by the r-th source, RTTminr and RTTmaxr

are the minimum and maximum RTT seen by source r. The
component k1Cr, introduced in [10] as the scalability factor,
adapts the convergence speed of the protocol as the narrow

link capacity increases. Instead, e
−k2

RTTr(t)−RTTminr
RTTmaxr −RTTminr is the

penalty factor discussed in [10]. The careful reader may object
that we are here re-introducing the dependency from the RTT.
Instead, we shall see from our results that this term keeps the
protocol asymptotically stable and preserves RTT-fairness.

The fluid model for TCP Libra can be derived by substitut-
ing âr and b̂r into (7) with (10) and (11), respectively, and by
setting ar = 1, br = 1/2. The resulting equation is:

ẋ = (
T1/2

˜RTT r + T0
x2(t)+

�̃r
˜RTT r + T0

)(
1

T1

2�̃r
x2(t) + 1

−�r(t))

(13)
The marginal utility function U ′(x) loosely depends on
˜RTT r (the average RTT) through �̃r, but we shall see that

this dependence is very low. We can therefore state that TCP
Libra minimizes the sum of the transfer delays in the network,
yet independently from the RTT experienced by the source.

These values lead to the following stable point for the r-th
source:

x̃r =

√
2
�̃r
T1

1− �̃r
�̃r

(14)

Summarizing now the design choices in (10) and (11) for
âr and b̂r, respectively, we can state that:

1) we achieve a stabilized rate, almost independent from
RTT, as we shall see in the next sections;

Fig. 1. Throughput of two flows, using a penalty function

Fig. 2. Throughput of two flows, omitting the penalty function

2) convergence speed to the stable point is preserved as link
speed increases through the introduction of a scalability
factor;

3) stability and RTT-fairness are enforced through the
penalty factor.

B. Algorithm

The resulting algorithm is represented in Alg. 1. Simulations
in Section VI are obtained setting T0 = 1, T1 = 1, k1 = 2,
k2 = 2. A higher value of k2 would have improved the link
utilization; this can be explained by observing that a higher
k2 would strengthen the dependence of the window increase
algorithm on the RTT and thus delay packet loss events. In
brief, a higher k2 enforces the sending window to be at its
maximum for a longer time, but we have noticed that a higher
k2 generates an excessively timid behavior of TCP Libra

5

Algorithm 1 Congestion Window Update in TCP Libra
windown ⇐ congestion window at step n
tℎresℎoldn ⇐ slow start threshold at step n
if a packet is successfully delivered then
windown+1 ⇐ windown + 1

windown

�nRTT
2
n

RTTn+T0

else
if three duplicate acknowledgements then
windown+1 ⇐ windown − T1windown

2(RTTn+T0)

tℎresℎoldn+1 ⇐ windown − T1windown
2(RTTn+T0)

end if
end if

toward TCP New Reno. Parameters k2 and k1 are strictly
related and are adjusted as a tradeoff between utilization,
fairness, and friendliness. T1 is the parameter that sets the
multiplicative decrease term, whereas T0 is the parameter
that sets the sensitivity of the protocol to RTT. The window
increase is driven, for RTTn << T0 (the typical case if T0 = 1
[28]), by the � factor and by the square of the RTT. In this
case, RTT-fairness is enforced and the algorithm helps large
bandwidth-delay-product flows, by letting their windows grow
much faster than in TCP New Reno. If instead RTTn >> T0
(a rather rare event where pathological congestion or routing
problems are affecting the connection), the window increase is
driven by the � factor and the RTT; in this case, RTT-fairness
is not preserved, yet, it is weighted only as the inverse square
root of the RTT.

C. Stability Analysis

As we have seen in the previous section, parameters
k1, k2, T0, T1 play an important role in TCP Libra. We here
show, extending the stability analysis of TCP New Reno to
TCP Libra, how they should be set. We will also understand
the importance of the penalty factor in keeping the protocol
within the asymptotic stability bounds.

Let’s consider a single TCP source on a single link, where
the probability of loss is modeled as the probability of having
a queue of length ≥ � on a M/M/1 queuing system. From
[26] we have that sufficient condition to achieve asymptotical
local stability for an AIMD protocol is:

� ˜RTT
�̃′

�̃
<
�

2
(15)

where � depends from the particular TCP scheme in the
AIMD family. In the case of a TCP New Reno flow, � =

�NewReno = ar/ ˜RTT
2

(we substitute ar = 1 from now on):

�̃′

�̃
<
� ˜RTT

2
. (16)

Let’s now consider a TCP Libra flow. For a TCP Libra
flow we have that �Libra = �NewReno ∗ âr = �

T0+ ˜RTT
2. We

substitute this value in (15) and obtain:

�̃′

�̃
<
�(˜RTT + T0)

2� ˜RTT
. (17)

2Here we substitute ar = 1.

By satisfying the condition that holds for TCP New Reno
in (16), we find an upper bound for �. In particular, � <

(˜RTT + T0)/ ˜RTT
2

gives us the values of � for which the
stability region of Libra is greater or equal than New Reno’s.
Recalling from Section IV-A that � = Scalability Factor ∗
Penalty Factor, we see that the above bound gives a
condition on k2 once k1 and T0 are fixed, and vice versa.
We derive the following from (12) (17):

k2 > −
RTTmax −RTTmin

˜RTT −RTTmin
log(

˜RTT + T0

k1C ˜RTT
2). (18)

The above is clearly a qualitative analysis, since it relates to
the simple case of a single link and a single flow, but it gives
us the feeling of how a choice of k1, k2 and T0 should be
made. Specifically, two important considerations emerge from
(18):
∙ an increase of k1 should correspond to an increase of k2

or T0 in order to keep the same stability bound as New
Reno;

∙ as expected, higher values of C and ˜RTT stress the
protocol and require a higher value of k2 to prevent
potential aggressiveness of the transport protocol.

The role of k2 can be appreciated in Fig. 1 and Fig. 2,
where we see the results of a simulation performed in NS2.
Two flows, with round-trip propagation delay of 400ms and
10ms respectively, in a dumbbell topology, compete on a
100Mbps narrow link. In the simulation related to Fig. 1, we
set k1 = 2, k2 = 2, T0 = 1, T1 = 1 the two flows share
the link fairly. Instead, in the simulation related to Fig. 2 we
set k2 = 0 (i.e., we omit the penalty function) and leave
other parameters unchanged. The second experiment shows
that without a penalty function (thus, similar to [19]–[21])
RTT-fairness is not preserved.

Outcomes from other simulative configurations, imple-
mented both in Matlab and NS2, allow us to observe the
behavior of two Libra flows as T0 and k1 increase (other
parameters are set to the default values, T1 = 1 and k2 = 2).
Specifically, we simulate two flows sharing a single 100Mbps
narrow link: flow 1 and flow 2, with round-trip propagation de-
lays of 10ms and 83ms, respectively. In our NS2 simulations,
we have set the slow start threshold to 1 and the packet size
to 1500 Bytes. We have also considered RED implemented on
the bottleneck router with the following parameters: �max =
0.1, b = 150pkts, B = 600pkts, and queue averaging weight
= 0.002.

Results achieved by flow 1 in three configurations employ-
ing different T0 and k1 values are reported in Fig. 3, Fig. 4, and
Fig. 5; whereas concurrent results of flow 2 are shown in Fig.
6, Fig. 7, and Fig. 8. In the three simulative configurations the
average throughput achieved by each flow is about the same,
regardless of the flow’s round-trip propagation delay. Indeed,
stability is preserved by having utilized a constant T0/k1
value. Moreover, a reduction of the instantaneous throughput
variance can be observed when increasing T0 and k1. This is
coherent with what already observed in [14]: the throughput
variance depends on the AIMD decrease rule thus having
higher T0 values producing the shown effect.

6

Fig. 3. Flow 1, with round-trip propagation delay
= 10ms, competing with Flow 2 on a 100Mbps
bottleneck. T0 = 1 and k1 = 2.

Fig. 4. Flow 1, with round-trip propagation delay
= 10ms, competing with Flow 2 on a 100Mbps
bottleneck. T0 = 4 and k1 = 8.

Fig. 5. Flow 1, with round-trip propagation delay
= 10ms, competing with Flow 2 on a 100Mbps
bottleneck. T0 = 8 and k1 = 16.

Fig. 6. Flow 2, with round-trip propagation delay
= 83ms, competing with Flow 1 on a 100Mbps
bottleneck. T0 = 1 and k1 = 2.

Fig. 7. Flow 2, with round-trip propagation delay
= 83ms, competing with Flow 1 on a 100Mbps
bottleneck. T0 = 4 and k1 = 8.

Fig. 8. Flow 2, with round-trip propagation delay
= 83ms, competing with Flow 1 on a 100Mbps
bottleneck. T0 = 8 and k1 = 16.

We can also approach the problem from the opposite
direction. We first set T0 = T1 = 1, k1 = 2; then, we estimate
the variables in a typical connection and use (18). We here
assume a 100Mbps link speed with 100ms one-way delay. The
buffer is set to the pipe size, 833 packets for a packet length
set to 1500 Bytes. We also consider the case in which the link
is congested, the average RTT is equal to the maximum RTT,

˜RTT = RTTmax. From (18), we derive:

k2 > −log(
0.2 + 1

2 ∗ 100 ∗ (0.2)2
) = −log(0.15) = 1.89. (19)

Coherently, we have set k2 = 2 in our simulations. We will
see in Section VII that the chosen set of values for the TCP
Libra parameters shows a good tradeoff in all performance
measures.

As a result of this discussion we can summarize that k2
should be big enough to preserve stability. Similarly, we could
increase also both T0 and k1 to the aim of preserving stability;
instead, T1 does not enter into the stability discussion, but a
small T1 will limit the throughput variance (same effect on the
decrease rule of choosing a high T0). From a large number of
simulations we observed that k2 has also another key effect:
it tunes the friendliness of TCP Libra to TCP New Reno.
For this reason we have chosen k2 = 2, as it shows a good
degree of friendliness to TCP New Reno in a broad range of
network/traffic conditions.

V. RTT-FAIR SCHEMES: MODEL-BASED COMPARISON

Table I summarizes the qualitative behavior of TCP schemes
in terms of RTT-fairness as can be derived also taking inspi-
ration from [6], [11]–[15], [22], [29]. The key parameter to
observe is the steady state solution (i.e., the stable point).

In Fig. 9 we plot Column III, from the left, of Table I. We
are here assuming that: i) the two flows experience the same
maximum queuing delay, RTTmax −RTTmin; ii) ˜RTT >>
RTTmin; and iii) the two flows have the same steady state
probability of loss and queuing delay. In Fig. 9 we plot the
throughput ratio of two flows, with different RTTs, which
are competing on the same narrow link. In this figure, RTT1
and RTT2 represent the average RTT of flow 1 and flow 2,
respectively, whereas x1 and x2 are the average throughput of
flow 1 and flow 2. As we can see in Fig. 9, when the RTT of
flow 1 (i.e. RTT1) is equal to 100ms, TCP Libra’s response
function is very close to the constant increase algorithm. This
means that, no matter what RTT ratio is between flow 1 and
flow 2, they will almost always achieve the same rate. When
T1 is equal to 500ms, TCP Libra still improves over the linear
behavior of TCP New Reno. Likewise, [28] proves through
measurements that 50% of the TCP flows experience a RTT
equal to or below 100ms. Therefore, TCP Libra performs as
a constant increase algorithm in the great majority of cases.
This approach is a tradeoff between fairness and stability.
Fairness is affected by including the RTT, as shown in Fig. 9;
however, for realistic RTTs, TCP Libra behaves very closely
to a constant RTT algorithm and preserves RTT-fairness.

7

Algorithm Stable Point x̃1/x̃2 Stepsize Marginal Utility Congestion Measure

NewReno 1
˜RTTr

√
ar
br

1−�̃r
�̃r

∝ ˜RTT2
˜RTT1

(br
ar

)x2
r(t) +

1
˜RTT

2
r

1
br
ar

˜RTT
2
rx

2
r(t)+1

loss probability

Hybla 1
T0

√
ar
br

1−�̃r
�̃r

∝ 1 ar(
br
ar

x2
r(t) +

1
T2
0
) 1

br
ar
T2
0 x

2
r(t)+1

loss probability

Vegas 1
�̃r

∝ 1 1
T̃2
r

1
xr

queueing delay

Libra
√
ar
br

�r
T1

1−�̃r
�̃r

∝ e−
k2
2

(˜RTT1− ˜RTT2) brT1
˜RTTr+T0

x2(t) + ar�̃r
˜RTTr+T0

1
brT1
ar�̃r

x2(t)+1
loss prob. and queuing delay

TABLE I
DYNAMIC AND EQUILIBRIUM PROPERTIES

From the steady state solution, it is evident how TCP New
Reno implements linear RTT-fairness; the throughput that a
connection may expect depends inversely from the average
RTT of the connection.

TCP Hybla is a constant increase algorithm that forces all
flows to act as if they saw the same RTT: in fact, Table I shows
that the stable point does not depend on the RTT, but on T0,
which is constant for all flows. In this way the algorithm is
ideally fair as we see in Fig. 9. Yet, in [14], through a stability
analysis, it is highlighted that constant increase algorithms
experience delay instability on routes where ratio RTTr/xr
is large and slow convergence on routes where the ratio is
small. To confirm this statement, extensive simulation results
in Section VI show how this problem can lead to unfairness.

TCP Vegas implements an RTT-fair scheme. From simula-
tion results we verify that TCP Vegas improves TCP’s RTT-
fairness. However, the problem of TCP Vegas is the choice
of congestion measure, namely, queuing delay. This measure
makes TCP Vegas too timid while competing with TCP New
Reno (or with similar legacy protocols: see results about TCP
SACK in Section VI).

Finally, Fig. 9 shows that TCP Libra is not constant RTT-
fair as TCP Vegas or TCP Hybla, but it approaches such limit
as RTT1 approaches zero and it theoretically improves TCP
New Reno. Furthermore, in Section VI we show how TCP
Libra’s algorithm results both RTT-fair and friendly towards
TCP New Reno, with a choice of parameters that works for a
broad set of tests, whereas other RTT-fair protocols do not.

VI. PERFORMANCE EVALUATION

We have used the NS2 platform to evaluate TCP Libra [30].
We have divided our experiment campaign into three main
sets. In the first one, we have created a simple simulative sce-
nario, i.e., a dumbbell topology, and considered the protocols
discussed and modeled in the previous sections: i) TCP New
Reno (with the SACK option enabled, i.e., TCP SACK), ii) our
TCP Libra, and other RTT-fair TCP versions such as iii) TCP
Vegas, and iv) TCP Hybla; furthermore, we have also added
CUBIC as this pr(otocol represents the default TCP version
on current Linux releases (since kernel 2.6.18 [31]).

For TCP SACK and Vegas, we have used existing NS2
modules; for TCP Hybla and CUBIC we have used the code
provided by their respective developers; and we have created
our own module for TCP Libra. Default parameters have been

changed in the case of TCP Vegas as inspired by literature
[32].

The purpose of this first set of experiments is that of
achieving deep understanding of protocols discussed in Sec-
tion V (including TCP Libra), confirming their properties in a
controlled and noise free scenario.

Instead, the aim of the second set of experiments is that of
testing TCP Libra in a highly realistic simulative scenario, as
similar as possible to the real world. We have hence taken large
inspiration from [33] and created a complex scenario with
background cross traffic, different queue sizes, and both drop-
tail and RED queue management. The importance of including
background traffic lies in its ability to prevent phase effects and
in its impact on the fairness and convergence of the protocols
[33], [34]. The presence of background traffic causes noise
in the RTT measurements, which are an important component
of TCP Libra’s algorithm; we have hence to consider also
this factor in order to enhance the trustworthiness of achieved
results.

Finally, as a confirmation for excellent simulative results
achieved by our TCP Libra, we have tested our transport
protocol even in a real network testbed scenario. Real ex-
periments are generally more difficult to be performed than

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 0.2 0.4 0.6 0.8 1

Th
ro

ug
hp

ut
 R

at
io

 (x
1/

x2
)

RTT2/RTT1

Fairness

Hybla, Vegas
Libra, RTT1=0.1
Libra, RTT1=0.5

Libra, RTT1=1
Reno

Fig. 9. Throughput ratio between two flows, for varying RTT ratios.

8

S3

S4

S1

S2

R3

R4

R1

R2
X Y

Fig. 10. Dumbbell topology for experiment setting #1.

simulations. Yet, they embody an unrivaled testbed scenario
as no simulation can generate the same realism.

In the following subsections, we present the three afore-
mentioned experiment settings in detail. Where not differently
stated, TCP packet size has been set equal to 1500 Bytes, all
simulations have been run for 1000s in order to reach steady
state, and the advertised window for each connection has been
set larger than the corresponding pipe size so that occasional
packets may be dropped, even when that connection is the
only active one.

A. Experiment Setting #1

The simulated network topology for the first set of ex-
periments is reported in Fig. 10. Four FTP connections are
established between the source-destination pairs (Si and Ri
shown in Fig. 10). The pairs S1-R1 and S2-R2 have round-
trip propagation delay equal to 40ms, thus representing intra-
continental links. The pairs S3-R3 and S4-R4 have round-
trip propagation delay equal to 161ms, representing inter-
continental links. The link X-Y embodies the shared narrow
link. The buffer size in node X is set either with a value
suggested for Cisco Systems routers (i.e., 200 or 500 packets
[35]), or as the product of the narrow link capacity by the
largest round-trip propagation delay (i.e., 161ms in most of
the simulations) divided by packet size. In the remainder of
this paper we refer to this latter value as the longest pipe size.

In this context, we focus on the following performance
measures:

1) intra-protocol RTT-fairness (Section VII-A);
2) inter-protocol RTT-fairness (Section VII-B);
3) scalability of TCP Libra to many flows (Section VII-C).

B. Experiment Setting #2

In the second experiment setting, we compare again the
same set of transport protocols considered in the first set of
experiments. However, we focus on two different topologies,
each featuring different scenarios.

First, we have considered again the dumbbell topology; but,
in this case, we have adapted the simulation script provided on
the BIC/CUBIC website [31]. We have chosen those scripts

S1

BN

S2

B1

R1

CN

R2

C3

X Y

forward

backward

10ms
100Mbps

Fig. 11. Dumbbell topology for experiment setting #2.

R4 R3

S2S1

X1

S3 S4

R2 R1

X8X2 X7X3 X4 X5 X6

S5 R5 S6 R6 S7 R7 S8 R8

flows 1, 2 - RTT 180ms

flows 3, 4 - RTT 90ms

flows 5, 6, 7, 8 - RTT 30ms

100Mbps Bottlenecks

Fig. 12. Parking Lot topology for experiment setting #2.

as they improve the classic dumbbell topology by including
background traffic. Indeed, each link is configured to have
different RTTs and different start times and end times to reduce
the phase effect [34], [36]. Being more precise with the help of
Fig. 11, the one way propagation delay on the links is 21ms for
the short connections (from S2 to R2 and between Bi and Ci)
and 119ms for the longest one (from S1 to R1). Background
traffic flows in both directions between nodes Bi to Ci. This
background traffic is composed by 4 forward regular long-lived
TCP SACK flows, 4 backward regular long-lived TCP SACK
flows, 25 small TCP flows with advertised window limited to
64 segments and an amount of web traffic in both directions
able to occupy from 20% to 50% of the available bottleneck
link capacity when no other flow is present [24], [31].

Second, following the suggestions provided in [33] about
considering different network topologies in simulative exper-
iments, we have considered also the so called parking lot
topology (see Fig. 12). In particular, this topology includes
eight end-to-end flows: flows 1 and 2 have 180ms of minimum
RTT and traverse 9 links; flows 3 and 4 have 90ms of
minimum RTT and traverse 9 links too. The remaining flows,
5 through 8, are short flows; they utilize 3 link paths with

9

30ms minimum RTT. To overcome phase effects, flows were
started at random times within the first 5 seconds of simulation
[36]. The bottleneck buffer can take two different values: (a)
the number of packets that would fill the bottleneck link, or
(b) the packets that would fill the longest path.

Space limitations allow us to present only a subset of the
obtained simulation results. Therefore, we report here only
on results related to the case with a 100Mbps bottleneck
link, since the use of other bandwidth values did not show
significant difference.

Results obtained through this experiment setting are dis-
cussed in Section VII-D.

C. Experiment Setting #3

After the comprehensive simulative comparison of different
TCP protocols, we also provide results attained through a real
testbed evaluation. The test has been conducted comparing
TCP Libra against legacy TCP SACK.

The testbed is simply composed of two end hosts and
a dummynet bridge. The two end hosts run Linux Kernel
2.6.14, whereas the bridge runs FreeBSD 6.1 with kernel
polling enabled and Dummynet [37] configured to simulate
a 100Mbps link with a 250 packets queue size. As for the
one-way propagation delays, 100, 150, and 200ms have been
set associating different delays to different ports. Finally,
Iperf 2.0.2 has been used to generate the network load.

Each experiment has been run for 900s and, during this time,
three concurrent TCP flows using the same transport protocol
enter and exit at different times: a 150ms one-way propagation
delay flow runs from the beginning to the end, a 100ms one
is active during the 180-720s time frame, and a 200ms one
transmits between 360 and 540s.

Our comparison aims at experimentally confirming: i) the
unfairness problem of legacy TCP protocols and ii) TCP Libra
flows’ capability to converge to an equal share, even when
experiencing very different propagation delays.

Results obtained through this experiment setting are shown
in Section VII-E.

VII. RESULTS

In this section we present the outcome of the experiment
settings discussed in Section VI. In particular, Sections VII-
A, VII-B, and VII-C refer to the simple simulative setting
discussed in Section VI-A; Section VII-D refers to the com-
plex simulative setting setting discussed in Section VI-B; and
Section VII-E refers to the real testbed experiment setting
discussed in Section VI-C.

A. Experiment Setting #1: Intra-Protocol Fairness

Jain’s Fairness Index is adopted in literature to evaluate the
fairness degree of data flows that share a single narrow link
[38]. We have computed its value for the tested protocols while
considering different narrow link capacities and buffer sizes.
In Fig. 13 the buffer size is set equal to the longest pipe size,
while in Fig. 14 the buffer size corresponds to 200 packets.
TCP Libra shows a better RTT-fairness than its competitors

Fig. 13. Jain’s Fairness Index vs. narrow link capacity for TCP SACK, TCP
Vegas, CUBIC, TCP Hybla, and TCP Libra. Buffer size at the narrow link is
equal to the longest link pipe size.

Fig. 14. Jain’s Fairness Index vs. narrow link capacity for TCP SACK ,
TCP Vegas, CUBIC, TCP Hybla, and TCP Libra. Buffer size at the narrow
link is equal to 200 packets: suggested default value in the CISCO Systems
configuration manual(s) [35]

in almost all the considered scenarios. An exception is TCP
Hybla that shows a slightly better RTT-fairness for a narrow
link of 80Mbps and 160Mbps, and 200-packet buffer. Indeed,
TCP Hybla was specifically intended to be RTT-fair through
proportionally increasing the congestion window of long-RTT
flows so as to make them behave like a reference-RTT (i.e.,
25ms) flow. However, this solution works if the queuing delay
of buffers along the path does not significantly modify the ratio
between the minimum RTTs of the various flows. This means
that TCP Hybla can ensure RTT-fairness in case of big pipes
and small buffers, simultaneously present, as demonstrated by
the charts.

B. Experiment Setting #1: Inter-Protocol Fairness (Friendli-
ness)

We here evaluate the case where a TCP variant competes
on the same narrow link with legacy TCP SACK flows. In this
setting TCP SACK is used for one short round-trip propagation
delay flow (from S2 to R2 in Fig. 10) and one long round-trip
propagation delay flow (from S4 to R4 in Fig. 10), while the

10

Fig. 15. SLAC Asymmetry Index [39]. Buffer size at the narrow link is
equal to the longest link pipe size.

remaining two concurrent flows are driven by one of the other
TCP flavors. This allows us to investigate the impact of the
coexistence on the RTT-fairness degree and the friendliness of
the alternative TCP versions towards TCP SACK. The SLAC
Asymmetry Index [39] is used as the friendliness metric; this
index is defined as:

A =
x̄1 − x̄2
x̄1 + x̄2

(20)

where x̄1 and x̄2 correspond to the average throughput values
achieved by two different protocols competing for the same
channel. The index can be employed to linearly indicate the
degree of aggressiveness between two protocols. In essence,
when A = 0, the two protocols evenly share the narrow link.
Conversely, A > 0 indicates that x1 is more aggressive than
x2, whereas A < 0 implies the inverse situation.

In Fig. 15 and in Fig. 16 we report the SLAC Asymmetry In-
dex when TCP SACK is coexisting alternatively with TCP Ve-
gas, CUBIC, TCP Hybla, and TCP Libra. In the corresponding
simulation, two TCP SACK flows with round-trip propagation
delays set to 40ms and 161ms, respectively, compete with two
other flows (again, with round-trip propagation delays set to
40ms and 161ms). An index value equal to zero means perfect
friendliness; an index value lower than zero means that the
considered transport protocol is more conservative than TCP
SACK when coexisting; an index value higher than zero means
that the considered transport protocols is more aggressive than
TCP SACK when coexisting. In Fig. 15 the buffer size is set
to the longest pipe size (2133 packets), whereas in Fig. 16 the
buffer size is much smaller: 200 packets, as suggested default
value in the CISCO Systems configuration manual(s) [35].

The charts show that when TCP Vegas competes against
TCP SACK, the latter is able to reach higher throughputs
(the Asymmetry Index for TCP Vegas is: A < 0). This was
expected; indeed, when TCP Vegas detects that a queue is
building up, it reduces the transmission rate. Instead, TCP
SACK keeps probing the channel and gaining shares of
bandwidth. As a consequence, TCP Vegas quickly brings its
congestion window to a low value, thus achieving a low

Fig. 16. SLAC Asymmetry Index [39]. Buffer size at the narrow link is
equal to 200 packets [35].

throughput level.
Conversely, TCP Hybla shows aggressiveness towards TCP

SACK, thus using most of the bandwidth and reducing TCP
SACK’s throughput. In fact, TCP Hybla’s Asymmetry Index
is positive in all cases. This is coherent with the fact that TCP
Hybla increases its transmission rate as if it were experiencing
a pre-defined RTT value (i.e., 25ms [22]), ignoring the factual
RTT value. Since the competing TCP SACK flows see a round-
trip propagation delay of 40ms and 161ms, their bandwidth
share is obviously less than the bandwidth share of TCP Hybla
flows.

When competing with concurrent TCP SACK flows, CUBIC
is neither as conservative as TCP Vegas, nor as aggressive as
TCP Hybla. However, in general, TCP Libra showed an even
better friendliness degree. In summary, TCP Libra shows to be
able to fairly share the available bandwidth with TCP SACK.
The only configuration where another protocol (i.e., CUBIC)
achieves a better asymmetry index than TCP Libra is when a
small buffer of 200 packets is employed in combination with
a 160Mbps narrow link (see the rightmost series of columns
in Fig. 16).

As a final note, we have to report that TCP Libra also
attained intra-protocol fairness when coexisting with TCP
SACK. In fact, the simulation results showed that the two
TCP Libra connections tend to achieve the same throughput,
which is close to the mean throughput of the two TCP SACK
connections.

C. Experiment Setting #1: TCP Libra Scalability Discussion

We here study how TCP Libra scales in relation to the
number of flows sharing the same narrow link. To this aim, we
have set the dumbbell configuration presented in Fig. 10 with
a narrow link of 622Mbps (i.e., an OC12 link). We perform
three experiments involving 110 contemporaneous flows each.
The round-trip propagation delay is set to the following values:
∙ 16ms for 30 flows (i.e., a regional connection);
∙ 61ms for 60 flows (i.e., an intra-continental connection);
∙ 181ms for 20 flows (i.e., an inter-continental connection).

11

Fig. 17. Acknowledged packets for TCP SACK. Narrow link of 622Mbps
(i.e., OC12), 110 flows with heterogeneous RTTs. Buffer size at the narrow
link has been set equal to 500 packets: suggested default value for high speed
core routers in the CISCO Systems configuration manual(s) [35].

Fig. 18. Acknowledged packets for TCP Libra with k2 = 2. Narrow link
of 622Mbps (i.e., OC12), 110 flows with heterogeneous RTTs. Buffer size at
the narrow link has been set equal to 500 packets: suggested default value for
high speed core routers in the CISCO Systems configuration manual(s) [35].

TCP SACK performance is shown in Fig. 17 in terms of
acknowledged packets per time for each of the 110 simulated
flows. As expected, TCP SACK is affected by heavy RTT-
unfairness and generates three distinct clusters of lines with a
wide gap in between. Using the same experiment scenario and
metric, we evaluate TCP Libra’s performance. In particular,
Fig. 18 and Fig. 19 show TCP Libra’s results when employing
k2 = 2 or k2 = 12, respectively. As it is evident from the
charts, both with k2 = 2 and with k2 = 12, TCP Libra
achieves a better RTT-fairness degree among its flows than
TCP SACK does. Yet, in this simulative configuration, Fig. 19
shows a better fairness than Fig. 18. This outcome can be
explained through the fact that in the configuration referring
to Fig. 19 TCP Libra operates at the boundaries of its stability
region defined by (18); by increasing k2 from 2 to 12, it safely
returns to stability and achieves a good RTT-fairness level as
shown by Fig. 19.

Fig. 19. Acknowledged packets for TCP Libra with k2 = 12. Narrow link
of 622Mbps (i.e., OC12), 110 flows with heterogeneous RTTs. Buffer size
at the narrow has been set equal to 500 packets: suggested default value for
high speed core routers in the CISCO Systems configuration manual(s) [35].

Fig. 20. Jain’s index values achieved by the evaluated protocol while
competing with a large amount of concurrent traffic.

D. Experiment Setting #2: Complex simulative scenarios

In this subsection we compare the performance of the con-
sidered transport protocols, utilizing the complex simulative
configuration explained in Section VI-B.

We start with the dumbbell topology including also a
significant amount of background traffic, both forward and
backward. For the sake of conciseness, we show here only the
outcome for the case in which the bottleneck buffer is small
(i.e., equal to bottleneck link pipe size): the most demanding
case for the transport protocols. Two different queuing policies
are tested: drop tail and RED (Random Early Detection). The
Jain’s index values are reported in Fig. 20. Clearly, TCP Libra
and TCP Hybla outperform the other protocols in terms of
provided RTT-fairness; among the other protocols, CUBIC
performs better than TCP Vegas and TCP SACK.

Results in Fig. 20 also confirm the partial RTT-
independency of CUBIC we mentioned in Section II. This pro-
tocol tries to decouple the window growth from the returning
ACK process. With CUBIC, the window size is a function of
the time elapsed since the last packet loss, thus allowing higher
efficiency (in terms of total bandwidth utilization) in case of
long fat RTTs and reducing the throughput dependency from
the RTT. Yet, this smart solution is not able to completely

12

Fig. 21. Jain’s index values among flows 1-4, for each different protocol;
parking lot topology.

Fig. 22. Jain’s index computed over all the 8 connections; parking lot
topology.

eliminate the RTT-unfairness as, even if the window size
becomes independent from the RTT, the final throughput does
not. The throughput still corresponds to the ratio between the
window size and the RTT, where two flows with similar packet
loss trend may have the same window but different RTTs.
For instance, if we link the window size to the time elapsed
since the last packet loss, two flows with different RTTs (say,
RTT1 and RTT2) but same time elapsed since the last loss
may have the same window (say, W). This implies that W
bytes are sent in RTT1 and RTT2 seconds by the two flows,
respectively, before sending out another window of data. As
evident, even with the same window the throughputs will be
different. Of course, this is better than using regular TCP as, in
that case, we also have larger windows for smaller RTT flows.
Instead, TCP Libra approach tries to eliminate the RTT-bias
by having a higher window growing rate for flows with longer
RTT. In this way, if RTT1 < RTT2, the two windows (W1

and W2) will be computed so that W1 < W2. This improves
the RTT-fairness with respect to CUBIC. On the other hand,
our solution is not specifically designed for long fat pipes thus
resulting less efficient in terms of total bandwidth utilization.

Another interesting property shown by Fig. 20 is that RED
improves fairness; this result is a consequence of the fact that
RED was indeed designed to prevent capture by aggressive
flows.

Focusing on the parking lot topology, in Fig. 21 we report
the Jain’s index values considering for its computation only

Fig. 23. Efficiency in the parking lot topology.

Fig. 24. Friendliness evaluation. Goodput achieved by TCP SACK flows (on
y-axis) when another transport protocol (on x-axis) is supporting half of the
concurrent flows.

flows 1-4. Both the bottleneck pipe size and the longest pipe
size have been considered as the bottleneck buffer size. As
evident, TCP Libra is the only protocol among the considered
ones that provides good fairness in both cases. Indeed, the
penalty factor in Libra adapts the window increase slope to
the relative backlog time, thus reducing sensitivity to buffer
size. The chart also shows a high Jain’s index for TCP SACK
in the case with the longest pipe as buffer size. This apparently
surprising result is indeed due to the fact that the flows 5-8
(i.e., the short-RTT flows) capture the whole bandwidth thus
leaving flows 1-4 with very low (and similar) bandwidth.

This is confirmed by the Jain’s index resulting when con-
sidering both short RTT connections 5-8 and longer RTT con-
nections 1-4 (see Fig. 22). A significant fluctuation of fairness
index is noted and TCP SACK, which had an acceptable
Jains index if computing only the goodputs of connections
1-4, obtains a very poor value when considering all the eight
connections together.

The throughput efficiency on the first bottleneck of the park-
ing lot topology is shown in Fig. 23. TCP Libra’s utilization
of the first bottleneck is somehow conservative to allow the
short flows on subsequent bottlenecks to better exploit the
shared channel and achieve a better fairness. Furthermore, as
expected, the utilization of the available bandwidth increases
with the buffer size, for all protocols.

Finally, the coexistence between the legacy TCP (i.e., TCP
SACK) and the new protocols is evaluated in Fig. 24. The bar

13

chart presents the relative TCP SACK goodputs when TCP
SACK is competing with itself first, and then with each of the
new protocols. We measure the TCP SACK goodput achieved
in each of the RTT flow classes (long to short) as well as the
aggregate goodput over all of its connections. More precisely,
TCP SACK was used for flows 2 (180ms of RTT), 4 (90ms of
RTT), 6 and 8 (30 ms of RTT each), while the new protocol
was used for flows 1 (180ms of RTT), 3 (90ms of RTT), 5
and 7 (30 ms of RTT each).

As expected, when coexisting with TCP Vegas, TCP SACK
achieves a slight increase in its achieved goodput, whereas the
aggressive behavior of TCP Hybla penalizes concurrent TCP
SACK flows. CUBIC and TCP Libra do not harm significantly
concurrent TCP SACK flows. In particular, CUBIC shows a
balanced behavior toward TCP SACK, whereas the aggregate
throughput of the TCP SACK flows diminishes by 11% when
coexisting with TCP Libra. However, there is a desirable, even
if limited, redistribution of the TCP SACK goodput from the
30ms RTT flows to the 90ms and 180ms RTT ones when
coexisting with TCP Libra flows; hence, TCP Libra seems to
help the coexisting TCP SACK flows by (slightly) improving
their fairness degree.

E. Experiment Setting #3: Real Testbed Experiments

In this subsection we compare the performance of our TCP
Libra against a legacy TCP version, TCP SACK, utilizing the
real experiment testbed discussed in Section VI-C.

In Fig. 25 and Fig. 26, we depict the instantaneous through-
put achieved by three concurrent TCP flows when employing
one of the two transport protocols we are considering for
comparison: TCP SACK and TCP Libra, respectively. In each
of the charts it is possible to clearly see the different activity
periods of the three flows. In summary, the smallest RTT flow
starts (and ends) for second, whereas the longest RTT flow
starts (and ends) for third. It is hence interesting to see whether
the employed transport protocol privileges one of the flows or
behaves fairly.

To this aim, Fig. 25 confirms how TCP SACK generates a
RTT-unfair share of the available bandwidth. Indeed, the flow
with the smallest RTT unfairly captures most of the shared
bandwidth as soon as it starts transmissions. Moreover, as
expected, the flow having longer RTTs are characterized by
a slowly growing instantaneous throughput.

Instead, Fig. 26 depicts the behavior of TCP Libra flows in
the same scenario. Regardless of the RTT and of the start/end
time, all the three flows converge to an equal share of the
bandwidth resource when coexisting. This is clearly visible in
the chart around 500s, when the three flows have very similar
throughput values and growth rates. Even before, from 200s
to 350s, when only two flows where competing for the shared
bandwidth, they have very similar throughput and trend.

Therefore, comparing these two preliminary real-testbed
evaluations, it is evident how TCP Libra confirms its ability in
reaching the fair share of the channel, even in dynamic con-
ditions and regardless of RTT differences. These experimental
results are coherent with what we have obtained through
dumbbell topology simulation in Fig. 20, in the case with drop

Fig. 25. Dynamic Scenario: instantaneous throughput of three TCP SACK
flows .

Fig. 26. Dynamic Scenario: instantaneous throughput of three TCP Libra
flows .

tail queue management of the buffer, which is the simulation
configuration that more closely resembles the setting of our
real testbed.

VIII. CONCLUSIONS AND FUTURE WORK

This paper analyzes TCP Libra, a new protocol designed
to be RTT-fair while maintaining a good friendliness towards
legacy TCP and providing bandwidth scalability. We have
showed how TCP Libra can be analytically derived from TCP
New Reno, explained the differences with previous approaches
aimed at building an RTT-fair TCP, and analyzed its stability
bounds. Furthermore, we have also experimentally confirmed
TCP Libra’s qualities, comparing it against other RTT-fair
TCPs in different simulative settings and in demanding sce-
narios, even considering an OC12 link shared by more than a
hundred of concurrent flows. Finally, we have also provided
preliminary results of a real testbed implementation based on
Linux stack that confirms the efficacy of our new protocol.

14

In summary, we have presented here a really comprehensive
evaluation of the interesting properties possessed by TCP
Libra, exploiting model analysis, simulations, and real testbed
experiments, whereas the vast majority of papers in literature
consider only one or two among these three methods. The
encouraging results achieved strongly motivate us in continu-
ing this work to deploy a final product that could be factually
exploited to improve the Internet.

REFERENCES

[1] V. Jacobson, “Congestion avoidance and control,” in in ACM SIG-
COMM’88, Stanford, CA, USA, Aug 1988.

[2] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow, “Rfc2018: TCP
selective acknowledgment options,” Network Working Group, Tech.
Rep., 1996.

[3] R. Jain, “A delay based approach for congestion avoidance in intercon-
nected heterogeneous computer networks,” Computer Communications
Review, ACM SIGCOMM, vol. 19, pp. 56–71, Oct 1989.

[4] J. Martin, A. A. Nilsson, and I. Rhee, “The incremental deployability of
RTT-based congestion avoidance for high speed TCP internet connec-
tions,” in ACM SIGMETRICS 2000, Santa Clara, CA, USA, Jun 2000.

[5] R. S. Prasad, M. Jain, and C. Dovrolis, “On the effectiveness of delay-
based congestion avoidance,” in 2nd International Workshop on Pro-
tocols for Fast Long-Distance Networks, Argonne National Laboratory
Argonne, IL, USA, Feb 2004.

[6] L. S. Brakmo, S. W. O’Malley, and L. L. Peterson, “TCP vegas: New
techniques for congestion detection and avoidance,” in SIGCOMM’94,
London, UK, Aug-Sep 1994.

[7] Z. W. Jon, Z. Wang, and Crowcroft, “Eliminating periodic packet
losses in the 4.3-tahoe BSD TCP congestion control algorithm,” ACM
Computer Communication Review, vol. 22, pp. 9–16, Apr 1992.

[8] C. Jin, D. Wei, and S. Low, “Fast TCP: Motivation, architecture,
algorithms, performance,” in IEEE INFOCOM 2004, Hong Kong, China,
Mar 2004.

[9] C. Jin, D. Wei, S. H. Low, G. Buhrmaster, J. Bunn, D. H. Choe,
R. L. A. Cottrell, J. C. Doyle, W. C. Feng, O. Martin, H. Newman,
F. Paganini, S. Ravot, and S. Singh, “Fast TCP: From background theory
to experiments,” IEEE Network, vol. 19, pp. 4–11, Jan-Feb 2005.

[10] G. Marfia, C. E. Palazzi, G. Pau, M. Gerla, M. Sanadidi, and M. Roccetti,
“TCP libra: Exploring rtt-fairness for TCP,” in IFIP/TC6 Networking
Conference, NETWORKING 2007, Atlanta, GA, USA, May 2007.

[11] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose, “Modeling TCP
throughput: A simple model and its empirical validation,” in ACM
SIGCOMM ’98, Vancouver, BC, Canada, Aug-Sep 1998.

[12] F. P. Kelly, A. K. Maulloo, and D. K. H. Tan, “Rate control in
communication networks: Shadow prices, proportional fairness, and
stability,” Journal of the Operational Research Society, vol. 49, Sep
1998.

[13] R. Gibbens and F. Kelly, “Resource pricing and the evolution of
congestion control,” vol. 35, pp. 1969–1985, Sep 1998.

[14] F. Kelly, “Mathematical modelling of the internet,” in Bjorn Engquist
and Wilfried Schmid (Eds.), Mathematics Unlimited – 2001 and Be-
yond@ Springer, 2001.

[15] F. Kelly, “Fairness and stability of end-to-end congestion control,”
European Journal of Control, vol. 9, pp. 159–176, 2003.

[16] F. Paganini, Z. Wang, S. Low, and J. C. Doyle, “A new TCP/AQM
for stable operation in fast networks,” in IEEE INFOCOM 2003, San
Franciso, CA, USA, Mar-Apr 2003.

[17] S. Athuraliya, D. E. Lapsley, and S. H. Low, “An enhanced random
early marking algorithm for internet flow control,” in IEEE INFOCOM
2000, Tel Aviv, Israel, Mar 2000.

[18] S. Low and R. Srikant, “A mathematical framework for designing a low-
loss, low-delay internet,” Networks and Spatial Economics, vol. 4, pp.
75–102, 2003.

[19] S. Floyd and V. Jacobson, “Traffic phase effects in packet-switched
gateways,” Internetworking: Research and Experience, vol. 3, pp. 115–
156, Sep 1992.

[20] T. Henderson, “Networking over next-generation satellite systems,”
Ph.D. dissertation, University of California, Berkeley, 1999.

[21] T. R. Henderson and R. H. Katz, “Transport protocols for internet-
compatible satellite networks,” IEEE Journal on Selected Areas in
Communications, vol. 17, pp. 326–344, Feb 1999.

[22] C. Caini and R. Ferrincelli, “TCP hybla: A TCP enhancement for hetero-
geneous networks,” International Journal of Satellite Communications
and Networking, vol. 22, pp. 547–566, 2004.

[23] I. Rhee and L. Xu, “Cubic: A new TCP-friendly high-speed TCP
variant,” in 3rd International Workshop on Protocols for Fast Long-
Distance Networks, Lyon, France, Feb 2005.

[24] L. Xu, K. Harfous, and I. Rhee, “Binary increase congestion control for
fast, long distance networks,” in IEEE INFOCOM, 2004, Hong Kong,
China, Mar 2004.

[25] R. Shorten and D. Leith, “H-TCP: TCP for high-speed and long-distance
networks TCP,” in Second International Workshop on Protocols for Fast
Long-Distance Networks, Argonne, IL, USA, Feb 2004.

[26] R. Srikant, The Mathematics of Internet Congestion Control. A
Birkhauser book, 2004.

[27] D. P. Bertsekas, Nonlinear Programming. Athena Scientific, 1999.
[28] J. Aikat, J. Kaur, F. D. Smith, and K. Jeffay, “Variability in TCP

round-trip times,” in 3rd ACM SIGCOMM Conference on Internet
Measurement, New York, NY, USA, 2003.

[29] L. A. Grieco and S. Mascolo, “Performance evaluation and comparison
of westwood+, new reno, and vegas TCP congestion control,” ACM
Computer Communication Review, vol. 34, no. 2, April 2004, vol. 34,
pp. 25–38, Apr 2004.

[30] The vint project, ns2, nsnam. [Online]. Available: http://nsnam.isi.edu/
nsnam/

[31] BIC and CUBIC protocol - default TCP algorithm in linux. [Online].
Available: http://netsrv.csc.ncsu.edu/twiki/bin/view/Main/BIC

[32] S. H. Low, L. L. Peterson, and L. Wang, “Understanding TCP vegas: A
duality model,” in SIGMETRICS/Performance, Cambridge, MA, USA,
Jun 2001.

[33] L. Andrew, C. Marcondes, S. Floyd, L. Dunn, R. Guillier, W. Gang,
L. Eggert, S. Ha, and I. Rhee, “Towards a common TCP evaluation
suite,” in 6th International Workshop on Protocols for FAST Long-
Distance Networks (PFLDnet 2008), Manchester, UK, 2008.

[34] S. Mascolo and F. Vacirca, “The effect of reverse traffic on TCP con-
gestion control algorithms,” in 4th International Workshop on Protocols
for Fast Long-distance Networks, Nara, Japan, Feb 2006.

[35] C. S. Inc. Buffer tuning for all cisco routers – document id: 15091.
[Online]. Available: http://www.cisco.com/warp/public/63/buffertuning.
html

[36] S. Floyd and E. Kholer, “Internet research needs better models,” ACM
SIGCOMM Computer Communication Review, vol. 33, pp. 29–34, Jan
2003.

[37] Dummynet home page. [Online]. Available: http://info.iet.unipi.it/
∼luigi/dummynet/

[38] R. Jain, D. Chiu, and W. Hawe, “A quantitative measure of fairness
and discrimination for resource allocation in shared computer systems,”
DEC Research Labs, Technical Report TR-301, 1984.

[39] L. Cottrell, H. Bullot, and R. Hughes-Jones. (2004, February)
Evaluation of advanced TCP stacks on fast long-distance production
networks. Presentation at SLAC, Stanford. EPFL, SLAC and
Manchester University. [Online]. Available: www.slac.stanford.edu/grp/
scs/net/talk03/pfld-feb04.ppt

