
P2P File Sharing on Mobile Phones: Design and Implementation of a Prototype

Claudio E. Palazzi, Armir Bujari, Emanuele Cervi
Dipartimento di Matematica Pura e Applicata,

Università di Padova,
Padova, Italy

cpalazzi@math.unipd.it, abujari@studenti.math.unipd.it, ecervi@studenti.math.unipd.it

Abstract—Mobile phones have already evolved from simple
voice communication means into a powerful device able to
handle multimedia documents, personal productivity
applications, and all sort of connections to the Internet. It is
hence expected to see a popular application such as file sharing
to become widely utilized even in this context. Indeed, the
combination among mobile users and file sharing seems a
match made in heaven: people could exchange files of interest
just passing by each other. Moreover, new context related
applications may be developed to exploit this possibility
enriching our lives. In this work, we present design issues and
implementation details about a real P2P file sharing
application for mobile phones.

Keywords-P2P, Bluetooth, Mobile Phones, File Sharing

I. INTRODUCTION
The mobile revolution is under everybody’s eyes: we are

all owners of one, or even two, mobile phones and, in some
countries, the number of mobile phones have surpassed the
number of cabled lines. These devices were initially intended
just as voice communication means; now, since their rich
functionalities and capabilities, they have deserved the
appellative of smart phones. They are now able to generate
and play any sort of multimedia, they contain a lot of
personal information, and we like to personalize them with
original background images, themes, and ring tones. As they
evolve into a powerful digital assistant, users expect that
more and more of those applications usually run on
home/office desktops become available also on the screens
of their phones.

In the past, mobile phones have had limited memory,
limited data communication capabilities, and closed,
proprietary operating systems; for these reasons, they have
seemed almost immune to file-sharing applications.
However, with current memory-intensive smart phones,
endowed with several connectivity options (i.e., GPRS,
UMTS, Wi-Fi, Bluetooth) and running open software
platforms like Symbian and Windows Mobile, peer-to-peer
(P2P) systems are ready to colonize even the mobile realm.

Indeed phone users are already exchanging files, pictures,
videos, and ring tones through their Bluetooth connectivity.
However, this generally happens between two users that
know each other very well and decide to transfer some file
from one phone to the other after having compared their
respective contents.

Instead, the combination of mobile phones with P2P file
sharing applications enables the creation of a mobile P2P
system in which mobile peers establish peering relationships
over wireless links based on proximity. As an example,
imagine a user (Alice) whose phone has a certain ring tone A
and would like to have a background image B. During her
daily activities, Alice walks through the town, takes the bus,
enters a store, etc. In the meantime, she passes by a lot of
other phone users; so, maybe, Alice will walk at a few
meters of distance from Bob, who has image B in his phone
or may sit close to Carl on the bus who would like to have
the ring tone A. Since their proximity it would be easy for an
appropriate file sharing application to use the Bluetooth
connectivity of Alices’s, Bob’s, and Carl’s phone to
exchange files A and B.

Indeed, current mobile phones have multiple
communication technologies built into them (e.g. WiFi,
Bluetooth, UMTS) and we could exploit this feature to create
a P2P network, which would allow automatic exchange of
files and data among phones. However a single device
frequently uploading and downloading files using WiFi will
quickly become out of power due to battery consumptions.
Even UMTS does not represents the best choice as its use is
generally associated with a cost. Instead, the best option to
guarantee quick connectivity is represented by Bluetooth: it
allows up to 1 Mbps of connectivity, it is free, it has a range
of about 10 m (hence sufficient for automatic download
among customers in a store or commuters on a bus).

Therefore, we have created a proof-of-concept file
sharing application for mobile phones that works through
Bluetooth connectivity; namely, P2PBluetooth.

The first contribution of this paper is that of providing an
overview of our solution and practical design considerations
to other researchers/practitioners that might be interested in
developing a similar project. The second (but not less
important) contribution is that of demonstrating a new
paradigm of use of P2P solutions that matches file sharing
with mobile users, allowing users to exchange files based on
proximity to each other, thus fostering new applications.

In particular, the paper is organized as follows. In
Section II, we provide some background considerations that
may be of help in better understanding the contribution of
this work. Section III describes the software platform
adopted to develop our application. Our P2PBluetooth is
described in Section IV. Finally, Section V concludes this
paper and proposes future directions for this work.

II. P2P ON MOBILE PHONES: BACKGROUND
P2P systems in mobile environments face multiple

challenges: highly varying online state (presence, [1]),
hierarchical network structure, and limited device
capabilities [2]. Therefore, traditional solutions for P2P over
fixed networks may need to be redesigned when applied in a
mobile network.

A first example is represented by the fact that mobile
phones have capabilities that are much more limited than
those of terminals in fixed networks: the latter have more
than enough resources, such as processing power, storage
capacity, and network bandwidth.

In order to share resources, P2P applications need to
support two fundamental coordination and control functions:
resource mediation mechanisms (to locate resources or
entities), and resources control mechanisms (to permit,
update, prioritize, and schedule the access to resources). A
pure P2P architecture implements both mechanisms in a
fully decentralized manner, whereas hybrid P2P systems
utilize central entities, e.g., the eDonkey index servers collect
and distribute file location information for all peers [3].

Clearly, resource mediation is more effective when done
in a centralized manner, while decentralized resource control
could be outweighted by bandwidth costs. Yet, user-provided
content and decentralized resource storage are the key
features that have made P2P applications successful. It is
hence desirable to preserve this feature even when
considering a P2P network composed of mobile phones.

In a mobile P2P architecture there are two main
restrictions regarding the air interface: a relative low
effective bandwidth and high latencies. This makes essential
to reduce the signaling overhead as much as possible in order
to achieve acceptable performances.

Besides, the limitations of transmission power and
battery capacities cause the upload bandwidth to be
significantly lower than the download one.

Clearly, during domain analysis some choices have to be
made that influence the design and functional behavior of a
P2P product. To this aim, in the following subsection, we
discuss one of the strategic element for P2P data retrieval:
the resource mediation process.

A. Resource Mediation
The process of data search is a key element in data

retrieval and a crucial component in the P2P architecture.
Trivial searching strategies can undermine the utility of the
system and make it useless in most situations. Another
feature, common to most P2P software is the ability to share
a desired amount of data making it visible externally.

In order to develop a classic P2P system, the presence of
a third centralized entity is often necessary (e.g., a database
or a centralized list of files that can be shared). This entity
has to be visible to all clients and has to provide the correct
identification of any file that may be shared. It could be a
public service (e.g., a tracker, a web server) whose only job
is to manage the incremental update of the list of files made
available by the infrastructure. This would guarantee a global
and coherent view of the published data to all the clients.

However, a solution of this type adds an overhead to the
system as this third entity requires maintenance, whereas it
would be desirable to have an entirely independent
infrastructure. Moreover, in case of misuse by some users
that utilized the infrastructure to illegally share files
protected by copyright, the whole (centralized) system may
be easily taken down by the authorities. Clearly, it is not our
aim to promote piracy: what we are saying is that it would be
unfair to have the whole system blocked for a few users’
misbehavior. Therefore, we have chosen to utilize a
decentralized infrastructure.

To request the download of a specific file, users can
specify a keyword. The use of a keyword to identify the data
might be trivial because name collisions can occur often but,
on the other hand, it is a straightforward solution. Another
possible approach is that of indexing the data by computing a
digest but in order to avoid potential collisions this job would
need to be delegated to a third entity with a global vision of
all the files available in the infrastructure.

III. THE ADOPTED SOFTWARE PLATFORM: J2ME
To create a file sharing application for mobile phones, we

tried to build a software framework which could be portable
in different execution environments; this could be achieved
by using the Java technology for mobile devices. J2ME is a
software development platform and is currently deployed
and supported by a vast majority of mobile telephony
vendors. The Mobile Service Architecture (MSA) is an
abstract specification defining the platform components, it is
a contract specifying the key requirements of a J2ME
platform which mobile device vendors should follow.

MSA platform builds on the Java Platform Micro Edition
(Java ME) specifications that have come before it, including
the Mobile Information Device Profile (MIDP) and
Connected Limited Device Configuration (CLDC). The
MSA specification define a standard set of application
functionality for mobile devices while clarifying interactions
between various technologies associated with the MIDP and
CLDC specifications. Because there is a lot of variation in
mobile handset hardware and software capabilities, the MSA
specification implements the predefined subset of the MSA.

P2PBluetooth relies on an MSA subset and the devices
on which is installed must support CLDC (JSR 139), MIDP
(JSR 118), File & PIM (JSR 75) and Bluetooth (JSR 82) [4].

A. Security Domain
The MIDP 2.0 specification defines an open-ended

system of permissions. For instance, to make any type of
network connection, a MIDlet must have an appropriate
permission. The permissions defined in MIDP 2.0
correspond to network protocols, but the architecture allows
optional APIs to define their own permissions.

MIDP 2.0 includes the concept of trusted and untrusted
MIDlets.

• An untrusted MIDlet suite has limited access to
restricted APIs, requiring user approval depending
on the security policy of the device.

• A trusted MIDlet suite can acquire some permission
automatically depending on the security policy.

Permissions are used to protect APIs that are sensitive
and require authorization. The MIDP 2.0 implementation has
to check whether a MIDlet suite has acquired the necessary
permission before invoking the API.

MIDlets do not acquire permissions explicitly through a
code; rather, they acquire a protection domain. A protection
domain is a set of permissions and interaction modes; those
permissions can be either automatically granted (allowed
permissions) or deferred (user permissions) until user
approval.

Each protection domain, except for the untrusted domain,
is associated to a set of root certificates. When signing a
MIDlet suite, it is necessary to use a public key certificate
that can be validated to one of those root certificates. This
association will be used to assign the MIDlet suite to a given
protection domain. The relationship between root certificates
and protection domain involves that a domain can be
associated to many root certificates, whereas a root
certificate can be associated to only one domain.

The MIDP 2.0 specification has four protection domains
for GSM/UTMS devices:

• Manufacturer: the manufacturer domain uses root
certificates belonging to the device producer.

• Operator: the operator domain is used for the
network operator MIDlets and may use root
certificates available on storages (such as SIM
cards).

• Trusted third party: the trusted third party domain
will encompass well-known Certificate Authorities'
(CA) root certificates.

• Untrusted: the mandatory untrusted domain does not
have an associated root.

The MIDP 2.0 specification defines as untrusted a

MIDlet suite for which the origin and integrity of the
application cannot be verified by the device. This means that
the access to restricted operations requires explicit user
permission. If the device can verify the authenticity and
integrity of the MIDlet suite and assign it to a protection
domain, then the MIDlet suite is said to be trusted. A trusted
MIDlet suite will have its requested permissions granted
according to its protection domain [5].

IV. P2PBLUETOOTH
Our P2PBluetooth is essentially a mobile-to-mobile

applications that enables file sharing among mobile phones.
To implement our proof-of-concept solution, we have chosen
to adopt a fully decentralized infrastructure with no third
party or central server holding information about the system.
Every mobile phone publishes its own list of available files
and directly requests what desired by the user to mobile
phones around by using Bluetooth connectivity.

Downloads are requested by specifying keywords; the
adopted solution guarantees a complete autonomy and little
user interaction. At this purpose, initially we thought of
displaying the list of possible files made available by another
device to the user, giving her/him the possibility to manually
choose what she/he wants to request. However, this would

have required continuous control and interaction with the
device, contradicting the usability key requirement for this
kind of software; for this reason, this feature was not
implemented in the final version.

Once running, P2PBluetooth automatically initiates a
search by querying other Bluetooth enabled devices in
proximity for their list of available contents. Once an answer
is received, the data of interest is automatically transferred.
All this process is done without user mediation, the user only
needs to specify the data identifiers needed for the download.

The macro-elements composing our system are
represented in Fig. 1; they are also summarized in the
following.

ConnectionManager is responsible for handling the
connectivity of the system, both detecting new peers in
proximity and determining when peers have become
disconnected (through timeouts). Currently only Bluetooth
connectivity is managed, however, other connectivity means
could be added in the future.

P2PListener is an active service which listens for
incoming client connections satisfying their needs; in
essence, it is a server. The J2ME platform provides a native
support by which a server component can externally publish
information about itself; we have exploited this option to
make data identifiers visible to other peers.

P2PPublisher manages the list of contents that the users
intends to make available to other peers. The list is
advertised when the system detects other peers around.

P2PDiscoveryService is an active daemon which
periodically searches for contents made available by other
devices in proximity, both hosting the P2PListener. The
search, or inquiry, as it is referred by the Bluetooth
specification, is part of the Service Discovery Protocol
(SDP) protocol included in the Bluetooth protocol stack. The
inquiry process is performed in the following sequential
steps:

a) a device inquiry is started;
b) each detected device that hosts the P2PListener is

queried, this phase is referenced to as service
inquiry;

c) published contents are retrieved.

Figure 1. P2PBluetoot’s macro-components.

PolicyQueue allows to control the number and the way
requests are serviced. Two queues are managed: one for
download requests and one for upload requests. Currently,
each queue is locally processed in a FIFO fashion, whereas
the global policy specifies that the two queues are processed
in alternating order. Clearly, custom policies can be further
added with a little effort.

A. Content Search Functionality
As we are dealing with a mobile phone and not a

home/office computer, we have kept the content search
strategy of P2PBluetooth as simple as possible; it can be
summarized as follows:

a) all the lists of contents retrieved from the
publishers are merged together;

b) the first element of the merged list that satisfies a
download request issued by the user is then used
for data retrieval;

c) point b) is repeated until all download requests
issued by the user are satisfied or until there is no
item satisfying that specific data request.

Figure 2. P2PBluetooth running on the Java Wireless Toolkit emulator.

As an example, Fig. 2 shows P2PBluetooth running on
the Java Wireless Toolkit emulator. In particular, the user is
selecting the “search” option from the menu, while, on the
background, files currently available for download are
visible. For the sake of conciseness, we have try to provide
in this paper as many useful details as possible (given the
limitation on the number of pages). However, the interested
reader may find a video of a demo available online [6].

B. Implications related to the Mobile Environment
Further decisions taken during the analysis were

influenced by the resource limitations of the execution
environment provided in mobile devices. The Java
community has released some best practices and how-tos as
guidelines for efficient software design and coding [7].

In the considered scenario, the device’s mobility can
make the application freeze during transfer processing or
queues grow. To deal with the former, the concept of timeout
was introduced. Each download request issues a timeout; if
an on-going download receives no response for a time longer
than the timeout, the request is terminated and the involved
device will be marked as disconnected; the download will be
re-queued for later processing.

About the queue growth, initially, the system was built to
simultaneously accept and service all requests. This proved
not to be the correct approach: each processed request is
handled in a separate execution thread and this can result in
constant request processing and large memory utilization,
that, due to the limited resources, cause the application to
crash due to OutOfMemoryException. Calling the
garbage collector in such a case is not the correct solution
because the result of doing so is unpredictable. Hence, we
had to limit the amount of memory being used at any time by
queuing the requests and processing them one at a time.

C. Security
Given the security framework adopted by J2ME (see

Section IV-A) and the type of permissions required by
P2PBluetooth, the software needs to be executed within a
trusted domain. For this reason, MIDlet signing is required.

However, in order to sign the MIDlet a code-signing
certificate conforming to the X.509 Public-Key
Infrastructure (PKI) is needed. In this first analysis of the
subject a certificate was not acquired. Therefore, the
development and testing of the product was performed on the
emulator available in the Java Wireless Toolkit, which
realistically emulates the environment and behavior of a
mobile phone. It includes simple tools for creating a key pair
and signing a MIDlet suite, so we were able to run and test
the software in a trusted security domain.

An alternative solution to execute an unsigned MIDlet
with the features of a signed one would be that of forging the
operating system’s specific component which handles the
certificate validity check.

D. The Current Release
The mobile nature of the environment and the

constrained execution environment are factors that need to be
taken into consideration when designing the system

infrastructure. Also, the user's friendliness is important for
the success of the application. Small devices fall into the
category of consumer electronics, where user expectations
are much higher.

Another important design issue is related to components
such as routing and entity naming. Numerous P2P solution
proposals can be found in scientific literature [8]-[10] that
deals with these complex problems.

P2PBluetooth addresses some of the aforementioned
problems, yet without aiming at providing an original
solution. Indeed, the main contributions of our work are i) to
propose mobile-to-mobile, proximity based, file sharing
applications and ii) to demonstrate their feasibility through
the creation of a proof-of-concept application.

We are well aware that to have it ready for the market,
our P2PBluetooth would need further improvements and
extensions. Yet, product serves well as a prototype
application as it already presents important features, which
are as follows.

1) Simple, intuitive, and non-blocking GUI
• Ability to choose a keyword for your preferred

download.
• Ability to change the shared list of files.

2) A configurable functional behavior
• User can change the maximum number of uploading

connections.
• The polling frequency is configurable.
• Ability to serve multiple concurrent connections to

the device.
• Ability to limit upload/download bandwidth.
• Add custom queuing policies with little effort.

Even if other communication means could be easily

added in the future, yet we have decided to currently utilize
just Bluetooth to create our proof-of-concept application.
This choice was driven by the fact that, since its birth,
Bluetooth has been intended for supporting communications
among portable products (i.e., mobile phones) with limited
battery power. This is confirmed by Fig. 3 that shows the
energy consumption of Bluetooth versus Wi-Fi when
employing two off-the-shelf communication chips: the CSR
BlueCore2 and the Conexant CX53111, respectively.

Figure 3. Power consumption comparison.

V. CONCLUSION AND FUTURE WORK
The majority of people see Bluetooth as a cable

replacement as well as a link between a handheld device and
a hotspot that is connected to a local network or the Internet.
Instead, we have exploited it to create a proximity-based file
sharing application for mobile phones. We have chosen to
use Bluetooth since its wide and free availability, its data
rate, and its low energy consumption. Our application,
named P2PBluetooth, has been created with J2ME to ensure
the widest possible portability on mobile phones.

Through P2PBluetooth, we propose a new paradigm of
use of the P2P file sharing service that merges this popular
application with a ubiquitous tool, the mobile phone, to
allow proximity-based file exchange. Exchanged data might
be multimedia files for entertainment but also personal
profiles or medical data to allow the creation of new
proximity-based services that could improve our lives [11].

We are planning several future directions for this work.
From a technical point of view, we intend to expand the
possibility offered today by our P2PBluetooth in order to
make it ready for a wide use in the real world. For instance,
we need to add the possibility to interrupt and resume
downloads, and to divide data in smaller chunks in order to
download them from different users along the user’s path.

From a utilization point of view, we plan to combine this
work with other proximity-based services such as medical or
social ones.

Finally, as said, a video of a P2PBluetooth demo, is
available online at [6].

REFERENCES
[1] T. G. Kanter, “Extensible Mobile Presence”, in Proc. of the 4th

International Workshop on Mobile and Wireless Communications
Network, Stockholm, Sweden, Sep 2002.

[2] P. Tarasewich, “Designing Mobile Commerce Applications”,
Communications of the ACM, Vol. 46, No. 12, Dec 2003.

[3] B. Yang, H. Garcia-Molina, “Comparing Hybrid Peer-to-Peer
Systems”, in Proc. of the 27th International Conference on Very
Large Data Bases (VLDB 2001), Roma, Italy, Sep 2001.

[4] Java API and Docs, http://java.sun.com/javame/reference
[5] Java Security Domains,

http://wiki.forum.nokia.com/index.php/Java_Security_Domains
[6] P2PBluetooth, http://www.math.unipd.it/~cpalazzi/p2pbluetooth
[7] J2ME Best-Practices, Bluetooth communication protocol,

http://www.nowires.org
[8] M. Caesar, M. Castro1, E. B. Nightingale, G. O’Shea, A. Rowstron,

“Virtual Ring Routing: Network Routing Inspired by DHTs”, in Proc.
of SIGCOMM’06, Pisa, Italy, Sep 2006.

[9] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, H. Balakrishnan,
“Chord: A Scalable Peer-to-peer Lookup Service for Internet
Applications”, in Proc. of SIGCOMM’01, San Diego, CA, USA,
Aug 2001.

[10] T. Qiu and I. Nikolaidis, “On the Performance and Policies of Mobile
Peer-to-Peer Network Protocols”, in Proc. of CNSR’04, Fredericton,
N. B., Canada, May 2004.

[11] S. Ferretti, S. Mirri, M. Roccetti, C. Sermenghi & V. Conforti,
“Managing First Response Medical Aids With An Altruistic Web
Application”, in Proc. of the 3rd ICST/ACM/IEEE Pervasive Health
2009, London, UK, Apr 2009.

