
AN OPTIMISTIC OBSOLESCENCE-BASED APPROACH
TO EVENT SYNCHRONIZATION FOR MASSIVELY

MULTIPLAYER ONLINE GAMES

Stefano Ferretti, Marco Roccetti, Claudio E. Palazzi
Department of Computer Science

University of Bologna
Mura Anteo Zamboni 7, 40127 Bologna, Italy

Email: {sferrett, roccetti, cpalazzi}@cs.unibo.it

Abstract

Massively Multiplayer Online Games (MMOGs) are no longer a chimera. Day after day,
new exemplars of this application are released, available for free on the Web or on sale. Yet,
high lags frequently affect MMOGs annoying customers. This frustrating phenomenon
is mainly due to the best-effort service provided by the Internet that is often responsible
for congestion and loss of responsiveness. To address this challenging issue, we consider a
mirrored game server architecture and present a mechanism aimed at accelerating the delivery
of game events generated during game sessions. Our approach rests upon the use of an
optimistic synchronization mechanism that exploits the semantics of the game to diminish
the delivery time of game events, whilst maintaining the full consistency of the game state.
Experimental results are reported confirming the adequacy of our approach.

Keywords: Massively Multiplayer Online Games, Mirrored Game Server Architecture, Inter-

activity, Online Entertainment.

1 Introduction

Since the birth of the game industry, more than thirty years ago, video games have evolved

from being a simple pastime for children to a serious business. Nowadays, this form of en-

tertainment represents an important case study for researchers, which have been massively

attracted by its technical challenges and sociological implications. Furthermore, since games

have become similar to real simulators (e.g., flight-, combat-, vehicle-, human-simulators),

other typologies of applications have also converged into game technologies. Indeed, game-

based tools can simulate, in a relatively cheap and safe way, situations which could be much

more expensive or dangerous in the real world. Examples of applications that may gain bene-

fits from technical solutions introduced by game technology are related to medical surgery,

military simulations, interactive collaboration, interactive storytelling, distance learning, e-

commerce and manufacturing systems [4, 15, 21, 34, 35, 37]. Summing up, more and more

1



”non-game applications” adopt elements of computer gaming technology to ameliorate user

experiences in several domains [36].

Nowadays, great advances in networking technologies and the wide diffusion of new

network-enabled mobile devices are ruling the future of the game industry. In this context, the

phenomenon of Massively Multiplayer Online Games (MMOGs) is emerging as a new trend

able to involve players connected through the Internet making them interact in a distributed

virtual game world. All these factors are leading a steady growth of new game technologies.

In essence, the game market is characterized by a rising demand for distributed, responsive,

and scalable strategies able to provide players on the net with a feeling of full immersion into

the virtual game world during the game escalation.

Several alternative architectures have been proposed to support MMOGs, ranging from

client-server [1,14] to peer-to-peer [10]. Embodying an efficient tradeoff among these architec-

tures, mirrored game server has recently emerged as a solution able to provide scalability while

minimizing the overhead of the game event exchange protocol. In essence, this solution de-

ploys over the network a constellation of replicated Game State Servers (GSSs), each of which

locally maintains a redundant version of the game state. Each GSS manages and updates its

copy of the game state as follows: i) it collects game events coming both from its engaged play-

ers and from other GSSs; ii) it forwards to all other GSSs the events generated by its connected

players; iii) it updates the game state considering the set of received game events; iv) it finally

delivers the newly updated game state to its connected players.

It goes without saying that, within this scenario, an efficient event synchronization scheme

among GSSs needs to be employed to guarantee a consistent and responsive evolution of the

game state. Hence, one of the key factors in determining the success of an online game is

represented by the ability to rapidly deliver events among the various GSSs. Indeed, while

simpler turn-based games do not have to face this problem, as only one player is allowed to

perform an action at any given time, the task of providing players with responsiveness and

real-time interactions is probably the most stringent requirement for MMOGs. In fact, in case

of intense traffic in the network or when excessive computational loads are slowing down some

GSSs, the game delivery activity turns out to be delayed. As a consequence, the responsiveness

of the distributed game system may be jeopardized.

With this in mind, a recent study has been proposed where the goal of uplifting the playa-

bility degree of MMOGs is achieved by maintaining the game event delivery delays under a

2



human perceptivity threshold, whilst preserving the game state consistency [14]. At the basis

of this approach lies the idea of exploiting the notion of obsolescence. Simply put, obsolescence

entails that, depending on the semantics of the game, some events can lose their significance

as time passes, i.e., new actions may make the previous ones irrelevant. For example, where

there is a rapid succession of movements performed by a single agent in a virtual world, the

event representing the last destination supersedes the previous ones (obsolete events).

In essence, obsolescence allows the system to drop those game events that lose their impor-

tance during the game evolution. Discarding superseded events for processing fresher ones

may be of great help for delay-affected GSSs. This means that, during the game event ex-

change activity, while responsive GSSs may deliver all game events to provide their connected

clients with a fluent game state evolution, those GSSs that experience a loss of interactivity

may skip the execution of obsolete events in order to speed up the event processing activity,

thus gaining interactivity. For example, it might be the case when a delay affected GSS p is

waiting for the arrival of a game event ei that is supposed to be processed next. However, if

another event ej, that makes obsolete ei, arrives at p, then p can quit waiting for ei and process

ej directly.

Obviously, not every event in a game may be considered as obsolete. Alongside the notion

of obsolescence, in fact, is also the notion of correlation among events which has to be taken into

account. Two events are said to be correlated if the final game state depends on their execution

order [14]. In essence, correlated game events often represent significant interactions among

game events which require a careful processing in order to obtain a correct evolution of the

game state. Thus, obsolescence cannot be applied to correlated game events.

Another interesting effect of correlation amounts to the fact that only correlated events are

required to be processed in the same order at all the GSSs to maintain the consistency of the

game state (correlation-based order). Instead, different delivery orders are possible when a given

sequence of non-correlated events has to be delivered to GSSs.

Based on the notions of obsolescence and correlation, several schemes have been recently

proposed that exploit these two properties to improve interactivity [13,14,15,30,31,32]. Among

these, some exploit a reactive strategy that monitors the interactivity degree provided by the

system. As soon as the measured interactivity degree decreases below a given game perceptiv-

ity threshold, an interactivity restoring procedure is activated. This procedure skips processing

obsolete game events with the aim of bringing back the measured interactivity level below the

3



game perceptivity threshold (Interactivity Restoring) [14]. Since only obsolete events are dis-

carded at some given GSS, this stabilization mechanism reduces the delivery latencies of game

events, thus gaining interactivity, without causing inconsistencies in the game evolution.

Alternatively, taking inspiration from the RED (Random Early Detection) approach ex-

ploited in the field of congestion control for computer networks [16], another strategy exists

that proactively avoids any loss of interactivity before it might happen. In essence, obsolete

events are discarded in advance based on a given dropping probability which depends on the

measured values of the interactivity degree (Interactivity-Loss Avoidance) [30, 32].

However, the problem with all these strategies is that they have been developed based on

a conservative approach [17]. Simply stated, the decision at a given GSS to process an event ei

is delayed until all non-obsolete events preceding ei are received by that GSS. Hereinafter, we

refer to these synchronization mechanisms as Conservative Obsolescence-based Synchronization

(COS) schemes.

In this paper, we present a novel game event synchronization mechanism for mirrored

game servers that exploits the notions of obsolescence and correlation following an optimistic

synchronization approach. We refer to our mechanism as an Optimistic Obsolescence-based Syn-

chronization (OOS) mechanism. Following our OOS mechanism, every time a new game event

ei is received at a GSS, an immediate check for detecting the obsolescence of ei is carried out.

If this check succeeds, the event ei is immediately discarded. Otherwise, another check is per-

formed to verify whether later events ej exist that are correlated to ei and have already been

processed. In this case, a rollback procedure is performed as follows: all the aforementioned

events ej are rolled back and a new game state is computed to be now safely delivered to all

connected players. Obviously, during the rollback procedure some of these events ej may be-

come obsolete since new values of the game state variables are computed. In such a case, these

obsolete events are simply dropped.

It is widely accepted that the main advantage of optimistic strategies, w.r.t. conservative

ones, amounts to the fact that they perform better in fast paced games where a continuous rate

of the game advancement is important [8]. The experimental study we have conducted con-

firms this consideration, especially when the attention is focused on interactivity. In particular,

we report results showing that our OOS strategy outperforms alternative COS mechanisms in

terms of interactivity as it speeds up the event processing activity at each GSS.

The remainder of this paper is organized as follows. An analysis of related works proposed

4



in literature is presented in Section 2. Section 3 introduces the adopted system model. Section

4 presents our OOS strategy for MMOGs. In Section 5 we report experimental results obtained

from a simulative assessment that confirm the efficacy of our approach. We conclude the paper

with some final comments in Section 6.

2 Related Work

Aimed at guaranteeing a uniform view of the game state among all GSSs, several synchro-

nization schemes have been presented in literature for the support of networked multiplayer

games [8,9,10,22,26,27]. Among these, similar to our OOS scheme, some of them take inspira-

tion from the optimistic Time Warp algorithm to adopt a detect-and-correct strategy [8,9,26,27].

A new synchronization mechanism for online games called trailing state synchronization was

presented by Cronin et al. [8, 9]. According to this approach, every GSS locally maintains a

fixed number of copies of the game state, each of which is kept at a different simulation time.

In essence, each copy of the game state is associated with a particular execution, and each

execution is delayed for a fixed time interval. Inconsistencies are identified by comparing the

leading state (that optimistically processes game events without any additional delay) with the

game states of the delayed executions that reorder and then process the received game events.

If an inconsistency is detected, a rollback is performed by copying the (consistent) game state

from the delayed execution to the leading execution and then the rolled back game events are

re-processed in the proper order. Needless to say, a trade-off relationship exists between the

number of game state copies maintained by each GSS and the number of game events that

need to be re-processed in case of a rollback.

In [26, 27], Mauve et al. presented an optimistic approach for the consistency control in

networked multiplayer games. This approach utilizes the local lag control mechanism com-

bined with a modified Time Warp (executed only when necessary) in the attempt of solving

the trade-off relationship existing between responsiveness and consistency. In particular, the

devised synchronization approach is based on the idea of intentionally decreasing the respon-

siveness of the application in order to eliminate short-term inconsistencies. According to the

local lag approach, game events are delayed for a certain amount of time before being exe-

cuted. This additional delay permits the reordering of the received events in order to minimize

inconsistencies. However, the presence of this delay is not always sufficient to prevent short-

term inconsistencies since game events might still arrive late due to jitter or packet loss in the

5



network. To restore consistency, the proposed scheme resorts to the Time Warp algorithm.

Other approaches simply assume that delaying the game event processing activity for a

predetermined amount of time may be sufficient to guarantee a uniform evolution of the game

state at different nodes in the system without any need to resort to rollbacks. Following this

idea, Diot and Gautier depicted in [10] a synchronization mechanism which embodies an op-

timistic version of the well known conservative bucket synchronization algorithm. Their ap-

proach assumes that there exists a processing deadline (which defines a time bucket) and that a

correct evolution of the game requires that all game events are received prior to this deadline.

In essence, the idea behind this scheme is that of ordering and processing game events at the

end of the time bucket. If some game events are not received before the time bucket expiration,

dead reckoning techniques are exploited to compensate events losses. A similar approach was

presented also in [22], however, in both cases, the main drawback is that dead reckoning does

not ensure the full consistency of the distributed game state. Short-term inconsistencies may

still arise if the bucket size is set excessively small. On the other hand, using large buckets may

induce a severe responsiveness degradation. Further, a complex problem is that of fitting the

bucket size with the unstable condition of the Internet where large and variable jitter values

may be experienced.

In [23], Li et al. presented a continuous consistency control mechanism for supporting net-

worked multiplayer games. Similar to [27], this approach rests on the idea that game events

should not be considered as discrete updates of the game state, but rather as continuous actions

in the game world. In this context, the authors proposed a relaxed time-dependent consistency

control scheme which gradually synchronize the nodes in the system and ensures that the dis-

crepancy among game states stored at each node, even if existing, never exceeds a predefined

threshold.

Finally, Knutsson et al. propose in [20] the use of coordinators to solve update conflicts that

may occur in a peer-to-peer architecture. In particular, they split the game state management

into different classes handled by different coordinators within a group of interested peers.

However, these coordinators evaluate game situations based upon a subjective point of view,

thus raising some concerns about fairness. Aiming at guaranteeing fault tolerance, the authors

also propose the use of a primary-backup protocol to address fail-stop failures of coordinators.

6



3 System Model

This Section surveys the main concepts that are at the basis of an obsolescence-based game

processing strategy deployed over a mirrored game server architecture. Interested readers

may find a deeper analysis of these concepts in [14].

With the term mirrored game server architecture we refer to a game architecture that employs

a constellation of replicated Game State Servers (GSSs) geographically dispersed over the In-

ternet [8, 30]. Each GSS locally maintains a replicated representation of the state of the game.

According to this approach, each player connects to the nearest GSS and communicates in the

same way as in a classic centralized client-server architecture. With each new action performed

by players connected to a given GSS, the GSS collects the corresponding event, notifies it to

other GSSs (in a peer-to-peer fashion), updates the game state and, finally, communicates the

newly computed game state to its connected players.

In our model, we assume that generated game events represent discrete actions in the game

world. Under this assumption, it is well known that game state consistency can be guaranteed

based on the order according to which game events are processed, i.e., each GSS has to process

game events according to a correct order so as to ensure game state consistency [17, 25].

An important characteristic of MMOGs deployed over GSSs is the possibility of having

several participants sharing the same game experience at the ”same real-time”. Unfortunately,

real-time performance is often an illusive objective to achieve over a best-effort network. Sev-

eral adaptation techniques have been proposed to manage the notion of time in MMOGs. In

this context, we define a Game Interaction Threshold (GIT) that represents a temporal limit on

the acceptable delivery delay of a game event. If delivery delays of game events surpass this

limit, the system is not interactive. Therefore, in order to guarantee full satisfaction to players,

the time elapsed from the generation of a game event to its presentation to final users should

always be kept below the GIT value. As extensively discussed in [2,5,12,33], typical GIT values

are in the range of 100-200 ms.

Denoting with Tp
g(ei) the generation time of a given event ei at a given GSS p, and with

Tq
d(ei) the delivery time of ei measured at another GSS q, we introduce a metric that measures

the Game Time Difference, GTDp,q(ei), between the generation time of an event ei and its delivery

time to connected GSSs.

Definition 1 (Game Time Difference, GTD) Given two GSSs p and q and an event ei generated at

7



p and sent to q, the Game Time Difference is defined as the difference between the event delivery time ei

at q and its event generation time at p: GTDp,q(ei) = Tq
d(ei) − Tp

g(ei).

This value is an estimation of the interactivity degree provided by the system during the

game activity, as it takes into account the most relevant portion of the delay: the communi-

cation latency between communicating GSSs. We claim that interactive game applications are

well supported only if the GTDs of the generated game events are kept within the limit pro-

vided by the GIT at all GSSs.

To measure the GTD of delivered events, we assume a notion of global time among GSSs.

This goal may be accomplished exploiting a variety of different approaches, such as synchro-

nized physical clocks [7, 11, 18, 28] or technological synchronization devices (i.e. GPS).

Classic synchronization schemes in networked games guarantee that a given game event

trace is processed according to the same order by all the GSSs [8, 10, 26]; this is sufficient to

ensure game state consistency [14]. However, it is well known that the use of synchronization

approaches that strive to reconstruct the same totally ordered event trace at all the GSSs may

greatly affect the degree of responsiveness in large-scaled MMOGs.

From this standpoint, recent studies demonstrated that, by exploiting the semantics of the

game, not all game events are required to be processed in the same order at all GSSs for main-

taining game state consistency [14,32]. Hence, the following notion of correlation among game

events may be introduced:

Property 1 (Correlation) Two game events, ei and ej, are said to be correlated iff different orders of

execution of the two game events lead to different game states.

Examples of correlated game events typically involve events that could also be generated

by different players and that act on the same game elements. In some sense, game events result

to be correlated when there is a semantic relationship among them. As an example, we may

consider two players who wish to simultaneously pick up the same object in a virtual world:

to this aim, they generate two concurrent game events. Clearly, the order according to which

the two game events are processed is important to determine who actually takes the object.

Therefore, these game events must be processed at all GSSs based on a total (timestamp-based)

order to not alter the game state. Two game events representing attempts to pick up differ-

ent objects, instead, may be processed according to different orders at different GSSs without

compromising the game state consistency; thereby, they are not correlated. Other examples

8



of non-correlated game events are represented by independent movements of different virtual

characters (which typically represent the most commonly generated game events in a huge

amount of distributed games).

Based on this notion of correlation, we introduce the following correlation-based order

processing strategy:

Property 2 (Correlation-based Order) Given two correlated game events, ei and ej, the two events

are to be processed by all GSSs in the same order.

Hence, according to Property 2, in order to provide players with a correct evolution of the

game, it is sufficient that correlated game events are processed by all GSSs respecting their

correct (timestamp-based) order. Conversely, no ordering guarantee is needed to process non-

correlated events, as their delivery in different orders at different GSSs do not alter the consis-

tency of the game state. In a few words, the processing at different GSSs of differently ordered

event traces while respecting conditions of Property 2 still guarantees game state consistency.

Such correlation-based order has the main advantage of reducing the synchronization over-

head.

To introduce the notion of obsolescence, the following important consideration is in order:

there exist many situations in games where fresher game events annul the importance of pre-

vious ones. For example, knowing the position of a character at a given time may no longer be

important after a certain time period, if the position of the character changes. In other words,

the newer movement event generated for that character makes obsolete the older one. We hence

introduce the following notion of obsolescence:

Property 3 (Obsolescence) Given two game events, ei and ej, generated at the same GSS p, we say

that ej makes ei obsolete iff all the following conditions hold: i) Tp
g(ej) > Tp

g(ei); ii) processing ej without

ei leads to the same final state that would be reached if both events were processed in the correct order;

iii) there do not exist other events ek correlated to ei which have been generated at any GSS within the

time interval [Tp
g(ei), Tp

g(ej)].

It is evident that obsolescence and correlation have strict mutual relationships. In general,

the presence of an event ek correlated to ei, and interleaved between ei and ej, may break the

obsolescence relation between ei and ej. For instance, consider the game plot where the charac-

ter Alice is moving through two subsequent moves: if Bob shoots at Alice during Alice’s motion,

then no kind of obsolescence may be considered between the two subsequent Alice’s move-

9



ments. In such a case, in fact, the actual position of Alice is important to determine if the shot

has either hit her or not.

Obviously, in order to check for correlation and obsolescence, some information has to be

included in game messages exchanged among the nodes in the system. This information has

to reflect the semantics of game events and may vary depending on the considered game. As

a factual example, in [15] we provided a discussion on how to implement the notions of obso-

lescence and correlation within the context of distributed interactive storytelling systems. In

particular, we showed that the use of an XML-based syntax to represent game events can ease

the task of implementing relationships between characters (and their actions). Furthermore,

in [6], another example has been provided on how to implement obsolescence and correlation

in a car racing game.

Based on the notion of obsolescence, an obsolescence-based processing strategy may be de-

vised.

Property 4 (Obsolescence-based Processing) For each game event ei and GSS p, one of the follow-

ing conditions holds: either i) p processes ei or, ii) p processes some further event ej that has made ei

obsolete.

Property 4 states that there is no need to process obsolete events to maintain the game state

consistency, since it is guaranteed by the processing of fresher events.

A general notion of game consistency may be introduced which is as follows.

Property 5 (Game Consistency) The game state, at any GSS, is said to be consistent iff the require-

ments of Property 2 and Property 4 are satisfied for each event trace.

Meeting the conditions of Property 5 means that all GSSs agree on the same view of the

game state as they deliver correlated events in the same order, while obsolete events may be

safely discarded on a subjective basis.

In conclusion, satisfying the requirements of Property 5 entails that the final game state is

not altered and an augmented interactivity is achieved by means of discarding obsolete events

before processing them and permitting different processing orders for non-correlated events.

4 An Optimistic Obsolescence-based Synchronization Scheme

We present an Optimistic Obsolescence-based Synchronization (OOS) scheme that guarantees a

correlation-based order processing for those events that are not discarded due to obsolescence.

10



Our proposed scheme satisfies the requirements of Property 5, thus guaranteeing the consis-

tency of the game state at all GSSs.

In particular, OOS adopts an optimistic strategy inspired by the Time Warp algorithm [19].

Simply stated, as soon as an event ei, coming from a GSS p, is received at any GSS q, a check

is executed to detect whether ei is obsolete. In the positive case, it is simply discarded. Other-

wise, another check is executed to verify whether there exist other already processed events ej

(correlated to ei) with a generation time larger than Tp
g(ei). For each event ej meeting this condi-

tion, the system invokes a rollback procedure which is based on the standard incremental state

saving technique [17]. It may be the case that some of these events ej may become obsolete due

to the reprocessing activity triggered by the rollback procedure. Needless to say, these events

are dropped as soon as they are recognized as obsolete.

This scheme guarantees that game state consistency is preserved.

0 procedure OOS-receive-event-procedure() {
1 ei := received event;
2 if (ei is obsolete)
3 drop(ei);
4 else {
5 Event List := {ej | ej already processed ∧

ej correlated to ei ∧ Tg(ej) > Tp
g(ei)};

6 if (Event List 6= NULL) {
7 Rollback(Event List);
8 Process(ei);
9 for (each ej ∈ Event List)
10 if (ej is obsolete)
11 drop(ej);
12 else Process(ej);
13 }
14 else Process(ei);
15 }
16 }

Figure 1: Implementing OOS.

Our OOS algorithm is reported in Figure 1, which lists all the actions accomplished by a

given GSS when a new game event is received. First, the GSS verifies if ei may be already

identified as obsolete (line 2). In this case, ei is dropped (line 3). Otherwise, a check is carried

out to control whether any game events ej, correlated to ei and generated after ei, have already

been processed (lines 5-6). If this check succeeds, then a rollback procedure is performed where

all these events ej are rolled back (line 7). At this point, ei is processed (line 8), followed by the

execution of all those rolled back events which are not obsolete (lines 9-12). Obsolete events

are discarded during the rollback (lines 10-11). If the check fails, thus implying that no rollback

11



procedure is needed, then ei is directly processed (line 14).

It is worth mentioning that our OOS scheme is devised to reduce the amount of rollbacks

executed during the game processing activity w.r.t. Time Warp. Indeed, a rollback is performed

only when receiving a late event that cannot be considered as obsolete. Instead, if obsolete, the

event is dropped without invoking the rollback procedure. Moreover, a rollback is needed

only if correlated events have been processed out of order and, even in this case, only non-

obsolete events are reprocessed. In essence, our scheme has the positive effect of reducing the

computational burden typically required to maintain the game state consistency.

It is also worth noticing that when an optimistic scheme is employed to synchronize GSSs,

processed game events can be transmitted to players only when those events are no longer

subject to possible rollback. In other words, the rollback strategy should not affect the game

evolution as seen by players; otherwise, users could have the undesired perception of charac-

ters that, for example, jump from incorrect positions to correct ones, or come back to life when

they have already been shown as killed.

In point of this fact, other proposals that refer to optimistic synchronization schemes for

networked multiplayer games [9, 24] do not seem to take into consideration this problem. In

essence, events are forwarded to players without any control on the stability of the rendered

game state. Therefore, when a rollback occurs, the corresponding reprocessing is perceived by

connected players as well.

We have a different position here. We claim that jerky renderings at player’s side should be

avoided even when an OOS strategy is employed. This may be achieved by notifying players

only with a stable game state. While this approach slightly increases the amount of time spent

by game events at the server side, the final degree of responsiveness can still be improved

thanks to an obsolescence-based discarding mechanism as in our case. This claim is confirmed

by results provided in Section 5.

We conclude this Section by mentioning that our OOS strategy has been implemented by

exploiting a receiver-initiated communication protocol that utilizes NACKs (Negative AC-

Knowledgments) to provide the delivery guarantee only for non-obsolete events [13]. It is

well known that TCP-based synchronization protocols have to be avoided at all costs while

developing distributed games [29]. The motivation is that much of TCP’s behavior, such as

congestion control and retransmissions, is detrimental to meeting the MMOGs real-time con-

straint. Our approach, instead, exploits UDP to transmit events among GSSs. Moreover, since

12



we are concerned with the reliable delivery of non-obsolete events only, as soon as a receiving

GSS detects that a non-obsolete event ei is missing1, a NACK is sent back to the sending GSS.

Upon receiving a NACK, the sending GSS either retransmits ei or transmits the most recently

generated event ej that has made ei obsolete.

5 Experiments

5.1 Performance Metrics and Simulation

In this Section we report results obtained from the evaluation of our OOS mechanism. In

particular, we measured: i) the provided interactivity degree, ii) the amount of dropped events,

iii) the number of rollbacks, iv) the amount of reprocessed events within each single rollback.

To evaluate our scheme, we have simulated a general mirrored game server architecture

comprising a variable number of GSSs (from five to eight). Without any loss of generality, we

focused our attention on the event receiving aspect of one GSS, namely GSS0, pretending that

other GSSs are sending game events to it.

We simulated a best effort, non-reliable network (with a 10% message loss probability on

average). Following the literature [5, 12], the transmission delay for each event was obtained

based on a lognormal distribution whose parameters are reported in Table 1. In particular,

values in Table 1 correspond to the average values and standard deviations of the network

latencies that characterize the network links between each sending GSS and GSS0. The average

event size (200 Bytes) and the event generation rate at each GSS, are inspired by the online

gaming literature as well [5, 12, 30]. Finally, the GIT is a fundamental parameter in our scheme

and its value may be differently chosen depending on the considered game. Taking inspiration

from [2, 5, 12], we set the GIT equal to 150 ms.

Table 1: Configuration of the GSSs (ms).

GSS1 GSS2 GSS3 GSS4 GSS5 GSS6 GSS7

Latency Avg 15 40 75 90 80 30 100
Latency Std Dev 10 15 30 10 20 15 25

Regarding the frequency according to which events were generated at a given GSS, we

shaped the event generation by means of a lognormal distribution whose Average Inter-Departing

1based on sequence numbers

13



Time (AIDT) was set equal to 45 ms, with a standard deviation of 10 ms. This configuration

represents a scenario of intense load traffic [5, 12, 30].

In our evaluation, we varied the number of simulated players from 25 to 90. These values

can be justified as follows. It is realistic to suppose that a player is able to generate a new event

every 200-500 ms (e.g., FPS games). This means that 2-5 game events per second are generated

by each player. Since we set the AIDT equal to 45 ms at each GSS, we obtain a total number of

player per GSS ranging from 5 to 11. Considering the total number of servers (from 5 to 8) we

can approximate the final amount of players interacting at the same time as ranging from 25 to

90.

We conducted our experiments with event traces containing 1000 events for each sending

GSS. We considered different event trace configurations, where the probability that an event is

non-correlated to other events was set equal to 50%, 60%, 70%, 80%, 90%, respectively. Clearly,

the higher the probability of non-correlation, the higher the number of events that will become

obsolete during the game evolution. Indeed, a higher non-correlation probability entails more

chances for an event ej to make obsolete a preceding one ei. Indeed, it is more likely that no

events ek have been generated by other players which break the obsolescence relation among ej

and ei. Moreover, the higher the probability of non-correlation among game events, the lower

the number of events that will be subject to rollback.

Where not differently stated, we have set the non-correlation probability equal to 90%; this

represents a realistic scenario for a vast plethora of possible games. Indeed, we claim that this

particular configuration is a good approximation of a real trace of game events as generated

during a game session. For instance, in many first person shooter games, independent (i.e.,

non-correlated) movement actions performed by different characters largely surpass critical

movement/shoot ones [1, 30].

As a confirmation of our claim, an extensive study of players’ behavior on Quake 3 is pre-

sented in [3]. In that paper, Armitage reported a measure of the average number of kill actions

per minute as a function of the median ping time between client and server; that measure helps

us in providing a further rationale for considering 10% as the percentage of critical events in

our simulations. In fact, in [3] it is shown that 80% of the players are located within 150-180ms

of range from the server and experience a number of kill actions per minute, on average, com-

prised in the interval between 1.60 and 3.25. Considering the median of this interval (2.425)

we obtain 0.04 kill events per second. With an AIDT of 45ms at client side, 22.22 game events

14



are generated every second. Therefore, the resulting percentage of kill events over the whole

set of game actions amounts to just 0.18%. Pessimistically assuming that a kill event can be

issued only after an average number of 50 correlated actions (e.g., various shots, movements

of the character into the location where it would be shot or out of the position where it would

have been shot) we get 9% of critical events. Therefore, 10% of correlated events and 90%

of non-correlation (and obsolescence) probability represent a realistic configuration for online

games simulations. Nevertheless, to provide a more general experimental scenario, we have

evaluated configurations adopting various non-correlation probabilities.

Finally, in our experiments we contrasted five different synchronization schemes:

1. our OOS strategy;

2. the already mentioned COS-based Interactivity Restoring scheme described in Section 1

(hereafter denoted as COS-1) [13];

3. the already mentioned COS-based Interactivity Loss Avoidance scheme described in Sec-

tion 1 (hereafter denoted as COS-2) [30];

4. a traditional optimistic synchronization algorithm, inspired by the Time Warp scheme

(TW);

5. a traditional Conservative Synchronization (CS) approach that does not resort to any

mechanism to restore interactivity nor utilizes any dropping strategy.

5.2 Results: Interactivity Degree

We intend to demonstrate here the benefits on the provided interactivity degree attainable by

resorting to our OOS approach. To this aim, we compare the five aforementioned mechanisms

by measuring the percentage of game events arrived at GSS0 with a GTD value larger than

GIT. To fully appreciate the results, we have to keep in mind that our experimental analysis also

includes the computational cost paid for checking obsolescence and correlation, and to perform

rollbacks when necessary. In particular, Figures from 2 to 5 report the average percentage

of GDTs above GIT, depending on the number of involved GSSs, as a function of the non-

correlation probability. According to all the experimental configurations, OOS outperforms the

other schemes regardless of the number of sending GSSs. It is also worth noticing that CD and

TW curves lie horizontal, as standard CD and TW schemes do not benefit from obsolescence

and correlation.

15



Number of GSSs = 4 - AIDT = 45 msec

0

5

10

15

20

25

30

50 60 70 80 90
Non Correlation Probability (%)

G
TD

 o
ve

r G
IT

 (%
)

CS COS-1 COS-2 TW OOS

Figure 2: % Events with GTD over
GIT; 4 GSSs.

Number of GSSs = 5 - AIDT = 45 msec

0

5

10

15

20

25

30

35

50 60 70 80 90

Non Correlation Probability (%)

G
TD

 o
ve

r G
IT

 (%
)

CS COS-1 COS-2 TW OOS

Figure 3: % Events with GTD over
GIT; 5 GSSs.

Number of GSSs = 6 - AIDT = 45 msec

0

5

10

15

20

25

30

35

50 60 70 80 90

Non Correlation Probability (%)

G
TD

 o
ve

r G
IT

 (%
)

CS COS-1 COS-2 TW OOS

Figure 4: % Events with GTD over
GIT; 6 GSSs.

Number of GSSs = 7 - AIDT = 45 msec

0
5

10
15
20
25
30
35
40
45
50

50 60 70 80 90

Non Correlation Probability (%)

G
TD

 o
ve

r G
IT

 (%
)

CS COS-1 COS-2 TW OOS

Figure 5: % Events with GTD over
GIT; 7 GSSs.

Another proficient tool for evaluating the compared schemes is represented by the cumu-

lative function of the GTDs. This value measures the probability of having a GTD lower than a

specified value. In substance, the more the line reported in Figures from 6 to 9 is concentrated

on the left side of the chart, the higher the interactivity degree provided by the system. Coher-

ently with the previous outcomes, OOS outperforms all the other schemes, thus guaranteeing

an augmented interactivity degree.

In essence, these results confirm that: i) our OOS strategy is better suited for games w.r.t.

COS; ii) traditional optimistic approaches may gain great benefits from obsolescence and cor-

relation notions.

5.3 Results: Amount of Dropped Events

An interesting measure is concerned with the amount of obsolete events that are dropped to

report (and maintain) the interactivity degree within an acceptable value. Indeed, while these

16



Number of GSSs = 4 - AIDT = 45 msec

0

0,2

0,4

0,6

0,8

1

1,2

0 20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

22
0

24
0

26
0

28
0

30
0

32
0

34
0

msec

Pr
ob

(G
TD

 <
 x

)

CS COS-1 COS-2 TW OOS

Figure 6: Cumulative Function of the
GTDs; 4 GSSs.

Number of GSSs = 5 - AIDT = 45 msec

0

0,2

0,4

0,6

0,8

1

1,2

0 20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

22
0

24
0

26
0

28
0

30
0

32
0

34
0

msec

Pr
ob

(G
TD

 <
 x

)

CS CODS-1 COS-2 TW OOS

Figure 7: Cumulative Function of the
GTDs; 5 GSSs.

Number of GSSs = 6 - AIDT = 45 msec

0

0,2

0,4

0,6

0,8

1

1,2

0 20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

22
0

24
0

26
0

28
0

30
0

32
0

34
0

msec

Pr
ob

(G
TD

 <
 x

)

CS COS-1 COS-2 TW OOS

Figure 8: Cumulative Function of the
GTDs; 6 GSSs.

Number of GSSs = 7 - AIDT = 45 msec

0

0,2

0,4

0,6

0,8

1

1,2

0 20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

22
0

24
0

26
0

28
0

30
0

32
0

34
0

msec

Pr
ob

(G
TD

 <
 x

)

CS COS-1 COS-2 TW OOS

Figure 9: Cumulative Function of the
GTDs; 7 GSSs.

dropped events are obsolete and do not influence the final game state, they are still part of the

game visual evolution. Dropping too many obsolete events could result in sudden ”jumps”

and jerky renderings that may affect the fluency of the game evolution. These unpredictable

gaps in the game plot may annoy customers and should be avoided whenever possible.

Needless to say, only the schemes that are able to drop obsolete events are considered here.

Figures from 10 to 13 report the percentage of dropped events using COS-1, COS-2 and OOS,

espectively. Each Figure refers to a specific simulative scenario considering a different number

of involved GSSs.

As shown in the charts, OOS reduces the number of discarded events in all the simulated

configurations w.r.t. all the other schemes. This effect is derived from the fact that our OOS

strategy accelerates fresher event processing, thus diminishing the possibility for an event to

become obsolete.

17



Number of GSSs = 4 - AIDT = 45 msec

0

2

4

6

8

10

12

50 60 70 80 90

Non Correlation Probability (%)

D
ro

pp
ed

 E
ve

nt
s 

(%
)

COS-1 COS-2 OOS

Figure 10: % Discarded Events; 4
GSSs.

Number of GSSs = 5 - AIDT = 45 msec

0
2
4
6
8

10
12
14
16
18

50 60 70 80 90

Non Correlation Probability (%)

D
ro

pp
ed

 E
ve

nt
s 

(%
)

COS-1 COS-2 OOS

Figure 11: % Discarded Events; 5
GSSs.

Number of GSSs = 6 - AIDT = 45 msec

0
2
4
6
8

10
12
14
16
18

50 60 70 80 90

Non Correlation Probability (%)

D
ro

pp
ed

 E
ve

nt
s 

(%
)

COS-1 COS-2 OOS

Figure 12: % Discarded Events; 6
GSSs.

Number of GSSs = 7 - AIDT = 45 msec

0

2

4

6

8

10

12

14

16

50 60 70 80 90

Non Correlation Probability (%)

D
ro

pp
ed

 E
ve

nt
s 

(%
)

COS-1 COS-2 OOS

Figure 13: % Discarded Events; 7
GSSs.

5.4 Results: Rollback Ratio

We measured the number of rollbacks needed to maintain the consistency of the game state by

comparing the two considered optimistic synchronization algorithms: TW and OOS. Since a

reduced number of rollbacks implies a higher interactivity degree, this represents a fundamen-

tal metric.

In Figures from 14 to 17 we show the rollback ratio for TW and OOS. In simpler words,

we measure the total number of rollbacks in the system over the total number of generated

events for various non-correlation probabilities. Each chart refers to a different scenario with a

different number of sending GSSs.

It is worth noticing that the TW curves lie horizontally, as standard TW does not gain

benefits from obsolescence and correlation. Moreover, in all the considered configurations,

OOS is able to outperform TW since it avoids to trigger the rollback procedure for obsolete

18



Number of GSSs = 4 - AIDT = 45 msec

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

50 60 70 80 90
Non Correlation Probability (%)

R
ol

lb
ac

k 
R

at
io

TW OOS

Figure 14: Rollback Ratio; 4 GSSs.

Number of GSSs = 5 - AIDT = 45 msec

0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8

50 60 70 80 90
Non Correlation Probability (%)

R
ol

lb
ac

k 
R

at
io

TW OOS

Figure 15: Rollback Ratio; 5 GSSs.

Number of GSSs = 6 - AIDT = 45 msec

0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8

50 60 70 80 90
Non Correlation Probability (%)

R
ol

la
ba

ck
 R

at
io

TW OOS

Figure 16: Rollback Ratio; 6 GSSs.

Number of GSSs = 7 - AIDT = 45 msec

0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8

50 60 70 80 90
Non Correlation Probability (%)

R
ol

lb
ac

k 
R

at
io

TW OOS

Figure 17: Rollback Ratio; 7 GSSs.

events.

Figures from 18 to 21 report the average number of re-processed events within a single

rollback. In general, OOS reduces this value w.r.t. TW since it avoids the re-execution of those

events that become obsolete during the evolution of the game (and during the rollback).

6 Conclusions

The volatile nature of the Internet can affect the usability of games when they are played by

a huge number of customers dispersed over the network. The main cause of frustration for

online players is represented by the fact that MMOGs generally have stringent interactivity re-

quirements that are not fulfilled by the Internet’s best-effort service model. In the attempt to al-

leviate this problem, we have proposed an optimistic obsolescence-based game event synchro-

nization scheme devised to support the distributed evolution of games which are deployed

over a constellation of mirrored game servers. Our synchronization mechanism exploits the

19



Number of GSSs = 4 - AIDT = 45 msec

0

0,5

1

1,5

2

2,5

3

3,5

50 60 70 80 90

Non Correlation Probability (%)

A
vg

 #
 E

ve
nt

s 
Pe

r S
in

gl
e 

R
ol

lb
ac

k

TW OOS

Figure 18: # Events per Rollback; 4
GSSs.

Number of GSSs = 5 - AIDT = 45 msec

0

0,5

1

1,5

2

2,5

3

3,5

4

50 60 70 80 90

Non Correlation Probability (%)

A
vg

 #
 E

ve
nt

s 
Pe

r S
in

gl
e 

R
ol

lb
ac

k

TW OOS

Figure 19: # Events per Rollback; 5
GSSs.

Number of GSSs = 6 - AIDT = 45 msec

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

50 60 70 80 90

Non Correlation Probability

A
vg

 #
 E

ve
nt

s 
Pe

r S
in

gl
e 

R
ol

lb
ac

k

TW OOS

Figure 20: # Events per Rollback; 6
GSSs.

Number of GSSs = 7 - AIDT = 45 msec

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

5

50 60 70 80 90

Non Correlation Probability (%)

A
vg

 #
 E

ve
nt

s 
Pe

r S
in

gl
e 

R
ol

lb
ac

k

TW OOS

Figure 21: # Events per Rollback; 7
GSSs.

semantics of the game to reduce the processing overhead at each mirrored server, while main-

taining the full consistency of the game state.

Our claim is that an optimistic synchronization approach, coupled with the notions of ob-

solescence and correlation, is well suited for MMOGs. On one side, in fact, an optimistic ap-

proach guarantees a constant rate of the game state advancement and, on the other side, obso-

lescence and correlation permit the reduction of the number of game events subject to rollback,

thus minimizing the corresponding event processing overhead.

We have provided experimental results that confirm that an augmented interactivity may

be guaranteed to players if our approach is adopted.

20



Acknowledgments

This work is partially supported by the Italian Ministry for University and Research (M.I.U.R.)

via the InterLink project. Moreover, we feel indebted to the anonymous referees for their help-

ful review of this article.

References
[1] Half-life. http://counterstrike.sierra.com/.

[2] IEEE Std 1278.2-1995. IEEE Standard for Distributed Interactive Simulation - Communication Services and
Profiles. Technical report, IEEE.

[3] J. Armitage. An Experimental Estimation of Latency Sensitivity in Multiplayer Quake 3. In Proceedings of 11th
IEEE Conference on Networks (ICON), September 2003.

[4] M. Billinghurst and H Kato. Collaborative augmentes reality. Communications of the ACM, 45(7):64–70, July
2002.

[5] M.S. Borella. Source models for network game traffic. Computer Communications, 23(4):403–410, February 2000.

[6] S. Cacciaguerra, S. Ferretti, M. Roccetti, and M. Roffilli. Car racing through the streets of the web: a high-
speed 3d game over a fast synchronization service. In Proceedings of International ACM World Wide Web 2005
Conference, Poster Track, Chiba, Japan, May 2005.

[7] F. Cristian. Probabilistic clock synchronization. Distributed Computing, 3(3):146–158, 1989.

[8] E. Cronin, B. Filstrup, S. Jamin, and A.R. Kurc. An efficient synchronization mechanism for mirrored game
architectures (extented version). Multimedia Tools and Applications, 23(1):7–30, May 2004.

[9] E. Cronin, B. Filstrup, A.R. Kurc, and S. Jamin. An efficient synchronization mechanism for mirrored game
architectures. In Proceedings of the 1st workshop on Network and system support for games, pages 67–73. ACM
Press, 2002.

[10] C. Diot and L. Gautier. A distributed architecture for multiplayer interactive applications on the internet. IEEE
Network Magazine, 13(4), july/august 1999.

[11] R. Drummong and O. Babaoglu. Low-cost clock synchronization. Distributed Computing, 6(3):193–203, 1993.

[12] J. Farber. Network game traffic modelling. In Proceedings of the 1st workshop on Network and system support for
games, pages 53–57. ACM Press, 2002.

[13] S. Ferretti and M. Roccetti. The design and performance of a receiver-initiated event delivery synchronization
service for interactive multiplayer games. In S. Natkin Q. Mehdi, N. Gough, editor, Proceedings of the 4th
International Conference on Intelligent Games and Simulation (Game-On 2003), London, UK, November 2003.

[14] S. Ferretti and M. Roccetti. A novel obsolescence-based approach to event delivery synchronization in multi-
player games. International Journal of Intelligent Games and Simulation, 3(1):7–19, March/April 2004.

[15] S. Ferretti, M. Roccetti, and S. Cacciaguerra. On distributing interactive storytelling: Issues of event syn-
chronization and a solution. In Springer-Verlag, editor, 2nd International Conference on Technologies for Digital
Storytelling and Entertainment (TIDSE 2004), LNCS 3105, pages 219–231, Darmstadt, Germany, June 2004.

[16] S. Floyd and V. Jacobson. Random early detection gateways for congestion avoidance. IEEE/ACM Transactions
on Networking, 1(4):397–413, 1993.

[17] R.M. Fujimoto. Parallel and Distribution Simulation Systems. John Wiley & Sons, Inc., 1999.

[18] R. Gusella and S. Zatti. The accuracy of clock synchronization achieved by tempo in berkeley unix 4.3bsd.
IEEE Transactions of Software Engineering, 15(7):47–53, July 1989.

[19] D.R. Jefferson. Virtual time. ACM Transactions on Programming Languages and Systems, 7(3):404–425, 1985.

[20] B. Knutsson, H. Lu, W. Xu, and B. Hopkins. Peer-to-peer support for massively multiplayer games. In Proceed-
ings of the Twenty-third Annual Joint Conference of the IEEE Computer and Communications Societies (INFOCOM
2004), pages 96–107. IEEE, March 2004.

[21] J. Kumagai. Fighting in the streets. IEEE Spectrum, 38(2):68–71, February 2001.

[22] K.W. Lee, B.J. Ko, and S. Calo. Adaptive server selection for large scale interactive online games. In Proceedings
of the 14th international workshop on Network and operating systems support for digital audio and video, pages 152–
157. ACM Press, 2004.

21



[23] F.W.B. Li, L.W.F. Li, and R.W.H. Lau. Supporting continuous consistency in multiplayer online games. In
MULTIMEDIA ’04: Proceedings of the 12th annual ACM international conference on Multimedia, pages 388–391.
ACM Press, 2004.

[24] M. Mauve. Consistency in replicated continuous interactive media. In Proceedings of the 2000 ACM conference
on Computer supported cooperative work, pages 181–190. ACM Press, 2000.

[25] M. Mauve. Distributed interactive media, 2000.

[26] M. Mauve, S. Fischer, and J. Widmer. A generic proxy system for networked computer games. In Proceedings
of the 1st workshop on Network and system support for games, pages 25–28. ACM Press, 2002.

[27] M. Mauve, J. Vogel, V. Hilt, and W. Effelsberg. Local-lag and timewarp: Providing consistency for replicated
continuous applications. IEEE Transactions on Multimedia, 6(1):47–57, February 2004.

[28] D.L. Mills. Internet time synchronization: the network time protocol. IEEE Transactions on Communications,
39(10):1482–1493, October 1991.

[29] M.M. Oliveira and T. Henderson. What online gamers really think of the internet? In Proceedings of the 2nd
workshop on Network and system support for games, pages 185–193, 2003.

[30] C.E. Palazzi, S. Ferretti, S. Cacciaguerra, and M. Roccetti. On maintaining interactivity in event delivery
synchronization for mirrored game architectures. In Proceedings of the 1st IEEE International Workshop on Net-
working Issues in Multimedia Entertainment (NIME’04), volume GLOBECOM 2004 - Satellite Workshop, Dallas,
USA, November 2004.

[31] C.E. Palazzi, S. Ferretti, S. Cacciaguerra, and M. Roccetti. A rio-like technique for interactivity loss avoidance
in fast-paced multiplayer online games: a preliminary study. In M. Merabti, J. Schell, N. Lee, C. Lindley,
and A. El Rhalibi, editors, Proceedings of the 2nd Annual International Workshop in Computer Game Design and
Technology (GDTW 2004), pages 113–119, Liverpool, UK, November 2004. ACM Press.

[32] C.E. Palazzi, S. Ferretti, S. Cacciaguerra, and M. Roccetti. Interactivity-loss avoidance in event delivery syn-
chronization for mirrored game architectures. IEEE Transactions on Multimedia, October 2005. Accepted for
publication.

[33] L. Pantel and L.C. Wolf. On the suitability of dead reckoning schemes for games. In Proceedings of the 1st
workshop on Network and system support for games, pages 79–84. ACM Press, 2002.

[34] T.M. Rhyne. Computer games and scientific visualization. Communications of the ACM, 45(7):40–44, July 2002.

[35] N. Shachtman. New army soldiers: Game gamers. Wired News, October 2001.

[36] M. Tsang, G. Fitzmaurice, G. Kurtenbach, and A. Khan. Game-like navigation and resposiveness in non-game
applications. Communications of the ACM, 46(7):56–61, June 2003.

[37] C. Wagner, M. Schill, and R. Manner. Intraocular surgery on a virtual eye. Communications of the ACM,
45(7):45–49, July 2002.

22


	Introduction
	Related Work
	System Model
	An Optimistic Obsolescence-based Synchronization Scheme
	Experiments
	Performance Metrics and Simulation
	Results: Interactivity Degree
	Results: Amount of Dropped Events
	Results: Rollback Ratio

	Conclusions

