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ABSTRACT 

Ambulances and emergency vehicles (buses and taxis as well), if 
equipped with wireless devices, can be exploited to harvest 
medical data during unexpected events and also on a daily basis, 
from all those patients that require a constant monitoring of health 
conditions. Ambulances can be utilized as trusted intermediaries 
to transport medical information, at little cost, to hospital central 
servers.  Patients equipped with physiological sensors connected 
to wireless devices could dump, during each contact, all the 
medical information collected so far, thus utilizing emergency 
vehicles as data mules. Inevitably, contact times may be short and 
not sufficient to transfer all of the information collected from a 
patient’s medical sensors.  In such cases, computing in advance, 
or during the very initial phase of a data transfer, an estimate of 
how long a contact time will last is key to maximize the utility of 
any successfully transmitted chunks, in general of different sizes 
and priorities, of medical data. In this paper we address the 
problem of predicting patient-vehicle contact times, through an 
empirical model based on real-world experiments focused on the 
key sections of a road, which most influence the average speed of 
an emergency vehicle that traverses it. Our preliminary results are 
encouraging, as they indicate that it is possible to predict the time 
an emergency vehicle will spend traversing a given road segment 
within one third of its traversal. 

Categories and Subject Descriptors 
J.3 [Computer Applications]: Life and Medical Sciences– 
health, medical information systems.  

General Terms 
Algorithms, Measurement, Performance, Design, 
Experimentation. 

Keywords 
Biomedical networks, vehicular networks, opportunistic 
networking. 

1. INTRODUCTION 
New wearable medical sensors are expected to 
revolutionize the healthcare industry in the next few years, 
leading to a scenario where thousands of people will be 
constantly equipped with devices that are capable of 
collecting relevant physiologic data which is in turn sent to 
central entities located at hospitals or clinics. In such 
situation, it is key to guarantee a reliable and secure 
delivery of information, while this traverses different 
network technologies and hosts.  

Without any doubt, cellular networks represent the ideal 
candidates for all those situations where a fast response is 
required (e.g., sending an SMS with main vital sign values 
when an emergency is detected). However, such type of 
networks hardly suits circumstances where large amounts 
of data are continuously uploaded (e.g., signal waveforms, 
images, videos, etc.) by several devices within a cell or, 
also, when telecommunication infrastructures fail (e.g., 
terrorist attacks, earthquakes, etc.). 

In such cases, a viable solution is provided by the 
opportunistic exploitation of ambulances and public safety 
vehicles in general, for the purpose of collecting 
information via reliable and secure hosts. When an 
ambulance traverses a given road, for example, it can 
receive and store, as it moves, medical information from a 
patient that is walking along that same road. Later, while in 
proximity of a hospital (e.g., when delivering a patient or at 
the end of its shift), the same ambulance can connect, 
through a secure hospital connection to a central server, 
dumping all the information it received during its service 
hours. 

A successful implementation of such solution heavily relies 
on an efficient transfer of chunks of medical data during the 
contact events that occur between a patient and any given 
ambulance. When a patient and an ambulance meet, two 
scenarios might occur. The first one results as an outcome 
of those situations where an ambulance moves so fast that 
no data can be transferred. The second, contrarily, occurs 
when an ambulance moves regularly or even slowly, letting 
a patient’s device transfer most of the chunks of data that it 
recorded so far. In either scenario, an algorithm running 
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within a patient’s medical device can take the right decision 
if: (a) it knows the size and the priority of each chunk of 
medical data that is locally stored, and, (b) it knows for 
how long a contact with an ambulance will last. While we 
will assume that (a) can in general be known, as it is 
possible to estimate the importance of the information that 
is stored in several different ways (e.g., based for example 
on the disease that is being monitored), we will here focus 
on (b), showing how it could be possible to predict the 
contact time between a patient and an ambulance.  

We anticipate now how we pursued such task. In particular, 
performing (b) entails predicting the minimum time a 
generic vehicle and a pedestrian spend, together, on the 
same given road segment (i.e., a stretch of a road that lies 
between two intersections), as, after an intersection, a 
vehicle may rapidly slip out of sight (abruptly interrupting 
a communication link). Hence, since a walking pedestrian, 
in most cases, may be approximated as still during the 
contact time with a vehicle, our problem translates in 
predicting the time an emergency vehicle will spend, 
driving through traffic, over a given road segment. We 
studied how this could be done performing a wide set of 
experiments where we repeatedly drove a vehicle equipped 
with a GPS receiver through a road segment that ended 
with a traffic light. We then correlated the time we spent on 
initial subsections of the road with the time taken to exit it 
to build an empirical model whose results reveal that it is 
possible to predict how long a vehicle will need to drive 
through a road while remaining in line of sight with a 
pedestrian. 

This paper is organized as follows. In Section 2 we review 
the most relevant approaches available in literature that fall 
closest to ours. In Section 3 we describe our methodology, 
while in Section 4 our experiments and results. We 
conclude with Section 5.  

 

2. RELATED WORK 
The contemporary introduction of advanced sensor and 
communication devices has paved the way to the devise of 
triage and first responder systems thought to rapidly collect 
information from locations where emergencies have 
occurred [1]-[3]. In the following we will review the 
approaches, which, from different perspectives, fall closest 
to ours. 

Authors of [4] are among the first to identify the 
opportunity of utilizing VANETs for the collection of 
information from emergency situations. Using their system, 
when something unexpected occurs and no cellular 
connections are available, ambulances exploit their farthest 
relays (i.e., the farthest vehicles equipped with 
communication devices) to send video streams of the 
surrounding scene, through multiple vehicles, to the central 
entities that coordinate first responders. The particular 
contribution of this work is the devise of a mechanism, 
which supports each vehicle in identifying its farthest relay, 

by dynamically estimating its transmission range. However, 
little attention is given in this paper to the problem of 
harvesting information from any physiologic sensors worn 
by patients.  

The work presented in [5], instead, assesses the practical 
feasibility of collecting any medical information collected 
by physiologic sensors from a generic vehicle. To do this, 
the authors of this work performed experiments where they 
observed the amount of chunks of medical data that could 
be transferred from a patient to a vehicle moving at a fixed 
speed, utilizing an 802.11g communication link. This 
study, however, does not take into account the fact that 
vehicles rarely traverse roads at a fixed speed, due to the 
presence of vehicular queues and traffic light phases. 
Hence, this work did not consider that the amount of 
information that it may be possible to transfer during a 
contact might greatly vary, depending on traffic conditions. 

The estimation of the length of contact times for a medical 
monitoring system has been first addressed in [6]. In this 
work, authors aim at disseminating medical data towards a 
central entity exploiting the contacts that occur between 
patients, thus taking advantage of the wealth of research 
that has so far investigated human mobility models. 
However, the authors limit their investigation to pedestrian 
mobility models, not considering the opportunities that 
might emerge from the use of emergency vehicles. 

In summary, to the best of our knowledge, there is no trace 
in literature of approaches that predict the contact time 
between a moving emergency vehicle and a patient in order 
to optimize their exchange of data and, thus, lower the time 
taken to send the information gathered by medical sensors 
to a central entity of a hospital or clinic.  

 

3. EXPLOITING CONTACT TIMES 
Assuming an ambulance is able to predict the time it will 
spend over a given road segment, since the very first 
moment it enters it, a communication protocol with the 
medical devices worn by a patient can operate as follows.  

As soon as the ambulance enters the road, it sends a 
broadcast message advertising its presence on that road and 
its position. Any wireless medical sensor, worn by a patient 
that is walking along that road, answers, utilizing a 
transmission mechanism which privileges a patient, based 
on a given priority. Whether using a contention or a priority 
mechanism (as discussed in the literature), this does not 
have any effect on the validity of our approach and can be 
left open to future investigation. On receiving an answer 
from the selected patient, the other medical devices abort 
transmitting their answers, whereas, the ambulance in reply 
sends a message that allows only the selected wireless 
sensor to dump its chunks of data. As no information is 
known, yet, regarding the expected contact time with the 
ambulance, the patient’s medical device begins sending 
chunks assuming the contact will last the time taken to 



traverse the road while driving at the speed limit (the length 
of this time window can be provided by the ambulance 
within its reply, for example). In the meanwhile, the 
ambulance moves and predicts how long it will spend over 
that given road segment. As soon as this information is 
known, it is provided to the medical device, which can, in 
turn, maximize, based on a function that maps the priority 
and size of each chunk into a utility value of the transferred 
data within the given time window (i.e., remaining contact 
time).  

The problem, at this point, results in predicting the time an 
ambulance will spend upon a given road segment as 
explained in the following Section where an empirical 
model has been derived to this aim. 

 

4. AN EMPIRICAL MODEL 
Differently from highways, urban roads present traffic 
patterns that can radically change over a short time range, 
thus complicating the task of predicting the time that could 
be spent to traverse them. For this reason it is not possible 
to assess these values statically, by, for example, simply 
considering the length and the speed limit of a given road. 
Moreover, it is usually not even possible to directly 
compute their traversal times from the time taken, for 
example, to traverse their initial 10%, as in urban scenarios 
most of the time is usually spent in the final section, 
waiting for a red traffic light cycle. 

We decided, hence, to study how the traversal time of a 
given road can be predicted from the time that is spent to 
drive through a significant initial portion of the same road, 
performing a wide set of experiments, driving several times 
through the same street while recording the GPS traces of 
our traversals.  

The chosen experiment site is a 430 meters long street in 
Pisa, Italy (via Benedetto Croce). The street ends with two 
traffic lights (approximately distant 30 meters one from the 
other) and is composed of three lanes, of which vehicles 
can traverse only the central one from east to west. The 
timing of both traffic lights depends on pedestrian crossing 
requests. If no pedestrian requests to cross the street, the 
traffic light is constantly green. When a pedestrian requests 
to cross the street, the two traffic lights behave in a slightly 
different way. Both of them have a complete cycle of 85 
seconds (i.e., red plus green light duration), but a red light 
lasts for 20 seconds at the first one, and for 30 at the second 
(in order of appearance). When pedestrians request to cross 
the street, both traffic lights become red at the same time. 

4.1 Predicting Traversal Times 
The histogram shown in Figure 1 shows the distribution of 
the traversal times experienced during the experimental 
campaign we performed over via Benedetto Croce. The 
wide range of values taken by this variable confirm that the 
number of chunks of data that can be transferred during a 
contact can greatly vary, depending on traffic conditions.  

 
Figure 1. Traversal Time Distribution. 

Now, in order to identify significant subsections of the road 
under investigation, we defined the two following 
functions: 

1. avg(speedx,y), the mean value of the average 
speeds experienced by our vehicle during each 
traversal, between road positions x and y; 

2. std(speedx,y), the standard deviation of the 
average speeds. 

At the basis of our model lies the idea of identifying that 
section of road whose traversal time highly correlates with 
the total amount of time needed to drive through the entire 
road. With an estimate of the time spent on that given 
portion of road, we can suggest to a running ambulance 
how long it will remain on that road, and hence the contact 
time with the patient. Obviously, the sooner this estimate is 
available, the more useful. Practically, this translates into 
the problem of finding that portion of road that is closest to 
the entrance and has the maximal correlation, in terms of 
traversal time, with the entire road. To this aim, we 
generated four different objective functions obtained as a 
combination of the average speed and its standard 
deviation. As shown in Table 1, it is interesting to 
maximize or minimize them with aim of identifying the 
estimate mentioned before. In fact, the meaning of 
searching for locations where the average speed took high 
or low values is motivated by the fact that low values are in 
general experienced near the traffic light, while high values 
are located typically between the beginning and the 
midpoint of the road.  
For what concerns the standard deviation, we can expect 
that low values could be seen where, independently from 
traffic conditions, speeds did not vary (e.g., at the end of a 
road, close to its traffic light). We can, instead, predict that 
high values be observed over those portions where the 
vehicle’s speed was most unpredictable, hence over those 
sections that might have been occupied by queues when, 
during rush hours, high volumes of traffic entered the road.  
In particular, Table 1 shows, from left to right, the 
optimization    made    to    our     objective    function,   the  
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Table 1. Optimizations. 

 

normalized portion of road (i.e., 0 corresponds to the 
beginning, 1 to the end of the road) where the functions 
take their optimal values, the average and standard 
deviation of the speeds over those portions and, the linear 
correlation between the time spent over those portions and 
the time spent over the whole road, respectively.  
Our model reveals that the portion of road where the 
standard deviation of speeds takes a high value corresponds 
to the section where highest is the recorded correlation with 
the traversal time (second line of Table 1). Unfortunately, 
this estimate can be taken only after more than half of the 
road has been traversed, thus reducing its practical utility.  
This fact is also witnessed by Figure 2, where we can 
appreciate the linear correlation between the times spent 
over the section where the highest standard deviation is 
experienced, divided by its length, on the x-axis, and the 
time spent over the whole road, on the y-axis. This section 
stretches well beyond the midpoint of the road under 
consideration. A better estimate can be obtained based on 
the optimization reported on the fifth line of Table 1. It 
shows that the section where the sum of the average speed 
and the standard deviation is highest also reveals a strong 
correlation with the traversal time (0.75). This estimate 
may be obtained within approximately one third of the 
road, thus enabling a quicker prediction of the traversal 
time of the whole segment. 

 

5. CONCLUSION 
Computing during the very initial phase of a data transfer 
an estimate of how long a contact time will last is key to 
successfully optimize patient to ambulance 

communications. We provided an intuition of how this can 
be accomplished, supported by preliminary results. 

 
Figure 2. Correlation. 
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