
AN OPENWRT SOLUTION FOR FUTURE WIRELESS HOMES

Claudio E. Palazzi, Matteo Brunati

Dipartimento di Matematica Pura e Applicata
Università degli Studi di Padova

Padova, Italy
Email: cpalazzi@math.unipd.it

Marco Roccetti

Dipartimento di Scienze dell’Informazione
Università degli Studi di Bologna

Bologna, Italy
Email: roccetti@cs.unibo.it

ABSTRACT

Most of future digital services for home and office users will be
deployed and delivered through the Internet and wireless con-
nectivity. However, employing regular access points (APs) and
protocols will not allow an efficient coexistence among hetero-
geneous application flows. Indeed, real-time and elastic ap-
plications are (and will be) supported by different protocols
and featured with different performance requirements: low per-
packet delay for the former and high throughput for the latter.
In this work, we present a work-in-progress evaluation of a new
AP prototype able to guarantee a fast and smooth data deliv-
ery for real-time streams while maintaining a high throughput
for TCP-based applications. Our approach is based on a user-
space modification of the AP’s code based on OpenWRT op-
erating system so as to appropriately shape transiting network
traffic. Preliminary experimental results confirm that our so-
lution represents an optimal candidate to become the center of
future wireless in-home scenarios.

Keywords— OpenWRT, Smart Access Point, Testbed, Wire-
less Protocols.

1. INTRODUCTION

It is easy to foresee that homes and SOHOs (Small Office/Home
Office) in the next future will make extensive use of wire-
less connectivity to support a broad range of devices such
as personal computers, consoles, TV sets, and other appli-
ances. File downloading or sharing, Internet browsing, video
or audio streaming, VoIP, and online gaming are just a few,
even if representative, examples of connectivity-based multi-
media applications that will be simultaneously run by users,
[1, 2, 3, 4, 5, 6, 7, 8].

Unfortunately, the current TCP/IP suite of Internet protocols
has been developed tens of years ago and presents several issues
when plunged into wireless, heterogeneous scenarios. First, we
have to remember that real-time services are usually based upon
the UDP transport protocol, whereas elastic ones make use of
TCP (which implements flow control functionalities). When
heterogeneous applications coexist, so do UDP and TCP, un-
fortunately not in a friendly way. Indeed, TCP’s congestion
control mechanism is designed to continuously probe the chan-

nel for more and more bandwidth until saturating the channel
and the buffer at the bottleneck; at that point, some packet is
lost and the transmission speed is halved before starting again
with the same probing pattern. This behavior can negatively af-
fect real-time applications as it creates queues (at the bottleneck
buffer), thus increasing the per-packet delivery latency, which
is the main performance requirement for real-time, interactive
applications.

This result, even if predictable, is quite surprising as TCP
is generally considered more friendly than UDP, since only the
former has a congestion control functionality. Indeed, citing
from one of the most widely adopted textbook for networking
classes [9]: “Although commonly done today, running multime-
dia applications over UDP is controversial to say the least. [...]
the lack of congestion control in UDP can result in high loss
rates between a UDP sender and receiver, and the crowding out
of TCP sessions - a potentially serious problem”.

Even if this statement is still true when the available band-
width is scarce, the larger broadband connectivity offered today
(and in future) may overturn this situation. As a result, if one
user is engaged with an interactive online game while another
user, sharing the same bottleneck, is downloading a big file, the
former frequently notices a lack of responsiveness in receiving
game updates and in executing game actions; the game will re-
sult less fun as the user will not be able to compete in a fair way
[2, 10, 11, 12].

Instead, wireless connectivity should fairly support any kind
of application, providing both high downloading throughput
and low per-packet delays, which are the main performance
metrics for elastic and real-time applications, respectively. To
this aim, we propose a solution that makes use of enhanced
APs, standard protocol features, and available information on
the on-going traffic. More in detail, our solution is based on
the OpenWRT operating system [13] and makes the AP able to
modify on-the-fly the advertised window of each transiting TCP
ACK packet. This way, the transfer rate of TCP flows is limited
so as to not exceed the available bandwidth.

Indeed, through an appropriate limitation of the maximum
transfer rate for each flow, downloading applications produce a
smooth traffic that efficiently utilizes the available channel with-
out incurring in congestion losses that would degrade their per-
formances and, at the same time, does not create queues at the

978-1-4244-7493-6/10/$26.00 c⃝2010 IEEE ICME 2010
1701978-1-4244-7492-9/10/$26.00 ©2010 IEEE ICME 2010

AP that would increase per-packet delays of real-time applica-
tions.

To demonstrate our claims, we have implemented a proto-
type of our solution and performed preliminary evaluation. Re-
sults gathered on the field and reported in this paper are very
encouraging and demand for further investigation.

The rest of the paper is organized as follows. In Section 2,
we discuss our proposed solution. The testbed assessment is
presented in Section 3, while experimental results are shown in
Section 4. Finally, Section 5 concludes this paper also indicat-
ing future directions for this work.

2. PROPOSED SOLUTION

We are aiming at finding the best solution to the tradeoff rela-
tionship existing between TCP throughput and real-time appli-
cation delays. We exploit the advertised window field regularly
present in all TCP ACK packets to limit the bandwidth utilized
by each TCP flow. Indeed, the actual sending rate of a TCP
flow depends on its current congestion window and on the ad-
vertised window decided by the receiver: the sending windows
is determined as the minimum between these two values [9]. It
is hence evident how the advertised window perfectly embod-
ies a natural upper bound for the sending rate of TCP flows.
Our contribution is that of adding intelligence to the AP so as to
making it able to appropriately modify on-the-fly the advertised
window field of transiting TCP ACKs. All flows generated by
and for wireless nodes located inside the house will have to pass
through the AP, thus making it the most suitable place for im-
plementing our solution. Since its properties, this solution has
been named Smart Access Point with Low Advertised Window
(SAP-LAW).

Limiting the sending window could guarantee the same or
even a higher throughput with respect to utilizing regular TCP.
Indeed, an appropriate limitation of the advertised window can
generate a more stable transmission rate at steady state: some-
thing more similar to the behavior of a TCP Vegas’ send-
ing window than to the saw-tooth shaped sending window of
legacy TCP versions. At the same time, queuing delays will be
avoided, thus producing benefits even for time sensitive flows
such as those generated by real-time applications.

An important component of SAP-LAW is certainly repre-
sented by the formula utilized to compute the advertised win-
dow (i.e., the maximum transmission rate) for each TCP-based
flow. Clearly, a static value would not be able to address differ-
ent networking configurations as at a certain point there may be
a different amount of UDP-based traffic and a different number
of TCP-based connections. Therefore, the advertised window
value for each transiting ACK has to be dynamically computed
taking into account several factors.

It has been demonstrated in scientific literature that the bot-
tleneck of a connection is typically at the last mile link [14]. The
bandwidth of this link can be easily known as it corresponds to
the connectivity that the user is paying for; alternatively, soft-
ware such as CapProbe may be employed [15]. Exploiting this
information, (1) and (2) are two possible formulas to compute

the appropriate advertised window for the various TCP-based
flows at a certain time t.

!"#$%&'"()(() =
(% − *+&$'",,-.(())

/0!1)'$%&,2345(()
(1)

!"#$%&'"()!(() =
(% − *+&('",,-.(()) ∗6$$!∑ "##!

$%& "##

(2)

In (1) and (2), C is the capacity of the bottleneck. The first
formula does not take into account the RTT-unfairness problem
of TCP flows [16, 17] and simply determine the maxTCPrate
at time t as the ratio between the bottleneck capacity left free
by the UDP flows and the number of concurrent TCP flows.
Therefore, all TCP flows will be subject to the same limited
advertised window.

Instead, (2) computes different maxTCPrate values: one for
each TCP flow i, depending on its actual RTT (6$$!). In
essence, the computed advertised windows are in inverse pro-
portion with the respective RTTs so as to foster a fair shar-
ing of the available bandwidth (i.e., the same final throughput).
This can be achieved at the expenses of monitoring the RTTs of
the various concurrent TCP flows and computing their average
("78 6$$).

The SAP-LAW approach is also in accordance with other
proposals available in literature such as, for instance, [18].
However, whereas [18] requires modifications at both the AP
and the receiver, our scheme exploits only an enhanced AP.

In the following subsection we provide more details on im-
plementation issues related to our solution, both from a hard-
ware and a software standpoint.

2.1. Implementation Details

For the hardware part we looked for an AP that could be mod-
ified without excessive burden and that represented an off-the-
shelf product; we have hence chosen NETGEAR WGT634U
[19, 20]. Furthermore, we did some preliminary tests also with
possible alternatives such as, for instance, Fonera+ (Fonera ver-
sion 2201).

We aimed at a solution that could easily be implemented in
houses and small offices, running with a high number of differ-
ent APs and embedded hardware. Therefore, we searched for
a Linux based operating systems for embedded architectures,
in order to potentially use our solution with a large number of
APs. This choice allowed us to work on our PC in Linux envi-
ronment and then port our software on the actual AP only when
completed. The best choice for our purposes was OpenWRT:
a Linux kernel based operating system for embedded solutions,
primarily oriented for networking support [13].

Focusing on the software components, it should be said that
the closer the solution to the hardware, the faster the execution.
On the other hand, solutions implemented with a high hardware
dependency are not easily portable on embedded platforms with
different network interfaces. We have hence evaluated various

1702

possible solutions such as modifying the network driver, modi-
fying the existing kernel module, and adding a new kernel mod-
ule [21, 22]. To allow the widest portability, we have then de-
cided to implement a user-space solution reserving for future
work to provide also a kernel-based solution. However, we have
to say that for a realistic wireless home networking scenario, as
the one considered in our experiments, our user-space solution
showed no problem in terms of execution speed.

More in detail, the adopted solution is based on Netfilter, the
Linux kernel networking framework. Netfilter permits to write
modules that register themselves with the kernel; then, through
specific tables that state how to handle network flow packets, the
kernel is enabled to utilize these modules. Furthermore, Netfil-
ter provides developers with APIs to interface with the kernel
from user space. Clearly, this involves context switches and
packets that have to be copied back and forth between kernel
space and user space; on the other hand, nothing impedes to
port the developed user-space module into the kernel in future.

As currently our solution has been developed as a SAP-LAW
version for user-space, we have named it SAP-LAW-US, or sim-
ply SLUS. Our prototype is clearly a proof-of-concept and we
used it to create a testbed able to demonstrate its basic function-
alities and benefits achievable.

More in detail, SLUS implementation is composed by two
main parts: the first one is the definition of iptables rules so as
to forward TCP ACK packets to a specific user-space queue.
The second part of the implementation is made by an applica-
tion written in C language that reads from the aforementioned
queue via libnetfilter-queue (the Netfilter API for reading and
modifying packets at the user-space layer). This second part is
devoted to intercept and modify on-the-fly the advertised win-
dow field of transiting TCP ACK packets. In the current version
of our SLUS AP prototype, the advertised window of TCP ACK
packets can be modified with a fixed value or through (1); we
are now working also on the implementation of (2).

3. TESTBED ASSESSMENT

We have tried to recreate a realistic scenario in order to study
SLUS in a real network with both UDP and TCP flows, with
RTTs of tens of ms. The testbed we deployed to demonstrate
SLUS’ efficacy is shown in Fig. 1.

It is important to note how the testbed can be easily extended
to all experiments test cases which needs an AP point that inter-

Fig. 1. Testbed configuration.

Table 1. Traffic flows generated by ITGSend (D-ITG suite).
Flow type Protocols Start time End time RTT
CBR flow UDP 0s 180s 60ms

Online Game UDP 45s 180s 60ms
VoIP UDP 90s 180s 60ms

FTP flow TCP 135s 180s 60ms

connect a client and a server.
As anticipated, for the wireless network we employed

OpenWRT (including our SLUS solution) on a NETGEAR
WGT634U AP. Instead, to emulate Internet real-time and elas-
tic services we have used two notebook PCs. One PC was the
server of the communications and generated UDP and TCP traf-
fic flows. The other notebook was the client, which received the
traffic generated by the server and collected all the flow statisti-
cal information used to draw graphs presented in Section 4. The
server was connected to the AP; between the two, the Internet
is emulated through the Dummynet emulator. Clients (one for
each application run) were connected to the AP via the IEEE
802.11g protocol, with no encryption. The bottleneck was lo-
cated between the Dummynet and the AP, and corresponded to
4 Mbit/s.

We have used various software to configure and analyze ex-
periments. In particular, Dummynet was used to emulate the
Internet connection of the network; D-ITG supplied network
traffic emulation generating both UDP- and TCP-based flows;
Tcpdump and Tcptrace were utilized to collect TCP traffic in-
formation for a post-processing graphs production.

In Table 1 we describe the traffic flows generated for our tests
through the ITGSend program of the D-ITG suite. In each ex-
periment, we had three real-time flows based on UDP and one
elastic flow based on TCP; the four flows started at different
times, with the TCP flow starting last, after 135s of simulation.
The first flow is a simple constant bit rate (CBR) flow, with 200
packets of 1 KB each sent every second. The second one corre-
sponds to the network activity of a Counter Strike (CS) online
game session, with game packets of 200 B sent from the server
to the client every 40 ms. The third flow regards a VoIP call
with the G.711.1 Codec over the RTP protocol. Cumulatively,
these three UDP-based flow consumes a quantity of bandwidth
that oscillates around 1.7 Mbit/s thus leaving around 2.3 Mbit/s
available. Finally, the forth flow, the TCP-based one, corre-
sponds to a long FTP downloading session where each packet
has a payload of 1 KB. The closer this FTP flow gets to consume
2.3 Mbit/s of bandwidth, the higher the efficiency.

4. EXPERIMENTS AND RESULTS

To validate SLUS implementation and verify its applicability
to the real world, we used the testbed described in the previ-
ous section. Different testbed configurations have been tried.
For the sake of conciseness we report here results for only one
significative case which considers an RTT of 60 ms. Nonethe-
less, results for other configurations are coherent with the one

1703

Fig. 2. FTP/TCP flow bitrate without SLUS application; aver-
age bitrate 2.183 Mbit/s.

reported here and their charts can be found on the project web
site [23].

In particular, Fig. 2 and Fig. 3 show the generated FTP
bitrate for the regular configuration or when applying SLUS,
respectively. Whit SLUS, the advertised window is set equal to
an appropriate value so as to consume almost all the bandwidth
available without generating queues; this value corresponds to
the result of (1). However, since in this configuration there is
only one TCP-based flow, (1) and (2) would generate exactly the
same outcome. As evident from the two charts, SLUS enables a
smooth bit rate that does not affect significantly the final average
throughput (2.183 Mbit/s vs. 2.164 Mbit/s). In both cases, the
bandwidth utilization with respect to the available one (around
2.3 Mbit/s) is very high.

Since we have demonstrated that the adopted SLUS config-
uration does not harm the throughput of elastic flows, we have
now to evaluate if it is also able to fulfil its promise of ensur-
ing low per-packet delays to real-time flows. We have hence
monitored the packet inter-arrival time of the concurrent online
game flow. As the utilized CS game emulator regularly generate
at server side a game packet every 40 ms, with no queue we ex-
pect an inter-arrival time of 40 ms for the same packets at client
side. Instead, to longer queues at the bottleneck buffer will cor-
respond wider oscillations of the packet inter-arrival time.

In point of this, Fig. 4 and Fig. 5 show how the inter-arrival
time of the UDP-based online game flow changes when pass-
ing from a regular configuration to employing SLUS. Clearly,
SLUS sensibly reduces the oscillations of the inter-arrival time
of online game packets, thanks to a smoother traffic progression
in the network that avoids packet queuing.

Since SLUS avoids buffer exploitation by TCP-based flows,
these flows experience much less packet loss or no loss at all.
Indeed, Fig. 6 reports the packet loss experienced by the CS
gaming flow in a regular network configuration. When the TCP

Fig. 3. FTP/TCP flow bitrate running SLUS on the AP; average
bitrate 2.164 Mbit/s.

flow is active, its continuous probing for more bandwidth even-
tually fills up the buffer at the AP thus causing packet losses.
Instead, the benefits achievable through our solution are demon-
strated also by the fact that no losses at all happened in our tests
when implementing SLUS; we do not report any figure for this
as it will simply result an empty chart.

5. CONCLUSION AND FUTURE WORK

This article reports on the crucial problem of facilitating the
coexistence among heterogeneous multimedia flows in a future
wireless home. In particular, we aimed with success at ensuring
both low per-packet delay to real-time interactive applications
and high throughput to elastic ones. Our solution, named SLUS,
has been implemented in OpenWRT on a real AP thus creating
a functioning prototype. We have hence been able to generate a
realistic testbed that produced very encouraging results.

Furthermore, since we propose neither a new protocol nor a
new architecture, our solution is also highly tolerable from a de-
ployability standpoint. Indeed, we simply designed an enhanced
AP with a re-engineered packet forwarding functionality. Cus-
tomers have hence just to buy our AP or to install the appropri-
ate patch on their APs to improve the ability of their wireless
connectivity in handling heterogeneous traffic and applications;
no modifications are required at server or client side.

Our work can be extended in several directions. First of all,
we would like to compare the current user level solution with a
kernel level one. Indeed a kernel module implementation could
improve the efficiency of TCP flows modifications and the scal-
ability of the system in terms of number of concurrent flows;
this would allow to consider even more complex environment
than a wireless house. We are planning to build our kernel im-
plementation upon Netfilter. More in detail, as done for the user
space version, even the kernel space one will be decomposed

1704

Fig. 4. Online game flow inter-arrival time; regular configura-
tion without SLUS.

Fig. 5. Online game flow inter-arrival time; SLUS imple-
mented.

Fig. 6. Online game flow packet losses without SLUS; packet
losses completely disappear with SLUS.

into two parts: the first one will be an iptables shared library
adding a new command. In this way, we will have a user-space
interface for the kernel module with a secure solution. The ker-
nel module will be in the form of a kernel hook that register
itself to the Linux kernel when invoked by the new iptables ex-
tension. This will permit kernel module efficiency with a user-
space control.

Another significant feature to insert in SAP-LAW implemen-
tations, both the user-space one or the kernel module, could be
an enhanced algorithm to compute the TCP advertised window
in a more efficient and fair way. Also, the solution’s code can
be optimized to further boost the program execution.

Finally, since the complexity of possible scenarios, we plan
to compare our current solution against possible (even if prob-
ably more complex) QoS alternatives in different networking
conditions through various realistic scenarios [24]. We would
also like to enrich our work with an analysis model framework
able to formally compare the functionalities of alternative solu-
tions and validate achieved testbed results [25, 26].

6. REFERENCES

[1] M. Furini, “Mobile Games: What to Expect in the Near Fu-
ture”, Proc. of GAMEON 2007, Bologna, Italy, Nov 2007.

[2] A. Ploss, S. Wichmann, F. Glinka, S. Gorlatch, “From a
Single- to Multi-server Online Game: A Quake 3 Case
Study Using RTF”, Proc. of ACM ACE 2008, Yokohama,
Japan, Dec 2008.

[3] A. Balk, D. Maggiorini, M. Gerla, M. Sanadidi, “Adaptive
MPEG-4 Video Streaming with Bandwidth Estimation”,
Proc. of 2nd QOS-IP 2003, Milan, Italy, Feb 2003.

1705

[4] A. Balk, Dario Maggiorini, M. Gerla, M. Sanadidi, “Adap-
tive MPEG-4 Video Streaming with Bandwidth Estima-
tion”, Special Issue of Computer Networks Journal, vol. 44,
no. 4, Mar 2004, 415-439.

[5] S. Ferretti, “A Synchronization Protocol for Supporting
Peer-to-Peer Multiplayer Online Games in Overlay Net-
works”, Proc. of the 2nd ACM DEBS08, Rome, Italy, Jul
2008.

[6] S. Ferretti, “Cheating Detection through Game Time Mod-
eling: A Better Way to Avoid Time Cheats in P2P MOGs?”
Multimedia Tools and Applications, Springer, vol. 37, no.
3, May 2008, 339-363.

[7] V. Ghini, G. Pau, P. Salomoni, “Always Best Served Mu-
sic Distribution for Nomadic Users over Heterogeneous
Networks”, IEEE Communication Magazine Entertainment
Everywhere: System and Networking Issues in Emerging
Network-Centric Entertainment Systems, vol. 43, no. 5,
May 2005, 69-74.

[8] G. Marfia, P. Lutterotti, S. Eidenbenz, G. Pau, M. Gerla,
“FairCast: Fair Multi-Media Streaming in Ad Hoc Net-
works through Local Congestion Control”, Proc. of the 11th
ACM MSWIM, Vancouver, Canada, Oct 2008.

[9] J. F. Kurose, K. W. Ross, Computer Networking: A Top-
Down Approach Featuring the Internet, Addison Wesley
Longman, Boston, MA, USA, 2001.

[10] L. Pantel, L. C. Wolf, “On the Impact of Delay on Real-
Time Multiplayer Games”, Proc. of the 12th International
Workshop on Network and Operating Systems Support for
Digital Audio and Video, Miami, FL, USA, May 2002.

[11] C. E. Palazzi, S. Ferretti, M. Roccetti, G. Pau, M. Gerla,
“What’s in that Magic Box? The Home Entertainment Cen-
ter’s Special Protocol Potion, Revealed”, IEEE Transac-
tions on Consumer Electronics, vol. 52, no. 4, Nov 2006,
1280-1288.

[12] C. E. Palazzi, N. Stievano, M. Roccetti, “A Smart Access
Point Solution for Heterogeneous Flows”, Proc. 2009 IEEE
International Workshop on Ubiquitous Multimedia Systems
and Applications (UMSA’09) - International Conference on
Ultramodern Telecommunications (ICUMT 2009), St. Pe-
tersburg, Russia, Oct 2009.

[13] OpenWRT website: http://openwrt.org/

[14] H. Jiang, C. Dovrolis, “Why Is the Internet Traffic Bursty
in Short (Sub-RTT) Time Scales?” Proc. of ACM SIGMET-
RICS 2005, Banff, AL, Canada, Jun 2005.

[15] R. Kapoor, L.-J. Chen, L. Lao, M. Gerla, M. Y. Sanadidi,
“CapProbe: A Simple and Accurate Capacity Estimation
Technique”, ACM SIGCOMM 2004, Portland, OR, USA,
Sep 2004.

[16] F. Kelly, “Fairness and stability of end-to-end congestion
control”, European Journal of Control, vol. 9, 2003, 159-
176.

[17] C. Caini, R. Firrincieli, “TCP Hybla: a TCP Enhance-
ment for Heterogeneous Networks”, International Journal
of Satellite Communications and Networking, John Wiley
& Sons, Vol. 22 , No. 5, Sep 2004, 547-566.

[18] L. L. H. Andrew, S. V. Hanly, R. G. Mukhtar, “CLAMP:
Active Queue Management at Wireless Access Points”,
Proc. of the 11th European Wireless Conference 2005,
Cyprus, Apr 2005.

[19] OpenWRT wiki,
http://kb.netgear.com/app/products/model/a id/2598

[20] OpenWRT wiki,
http://wiki.openwrt.org/oldwiki/openwrtdocs/hardware/
netgear/wgt634u

[21] L. Deri, High-speed dynamic packet filtering,
deri@ntop.org.

[22] E. Weigle, Re: [ns] linux tcp/ip stack mod-
ifications, http://www.isi.edu/nsnam/archive/ns-
users/webarch/2000/msg06081.html, December 2000,
ns mailing list.

[23] SAP-LAW user-space implementa-
tion experimental results document:
http://redmine.matteobrunati.net/attachments/download
/28/Esperimenti2.pdf.zip

[24] J. Tang, X. Zhang, “Cross-Layer-Model Based Adaptive
Resource Allocation for Statistical QoS Guarantees in Mo-
bile Wireless Networks”, IEEE Transactions on Wireless
Communications, Vol. 7, No. 6, Jun 2008, 2318-2328.

[25] M. Garetto, R. Lo Cigno, M. Meo, M. Ajmone Marsan,
“Closed Queueing Networking Models of Interacting Long-
Lived TCP Flows”, IEEE/ACM Trans. on Networking,
Vol.12, No.2, Apr 2004, 300-311.

[26] F. Corradini, R. Gorrieri, M. Roccetti, “Performance Pre-
order: Ordering Processes with Respect to Speed”, Proc.
Mathematical Foundations of Computer Science, LNCS n.
969, Springer Berlin, 1995, 444-453.

1706

