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Abstract—Cloud-based entertainment is gaining momentum.
With the cost of commodity hardware lowering by the day and
the consumer market penetration of in-house digital entertain-
ment systems, a new generation of interactive services has come
into being. This new technological wave has launched new content
producers and providers which are rapidly adapting to match
the consumer demand. In this context, thin client or cloud based
gaming is attracting much attention, shifting the computational
burden to the cloud while the consumer enjoys a fat video feed
accessed through its thin client via the shared wireless gateway.
However, this model of interaction raises new challenges that
demand for specific networking solutions aimed at addressing
the heterogeneous flow coexistence problem at the home wireless
gateway. We propose a solution to this problem by devising a
TCP Vegas-like congestion control algorithm deployed on top
of the home gateway. Our solution works out of the box with
the standard protocols at server, router and client level, thereby
making deployment straightforward. Experimental assessment
with real traffic traces shows that our solution addresses the
problem effectively.

Index Terms—Cloud gaming, interactivity, TCP Vegas, thin
client game, wireless.

I. INTRODUCTION

HOME entertainment is under rapid evolution. Today,
with better access to broadband, the advent of digital

home entertainment systems and online computing services,
many of us get the bulk of their content streamed directly
to our devices from the cloud. This has given spur to a two-
way interaction model and personalized content, enabling new
intelligent consumer services. The emergent cloud gaming
paradigm, also referred to as thin client gaming, is one
representative example in which the game engine resides in the
provider’s cloud and the outcome is streamed directly as video
content to the consumer devices to be accessed through a thin
client (e.g., OnLive [1]). This allows consumers to access the
game without a console, making the end-device unimportant
as the computing burden is shifted to the cloud [2]. Figure 1
depicts this new interaction model and emphasises the actors in
play: on one side (left) is shown the home environment with
the home gateway providing service access to a thin client
console playing out a video stream, while on the right side is
the cloud gaming system that collects the users actions and
then renders, decodes and streams back the result.
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However, despite this powerful interaction model, cloud
gaming remains in its early stages due to significant theoretical
and practical challenges that inhibit its widespread deploy-
ment [3]. While the cloud computational capacity is growing
by the day, the scalability of cloud gaming systems considering
the stringent Quality of Experience (QoE) requirements is still
an issue. Solutions have been proposed to tackle the QoE
requirements producing intelligent user provisioning schemes,
thus reducing the response delay on the transit network [4].

In this context, another crucial component providing us with
shared access to the outside world is the wireless gateway,
which brings the entertainment to the user’s home, while
the transport protocols remain those that have been in use
for the last 30 years: the Transmission Control Protocol
(TCP) for elastic (e.g., downloading) applications and the User
Datagram Protocol (UDP) for real-time ones (e.g., video/music
streaming, online gaming).

We consider the home gateway a potential bottleneck which,
if not dealt properly, could hinder the gaming experience.
The problem resides in the contrasting modus operandi of
the underlying transport protocols being employed by the
applications sharing the same wireless bottleneck. Indeed,
applications with real-time requirements such as cloud gaming
require fast delivery of gaming events and updates, whereas
high data rates are desirable for elastic, download sessions.
In contrast to classic gaming systems, cloud based games
pose additional bandwidth requirements on the shared wireless
downlink, with fat video chunks being streamed down to
the device from the cloud [2], [5]. This further exacerbates
the TCP vs UDP quarrel and, in particular, it jeopardizes
the interactivity and responsiveness of gaming sessions, with
TCP’s aggressive behavior being the main cause [6].

The technical motivations and the conflicts that arise are
explained in detail in Section II; yet, in synthesis, the fact is
that elastic traffic is still considered to be the main traffic
type run by consumers. In this context, providing reliable
delivery and high throughput to this kind of applications: i)
TCP and its congestion control functionality are employed at
the transport layer, and ii) buffers and local retransmissions
are extensively used at the MAC layer. However, these mech-
anisms in conjunction have been demonstrated to harm real-
time applications by increasing the per-packet delivery latency.

To address this issue we could rely on delay-based TCP
congestion protocols, employing packet Round Trip Time
(RTT) rather than losses to prevent congestion. In this realm,
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Fig. 1: Cloud gaming scenario.

TCP Vegas is the main candidate [7]. However, its adoption is
hindered by the widespread deployment and use of loss-based
protocols. The only way to employ TCP Vegas in practice
would be to completely dismiss all loss-based TCP versions
and, needless to say, this is not a feasible option.

In this article, we show how to practically exploit the
benefits of delay-based protocols, by intervening only at the
wireless gateway, thereby guaranteeing a factual deploy of
the solution. In essence, the gateway is enhanced with an
algorithm that automatically limits TCP flows through their
advertised window when the channel is near saturation, thus
avoiding long queues (and queuing delay) as well as packet
loss, while keeping the TCP-based flows at a data rate that
corresponds to a full utilization of the available bandwidth.
At a high level, this approach is similar to TCP Vegas, even
though the algorithms clearly have significant differences in
employment, hence the name Vegas over Access Point (VoAP).
As a result of our proposal, elastic applications achieve high
data throughput, while real-time, gaming sessions maintain a
low latency.

The rest of the paper is organized as follows. Section II dis-
cusses the technical background and issues at the basis of this
work, while Section III overviews related work in scientific
literature. VoAP is presented in Section IV, the experimental
testbed is described in Section V and obtained results are
analysed in Section VI. Finally, Section VII concludes this
paper.

II. TECHNICAL BACKGROUND AND PROBLEM STATEMENT

Measurements on a real OC48 link show that the available
capacity in the Internet core is generally larger than the aggre-
gate utilized by transiting flows [8]. We can hence assume that
the bottleneck is located at the edge of the path connecting a
sender and a receiver: i.e., the DSL link connecting the house
to the Internet or the domestic Wi-Fi. Therefore, the edge of
the connection is where we have to act if we want to address
congestion related problems.

Although the Internet has steadily evolved since the afore-
mentioned study was undertaken, we deem this claim is still
true nowadays. For this we refer the reader to studies like [2]
where it is indirectly shown that the cloud gaming service
adapts the downstream data rate depending on the constraints

imposed on the network access device, thus identifying the
last link as the bottleneck of the whole connection.

Applications can be grouped into two main classes depend-
ing on which protocol they use at the transport layer: TCP
or UDP. The former is a protocol guaranteeing reliable and
in-order delivery of data packets. These are desirable features
which are exploited by elastic applications, those involving
content download/transmission. A very important feature of
TCP is its congestion control functionality. Through it, every
TCP flow probes the link with higher and higher data rates
eventually filling up the channel. At this point, packets are
queued at the buffer associated with the bottleneck link until
it overflows, causing packet losses. TCP retransmits the lost
packets and halves its sending rate to diminish the congestion
level. Finally, the regular increase of the sending rate is
reestablished and the same process is repeated.

With UDP, packets are immediately sent toward the receiver
with a data rate determined by the sender. UDP does not
guarantee reliable and ordered delivery of packets. For this
reason, UDP is usually employed by applications characterized
by stringent real-time constraints that can tolerate sporadic
packet losses (i.e., audio/video streaming, online games). The
lack of congestion control functionalities of UDP has lead
the scientific community to consider UDP as unfair toward
TCP. Indeed, citing from [9]: “Although commonly done today,
running multimedia applications over UDP is controversial.
[...] Thus, the lack of congestion control in UDP can result in
high loss rates between a UDP sender and receiver, and the
crowding out of TCP sessions - a potentially serious problem.”

Even if this may have been true several years ago, when
the available bandwidth was much smaller than today, the
broadband connectivity offered today tends to overturn this
situation. Indeed, nowadays, larger and larger bandwidth is
available at the network edges and the traffic generated by
UDP-based applications (e.g., VoIP and classic online games)
can generally be accommodated [10]. Even when considering
bandwidth demanding UDP-based applications (e.g., real-time
video streaming and thin client games) some flow control is
operated at the application layer, decreasing the content quality
and the required bandwidth for transmitting the media [2],
[11], [12]. Yet, a problem emerges when downloading (TCP-
based) applications coexist with real-time (UDP-based) ones,
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the former forcing the latter to experience a scattered flow
progression [13], [15]. The main cause for this problem can
be found in the TCP congestion control functionality which
continuously probes for higher transfer rates, queuing packets
on the buffer associated with the bottleneck of the connection.
If one considers that the same connection might be shared
by several devices and applications thus increasing the con-
gestion level and queue lengths, it is even more evident how
packets can be delayed in queue, jeopardizing the interactivity
requirements of real-time applications.

This negative situation is further worsened by factors linked
to the wireless channel present at home gateways. First, the
wireless medium allows the transmission of only one packet at
a time and is not full-duplex as wired links. Second, as inter-
ference, errors, fading, and mobility may cause packet loss, the
IEEE 802.11 MAC layer reacts through local retransmissions
which, in turn, cause subsequent packets to wait in queue until
the preceding ones or their retransmissions eventually reach
the receiver. Last but not least, the back-off mechanism of the
IEEE 802.11 introduces an increasing amount of time before
attempting again a transmission.

Under these conditions, delay increments of online game
packets can hit also tens of milliseconds, representing a huge
waste of time when trying to deliver real-time information for
entertainment services. As a reference benchmark, it is com-
mon belief that transmission delays of interactive online games
should be inferior to 100 ms, with a maximum endurable value
of 150 ms [3], [16].

A recent comprehensive study analysing the network traffic
of the well-known thin client game system OnLive reports
downstream bitrates similar to high-definition live video with
frequent packets being streamed to the client, while on the
other side, upstream traffic has lower data rates, comparable
with classic online game upstream traffic [2]. This in- and out-
flow characteristics, if not dealt with properly, could worsen
the game interactivity and make the session unbearable.

III. RELATED WORKS

Aimed at providing Quality of Service (QoS) capabilities
to WLANs, the IEEE 802.11e has been proposed [17]. Its
design allows to discriminate among various kinds of flows,
assigning priorities through specific parameter settings. In
particular, flows with different priorities are enqueued into
different buffers, each having a specific contention time with
those belonging to high priority traffic having higher chances
to be transmitted before low priority ones. Yet, it is not clear
how the access point (AP) could classify the incoming traffic.
This also, requires the sender to mark each of its packets or
flows with a priority level; unfortunately, this would imply the
modification of all senders, thus strongly affecting the factual
deployment of this protocol.

Solutions have been proposed to avoid the end-to-end la-
tency increase generated by the loss-based TCP congestion
control. As most of the problem resides in the protocol itself
a possible approach could be to switch to a delay-based
protocol. Indeed TCP Vegas is able to detect the congestion in
advance using the RTT fluctuation of the packets. Essentially,

it increases the transfer speed when the delay is under an α
threshold and decreases it when the delay is over β (α <β).
This way, it is not necessary to lose a packet in order to detect
congestion, rather it can be detected before it happens. As a
desirable side effect, this also avoids the creation of bottleneck
queues and corresponding queuing delays that would harm any
interactive, real-time application. Unfortunately, TCP Vegas
flows are penalized by loss-based ones, e.g., TCP New Reno
and other real life TCP variants; loss-based flows generate
congestion by their nature, which induces delay-based ones
to slow down their transfer rate. The result is that loss-based
flows will capture almost all the channel [7], [14], [18]. This
incompatibility with legacy protocols made TCP Vegas not
applicable.

Active Queue Management (AQM) mechanisms are a class
of solutions that tackle the end-to-end latency problem on the
Internet. These mechanisms require the deployment of special-
ized algorithms in the network path whose aim is to prevent
buffers from sustaining long standing queues while also break
the synchronization among flows. We can distinguish two main
approaches to achieve this; they differ on the criteria used to
compute the packet drop policy: buffer size [19] and delay-
based [20]. The study undertaken in [20] is to the best of
our knowledge the only study comparing these algorithms in
the scenario of the AP bottleneck. The authors, found out
that these mechanisms made TCPs feedback loop exceedingly
long, leading to excessive end-to-end delays for the uplink
traffic. In addition, a probabilistic or delay-based drop policy
hinders TCP flows sharing the same bottleneck with the UDP
ones.

On the other side, AQM could be exploited in conjunction
with the Explicit Congestion Notification (ECN) mechanism
available in TCP, which is able to expose congestion events to
the endpoints and remedy to the issues raised by probabilistic
dropping; however, as the study in [21] reports, ECN is not
yet mature on the current Internet.

TCP Friendly Rate Control (TFRC) and its enhancement
Mul-TFRC are TCP-friendly rate control protocols based on
TCP Reno’s throughput equation designed for multimedia
flow transport against competing TCP flows. However, both
proposals are not reactive to delay fluctuations and the way
the sending rate is adjusted is expected to be more aggressive
than mechanisms such as TCP Vegas [22].

A lightweight solution that does not require any modifica-
tion of Internet protocols or network support was proposed
in [14], [23] and named Smart Access Point with Low Adver-
tised Window (SAP-LAW). Basically, this solution leverages
on the ability of the AP to monitor all traffic passing through
and, by appropriate on-the-fly modifications of the advertised
window, prevents TCP-based flows from exceeding their fair
bandwidth share. This avoids the classic TCP’s congestion
window fluctuations, stabilizing it to an appropriately com-
puted value, which does not decrease the achieved throughput.
Moreover, it avoids queue formation, hence alleviating delay
problems for UDP packets and allowing the user to enjoy
interactive, real-time services. However, this proposal requires
an a priori knowledge of the bottleneck capacity and the RTT
of each flow; these parameters may not be always known or
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correctly computed or even stable enough to be used in a
timely fashion.

Gateway Adaptive Pacing (GAP) proposed for multi-hop
wireless networks is similar in spirit [24], [25]. GAP adds an
artificial delay between packets based on continuous measure-
ments of the network. In this way the packet interarrival time
decreases, but so does even the throughput of TCP flows, thus
finding scarce applicability in our considered scenario and, in
general, in the regular one-hop case.

Studies on thin client game systems so far have been focused
on traffic flow characteristics and system architecture aimed at
delivering the service [2], [26]. To the best of our knowledge
this is the first work addressing the problem of TCP/UDP flow
coexistence in presence of concurrent cloud-based gaming
flows.

IV. VOAP

In the classic TCP protocol, the actual sending rate (i.e., the
sending window) of a TCP flow is determined as the minimum
between the congestion window (continuously recomputed by
the sender) and the advertised window (provided by the re-
ceiver via returning ACK packets). Our idea is to dynamically
modify the advertised window to limit the growth of the TCP
flow’s sending rate. Indeed, a good tradeoff solution between
throughput and low delays could be achieved by maintaining
the sending rate of the TCP flows high enough to efficiently
utilize the available bandwidth and, at the same time, limited
in its growth so as to not overutilize buffers. Intuitively, this
way the per-packet delays are reduced by the absence of
queues along the route from the sender to the receiver, while
the throughput is kept high by the absence of packet losses
that would otherwise halve the congestion window. At the
same time, we exploit an existing feature of regular TCP
implementations thus limiting the modifications required only
to the home AP.

The advertised window is generally imposed by the receiver;
however, in our case, VoAP computes its value. We decide to
install VoAP on the AP as it represents the bottleneck of the
connection and all communication should pass through this
device. In essence, VoAP monitors the ongoing traffic and
the current queuing delay experienced by packets transiting
through its buffer. If this queuing delay becomes too long to
sustain interactive applications such as games, VoAP proceeds
with appropriate on-the-fly modifications of the advertised
window in TCP ACKs so as to limit TCP flows just below
the congestion level.

In the following we discuss in detail how VoAP operates in
order to determine an appropriate advertised window for the
TCP flows that pass through the AP. Our algorithm addresses
the aforementioned coexistence problem among heteroge-
neous applications, while avoiding impractical assumptions
that could hinder its deployment. Below, we enumerate the
desirable properties that our target algorithm should adhere
to.
Property 1: It does not require any change to current network

protocols, servers, routers and clients (only the AP is
modified).

Property 2: It does not require any a priori information
about the network (e.g., the capacity of the bottleneck
link or flows’ RTTs).

Property 3: UDP flows do not have to suffer from per-packet
latency caused by TCP.

Property 4: TCP throughput must not be sacrificed.
Property 5: Congestion must be detected as soon as possible.
Property 6: Every TCP flow must be able to obtain a fair

share of the available bandwidth.
Property 7: If a TCP flow does not exploit the entire the

bandwidth assigned by the algorithm, the leftover must
be redistributed among the other flows.

Our solution has been designed mainly for a wireless home
scenario, where the bottleneck is represented by a wireless
component; however, it should work even in a more general
environment (including wired connectivity). Through the rest
of the section we discuss how each of the properties above is
ensured by VoAP. Where applicable, we also provide a pseu-
docode explanation of the algorithm designed to specifically
ensure a certain property or behaviour.

Property 1) To satisfy the first property, we have taken
inspiration from SAP-LAW, thus placing our solution in the
AP. From this position we can monitor and act upon individual
flows; at the same time, this strategy alleviates us the burden to
perpetuate any client side modifications. Using the advertised
window already present in the header of a TCP ACK, it is
possible to limit the amount of transiting packets and hence
control the utilization of the buffers.

Property 2) The main idea at the basis of VoAP is to monitor
all TCP flows passing through the AP and measure how long
packets are queued before actually being transmitted through
the wireless channel. This is the only information required and
it is easily available at the AP. No modification is needed at the
server, router or client side to enable VoAP. Distributing the
changes as a firmware update or other means on the AP-side
augments the chances of an actual deployment.

Property 3) Algorithm 1 shows how the information about
packet queueing time is exploited by VoAP in order to
determine the appropriate value for the advertised window
of TCP flows. In particular, we distinguish three cases. If
the measured delay IFQmaxDel is below the threshold α
(line 2), the channel can be considered almost free, so the
advertised window is increased, allowing the TCP to increase
its transfer speed. A queuing delay between the two thresholds
α and β (line 12) means that the network is well utilized but
not congested; for this reason the flows are not acted upon.
If the delay is over the β threshold (line 20), the channel is
saturated, so the TCP flows are slowed down by decrementing
their advertised windows communicated though the ACKs.
In Algorithm 1, the variable V oAPactive indicates whether
VoAP’s capability to limit TCP flows through their advertised
window is active or not; the rationale behind this feature is
explained when discussing Property 4.

The parameters α and β are expressed in milliseconds and
represent the queuing delay boundaries we would like to have
in our system. In particular, β is the ideal maximum queuing
delay at the AP. Considering that any game packet should be
delivered within 150 ms at most and that this accounts for all
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delays (transmission, propagation, handling, queuing, etc.), we
decided to set β equal to 15 ms [3], [16]. Instead, the value
used for α is set to 5 ms and the explanation is provided when
discussing Property 4.

The queuing delays are measured during an interval of time
T (200 ms in our experimentation), after which Algorithm 1
is executed. Every modification to the advertised window is
done on a per unit basis to ensure a smooth fluctuation of the
TCP flows and throughput. Moreover, these modifications are
performed only after T elapses. After this, the timers are reset
and the delay sampling restarts.

Inside a timeframe T each flow is monitored if it is active
or not, and the bandwidth is split accordingly among flows in
a fair way. It is therefore necessary for T to be big enough to
allow for all active flows to transmit at least one packet, but
also small enough not to waste the bandwidth on a non-active
flow.

In Section VI-A we report the experimental results, which
demonstrate that VoAP correctly and effectively enforces this
property, maintaining a low per-packet delivery delay.

Property 4) VoAP should be able to keep the data flowing
through the channel while at the same time avoid the negative
effects of per-packet latency. The choice for α and β values
relate to how many packets can simultaneously reside in the
bottleneck queue which has a direct impact on both the per-
packet latency and the throughput. We discussed the β value
(15 ms) as the ideal maximum delay we would like to tolerate
as queuing delay, while parameter α represents a minimum
queuing delay that we would actually like to have at the AP
as it ensures that the AP’s buffer has a set of packets ready
to be transmitted at any time and no transmitting opportunity
will be wasted.

From the experiments that we have made by varying α
between 0 and β, the former parameter had no big impact
on the performance, thus making a possible optimization study
not strictly necessary. We have hence used α equal to 5 ms for
the experimentation presented in Section VI as a representative
value which works well (as well as other values between 0 ms
and β). This is shown in Section VI-B.

VoAP should not limit the slow start phase to a linear
increment. To this end, we introduce two features to our
solution:

• VoAP’s algorithm is not used if the congestion window
of a TCP flow is in slow start (the value of V oAPactive
used in Algorithm 1 will be false);

• VoAP’s algorithm acts on the TCP flow only after the β
threshold is exceeded for the first time (lines 23 and 24,
Algorithm 1).

To avoid ambiguities regarding the slow start phase detec-
tion, in the experimentation part what does count is the incre-
ment rate of the TCP. However, this component is exploited
only at the initial stages of the algorithm thus having a very
limited impact on the final outcome. The protocols perform in
a similar way even when this feature is not considered and the
difference in orders of magnitude between the other protocols
remain invariant. In Section VI-B we report on experimental
results that demonstrate how VoAP does not harm TCP’s
throughput.

Fig. 2: The considered experimental scenario.

Property 5) When the queue is growing it is mandatory to
act quickly so as to avoid losses. To fasten the delay detection,
the queuing delay measurements are not only made when a
packet leaves the queue, but also while a packet is still in the
queue. To achieve this, we just need to read the timestamp of
the first packet which is always the oldest in a FIFO queue.
This procedure is described in Algorithm 2.

Property 6) A fair share of bandwidth is guaranteed for
every TCP flow. To achieve this, the maximum number of
outgoing packets is estimated as the sum of the advertised
windows of every active TCP flow (variable totalAwnd in
Algorithm 1). Once the value is obtained, it is divided by the
number of active flows, to assign a share of the bandwidth to
each one, as can be seen in Algorithm 3. In Section VI-C we
report the experimental results, which demonstrate that VoAP
is fair toward concurrent TCP flows.

Property 7) Not all flows will actually try to fully exploit
their assigned bandwidth share (e.g., because of small band-
width available at their server). For this reason we provide a
sharing function (Algorithm 4) to make the algorithm able to
redistribute the bandwidth leftover.

If the congestion window of a flow is bigger than its
advertised window, it means that it would be able to exploit
a bigger share, so it is added to a list of candidates to receive
additional bandwidth (lines 6 and 7, Algorithm 4) so as to
avoid the underutilization of the channel. To ensure growing
chances to those low-rate flows in case their conditions change,
their limited share is oversized by 10%.

In Section VI-D we report the experimental results demon-
strating that VoAP is efficient and redistributes unused band-
width among TCP flows that are able to exploit it.

V. EXPERIMENTAL ASSESSMENT

In order to assess the goodness of our proposal we have
chosen to run the simulations in a well-known and reliable
simulation environment: Network Simulator 2 (NS2). Our
intention is to reproduce a realistic scenario, complex enough
to simulate a real home environment.

In the considered scenario (in Figure 2) there are wireless
devices connected to the AP (where VoAP is deployed) and
wired nodes that represent remote resources in the cloud.
All the wired connections have a 100 Mbps capacity and
the wireless channel is a IEEE 802.11g representing the
bottleneck of the connection. The Wi-Fi AP is configured
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Algorithm 1
Require: alpha ≤ beta

1: IFQmaxDel ← highest packet delay measured in the
last period T

2: if IFQmaxDel < alpha then
3: for each active flow i do
4: if V oAPactive(i) then
5: awnd(i)← awnd(i) + 1 {awnd(i) represents the

advertised window of the flow i}
6: totalAwnd ← totalAwnd + awnd(i)

{totalAwnd represents the sum of all the
advertise windows}

7: else
8: V oAPactive(i)← false
9: end if

10: end for
11: end if
12: if IFQmaxDel > alpha and IFQmaxDel < beta then
13: for each active flow i do
14: if V oAPactive(i) then
15: awnd(i)← cwnd(i)
16: end if
17: totalAwnd← totalAwnd+ awnd(i)
18: end for
19: end if
20: if IFQmaxDel > beta then
21: for each active flow i do
22: if ¬V oAPactive(i) then
23: V oAPactive← true
24: awnd(i)← cwnd(i)
25: end if
26: awnd(i)← awnd(i)− 1
27: totalAwnd← totalAwnd+ awnd(i)
28: end for
29: end if

Algorithm 2
Require: Queue represents the AP’s FIFO queue

1: oldestInQueue ← Queue-> FirstPacketT ime()
{Save the timestamp of the first packet in the Queue, that
is also the oldest}

2: now ← read current time
3: delta← now − oldestInQueue
4: if delta > IFQmaxDel then
5: IFQmaxDel← delta
6: end if

with a buffer size of 250 packets in order to be coherent with
real implementations [27]. The one way delay between the
resources (servers) and clients is 40 ms and the flows we run
in the scenario are those shown in the Table I.

To increase the reliability of our experiments we employ
real traffic traces that mimic the considered applications. For
instance, the video chat is based on the traffic generated
by a real webcam based video chat. The gaming UDP flow
employed corresponds to a thin client game system, thus

Algorithm 3
1: windowSplit← totalAwnd/activeF lows
2: for each active flow i do
3: if V oAPactive(i) then
4: awnd(i)← (awnd(i) + windowSplit)/2
5: end if
6: end for

Algorithm 4
1: windowSplit← totalAwnd/activeF lows
2: for each active flow i do
3: if V oAPactive(i) then
4: diff = windowSplit− cwnd(i)
5: if diff < 0 then
6: needMoreBW [i]← true
7: flowsInNeed← flowsInNeed+ 1
8: awnd(i)← (awnd(i) + windowSplit)/2
9: else

10: diff = windowSplit− (cwin(i) + 10%)
11: if diff < 0 then
12: awnd(i)← (awnd(i) + windowSplit)/2
13: else
14: BWLeftover ← BWLeftover + diff
15: awnd(i) = cwnd(i) + 10%
16: end if
17: end if
18: end if
19: end for
20: if BWLeftover > 0 and flowsInNeed > 0 then
21: split← BWLeftover/flowsInNeed
22: for each flow i do
23: if needMoreBW [i] then
24: awnd(i)← windowSplit+ split
25: end if
26: end for
27: end if

requiring high data rates for the video stream from the server
to the client and a thin game action stream from the client to
the server. To reproduce a realistic scenario, we have adopted
the traces gathered in [2], which have been collected using the
OnLive thin client game system with different categories of
games [1]. A characteristic of thin client game systems is the
ability to adapt the quality of the streamed video feed based
on network conditions. Among those reported in [2], we chose
to employ the traces corresponding to flows whose data rate is
best suited to our wireless home network scenario. Moreover,
we consider two different game categories: first person shooter
and strategic.

Among those analysed in [2] we adopt the Unreal Tour-
nament III (UT) trace in its 10 Mbps limited downstream
version and Grand Ages: Rome (Rome) in all its variants.
More detailed information about the game flows and their
characteristic are provided in Table II.

Before discussing the experimentation results, we point out
that the approach employing an end-to-end TCP Vegas sce-
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TABLE I: Network flows

Application Protocol From To Start/End (s)
Download (FTP) TCP W(3) node (3) 100/250

Thin Client - S to C UDP W(1) node (1) 1/250
Thin Client - C to S UDP node (1) W(1) 1/250
Video chat S to C UDP W(2) node (2) 50/250
Video chat C to S UDP node (2) W(2) 50/250

TABLE II: Thin client games

Name Packet Size Interarrival Restrictions
UT 947 B 1.2 ms 10 Mbps downstream limited links

Rome 914 B 1.6 ms Unlimited

nario has a performance trend similar to our VoAP. However,
a Vegas-like approach is hindered by the coexistence with loss-
based TCP variants sharing the same bottleneck. Instead, we
contrast and provide an extended analysis of VoAP against
popular TCP variants present in our devices.

VI. RESULTS

We have discussed VoAP’s desirable properties throughout
Section IV. Some of these properties can actually be verified
experimentally. To this end, in this section we assess through
simulations Properties 3, 4, 6, 7. To avoid biasing our
comparison towards one specific TCP version or the other, we
have chosen to compare VoAP against three widely available
TCP variants as noted in [28].

A. Demonstration of Property 3: Low Per-Packet Latency

One of the main purposes of VoAP is to reduce the
negative effects of TCP over concurrent UDP-based real-time
applications, which in our scenario translates to cloud based
gaming session. In particular we want to avoid the latency
peaks caused by the TCP congestion control algorithm, as
stated by Property 3 discussed in Section IV.

Figure 3 compares VoAP against three widely used TCP
variants. From Figure 3a it can be seen that TCP New Reno
has a stability zone at interval 20 to 80 with a highest
peak amounting at 121 ms while Bic (Figure 3b) and Cubic
(Figure 3c) stabilize at intervals [30, 85], [60, 80] with the
highest peak arriving at 92 ms, 82 ms respectively. Instead
with VoAP, the picture drastically changes and the outcome is
shown in Figure 3d, with the highest peak reaching a 18 ms
delay, showing an improvement of 85% when compared to
New Reno and 80%, 78% with Bic and Cubic respectively.

B. Demonstration of Property 4: No Sacrifice of Throughput

The previous results would not be satisfactory if we have to
sacrifice TCP in terms of throughput. We also want to allow
the TCP flow to exploit the same bandwidth that it would have
reached without the use of VoAP.

To this end, Figure 4 shows the bandwidth trend of the TCP
flow without enforcing VoAP. From the charts it can be seen
how loss induces bandwidth fluctuations consistent with the
peaks exhibited in Figure 3. Using VoAP instead, the absence

of latency peaks in Figure 3d is reflected by a more stable
bandwidth without any loss incurred, as shown in Figure 4d.

The difference between the throughput in the experiments
is below the 1% threshold. We can state that the employment
of VoAP does not harm the TCP flows, henceforth Property 4
stated in Section IV is satisfied. This result is also confirmed
when employing the Rome trace (Figures 5, 6).

Figure 7 shows a complementary view, reporting the cu-
mulative distribution function (CDF) of the queuing delay
for the UT and Rome scenarios, respectively. It is clear that
VoAP outperforms the regular deployment in both scenarios,
incurring less delays, reaching a near 100% per-packet delay
at around 20 ms.

Furthermore, we studied the average throughput achieved
by the TCP flow in the scenario with a concurrent UT game
flow and VoAP employing different values for α in the interval
0 to 10 ms with a 1 ms step increment. The outcome is, as
anticipated in Section IV, that almost any α value between
0 and β does not significantly impact on the performance.
Thereby it does not necessarily require an optimization study.
For completeness we report the statistical significance of the
data obtained from the ten runs having a mode of 5.37 Mbps,
lower peak at 5.17 Mbps, higher peak at 5.38 Mbps and a
standard deviation of 0.097.

The trend of the charts shown until now regarding the TCP
throughput is shaped by the use of VoAP on the AP. When con-
sidering a traditional scenario, the TCP throughput follows the
well-known saw-tooth shaped fluctuations of the congestion
window, which determines the actual sending window. Instead
with VoAP, the sending window is shaped by the advertised
window as the sending window is the minimum between the
congestion window and the advertised window.

Therefore, to understand the connection behind the through-
put and the per-packet delay we compare the congestion
windows of regular TCP flows (Figure 8 for UT and Figure 9
for Rome) with the advertised windows generated by VoAP,
which correspond to the factual sending windows in the two
cases. As expected, with regular TCP and no VoAP enforced,
we have a saw-tooth shaped fluctuation of the congestion
window which generates queuing delays, congestion losses
and throughput variations, whereas with VoAP we have a
smoother progression of the advertised window which ensures
a stable throughput and limits queuing delays.

C. Demonstration of Property 6: Bandwidth Fair Share
In a common wireless home scenario there is certainly more

than one TCP flow at a time. With Property 6 discussed in
Section IV we state that every flow should be able to achieve a
fair share of the available bandwidth. We modified the scenario
by running a TCP flow from the start and let two other flows
enter the scenario after 70 s and 140 s respectively. The results
are shown in Figure 10a, where it is clear how the flows’
bandwidth is halved after the activation of the second flow,
and is reduced to 1/3 of the original value when even the
third flow is activated. The two charts corresponding to the
other two flows show the same trend as they all fairly share
the available bandwidth; we do not show them here to avoid
redundancy and for lack of space.
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(a) New Reno (b) Bic (c) Cubic (d) VoAP

Fig. 3: Bottleneck queue delays in the UT OnLive scenario.

(a) New Reno (b) Bic (c) Cubic (d) VoAP

Fig. 4: Bandwidth comparison at the bottleneck in the UT OnLive scenario.

(a) New Reno (b) Bic (c) Cubic (d) VoAP

Fig. 5: Bottleneck queue delays in the Rome OnLive scenario.

(a) New Reno (b) Bic (c) Cubic (d) VoAP

Fig. 6: Bandwidth comparison at the bottleneck in the Rome OnLive scenario.

D. Demonstration of Property 7: Redistribution of Unex-
ploited Bandwidth

As there might be some flows not fully exploiting their
fair share of the available bandwidth, Property 7 states that
the possible leftover must be redistributed. To show that this
property is satisfied we modify the scenario, replacing the TCP

flow with the configuration detailed in Table III.
The chart depicted in Figure 10b shows how the bandwidth

used by the first flow is halved when the channel is shared
with a second, unrestricted flow (starting at 40 s and ending
at 80 s), and how the leftover is reallocated to the first flow
when a second flow does not fully exploit its fair share of the
bandwidth (starting at 120 s and ending at 160 s).
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(a) UT (b) Rome

Fig. 7: Queuing delay CDF.

(a) New Reno (b) Bic (c) Cubic (d) VoAP

Fig. 8: Sending window comparison with the UT OnLive flow.

(a) New Reno (b) Bic (c) Cubic (d) VoAP

Fig. 9: Sending window comparison with the Rome OnLive flow.

TABLE III: Heterogeneous TCP flow scenario

Start Stop Limitation
0 s 200 s Unlimited
40 s 80 s Unlimited

120 s 160 s 1 Mbps

E. VoAP’s impact on the Upstream

The above results clearly demonstrate that VoAP does help
reduce per-packet latency while avoiding penalties in through-
put. We now focus on the queuing delay in the upstream traffic.
This is specifically important for the thin client game system
scenario we are considering as a timely delivery of players
actions has a direct impact on the responsiveness and hence on
the QoE of the game play. We employ the same configuration

as done before with the Rome uncontrolled scenario and the
results are shown in Figure 11.

From the charts it is clear that VoAP performs better when
compared to the other algorithms, with a smoother trend and
less subject to oscillations. The spikes shown in the charts at
around 100 ms are due to concurrent TCP traffic sharing the
bottleneck: VoAP is less subject to this and able to maintain
a stable regime, not introducing any delays in the packet
delivery. A complementary view is given in Figure 12, which
shows the CDF of the queuing delays, with VoAP able to keep
nearly 98% of the game flow traffic under 12 ms of queuing
time.
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(a) Similar flows enter the channel (b) Heterogeneous flows entering and leaving the channel

Fig. 10: VoAP bandwidth reallocation.

(a) New Reno (b) Bic (c) Cubic (d) VoAP

Fig. 11: Upstream bottleneck queue delays in the Rome OnLive scenario.

Fig. 12: Queuing delay CDF for the Rome upstream scenario.

VII. CONCLUSION

We considered a realistic scenario where in-home entertain-
ment is delivered to wireless devices through a home gateway
from cloud-based services. Our analysis focused on tackling
the flow coexistence problem among concurrent transmissions
of two kinds of different streams: TCP-based elastic (e.g.,
downloading) applications and UDP-based real-time (e.g.,
video streaming and online gaming) applications.

The contrasting modus operandi of the above transport
protocols is further exacerbated by the downlink requirements
posed by cloud based gaming, whose flow, if not properly
accommodated, could be impaired by persistent TCP-based

flows.
To solve this problem, we proposed the VoAP algorithm

that consists of an augmented AP. Exhaustive experimental
assessments employing real and synthetic flows show that
our algorithm effectively allows high throughput and low per-
packet delay, significantly improving the network performance
and session interactivity.

As future work, we plan on building a VoAP testbed on the
OpenWRT platform where we expect VoAP to still maintain
its superiority. The testbed will allow us to make additional
assesments of the protocol including but limited to its overhead
in real environments.
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