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Abstract 

The increasing need for people to be always connected, as well as the request for new amusement 

applications, poses several interesting issues in wireless networks. Nowadays, two main reasons are 

motivating several researchers around the world in striving to find effective solutions for these issues. 

First, revenues generated every year by electronic amusements follow a trend which is expected to 

increase further. Second, but certainly not less important, problems that emerge in developing 

innovative entertaining experiences are correlated with those belonging to various other “conventional” 

research fields in Computer Science. 

In this context, online games for a large group of contemporary players are gaining attention as 

their participants are increasing in number. From a research point of view, they represent a very 

interesting and challenging topic especially in wireless environments. In this scenario, in fact, many 

issues arise such as authentication, session handling, interactivity, scalability and mobility, which are 

just a few and the more obvious of them.  

Here, we propose a scalable architecture able to support fairness and interactivity in order to 

provide a cutting-edge online gaming experience to engaged players. In particular, we exploit a hybrid 

solution combining both the advantages of client-server and peer-to-peer paradigms. As part of our 

architecture, we have designed a novel synchronization mechanism among mirrored servers composing 

the online game platform. Our mechanism exploits the semantics of a game and follows a holistic 

approach to increase interactivity, fairness, and scalability, whilst maintaining full consistency of the 

game state. We provide extensive results that demonstrate our assertion.  

However, even if our scheme is proficient in maintaining a high degree of responsiveness among the 

game servers, problems may arise at the edge of the considered topology. Concurrent traffic may 

generate queues that build up at the last (or first) link of a connection, thus delaying the game event 

delivery. This problem is worsened in case of players relying on wireless connectivity. The wireless 

medium, in fact, is naturally prone to be shared by several contemporary users interfering with each 

others’ performance goals. 

A typical case study is represented by a wireless home. Indeed, online entertainment is now possible 

at home by a plethora of ubiquitous services that can be provided based on wireless technologies, for 

instance, the common Wi-Fi IEEE802.11g network technology. Among the various home applications, 

entertainment is going to play a major role. As the availability of digital entertainment devices rapidly 

increases, the need for interconnecting them becomes even more urgent, as well as the necessity to 

extend the reach of entertainment to the wireless domain. 

Applications run in this context may vary and, as we demonstrate in this thesis work, some of these 

may be particularly harmful toward real time traffic (i.e., online games, but also video-streaming and 

video-chats). In particular, we show how the very popular TCP-based FTP application for downloading 

files increases queuing delays to such an extent that responsiveness may be jeopardized. 

                                                 
1 Department of Computer Science, University of Bologna, Mura A. Zamboni 7, 40127 Bologna, Italy. 
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To solve this problem, we propose and compare a set of possible solutions: i) appropriately setting 

MAC layer parameters, ii) employing TCP Vegas in place of the traditional TCP New Reno and, iii) 

limiting the advertised window for TCP flows. Extensive simulation results for a realistic in-home 

wireless scenario are provided. 

Finally, we provide conclusion and future directions for our work. To this aim, it would be of 

particular interest to evaluate the IEEE 802.11e MAC protocol to investigate its capability to support 

real time applications and its impact on TCP-based traffic. Moreover, a particularly challenging case 

study is represented by the juxtaposition of our architecture with a vehicular networking scenario. 
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Chapter 1 

Introduction 

 

The current status of the Internet as a widely utilized tool and the overwhelming development of 
wireless access technology lead us to a future in which the synergy between wireless and the Internet 
will be integral part of our everyday life. Virtual libraries, remote-working, video-telephony and voice 
over IP, traffic control, remote-medicine, video and music on demand, on-line games, location based 
resource discovery, navigation support, are only a few of the innumerable services that will be 
ubiquitously available [5, 6, 9, 10, 12, 37, 40, 42, 45, 46].  

People will be continuously connected during the whole day, regardless of their location and 
utilizing a plethora of traditional or new devices. Furthermore, connectivity will follow the always best 

connected paradigm so that the connection will seamlessly switch from one access technology to another 
guaranteeing always the best conditions for customers (i.e., cost, bandwidth, coverage, personal 
preferences) [13]. 

We are crossing a technology threshold that will revolutionize every area of our lives. It will affect 
all of our everyday habits and businesses in ways far more pervasive than people may imagine. Devices 
that we use today for a limited range of special purposes will become multiple application platforms. 
Even common objects such as wristwatches, cars, PDAs are evolving and their enhancement toward 
multipurpose tools will accelerate as we move forward.  

Wristwatch capabilities will be augmented making it able to communicate, download/play music, 
keep personal/medical information, identify us to our car/home/devices, etc. Cars will be elevated from a 
simple transportation vehicle to an office on the move, as well as an information provider and 
entertainment center. Passengers will be allowed to access the Internet, engage in teleconferencing, play 
distributed videogames, learn location based information as low traffic paths to the destination or special 
offers for hotel reservations [114, 115, 116], participate in ad hoc or mesh networks [92], be part of an 
urban grid [93], etc.  

Paper money and coins will be completely substituted by electronic transactions. Credit cards are 
already more and more frequently used by customers for their real or on-line purchases. The availability 
of always connected devices will further push commerce in this direction. Pocket sized PDAs, in fact, 
could be enhanced to be an easy-to-use way of payment. Customers will buy their objects and services 
connecting to a web page or simply making their PDAs interact with the cashier. Even tickets for events 
or travel will disappear in the paper format: PDAs or equivalent multipurpose devices will be able to 
provide the information required to authenticate the completed transaction. 

As a proof for this forthcoming scenario, hot spots are rapidly increasing in number providing people 
with wireless connectivity in almost all the buildings they enter (e.g. home, work, cafeteria, etc.) and all 
the streets they walk and drive in. A large amount of static and nomadic users relies today on a wireless 
access to the Internet to run their favourite applications: email, web surfing, P2P file sharing, chatting, 
and video/audio downloading/streaming.  

Mobile and highly mobile users will soon be using both traditional and innovative applications. 
Novel services will be provided whose utility sensibly rises for mobile users: location-dependent 
information, information exchange with people around, mobile market, safe driving alert system, urban 
grid for traffic control, Video/Voice over IP, Text/Voice-Chat on the move, and many others that we are 
still not able to imagine [16, 22, 23, 47, 82, 113].  
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Figure 1.  The exponential increase of MMOG subscriptions (1997-2005) [25]. 

 

 

Figure 2.  MMOG revenue by Region (2003) [25]. 

Houses will not be spared by this wireless revolution. Nowadays, home networking is still limited to 
few PCs and electronic equipments located in different rooms of the house; yet the vision for the near 
future includes many devices networked within a single household and connected to the Internet [117]. 
The domotic philosophy is steadily increasing the number of habitations which combine technology and 
services to improve living in the areas of safety, comfort and technical management. Smart houses will 
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be endowed with devices, appliances and sensors, communicating through the means of wireless 
technologies and embodying active partners in managing our everyday life.  

The trend of the market strongly suggests that entertainment applications are going to play a major 
role in this scenario and, among them, video games are gaining more and more attention. In the last 
decade, in fact, thanks to their impressive progression in plunging players into terrifically realistic and 
capturing virtual worlds, videogames have expanded their market with a persistent and accelerating 
growth (see Fig. 1) [24, 25].  

Furthermore, this market is still far from being mature and presents large growth margins. In fact, as 
can be seen in Fig. 2, a very large portion of MMOG revenues comes exclusively from South Korea 
(~50 millions of habitants). By projecting this value over the whole world and pretending that all the 
other developed country will eventually reach the same percentage of online players on their whole 
population, we can have a clue of the astonishing potentiality which hides behind this market. 

Nowadays, two main reasons above the others attract an increasing number of researchers and 
practitioners toward the MMOG field. The first one is the explosive growth of the computer games 
market, with an increasing trend whose end is still not in sight [26]. The second reason is represented by 
the correlation between problems that emerge in developing innovative game experiences and those 
typical of various other conventional research fields in Computer Science and Engineering. Indeed, 
creating enjoyable online games requires the convergence of solutions belonging to extremely diverse 
technical areas. Examples are represented by networking, computer graphics, animation, music and 
sound, multimedia design, Artificial Intelligence (AI), human-computer interaction, software 
engineering, virtual environments and distributed simulation [27, 28, 29, 30, 31, 32]. 

Massively Multiplayer Online Games (MMOGs) are further extending the boundaries of what has 
been defined “the tenth art” with the possibility of contemporary engaging, in the same virtual scenario, 
millions of players located all over the world. Indeed, one of the main elements that determine the 
success of a game has always been represented by the possibility to engage in multiplayer sessions. 
Humans are social beings and generally consider challenging other humans as funnier than playing alone 
against an artificial intelligence. Nowadays, the boom in the Internet usage has brought the logistic 
advantage of an always available virtual arena where millions of players can contemporary participate in 
electronic multiuser amusements.  

Furthermore, the exploding market of connectable handheld devices, always looking for new killer 
applications, pushes the game industry to propose effective distributed game platforms proficient at 
engaging an unlimited number of contemporary users [33, 34]. This large and emerging market is 
driving researchers and practitioners to develop novel distributed solutions able to efficiently sustain 
interactive multiplayer networked game sessions over best effort networks such as the Internet [7, 35, 
36, 38]. 

 

1 Problem Statement and Thesis Contribution 

In this Thesis we focus on problems that arise in heterogeneous networks that involve also wireless users 
when trying to deploy a highly interactive entertainment system; in this context, MMOGs represents an 
emblematic and challenging example.  

We define the game state in the system as the set of information that univocally describes the current 
configuration of the game. Players perform moves based on their perception of the game state. 
Specifically, their terminals periodically render a projection of the game state on screens. Players can 
hence be aware of the surrounding virtual world and influence it by generating game events which 
includes, but are not limited to, the movement of an avatar, hitting/missing a target, changing difficulty 
level.  

In its simplest version, with no particular techniques employed, Game events are propagated from 
clients to some decision point(s) which utilize(s) them to determine the new game state that will be 
broadcasted. Decision point(s) could be represented by a centralized server, or a constellation of 
mirrored servers, or just other players, depending on the underlying architecture (see Section 2.5). 
Indeed, it is of particular interest to discuss potentially efficient game server architectures by analyzing 
network and computational issues related to the maintenance of a consistent game state in the whole 
game platform.  
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   typedef struct usercmd_s 

   { 

     // Interpolation time on client 

       short lerp_msec; 

     // Duration in ms of command 

       byte msec; 

     // Command view angles. 

       vec3_t viewangles; 

     // intended velocities 

     // Forward velocity. 

       float forwardmove; 

     // Sideways velocity. 

       float sidemove; 

     // Upward velocity. 

       float upmove; 

     // Attack buttons 

       unsigned short buttons; 

     // 

     // Additional fields omitted… 

     // 

   } usercmd_t; 

 

Figure 3.  Half-Life message format [171]. 

 
Residential broadband connectivity is currently becoming more and more common. Moreover, 

MMOGs generally utilizes very small packets thus easing the bandwidth requirement for this kind of 
application. As a confirmation, Fig. 3 shows the format of packets sent from client to server in Half-Life 
[74, 171]. Fields represent basic information that could be contained within few tens of bytes [146]. 

In this context, we intend to provide cutting-edge MMOG experience both to wired and wireless 
users. To this aim, we propose a scalable system able to support fairness and interactivity even when 
players are connected through the wireless medium. More in detail, in order to ensure optimal 
performance to players we have to split the problem into two sub-parts which requires specific solutions 
applyed by different subjects.  

The first sub-part regards the communications and synchronization among game servers and 
represents the portion of the total connectivity that can be handled by the MMOG service provider 
(either directly, or through ISP-domain managers). It is up to the MMOG service provider to deploy the 
ultimate MMOG technology in this portion of the game platform. 

The second sub-part, instead, is concerned with the links between game servers and their engaged 
players, thus including also the wireless hops. This portion of the connectivity is out of the control of the 
MMOG service provider: customers decide on their own whether they are going to subscribe cable/DSL 
connectivity, set up a wireless last hop, and/or install a particular Media Center. Yet, it is a critical part, 
as it generally includes the bottleneck of the connection and may include large queuing delays. 
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Therefore, to obtain an optimal solution we propose to proceed through successive steps and address 
the two sub-problems one independently from the other. Our mechanisms complement each other since 
their scopes are detached (even if connected) and, although they generate the best performance result 
when combined, they produce benefits also when singularly applied. 

In particular, for the first part we exploit a hybrid architecture combining both the advantages of 
client-server and peer-to-peer paradigms. Our solution deploys over the network a constellation of 
communicating replicated Game State Servers (GSSs), each of which locally maintains a redundant 
version of the game state. Each GSS manages and updates its copy of the game state as follows: i) it 
collects game events coming both from its engaged players and from other GSS peers; ii) it forwards to 
all other GSSs the events generated by its connected players; iii) it updates the game state considering 
the set of received game events; iv) it finally delivers the newly updated game state to its connected 
players.  

It goes without saying that, within this scenario, an efficient event synchronization scheme among 
GSSs needs to be employed to guarantee a consistent and responsive evolution of the game state. 
Indeed, one of the key factors in determining the success of an online game is represented by the ability 
to rapidly deliver events among the various GSSs. While simpler turn-based games do not have to face 
this problem, as only one player is allowed to perform an action at any given time, the task of providing 
players with responsiveness and real-time interactions is probably the most stringent requirement for 
MMOGs (especially for fast-paced MMOGs). In fact, in case of intense traffic in the network or when 
excessive computational loads are slowing down some GSSs, the game delivery activity turns out to be 
quite complex. As a consequence, the responsiveness of the distributed game system may be 
jeopardized. 

With this in mind, we propose a scheme that takes inspiration from Active Queue Management 
techniques to maintain the game event delivery delays under a human perceptivity threshold and uplift 
the playability degree of MMOGs. Our scheme follows a holistic approach aiming at preserving also 
consistency and fairness. At the basis of our scheme lies the idea of exploiting the semantics of the game 
and, in particular, the notion of obsolescence. Simply put, obsolescence entails that during a game 
session some events can lose their significance as time passes, i.e., new actions may make the previous 
ones irrelevant. For example, where there is a rapid succession of movements performed by a single 
agent in a virtual world, the event representing the last destination supersedes the previous ones 
(obsolete events). 

Obsolescence allows the system to drop those game events that lose their importance during the 
game evolution. Discarding superseded events for processing fresher ones may be of great help for 
delay-affected GSSs. This means that, during the game event exchange activity, while responsive GSSs 
may deliver all game events to provide their connected clients with a fluent game state evolution, those 
GSSs that are experiencing loss of interactivity may skip the execution of obsolete events in order to 
speed up the event processing activity, thus gaining interactivity.  

Upholding interactivity may be useful also to the aim of ensuring fairness. In fact, we demonstrate 
how our system is able to take advantage of the reduced transmission time to magnify the efficiency of a 
local lag-type algorithm in ensuring fairness without compromising interactivity. This represents a very 
important result since it contradicts the general belief that interactivity and fairness embodies antithetic 
objectives. 

However, even if our scheme is proficient in maintaining a high degree of responsiveness among 
game servers, still problems may arise at the edges of the considered topology. This represents the 
aforementioned second part of our problem.  

Concurrent traffic may generate queues that build up at the last (or first) link of the connection, thus 
delaying the game event delivery. This problem is worsened in case of players relying on wireless 
connectivity. The wireless medium, in fact, is naturally prone to be easily shared by several 
contemporary users who may interfere with each other. The applications run in this context may vary 
and we demonstrate as some of these may be particularly harmful toward real time traffic (online games 
but also video-streaming, video-chats, etc.). In particular, we show how the very popular TCP-based 
FTP application for downloading files increases queuing delays to such an extent that responsiveness 
may be completely jeopardized. 

To this aim, we propose and compare some possible solutions aimed at maintaining low transmission 
delays even on the client-server link. In particular, we evaluate different approaches which involve 
diverse networking layers: i) appropriately setting IEEE 802.11b/g MAC layer parameters, ii) employing 
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TCP Vegas in place of the traditional TCP New Reno and, iii) limiting the advertised window for TCP 
flows. Extensive simulation results for realistic wireless scenarios are provided. 

The contribution of this Thesis is hence that of providing a scalable MMOG architecture endowed 
with a set of solutions able to ensure interactive, fair, and consistent game event delivery even for 
frenetic action games. Summarizing it with a motto: fast and fair event delivery for fast and furious 

online games. 
 

2 Thesis Outline 

The remaining of this Thesis is organized as illustrated below. 
In Chapter 2 we introduce the reader in the MMOG field by analyzing the most important issues in 

this research area. In particular, we overview key requirements and fundamental problems shared with 
traditional field in computer science, we summarize previous work that constitutes helpful background, 
we propose a model for MMOG delays, and we analyze possible system architectures.  

Chapter 3 depicts the general framework that we use to guarantee fast synchronization among 
servers. It introduces the concepts of obsolescence and correlation and explains how to use them in 
combination with queuing management techniques in order to uplift the interactivity level of the system. 
Extensive results are provided to show the benefits attainable through our scheme.  

Our proposed synchronization scheme is further refined in Chapter 4 where we show how increasing 
interactivity is not incompatible with aiming at fairness among players. On the contrary, the latter could 
be more easily achieved through the means of the former. We present experiments and outcomes that 
prove our assertion.  

In Chapter 5 we describe the wireless home as an important scenario where MMOGs are going to 
play a major role. In particular, we demonstrate how MMOG performance could be affected by 
concurrent traffic of diverse nature. We then propose and evaluate different possible techniques to find 
an efficient and effectively deployable solution.  

Finally, Chapter 6 concludes this Thesis and proposes a couple of very promising directions for 
future research work. 
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Chapter 2 

Background 

 

We present a general introduction to the MMOG research field. In particular, we first discuss the major 
MMOG issues and wrong assumptions generally made by online game developers. We then explain 
fundamental problems that MMOGs share with other traditional field in computer science, thus elevating 
themselves to the rank of scientific topic. After this, we propose a model for delays in MMOGs. Finally, 
we analyze possible architecture for online games and survey related work in this area. 

 

1 MMOG Issues 

Several elements contribute to the success of a game: capturing graphics and visual effects, original plot, 
fair difficulty, multiplayer sessions, high interactivity level, etc. MMOG is, by definition, a class of 
games devised to engage a multitude of users, contemporary present in the same virtual arena even if 
physically located far away from each other. This scenario could be realized through the Internet; 
however, the best effort nature of the Net poses several challenges before being able to proficiently 
deploy really scalable and interactive game sessions.  

In this sense, a MMOG is subject to similar major issues and fundamental principles which emerge 
when developing a general distributed application [75]. These are well summarized by Peter Deutsch’s 
“Eight Fallacies of Distributed Computing” [130].  

Essentially, developers building a general distributed application (or a MMOG) may fall in one or 
more of the following wrong assumptions generating a system that is intrinsically unable to guarantee 
high performance: 

1. “The network is reliable”. Errors, losses, and wrong order delivery are common issues when 
utilizing a network to transmit messages. The larger is the scale of our MMOG, the higher is the 
probability that one of these events happens contradicting this assumption. Therefore, the 
application should be able to face these issues through mechanisms able to provide reliability 
without affecting the interactivity of the game system. 

2. “Latency is zero”. Depending on the topology of the game network and on its conditions, delays 
may conspicuously increase. Objective delays as perceived by players are impacted both by 
network delays and by processing workload delays. At the same time, since MMOG requirements 
for interactivity and fairness, latency is the main issue to address in this kind of application.  

3. “Bandwidth is infinite”. In a LAN scale network game this assumption may still hold since the 
available bandwidth is generally much larger than the required one to run a MMOG. On the other 
hand, when moving to wide area networks, congestion due to a very large and unpredictable 
traffic may generate bottlenecks that could invalidate this assumption.  

4. “The network is secure”. Security in a large scale MMOG includes various issues that can be 
shared with traditional distributed systems or even be completely new. Authentication, 
subscription transactions, and cheating represent the most relevant among them. 
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5. “Topology doesn’t change”. In a LAN, failures can suddenly lead to having isolated PCs that 
cannot anymore communicate among themselves nor, obviously, be engaged in a MMOG. 
Considering the larger scale case of the Internet, failures are addressed by the presence of 
redundant alternatives. Yet, the consequent topology change and congestion increase may 
noticeably impact on the system performance.  

6. “There is one administrator”. MMOGs can be deployed across large geographic areas requiring a 
decentralized control of networking resources. Therefore, multiple domains and administrators 
may be involved in the resource allocation. 

7. “Transport cost is zero”. The exchange of messages among nodes is a characteristic that belongs 
to the nature of a MMOG. These messages have to be forwarded through some infrastructure that 
needs to be provided and therefore bought/rented. Moreover, as the involved network spreads 
across different domains, resources among shared infrastructures have to be allocated to support 
the MMOG. Transport costs are hence inflated by providers’ rates. 

8. “The network is homogeneous”. The Internet is heterogeneous in nature and this characteristic is 
going to become even more evident in future. As new wireless and mobile technologies are 
coming into the picture, different network accesses, as well as different devices, are offered to 
players. Moreover, the core of the Internet evolves gradually and slowly since the cost and the 
large number of domains involved. Evolution at its edge, instead, proceeds by leaps and bounces, 
thus generating an interoperating mix of components that increases the heterogeneity of the 
infrastructure. 

As a demonstration of the wide diffusion of these wrong assumptions, many games have been 
initially developed to be singularly played on PCs. Since more and more houses have became endowed 
with high speed connectivity such as cable and DSL, game vendors started to endow their products with 
the possibility of playing online with other users. However, this feature has been added as an extension 
of single use designed games, thus clearly inheriting the above wrong assumptions. Instead, MMOGs 
aimed at providing an amusing experience to their players have to be designed since the beginning, as 
intended to be played over the Internet and taking into account all the involved implications. 

 

2 Fundamental Problems 

Delving into the Internet, the first video game appears to be a simple Tennis for Two created by 
Higginbotham in 1958 to entertain visitors of the Brookhaven National Laboratory, a US nuclear 
research lab in Upton, New York. Since then, video games have evolved from a simple pastime into a 
real business and an important research field. 

Indeed, certain games simulate, relatively cheaply and safely, situations which could be much more 
expensive or dangerous in the real world. Technical solutions introduced by game developers are now 
employed in medical surgery, military simulations, distributed simulations, virtual reality, interactive 
collaboration, distance learning, e-commerce and manufacturing systems. In this sense, several works 
have been presented that describe the convergence between game technology and non-game 
applications.  

For example, interactive storytelling may gain benefits by employing synchronization schemes 
developed for online games [64, 125]. Collaborative applications require augmented reality interfaces to 
support group interaction [124]. Combat video games are utilized to enhance strategic, combat, and 
decision-making skills of military commanders [126, 129, 178]. Psychology is requesting for immersive 
collaborative virtual environments to investigate human behaviors and interaction [122, 123], as well as 
to support traumatized patients [121]. Real time video-streaming, voice over IP, and online games are all 
extremely delay sensitive applications that need fast delivery support [40, 99]. Finally, surgery 
simulations and video games share a quest for realistic object behavior, immediate response to given 
commands, and high-quality images [128].  

These represent only a few of the innumerable intersections between video games and non-game 
applications. It is hence easy to see how issues emerging with online games represent fundamental 
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problems also shared by other traditional fields in computer science, and how adapting elements of 
computer games may enable the creation of compelling user experiences in several domains [120].  

Under a networking point of view, distributed multiplayer games are characterized by four main 
requirements which are intrinsically correlated and correspond to major research challenges involved 
with MMOG, namely: interactivity, consistency, fairness, and scalability.  

Interactivity (or responsiveness) refers to the delay between the generation of a game event in a node 
and the time at which other nodes become aware of that event. Therefore, it includes both the network 
latency and the processing time. Having a high level of interactivity represents a fundamental quality for 
a MMOG. In order to assure an enjoyable playability to the final user, external stimuli generated by 
players need to be processed under a human-perceptivity threshold. This means that the time elapsed 
from the game event generation at a certain node and its processing time at every other node 
participating in the same game session must maintain a low average value. Unfortunately, not only could 
this be very hard to be accomplished in a best-effort network, but we will probably face also a high 
variance in the delivery time of game packets. Variable congestion conditions in Internet could, in fact, 
result in sudden slow down of the perceived game fluency on screen. Moreover, players in the same 
virtual arena can increase in number, even sensibly, with almost no predictability. Some game server 
may thus experience impulsive computational load and loose interactivity. These problems are obviously 
amplified when plunged into a wireless scenario.  

Consistency, on the other hand, regards the contemporary uniformity of the game state view in all 
the nodes belonging to the system. Depending on the features of the game, consistency requirements 
may be absolute or partial. The easiest way to guarantee absolute consistency would be that of making 
the game proceed through discrete locksteps [98]. At each step, the system waits until having received 
all the actions generated by the final users; only at this moment a new instance of the game is produced 
and propagated to all the nodes. Having a single move allowed for each player and synchronizing all the 
agents before moving toward the next round, for sure grants absolute consistency but, on the other hand, 
impairs the responsiveness of the system. Obtaining both absolute consistency and high interactivity 
would require the employment of almost unlimited network and computation resources (very high 
bandwidth, very low latencies, very high speed at server to process events). A trade-off between the two 
attributes needs to be found in order to develop a proficient game platform. 

Fairness among users is another major issue in MMOGs. In fact, to ensure a rewarding game 
experience to users, every player needs to posses the same chances of winning than any other, regardless 
of the different network connections. Indeed, we are here interested in networking fairness for MMOGs 
as it represents one of the major issues that need to be addressed when developing new online games. In 
this context, relative delays have to be considered as important as absolute ones. Simultaneous game 
evolution with identical speed should be guaranteed as much as possible to all the participants [78]. To 
this aim, introducing appropriate artificial delays before displaying both generated and received game 
events may represent a feasible solution. However, similar to consistency, aiming at a full fairness may 
result in excessively increasing game delays, thus jeopardizing interactivity. Indeed, it is generally 
believed that interactivity and fairness/consistency embodies antithetic requirements [104, 105, 127]. 

Scalability regards the capability of the system to provide an efficient support to a large community 
of players. Regarding this point, it should be noticed that the interest of companies in online gaming 
emerges from the huge revenues that may be generated by a very elevated number of customers. 
Besides, humans are social beings which enjoy the presence of others in most of their amusement 
activities (i.e. team sports, movies in theatres) and the competition in challenging their skills against real 
adversaries. However, especially in the case of fast-paced MMOG, scalability is sometimes sacrificed to 
maintain a high degree of interactivity. In some cases, in fact, the system could deny the MMOG access 
to some users depending on their experienced delays [179]. These delays could have been generated by 
several factors such as the location of these users with respect to the server, the network conditions, and 
the current computational load of the system. Limiting the access to some customers obviously eases the 
achievement of interactivity, consistency, and fairness, but at the cost of a reduced scalability. 

A well designed game architecture could help in devising a MMOG which possesses all the required 
qualities. The positioning of servers affects network latencies; thereby, they should be optimally located 
to efficiently serve their customers [76]. Moreover, every time a new scheme is proposed as a solution 
for MMOGs, all the four aforementioned key factors should be ensured and verified. Generalizing this 
concept, developers should follow a holistic approach when designing a new MMOG, considering the 
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whole set of requirements and aiming at the intersection of their solutions. Addressing only one 
requirement, in fact, could produce the unexpected and undesired result of jeopardizing the others. 

 

3 Related Work 

Here, we present a commented summary of research contributions that have to be considered in our 
scenario. For each of them, we introduce the proposed technique and then highlight both the advantages 
and disadvantages of using it. In particular, we first evaluate existing techniques aimed at increasing the 
responsiveness degree of online games. We then analyze solutions proposed to ensure fairness and 
consistency (solutions developed to satisfy the fairness can generally be extended to satisfy consistency 
too, and viceversa). For the sake of completeness, we also provide a panoramic of anti-cheating 
mechanisms analyzing their impact on the other requirements. Finally, we are interested in efficiently 
extending the boundaries of MMOGs also to the wireless domain. Therefore, we discuss research about 
the impact of a wireless link on measured performance. 

3.1 Responsiveness 

Trying to improve the responsiveness of a distributed game architecture, two main causes for delays 
have to be analyzed: network latencies and computational costs. Several research works have already 
brought contributions to the factual developing of efficient synchronization schemes. Compression and 
aggregation consider networking having a dominant position when dealing with the delays and thus with 
the playability of a MMOG [39].  

More in detail, packet compression tries to speed up transmissions by reducing the amount of 
payload bytes to be transmitted. However, the provided benefits are very limited as the size of online 
game packets is already very small (see Fig. 3 and [146]). Aggregation, instead, merges packets together 
in the attempt of reducing the transmission overhead. Both compression and aggregation pay the 
achieved latency benefits with an increment in computational costs. Moreover, aggregation can generate 
further waste of time if a transmission is delayed while waiting for having available other events that 
could be aggregated. 

In the attempt of reducing both the traffic load in the network and the computational cost to process 
each game event, interest management techniques rely on the area-of-interest concept to filter events. 
Players, in fact, are not impacted by game events happening far away from their current virtual position. 
Therefore, sending all the game events to all the players represents a waste of network and 
computational resources with no utility counterpart. Instead, an appropriate multicast based scheme 
could match every packet with the nodes that really need to receive it in order to reduce both the traffic 
on the channel and the processing burden at each node.  

On the other hand, a tradeoff exists between the computation spared at the destination by receiving 
only a limited number of packets and the required one for implementing the filtering scheme at the 
sending GSS. Moreover, interest management techniques could further delay packet delivery when 
applied to games having almost all the game actions to be forwarded to the majority of the participants. 
Finally, area-of-interest techniques do not help in reducing latency as there is no correspondence 
between players’ position in the virtual world and their actual location in the real one. In simple words, 
players positioned in the same virtual area-of-interest might be physically located very far from each 
other, thus not gaining any benefits in terms of propagation and queuing delay. 

Slightly detaching playability from the real responsiveness of the network, optimistic algorithms for 
synchronizing game state at servers can be utilized in order to avoid delay perception at destination. In 
case of high delays in events forwarding between GSSs, in fact, an optimistic approach may execute 
game actions on clients before really knowing if ordering would require processing other on-the-way 
ones first. Game instances are thus processed without wasting any time in waiting for other packets that 
might arrive later. On the other hand, this performance gain is paid with some occurrence of temporary 
consistency loss. Standard Time Warp and Breathing Time Warp represent typical exemplars of this 
family of algorithms [52, 53, 105]. Rollback based techniques are exploited to reestablish the 
consistency of the game state but may further impact on the responsiveness of the system. 

Based on this concept, a new synchronization mechanism for online games called trailing state 

synchronization was presented by Cronin et al. [59]. According to this approach, every GSS locally 
maintains a fixed number of copies of the game state, each of which is kept at a different simulation 
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time. In essence, each copy of the game state is associated with a particular execution, and each 
execution is delayed for a fixed time interval. If no inconsistencies are detected, the game proceeds in 
rendering the copy of the game state which is more forward in time; as a result, players perceive the 
game evolution as being very responsive. 

With this trailing state synchronization, inconsistencies are identified by comparing the leading state 
(that optimistically processes game events without any additional delay) with the game states of the 
delayed executions that reorder and then process the received game events. If an inconsistency is 
detected, a rollback is performed by copying the (consistent) game state from the delayed execution to 
the leading execution and then the rolled back game events are re-processed in the proper order. It goes 
without saying that a tradeoff relationship exists between the number of game state copies maintained by 
each GSS and the number of game events that need to be re-processed in case of a rollback. Moreover, 
this scheme does not avoid short-term inconsistencies: it just provides a mechanism to detect and correct 
them after they happened. 

Optimistic algorithms can be employed also at the boundaries of the game platform. Clients could, in 
fact, be equipped with the intelligence required to perform predictions of other players’ movements. 
Obviously, unless utilizing a fully distributed architecture, servers have still to validate clients’ 
predictions. If the prediction results wrong, the server(s) will eventually correct the mistake and restore a 
consistent game state. However, a full Round Trip Time (RTT) may elapse between the generation of an 
inconsistency due to wrong prediction and its correction. If this period of time surpasses the human 
perceptivity threshold, players could be annoyed by it. 

In general, prediction techniques rest upon the assumption that a consistent game state exists at some 
point. From this starting point, new actions are predicted and executed on clients’ screen. For instance, 
50 frames per second represent a typical refreshing rate for an online game and correspond to one new 
game state sent from the server to the client every 20ms. Considering a connection of 100ms of RTT, 
this amounts to 5 game events that could be subject to rollback if the server does not confirm the 
correctness of the predictions [171]. 

A tradeoff between the speed of executing game actions and the frequency of short-term 
inconsistencies is hence present in this kind of solutions. Moreover, client side prediction techniques 
require that clients and servers share the same predictive code; this solution could hence be not 
applicable on clients equipped with low computational resources. Finally, having portions of code 
shared between all clients and servers gives an advantage to malicious players. Cheaters, in fact, could 
become aware of the next expected (and predicted) actions of regular players and modify their behaviors 
in order to obtain the maximum benefits out of it. 

Extrapolation and Interpolation are particular instances of the optimistic approach. With 
extrapolation, the next action and position of a virtual object (even an avatar) are predicted by exploiting 
the current available information (i.e. current position, speed, direction). Actions can thus be rendered on 
the screen before really receiving the related game event.  

In games where physical rules of the real world are respected, the task of predicting events forward 
in time is made easier. Unfortunately, most of the games available in commerce present very poor 
similarities with real physical laws or ballistic models. Indeed, virtual object in games are usually 
allowed to perform sudden actions featured with huge acceleration/deceleration and instantaneous 
change of direction. These unrealistic movements cannot be anticipated by extrapolation and result in 
inconsistencies that affect the player’s perception of the game evolution. Depending on the extension of 
the extrapolated time, these errors can be more or less evident. Therefore a tradeoff exists between the 
impact of these inconsistencies and the augment of responsiveness that can be simulated by this scheme. 

Interpolation is another technique that tries to guess the position/action of a virtual object at a certain 
moment without having precise information about it. In particular, interpolation uses exact information 
about two valid positions/actions of an object at two different moments to determine how to display the 
in-between movements of that object.  

When interpolation is employed the constraint for reliability in game event delivery can be relaxed. 
For instance, if some of the movements of an avatar, leading from an initial to a final position, are lost, 
the system is still able to reconstruct the whole sequence. However, some critical movements cannot be 
interpolated without creating inconsistencies, thus requiring reliable transmission (see the notion of 
correlated events in Section 3.2). 
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3.2 Consistency and Fairness 

The simplest way to enforce fairness and consistency in the game is that of proceeding through discrete 
locksteps [98]. Simply stated, the game evolves by marching in step and players have to wait their turn 
before making any action. Every game event is thereby reliably received by all the players before any 
new move could be instantiated. Consistency and fairness are hence ensured by the fact that before 
proceeding to any new step, all the nodes in the game platform will share the same identical game state 
view. 

Unfortunately, this scheme is affected by some important drawbacks. The most relevant one is the 
fact that locksteps cannot be used for interactive games since updates are displayed on screens only after 
having received game events from all the players. This requires reliable transmission of game events and 
may sometimes require many seconds, thus making the game proceed very slowly. Moreover, if one 
node in the system fails, then all the others could wait indefinitely before receiving updates from that 
node and impeding any progress in the game evolution.  

In [71, 105, 131], Mauve et al. presented an optimistic approach for the consistency control in 
networked multiplayer games. Their approach utilizes the local lag control mechanism combined with a 
modified Time Warp (executed only when necessary) in the attempt of solving the trade-off relationship 
existing between responsiveness and consistency.  

In particular, Mauve et al. devised a synchronization approach based on the idea of intentionally 
decreasing the responsiveness of the application in order to eliminate short-term inconsistencies. 
Exploiting a local lag approach, game events are delayed for a certain amount of time before being 
executed by clients. This additional delay permits the reordering of the received events in order to 
minimize inconsistencies. However, the presence of this delay is not always sufficient to prevent short-
term inconsistencies as game events might still arrive late due to jitter or packet loss in the network. 

In [137], Li et al. presented a continuous consistency control mechanism for supporting networked 
multiplayer games. Similar to [105], this approach rests on the idea that game events should not be 
considered as discrete updates of the game state, but rather as continuous actions in the game world. In 
this context, the authors proposed a relaxed time-dependent consistency control scheme which gradually 
synchronizes the nodes in the system and ensures that the possible discrepancy among game states 
stored at each node never exceeds a predefined threshold. 

As it is evident, this scheme does not avoid short-term inconsistency. Rather, it deals with them after 
a certain period of time to avoid that the divergence among the various game state views does not 
become excessive. However, players’ gaming experience could still result affected. 

Other approaches simply assume that delaying the game event processing activity for a 
predetermined amount of time may be sufficient to guarantee a uniform evolution of the game state at 
different nodes without any need to resort to rollback. Following this idea, Diot and Gautier depicted in 
[132] a synchronization mechanism which embodies an optimistic version of the well known 
conservative bucket synchronization algorithm.  

Their approach assumes that there exists a processing deadline (which defines a time bucket) and 
that a correct evolution of the game requires that all game events are received prior to this deadline. In 
essence, the idea behind this scheme is that of ordering and processing game events at the end of the 
time bucket. If some game events are not received before the time bucket expiration, dead reckoning 
techniques are exploited to compensate event losses [134, 135]. A similar approach was presented also 
in [133]; in both cases, the main drawback is that dead reckoning does not ensure the full consistency of 
the distributed game state.  

Short-term inconsistencies may still arise if the bucket size is set excessively small but, on the other 
hand, using large buckets may induce severe responsiveness degradation. Further, a complex problem is 
that of fitting the bucket size with the unstable condition of the Internet where large and variable jitter 
values may be experienced. 

Fairness among users is a very important issue in online games. Every player has to possess the same 
chances of winning than any other. To this aim, it is fundamental that delays impact on all participants in 
equal measure. Fairness could be enforced by compensating latency differences among players with an 
appropriate queuing of game events at each client before presenting them onto the screen [54, 78, 94, 
104, 105]. This artificial injection of an appropriate amount of delay is usually referred to as Local Lag 
technique.  

In essence, this scheme normalizes the game state so as to have all the players virtually brought back 
at the time when a certain game event was generated. Unfortunately, pure Local Lag algorithm does not 
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solve the tradeoff between interactivity and fairness anticipated in Section 2.2.. Lags, in fact, can be 
inflated only up to the delay perceptivity threshold; otherwise all the players will be affected by 
excessive delays which jeopardize the interactivity degree of the whole game platform.  

Finally, aiming at ensuring consistency, Knutsson et al. propose in [136] the use of coordinators to 
solve update conflicts that may occur in a peer-to-peer architecture. In particular, they split the game 
state management into different classes handled by different coordinators within a group of interested 
peers. Aiming at guaranteeing fault tolerance, they also propose the use of a primary-backup protocol to 
address possible fail-stop failures of coordinators. However, several issues arise in this context such as, 
coordinator election, fairness maintenance among different kind of nodes, authentication, and cheating 
avoidance from malicious intruders that become coordinators.  

3.3 Cheating 

A deep analysis on cheating and proposed solutions is out of the scope of this Thesis. Nonetheless, for 
the sake of completeness we provide a short panoramic of work on this topic. Moreover, research in this 
area generally proposes protocols which also include solutions aimed at sustaining other key 
requirements such as interactivity, consistency, and fairness. Conversely, none of the schemes reviewed 
till now proposes any cheat-proof mechanism. 

A general taxonomy of cheating in online games can be found in [169]. A more detailed one, 
adopting a classification based on networking layers and then further categorizing the protocol level 

cheats class, is presented in [167]. In [167], the authors also present NEO, a low-latency event ordering 
protocol for a distributed architecture. Designed to improve the responsiveness of the game while 
preventing protocol level cheats, NEO takes inspiration from bucket synchronization and divides the 
time into equal intervals called rounds. Within these rounds, players send encrypted updates to each 
other and, in the following round, players send key to decrypt the updates sent. After this, a voting 
mechanism is employed to achieve majority based consistency and responsiveness.  

Specifically, every new game state update is accepted by players only if a majority of them has 
received it on time. Consistency is hence maintained through a distributed voting system which collects 
positive votes from players who have received the game state update in time, and negative votes from 
delay affected players. In order to avoid interactivity loss, NEO does not wait for receiving all the votes. 
The relationship between game progression and communication reliability is weakened, any non-
received votes at the end of the round are considered abstentions, and only the receiving of a majority of 
votes is required to consider the election as valid. 

Therefore, NEO does not guarantee continuous global consistency or interactivity. Rather, its aim is 
that of ensuring these properties for a majority of players, and utilizing dead reckoning techniques in 
order to adjust the game state view for the rest of them (a minority). Obviously, depending on the 
definitions of majority and minority a different tradeoff can be found for interactivity and consistency. 
However, the length of a round is limited by the maximum latency acceptable to still consider the system 
as responsive, and no effort is devoted to facilitate a more efficient solution for this tradeoff by 
effectively decreasing the delays caused by traffic conditions. On the contrary, a bucket synchronization 
mechanism which also requires multiple rounds in order to send updates, encrypt them, and voting for 
determining their consistency, definitely affects the responsiveness of the system, and is therefore not 
well suited for highly interactive games. 

An extreme solution for the protocol level cheats makes use of the aforementioned concept of 
locksteps. In particular, Baughman and Levine design in [168] a protocol that forces players to reveal 
their moves before actually performing them and, most important, before receiving any plain-text move 
from any other player. Thereby, this scheme prevents anyone from performing late changes of their 
moves based on the knowledge about other players’ actions.  

Two steps characterize this protocol. First, each player has to communicate her/his next move 
utilizing an encrypted message; the move is hence committed even if not revealed ahead of time. Finally, 
each player sends her/his move in clear. The authors also propose the utilization of area-of-interest 
techniques to reduce the overhead in the system caused by the reliable transport of commitment 
messages. Nonetheless, any lockstep based mechanism leaves unresolved several problems and, among 
the others the most critical one is the lack of responsiveness (as already seen in Section 2.3.1). 

Another method based on locksteps is presented in [170]. In this work, Chen and Maheswaran 
developed a mechanism for P2P architecture composed by two protocols: the first one aimed at ensuring 
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fairness among all players regardless of their latencies, and the second one able to prevent certain types 
of time-cheats.  

The fairness ensuring protocol makes use of specific nodes called pulser, and of network sensors. 
The former are elected nodes which periodically broadcast game state updates (pulses), while the latter 
detect the current status of the network and adapt the pulses sending rate in order to meet the fairness 
requirement.  

Pulsers are also used to implement encryption on game messages in order to avoid time-cheats. In 
particular, they forward encrypted messages at a pace which corresponds to that one achieved by the 
slowest player. The authors demonstrate how this is sufficient to prevent faster players from maliciously 
peek into the future with respect to slower players. 

Unfortunately this scheme presents several lacks. First, there is no real guarantee about the fine 
precision of the estimated network conditions; this is particularly true in the case where nodes are 
dispersed and sensors are not in close proximity of each of them. Second, this scheme works only if the 
whole structure (i.e., sensors and pulsars) can be adequately distributed over the Internet. Indeed, 
providing efficient clusterization of the nodes with respect to the sensors and the pulsers remains an 
open problem for this scheme. Finally, the anti-cheating mechanism only addresses time-cheats, while 
many other possible ways to gain unfair advantages have not been treated. 

3.4 Performance Evaluation over Wireless Links 

In recent years, many researchers have focused their studies on the problems encountered in a wireless 
environment [15, 56]. We try to limit the scope of our survey to those works that are related to problems 
we are trying to address in this Thesis and to the solutions we propose and evaluate in Chapter 5. 

Focusing on MAC layer retransmissions, TCP and UDP flows have been tested by Nam et al over a 
IEEE 802.11 wireless link when different signal levels were present. They showed that without 
retransmissions implemented at the link layer, loss rates become unacceptable for any application [3]. 
The claim that MAC layer retransmissions improve TCP performance was confirmed also by Xylomenos 
and Polyzos, who experimented TCP and UDP on a WLAN and analyzed their behavior with different 
interfaces and bidirectional TCP traffic [4].  

Said that, we may ask ourselves whether the current number of MAC layer retransmissions 
represents the optimal choice to support both TCP-based traffic and real time applications. Indeed, a 
high number of repeated retransmissions could still be not enough to prevent TCP from experiencing 
timeouts and retransmitting the same data as the MAC layer. At the same time, MAC retransmissions 
can be wasteful and potentially harmful for time-sensitive applications, such as real time video/audio or 
online games over UDP [166]. 

It should be said that a vast collection of research papers focusing on 802.11 could be found by 
delving into the Internet. They present analysis, problems, and solutions. Nonetheless, the vast majority 
of them provides results that focus on a throughput/losses point of view [57, 172, 173, 174, 176, 177], 
while the performance of real time applications depends on the measured per packet delay and jitter 
[58]. Even if some recent works present delay measurements for real time applications over IEEE 
802.11, a deep analysis of this issue with respect to MMOG is still missing, as well as efficient solutions 
aimed at reducing queuing delay over wireless links [166, 175]. 

 

4 System Model 

Aimed at providing a holistic solution for MMOGs and being aware of related works, we can now 
analytically study the four main requirements seen in Section 2.2 and the tradeoff relationship existing 
among them. 

Every class of game is featured by a peculiar (and fixed) Game Interactivity Threshold (GIT) that 
represents the maximum delay endurable before visualizing a game event on players’ screens if one 
wishes to preserve interactivity. The typical GIT for fast paced games (i.e. vehicle racing, first person 
shooter) corresponds to 150-200ms but this value can be increased up to seconds in case of slow paced 
games (i.e. strategic, role play game) [77, 78, 80, 106, 107]. 
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If we call 
)e(gt  the generation time of event e and 

)e(v

it  the visualization time of the same event at 
player i, then interactivity is preserved at i during the delivery of e when the following condition is 
satisfied:  

 

 .GITtt
)e(g)e(v

i ≤−  (1) 
Both consistency and fairness regards having the same game state contemporary viewed in all the 

nodes of the system. Therefore, the same class of techniques is generally used to achieve each of them 
(or both). The easiest way to guarantee consistency and fairness is to make the game proceeding through 
discrete locksteps. Unfortunately, as discussed in Section 2.3, this scheme cannot be applied to 
interactive games. 

To ensure fairness (and consistency) in continuously evolving games several studies propose 
schemes based on the introduction of artificial delays in order to contemporary visualize game events on 
all the players’ screens (i.e., local lag schemes) [54, 78, 94, 104, 105].  

With local lag, game advancements are delayed for a sufficient amount of time in order to guarantee 
that all the clients in the system process and perceive the generated game events at the same time and in 
the same order. Indeed, since the generation time of each event is unique and considering CC, the set of 
clients, we can say that we have event-related fairness [109] for event e if condition (2) is satisfied, 

simply stated, if there is a unique 
)e(vt  value for all the players: 

 
 .CCitt )e(v)e(v

i ∈∀=  (2) 

Since a single game event experiences different overall delays (OD) in its paths from the source to 
all the diverse destinations, different amounts of artificial delay δ should be added in order to 
contemporary visualize the same event e on all the players’ screens and hence to satisfy the following 
condition: 

 
 .CCit)e()e(ODt )e(v

ii

)e(g
∈∀=++ δ  (3) 

A possible value typically chosen for the unique 
)e(vt  is represented by the highest OD in 

transmitting events amongst nodes. When the highest OD is greater than GIT, however, fairness is 
preserved at the cost of jeopardizing interactivity for all the players. Conversely, if we use GIT as an 

upper bound to 
)e(vt , then we can guarantee interactivity but not fairness.  

Consequently, in order to maximize the possibility to obtain both interactivity and fairness 
)e(vt  

should be set as 
 

 .GITtt )e(g)e(v
+=  (4) 

The ODi(e) experienced by an event e when it finally reaches client i is composed by several delay 
components, respectively: physical latency li(e), queuing time qi(e) on nodes along the path, and 
processing time pi(e). Therefore, ODi(e) can be written as 

 

 ).e(p)e(q)e(l)e(OD iiii ++=  (5) 

Even when the network latency would allow having values of OD, and hence also of 
)e(vt , lower 

than GIT, a large number of players generating a huge amount of traffic may raise the value of the other 
two components (i.e., qi(e) and pi(e)), thus leading us again to the crossroad between fairness and 
interactivity. 

To conclude, the efficiency and applicability of popular delayed-based algorithms such as local lag 
strongly depend on the network conditions and on the interactivity degree required by the game. Yet, 
guaranteeing both interactivity and full fairness through local lag can sometimes be achieved only at the 
cost of limiting the scalability of the game by bounding the number of contemporary participants and the 
geographical extension of the target player market. 

It hence becomes evident how MMOGs require the use of architectural solutions and algorithms able 
to reduce the delay components in (5) in order to find the most efficient tradeoff among interactivity, 
consistency, fairness, and scalability. 
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5 Architectures 

Typically, network architectures supporting MMOGs can be distinguished based on three main 
categories as depicted by Fig. 4: centralized client-server, fully distributed, and mirrored game server.  

In the centralized client-server architecture, we have a single authoritative point which is responsible 
to run the main logic of the game. We report here only a few of its tasks: execute players’ commands, 
enforce consistency, send back to the client the new game state update, etc. Clients have only to receive 
the new game state update, render it on the screen, and forward player’s commands. The single 
authoritative point is usually represented by a single server; however, a cluster of computers could be 
utilized as well in order to increase the performance of the system [97]. 

The centralized client-server architecture represents the simplest solution for authentication 
procedures, security issues, and consistency maintenance [35, 95, 96, 97]. Moreover, assuming to have 
N simultaneous players, the generated messages are in the order of O(N). On the other hand, the unique 
bottleneck limits the efficiency and scalability of this solution.  

Fully distributed architectures are well represented by the peer-to-peer paradigm. In this case, all the 
involved nodes share the same intelligence and are responsible for running the whole logic of the 
system. In this case, in fact, each client has to autonomously update the game state view based on its 
player’s commands and on game actions received from other players. This obviously requires terminals 
endowed with higher computational capabilities. 

The main advantage in employing a fully distributed architecture is that of spreading the traffic load 
among many nodes thus generating a more scalable and failure resilient system [94, 112]. However, 
identical copies of the current game state need to be stored at each node. This requires some complex 
coordination scheme among peers; in fact, this scheme has to be distributed over the set of involved 
nodes and has to be able to guarantee the coherence of all game state views. Moreover, with fully 
distributed architecture, multicast should be employed to reduce the bandwidth requirements, but 
multicast technology is neither generally available nor mature enough for the specific application we are 
considering here. The exchanged messages could hence raise to the order of O(N

2
). Finally, 

authentication, cheating, and general consensus among all the peers are harder to be addressed than 
when a centralized architecture is employed. 

Mirrored game server architectures represent a hybrid solution which efficiently embraces all the 
positive aspects of both centralized client-server and fully distributed architectures [59]. Based on this 
approach, GSSs are interconnected in a peer-to-peer fashion over the Internet and contain replicas of the 
same game state view. Players communicate with their closest GSS through the client-server paradigm. 
Each GSS gathers all the game events of its engaged players, updates the game state and regularly 
forwards it to all its players and GSS peers.  

The presence of multiple high performance GSSs helps in distributing the traffic over the system and 
reduces the processing burden at each node [112]. Moreover, having each player connected to a close 
GSS reduces the impact of the player-dependent access technology (e.g., dial-up, cable, DSL) on the 
total delay experienced [110]. In this case, in fact, the communication among players results mainly 
deployed over links physically connecting GSSs, which can exploit the fastest available technology 
(e.g., optical fibers) to reduce latency. As a result, this architecture helps one in finding better solutions 
for the tradeoff among interactivity, consistency, fairness and scalability. 

Other advantages in employing mirrored game server architecture are the absence of a single point of 
failure, the networking complexity maintained at server side, and the possibility to easily implement 
authentication procedures. Even if synchronization is still required to ensure the global consistency of 
the game state held by the various servers, this requirement is made easier with respect to fully 
distributed architectures thanks to the lower number of involved nodes. Assuming to have N players and 
M GSSs, for example, the generated game messages amount to O(N+M), which is again O(N) unless 
considering the unlikely case of having more servers than players. 
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Figure 4.  Online game architectures. 
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Chapter 3 

Fast Synchronization Framework 

 

1 Proposed Architecture 

Since the analysis of advantages and disadvantages about the various possibilities illustrated in 
Section 2.5, mirrored game server emerges as the most appropriate architecture in order to efficiently 
manage large-scale distributed games. Indeed, this architecture embodies the advantages of both client-
server and fully distributed paradigms and, in particular, it preserves the two most important features 
required by a MMOG architecture: scalability and controllability. The former is required to allow a 
multitude of players to engage in the same virtual arena. The latter regards the possibility to control the 
access to the game, avoid cheating, and have a centralized core where new techniques could be easily 
deployed to improve performance. Indeed, based on this architecture, we have devised an efficient 
synchronization scheme among GSSs able to enforce a high interactivity degree while guaranteeing a 
uniform view of the current game state.  

Moreover, in Section 4 we will demonstrate how to exploit this architecture and our synchronization 
scheme to achieve also fairness, while in Section 5 we will focus on preserving interactivity and fairness 
also in the last hop of the connection. We will show how to enhance the mirrored game server 
architecture to make it able to sustain MMOG applications regardless of the connectivity type exploited 
on the client-server link.  

 

2 Obsolescence and Correlation: Maintaining Responsiveness and 

Consistency 

Absolute Consistency can be attained through the employment of a totally ordered event delivery 
scheme [60, 61]. On the other hand, this would imply an increment of the complexity and of the total 
delay experienced by the system. Waiting for the next in order action to be processed, while having 
other events ready in queue, may sensibly slow down the evolution of the game thus jeopardizing 
responsiveness.  

Exploiting the semantics of the game can be put to good use to relax the total order delivery 
requirement and augment responsiveness [63, 64]. Some events, in fact, can lose their significance as 
time passes: new actions could make irrelevant previous ones. For example, player’s movements are 
generally represented by final absolute position and, in case of rapid succession of movements of a 
single agent, the event representing its last destination makes obsolete the older ones.  

Obsolescence can thus be defined as the relation between two received events e1 and e2, generated at 
different times t(e1) < t(e2), by which the existence of event e2 diminishes the importance of processing 
also event e1, without affecting consistency (see Fig. 5-a). Dropping obsolete events before processing 
them clearly reduces computation at GSSs and speeds up the execution of fresher events.  
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Figure 5.  Examples of obsolescence and correlation  

(a) Event e2 makes obsolete e1; (b) Event ec is correlated to e1 and rescinds the obsolescence of e1. 

 
To define as obsolete a game event, we have to be sure that consistency would not be weakened. To 

this aim, we have also to take into account the notion of correlation. Two events, say e1 and ec, are 
correlated if the final game state depends on their execution order. Correlation has to be taken into 
account to determine the obsolescence of an event. As depicted in Fig. 5-b, it might be the case when e2 
would make obsolete a previous event e1 but a further event ec (correlated to e1), temporary interleaved 
between e1 and e2, rescinds this relationship of obsolescence. However, they are the only events that 
really need to be reliably delivered to all destined GSSs and in the same order as they were generated.  

Total order delivery requirement can thus be relaxed in case of non-correlated game events. Their 
semantic independence, in fact, allows different GSSs to process them in diverse orders without 
affecting consistency. This means that non-correlated game events can be processed as soon as they are 
received without wasting any time in waiting preceding ones, thus augmenting responsiveness; missing 
game events can be interpolated and rendered on players’ screens (see Section 2.3.1). Interested readers 
may find a deeper analysis on obsolescence and correlation in [63, 64]. 

On the other hand, our experiences with online games over a best effort network lead us to claim that 
there exist cases where even dropping all the obsolete events in a game is not enough to ensure an 
adequate interactivity degree. This is particularly true for a class of games that requires frenetic, and 
often redundant, players’ actions. This class of games is widely recognized in the gaming community as 
fast-paced (or fast and furious) games: shoot/beat’em up games represent typical exemplars. For this 
class of games, even discarding some non-obsolete events may be preferred to compromise 
responsiveness and consequently users’ perceived playability. Discarding some non obsolete event may 
generate some sporadic inconsistencies in the game state; nonetheless, we deem that partial consistency 
for a small amount of time becomes acceptable for the specific class of fast and furious online games. In 
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this scenario, in fact, the necessity of a very high interactivity degree emerges as overwhelming even on 
the full-consistency requirement. 

 

3 Interactivity Restoring Mechanism 

Exploiting the notions of obsolescence and correlation, Ferretti and Roccetti propose a mechanism to 
restore interactivity in mirrored game server architecture [63]. The player’s actions are collected by the 
closer GSS, transformed into events and finally forwarded to other GSSs in order to maintain a global 
identical view of the game state. Events are marked at their creation with a generation timestamp and 
then sent to destination: they are hence orderable. Obviously, a global concept of time has to be 
maintained by all the GSSs. Different solutions proposed in literature can synchronize the clocks at each 
GSS [65, 66, 67]. Alternatively, this can also be obtained by exploiting some new technological 
synchronization device such as GPS.  

Since UDP is used as the transmission protocol, missing packets are handled at the application level. 
Game state updates transmitted by GSSs, in fact, are identified by sequence number. By the means of 
NACK (Negative ACKnowledgment) packets it is possible to determine which ones are missing and 
decide whether to retransmit them or not. 

Each receiving GSS considers the arrival time of the event and measures the difference elapsed since 
its generation; the resulting value is named Game Time Difference (GTD). The GTD of the event is then 
compared with the predefined constant GIT (see Section 4) and normal delivery operations are 
performed until the former value is lower than the latter. When the GTD value exceeds the GIT, the GSS 
turns on a stabilization mechanism which exploits the obsolescence notion to drop useless events so as 
to bring the GTD back within the GIT. Moreover, messages are sent to the connected GSSs in order to 
make them aware of the witnessed lack of responsiveness. These GSSs can thus avoid to forward 
obsolete and missing events to the non interactive GSS thus helping in restoring faster  

 

4 RED/RIO Techniques 

Random Early Detection (RED) algorithm is an active congestion avoidance mechanism enforced at 
routers [68]. Traditional queue management employs simple “tail drop” schemes that drop packets only 
when the queue overflows. Conversely, RED algorithm randomly performs early packet discards to 
notify sources about the incipient congestion. In this way, a single loss experienced by a sender 
smoothly decreases the entire congestion level of the network and keeps the average queue size at a low 
level. The rationale lies in the gained capability of better accommodating occasional bursts of packets 
and avoiding situations in which several connections simultaneously decrease their sending rate. 
Summarizing, RED avoids severe congestion and maintains a stable traffic level in place of dealing with 
congestion after already occurred. 

Every time the router receives a packet, the RED algorithm calculates the new average queue size 
and the probability to discard the packet. The computing method utilizes a uniform random variable, 
which has been proven to be more adequate to this aim than a geometric random variable. In fact, a 
uniformly distributed discarding function avoids global synchronization thus attaining an unwavering 
course of transmissions. The dropping probability is bounded by two thresholds of the queue size: min 
and max. Within this interval, the probability to drop a packet increases from 0 to a maximum discarding 
probability (Pmax). Under min, no packet is dropped and beyond max all packets are discarded. 

RIO (RED with In and Out) scheme is an enhanced version of RED mechanism able to discriminate 
between two different classes of traffic, non-prioritized (Out) and prioritized (In), and calculates two 
distinct dropping probabilities [70]. The two dropping functions work independently and are featured 
with specific boundaries and slopes. They hence permit to discard packets utilizing different 
probabilities and congestion levels depending on the packets’ traffic class. 
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5 Enhancing Interactivity with RED/RIO Techniques 

Taking inspiration from the RED approach in case of incipient congestion in best effort networks, we 
have recently enhanced the aforementioned Interactivity Restoring mechanism with the Interactivity-
Loss Avoidance (ILA) approach [62]. The main innovation is the capability to preempt responsiveness 
disruption instead of restoring it after having already lost playability. To this aim, the system discards 
some packets when the responsiveness among GSSs descends significantly. In practice, ILA replaces the 
basic binary dropping mechanism for obsolete events (OFF when interactivity is present and ON when 
interactivity is lost) with a continuously-working proactive mechanism that drops obsolete events with a 
probability that depends on the level of responsiveness of the system. 

Even if, similarly to RED, ILA utilizes a uniformly distributed dropping function, the parameter 
taken under control is the average GTD instead of the average queue size. Upon each packet arrival, in 
fact, each GSS determines the GTD of the arrived event, namely sample_GTD, and feeds a low pass 
filter to compute the updated average GTD, namely avg_GTD. When avg_GTD exceeds a certain 
threshold, the GSS drops obsolete events with a certain probability p, without processing them. If 
avg_GTD exceeds a subsequent limit, p is set equal to 1, and all obsolete events waiting for being 
processed are discarded. 

Obviously, if the low interactivity degree perceived by some GSSs is not affecting other GSSs, the 
latter can process and forward to their clients even those packets discarded by the formers. Indeed, since 
obsolete events are actions that can be considered non-critical for the game evolution, there is no 
unfairness generated by processing them only in some GSSs. On the other hand, not processing those 
events in highly interactive GSSs would represent an unjustified limitation, even if light, to the number 
of events visualized at some player’s side. For instance, an intermediate movement of a game character, 
when the final position is further ahead and no shooting nor other hazards could harm it, could receive 
different treatments: it can be dropped by some GSSs to preserve interactivity, or can as well be 
processed by other GSSs for the sake of a complete and fluent game visualization on the screens of their 
clients without relying on imprecise and computationally expensive interpolations. 

To ensure an adequate playability degree even to the class of fast and furious games we have then 
further enhanced our ILA scheme. For this class of games, in fact, the core attractiveness for players 
emerges from a feverish, sometimes even chaotic, action sequence of user’s actions. We have hence 
enhanced our ILA scheme with features derived from the integration of a RIO-like algorithm in place of 
the RED-like one [69]. The additional dropping probability provides the possibility to discard even non-
obsolete game events when dropping all the obsolete ones is not yet sufficient to maintain an adequate 
level of responsiveness. The two discarding functions are featured with specific parameters; they work 
independently one from the other and take action in sequence with the increasing of the game event 
GTDs at the GSSs. 

Dropping non-obsolete events can be done without consequences only for a category of games where 
little inconsistencies are not highly deleterious for the aim of the game and for player’s fun (e.g., fast-
paced games). Even in this case, if the number of dropped non-obsolete events becomes significant, a 
consistency restoring mechanism may be required to re-establish a coherent game state view among all 
GSSs [71]. For the sake of clarity, from here on we are going to call ILA-RED the ILA version that 
discards only obsolete events, while ILA-RIO represents the version with two discarding functions. 
When we want to refer to both the algorithm with no distinction we just use the word ILA. 

In Fig. 6 we depict the two discarding functions of ILA-RIO. Three parameters (and three phases) 
characterize each of the twin algorithms: mino, maxo and Pmaxo, for obsolete events, and minv, maxv and 
Pmaxv for valid (i.e., non obsolete) ones. In the graph, the y-axis represents the dropping probability 
corresponding to the avg_GTD indicated by the x-axis. Focusing on obsolete events, for values of 
avg_GTD in [0, mino) the mechanism performs normal operations, with no packet drops, while in [mino, 
maxo) obsolete packets are discarded with a computed probability, and finally in [maxo, ∞) all obsolete 
packets are thrown away. The intervals [0, minv), [minv, maxv), and [maxv, ∞) define the corresponding 
phases for valid events. The dropping probabilities are computed as a function of avg_GTD and of 
Pmaxo or Pmaxv, respectively. Persistent situations of low interactivity degree result in high avg_GTD 
and hence in high discarding probabilities. High dropping probability values (for Pmaxo or Pmaxv) will 
make the GSS discarding events without processing nor forwarding them, thus helping in restoring an 
adequate level of time interaction between servers. 
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Figure 6.  Discarding probability functions for ILA-RIO. 

 

 

0]  for each event_packet arrival { 

1]    determine the sample_GTD 

2]    calculate the new average delay avg_GTD 

3]    if (mino ≤ avg_GTD < maxo) then 

4]      calculate the probability Po of dropping an obsolete event 

5]      determine if ONE obsolete event has to be discarded 

6]    else if (maxo ≤ avg_GTD) then 

7]      drop ALL obsolete events 

8]      if (minv ≤ avg_GTD < maxv) then 

9]        calculate the probability Pv of dropping a valid event  

10]      determine if ONE valid event has to be discarded 

11]     else if (maxv ≤ avg_GTD) then 

12]       drop ALL valid events 

13]     endif 

14]   endif 

15] endfor 

 

Figure 7.  ILA-RIO algorithm. 
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Since valid events are strictly linked to consistency, the possibility to discard them should be taken 
into account only as last resort, in case of heavy disruption of responsiveness. For this reason, ILA-RIO 
starts dropping obsolete packets much earlier than valid ones. In addition, the algorithm throws away all 
the obsolete packets before considering any dropping probability on valid events; simply stated: maxo is 
smaller than minv. Finally, diverse aggressiveness in dropping packets, depending on their class, can be 
decided by adjusting the values of Pmaxo and Pmaxv. 

In essence, the algorithm repeats a block of operations (listed in Fig. 7) each time a new event arrives 
at the considered GSS. In particular, the GTD of the game event is calculated (sample_GTD, line 1) as 
the difference between the generation time at the sending GSS and its delivery time to the considered 
receiving GSS. The scheme feeds a low pass filter with the just calculated sample_GTD in order to 
update the average of the GTDs (avg_GTD, line 2): 

 
 avg_GTD = avg_GTD + w*(sample_GTD - avg_GTD). (6) 

In (6), w is a sensitivity coefficient, with values comprised in (0, 1], that determines how closely the 
trajectory of the average follows the movements of the samples. Higher values of w correspond to 
heavier relative weights of the last sample in the current average. 

While avg_GTD lies below mino, the process stays in phase 0 and no particular operation is 
performed. Conversely, when avg_GTD is comprised between mino and maxo, then the scheme is in 
phase 1 and lines 4-5 are executed. Basically, a dropping probability Po is computed as a fraction of 
Pmaxo in order to establish whether an obsolete event must be discarded; this fraction linearly 
corresponds to the position of avg_GTD in the interval [mino, maxo). 
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Analogously, when avg_GTD is comprised between minv and maxv, then the scheme lies in phase 3 
and lines 9-10 are executed. The probability Pv to discard a valid event is then calculated as a fraction of 
Pmaxv depending on the position of avg_GTD in the interval [minv, maxv). 
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If the algorithm stays in phase 1 or 3 the corresponding dropping probability increases until an event 
is discarded. In particular, two couple of constants, L1 and L2 for Po, H1 and H2 for Pv, are defined as 
shown in (9), (10), (11), and (12), respectively. 
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Utilizing these constants to rewrite (7) and (8), we obtain (13) and (14) which are employed 
respectively in line (4) and (9) of the ILA-RIO algorithm. 

 
 L2avg_GTDL1P −×=o

 (13) 

 
 H2avg_GTDH1P −×=v

 (14) 
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So far, the two probability functions result in geometric random variable distributions of the drops, 
while it would be desirable to discard events at fairly regular intervals. This can be obtained by applying 
an incrementing counter to augment, at each iteration, the weight of the considered discarding 
probability; as result, we generate a uniform distribution of the dropping dispersion, which makes the 
ILA scheme more resilient to temporary bursty periods [68]. To this aim, when the algorithm is in phase 
1 or 3, Po or Pv is compared with a number which is randomly generated within the interval [0, 1). If we 
call Ro and Rv, the two random numbers, we can see from (15) and (16) how they are used to take into 
account the number of iterations elapsed since the last drop to increment the discarding probability. 
Basically, in phase 1 an obsolete event is dropped (line 5) if 

 

 )PR(counter ooo ≥ . (15) 

Analogously, in phase 3 a valid event is dropped (line 10) if 
 

 )PR(counter vvv ≥ . (16) 

The variables countero and Ro are reinitialized to respectively 0 and a new random value each time 
the algorithm enters phase 1, or some obsolete packet is discarded. Analogously, variables counterv, and 
Rv are reinitialized each time the algorithm drops a valid packet. Conversely, if the scheme is 
respectively in phase 1 or 3, the two dropping probabilities, Po and Pv, are recomputed every new event 
arrival. Moreover, countero and counterv are incremented by 1 every time ILA-RIO stays in phase 1 or 
phase 3, respectively, without dropping any game event. 

Considering the remaining of the algorithm, if avg_GTD grows beyond maxo, the scheme enters in 
phase 2 and all obsolete packets have to be discarded in the attempt of re-establishing interactivity (line 
7). Moreover if the value of avg_GTD surpasses even maxv, all the events, with no distinction between 
obsolete or valid, are dropped (line 12). At this point, in fact, the extremely jeopardized responsiveness 
conditions suggest resetting and reinitializing the game session. 

Finally, it is easy to notice that ILA-RED can be considered a particular instance of ILA-RIO. In 
fact, if we set to 0 the probability of dropping a non obsolete event, or to ∞ the GTD value at which it 
takes action, then the two schemes behave identically. Simply stated, a chart representing ILA-RED 
behavior, equivalent to that one presented in Fig. 6, would contain just phase 0, phase 1 and phase 2, 
respectively contained in the intervals [0, mino), [mino, maxo) and [maxo, ∞). Analogously, the algorithm 
for ILA-RED can be obtained by simply eliminating lines 8-13 from Fig. 7. 
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Figure 8.  The adopted configuration. 
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TABLE I.  SENDING GSSS INVOLVED IN THE SIMULATIONS. 

Number of 

Sending GSSs 
Corresponding GSSs employed 

4  GSS1, GSS2, GSS3 and GSS4 

5 GSS1, GSS2, GSS3, GSS4 and GSS5 

6 GSS1, GSS2, GSS3 GSS4, GSS5 and GSS6  

7 GSS1, GSS2, GSS3 GSS4, GSS5, GSS6 and GSS7 

 

6 Simulation Assessment  

To evaluate our event processing strategy, we have created a mathematical model simulating a general 
Mirrored Game Server architecture comprising various GSSs connected via diverse links over the 
Internet. As said, we assume that the events generated in the system can be totally ordered by exploiting 
a global notion of time.  

Different numbers of GSSs have been simulated in our scenario. In order to permit a deeper analysis 
of the dynamics related to game event traffic and processing, simulations have focused on the packet 
receiving aspect of a single GSS, while the other GSSs are involved as game event transmitters. Fig. 8 
depicts the adopted configuration of the network and shows the values assigned to the simulation 
parameters. GSS0 is the receiving GSS and the others are the sending GSSs. We carried out several 
simulation experiments (30) with a number of sending servers varying in the range from four to seven. 
The involved GSSs, for each different configuration, are listed in Table I.  

We have been inspired by the scientific literature on MMOGs to set the values of the network 
latencies among the GSSs [72]. Specifically, GTDs follow a lognormal distribution having the average 
and standard deviation values as shown in Fig. 8. If each client connects to the “nearest” GSS to bound 
the impact of the client-server latency on the total delay experienced by the game events, we can assume 
to have the client-server latency portion already comprised in the network latency values mentioned 
above. Finally, the event generation rate at each GSS and the average event size (200 Bytes) have been 
chosen as inspired by the games literature and varies from a normal traffic situation to an intensely 
loaded one [73].  

We define as Average Inter-Departure Time (AIDT) the time that elapses, in average, between two 
subsequent game packet departures at a single server. The AIDT values have been used to generate the 
lognormal distribution of the event departures from each involved server. Various simulations have been 
run having the AIDT parameter set to 30ms, 45ms or 60ms. The standard deviation was always equal to 
10ms. The chosen AIDT values produce an amount of events as those typically generated by from 5 to 
tens of players for each given GSS. Based on these values, we have generated three diverse trace files 
containing 1000 events for each GSS. Each trace file also included the information needed to identify 
(correlated and) obsolete events. Where not differently stated, we have set to 90% the probability that an 
event makes obsolete preceding ones. This represents a realistic scenario for a vast plethora of possible 
games where critical (correlated) game events that cannot become obsolete have to be considered only 
sporadically, such as during collisions or shots, and may represent even less than the 10% of the whole 
set of game events.  

As a confirmation of this claim, an extensive study of players’ behavior on Quake 3 is presented in 
[76]. In that paper, a measure of the average number of kill actions per minute as a function of the 
median ping time between client and server is reported. Using those measures we can provide a 
numerical explanation that demonstrates how 10% of correlated events and 90% of obsolescence 
probability may represent a realistic scenario for interactive MMOGs [81].  

Specifically, in [76] it is shown that when the 80% of players is located within 180ms of range from 
the server, the average of kill actions per minute varies in the interval from 1.60 to 3.25. Considering the 
median of this interval (2.425) we obtain 0.04 kill events per second. With an AIDT of 60ms at client 
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side [73, 77], 16.67 game events are generated every second. Therefore, the resulting percentage of kill 
events over the whole set of game actions amounts to just 0.24%. Pessimistically assuming that a kill 
event can be issued only after an average number of 40 correlated actions (e.g., various shots, 
movements of the character into the location where it will be shot or out of the position where it would 
have been shot) we get 9.6% of critical events. Therefore, 10% of correlated events and 90% of 
obsolescence probability represent a realistic configuration for online games simulations.  

Since real commercial games employ UDP as the transport protocol, we have adopted it too for our 
simulations [75]. Moreover, to circumvent the problems deriving from UDP’s unreliability, we have 
implemented an application level retransmission scheme based on NACKs (Negative 
ACKnowledgments).  

Each experiment has been replicated to compare the outcomes of three different synchronization 
schemes: our proposed ILA-RED scheme, the ON-OFF mechanism (Interactivity Restoring as reviewed 
in Section 3.3), the traditional OFF approach (having no discrimination of obsolete packets and no event 
discarding nor other algorithms to restore interactivity). We have then also run some preliminary 
experiments involving ILA-RIO. 

As to the algorithm, we have chosen to set w=1/8 in (6) in the attempt to make the algorithm able to 
filter out sporadic high GTDs, while being able to promptly react to a persistent decline of 
responsiveness. In the ILA-RED case, we have set parameters as follows: mino = 50ms, maxo = 150ms 
(equivalent to the GIT for the ON-OFF scheme) and Pmaxo = 0.2. Parameters in ILA-RIO were chosen 
as mino = 50ms, maxo = 100ms, Pmaxo = 0.2, minv = 150 ms (equivalent to the GIT for the ON-OFF 
scheme), maxv = 225 ms and Pmaxv = 0.3. 

Choosing appropriate values for the above cited parameters is an important part of implementing 
ILA algorithm. The various phases, in fact, should take place in precise situations experienced by the 
game platform. In particular, phase 1 have to be activated when the delay between the generation of a 
player’s action and its execution on the screens provides the first perceivable symptoms of 
responsiveness degradation. Since phase 2 corresponds to dropping all the obsolete events, it should take 
action when the lag becomes annoying and low-performance determining for players. In case of fast 
paced games, the parameter of these two phases should be chosen in a further conservative way, in order 
to anticipate the triggering times for the discarding functions. Phase 3 represents the last resort to restore 
responsiveness in the system, whilst still having latencies that can be temporary tolerated by players. 
Finally, since entering in phase 4 amounts to reinitialize the game session, its entering threshold have to 
be chosen as the higher latency value at which users still can compensate the poor playing conditions by 
anticipating their moves. 

The various thresholds should be hence set differently depending on the played game or at list on the 
belonging game class (e.g. adventures, shoot/beat’em up, car racing, etc.). However, as rationale for our 
chosen values, scientific literature declares that a delay of 50ms is not perceived at all by players while 
at 150ms (i.e., our GIT parameters) player’s performance results disturbed by the lag. Finally, 225ms of 
delay could represent an upper bound for playable interaction [76, 77, 78, 79]. These limits hold for 
games like vehicle racing, first person shooters and fast shoot/beat’em-up, but can be augmented in case 
of strategic games (e.g. Starcraft, Age of Empire, etc.) [80].  

The interactivity benefits attained by obsolete event discarding schemes can be analyzed in terms of 
delays experienced by game events before being processed. Therefore, we have compared the 
responsiveness of all the three schemes considered (i.e. ILA-RED, ON-OFF, OFF), exploiting the 
following metrics: i) the number of events having a GTD larger than the GIT; ii) the cumulative function 
of the GTD values; iii) the average of the GTD values, their standard deviation, the minimum and 
maximum values. 

The fluency of the game evolution on players’ screens passes through having just a very limited 
number of discarded game events. We have hence compared the two obsolete event discarding schemes 
(i.e. ILA-RED, ON-OFF), measuring: i) the number of obsolete events dropped; ii) the number of times 
all the pending obsolete events have to be discarded; iii) the average number of subsequent game events 
with GTD over GIT; iv) the total number of bursts of game events with GTD over GIT. 

In order to deeply understand the benefits attainable by employing a proactive mechanism as ILA-
RED, under different levels of stress of the game platform, we have performed a sensitivity analysis 
depending on the considered AIDT parameter. In particular, we have compared ILA-RED and ON-OFF, 
under different values of AIDT, by measuring: i) the number of obsolete events dropped; ii) the average 
of the GTD values, their standard deviation, and the minimum and maximum values.  
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Finally, some preliminary results about ILA-RIO have been obtained by comparing it against ON-
OFF and OFF mechanisms under different conditions. Specifically, considering different probabilities of 
obsolescence among game events, we have measured: i) the number of events having a GTD larger than 
the GIT; ii) the number of events dropped, both obsolete and valid ones. 

 

7 Current Results 

We present here the most relevant results among those we obtained.  
In particular we compare the different schemes by showing the outcomes of simulations having the 

AIDT parameter set to 30ms, 45ms, and 60ms, respectively. Having a low AIDT corresponds to a higher 
frequency in game event transmissions at each server and therefore in a higher congestion and 
computational workload.  

7.1 Obsolescence-Based Scheme vs Traditional One 

As predicted, the two obsolescence-based discarding mechanisms outperform the traditional one, 
especially with high traffic load at the servers. In fact, Fig. 9 compares, for ILA-RED, ON-OFF and 
OFF schemes, the percentage of events arrived at GSS0 with a GTD value larger than the GIT. This also 
represents the percentage of events that cannot be considered interactive.  

The cumulative function of the GTDs (Fig. 10) represents another tool proficient in evaluating the 
efficacy of ILA-RED and ON-OFF schemes. Indeed, the more the line is concentrated in the left side of 
the chart, the higher is the percentage of events having a GTD lower than a certain threshold. In 
particular, Fig. 10 depicts the cumulative function of the GTDs in a scenario considering seven sending 
GSSs, each one sending events to the receiving GSS0 with an AIDT of 30ms. In this configuration, ILA-
RED has 93.86% of events with a GTD less or equal than the GIT of 150ms, ON-OFF hits the 89.40%, 
and OFF reaches only the 49.94%. 

These results are coherent with the values of the average and the standard deviation of the GTDs 
considering all the events transmitted. Table II shows sensible reductions in the values of both these 
metrics when ILA-RED or ON-OFF are implemented. Moreover, the two obsolescence-based discarding 
schemes result more resilient to an increased event generation activity within our mirrored game server 
architecture. This is evident if the case of seven sending GSSs is compared with the one employing only 
four sending GSSs. In this case, the average of the GTDs decreases from 19.72% (OFF) to 12.07% (ON-
OFF) and 11.71% (ILA-RED). 
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Figure 9.  Percentage of events with GTD over 

GIT; AIDT = 30ms. 
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Figure 10.  Cumulative function of the GTDs in a 

scenario with 7 GSSs; AIDT = 30ms. 
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TABLE II.  MAXIMUM, MINIMUM, AVERAGE AND STANDARD DEVIATION OF THE GTDS (MS); AIDT = 30MS. 

4 GSSs 5 GSSs 6 GSSs 7 GSSs 

 
OFF 

ON-

OFF 

ILA-

RED 
OFF 

ON-

OFF 

ILA-

RED 
OFF 

ON-

OFF 

ILA-

RED 
OFF 

ON-

OFF 

ILA-

RED 

MAX 324 324 325 325 324 277 318 319 278 345 345 300 

MIN 88 88 86 88 88 88 87 88 88 93 93 93 

AVG 142 116 111 153 120 115 148 119 114 170 130 124 

ST.DEV 52 30 20 53 32 19 50 28 18 56 32 19 

 

7.2 ILA-RED vs ON-OFF: a Comparative Evaluation  

The proactive mechanism implemented by ILA-RED does not just slightly improve the already good 
performance achieved by the ON-OFF scheme. Indeed, Table II also shows that the standard deviation 
of the GTDs attained employing ILA-RED is always sensibly smaller than the one obtained utilizing 
ON-OFF.  The game actions flow more homogeneously on the screen thus providing a more pleasant 
game experience for the user.  

Not only obtains ILA-RED a slightly better interaction level with respect to ON-OFF, but the total 
number of discarded events to attain this positive result is definitively lower. Again, with the AIDT 
parameter equal to 30ms at each GSS, we can analyze the behavior of the compared synchronization 
schemes in the challenging situation of a stressed game platform. To this aim, Fig. 11 shows that the 
results in Fig. 9 and Table II are obtained by ILA-RED at the cost of circa only 40% of the obsolete 
events dropped by ON-OFF. In essence, by anticipating some event drops, ILA-RED preempts the loss 
of an acceptable interactivity degree and smoothes the experienced GTDs.  

Discarding too many obsolete events can result in sudden jumps and temporary interruptions of the 
images/video flow on the player’s screen. Even interpolation experiences an increasing number of errors 
when gaps are too wide and the consequent jerky rendering could be very annoying for customers. 
Drops should hence be avoided whenever possible. Since ILA-RED needs less pervasive interventions 
to be effective, we can say that even if both schemes ensure responsiveness and consistency, ILA-RED 
outperforms ON-OFF and founds an efficient tradeoff between the percentage of obsolete events to be 
discarded and a fluent visual progression of the game. 
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Figure 11.  Percentage of discarded events;  

AIDT = 30ms. 
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Figure 12.  # of activations of phase ON and phase 

2 for ON-OFF and ILA respectively; AIDT = 30ms. 
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Figure 13.  Average size of non-interactive bursts; AIDT = 30ms. 

 

 

Figure 14.  Total Number of bursts of non-interactive events; AIDT = 30ms.  
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Figure 15.  Percentage of discarded events;  

AIDT = 45ms. 
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Figure 16.  Percentage of discarded events; 

 AIDT = 60ms. 
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The positive effects gained by the probabilistic preemptive discarding mechanism are further 
highlighted by Fig. 12. The columns in the picture correspond to the number of times the employed 
scheme resorts to dropping obsolete events to restore the disrupted responsiveness. As it is evident from 
the great difference between the columns, the preventive probabilistic drop of some game events in 
phase 1 strongly reduces the number of times ILA-RED needs to discard all the obsolete packets.  

Another important metric to better evaluate synchronization schemes is concerned with the 
distribution of the event drops throughout the game. Fig. 13 and Fig. 14 contribute to provide further 
insight along this direction. In particular, Fig. 13 shows the average number of consecutive game events 
with an instantaneous GTD value larger than GIT (average size of non-interactive bursts). Fig. 14, 
instead, shows the total number of non-interactive bursts obtained during our simulations. As it is 
evident from these two charts, while ILA-RED and ON-OFF schemes have an almost equal average size 
of bursts of non-interactive events, the former allows only a reduced number of these bursts, thus 
confirming the benefits announced by Fig. 11. 

7.3 ILA-RED: Sensitivity Analysis 

It is evident from the previous sections that ILA-RED results more efficient than ON-OFF scheme in 
ensuring responsiveness whilst minimizing the number of drops. We deem that this advantage becomes 
more evident when the game event traffic is more intense, while the two synchronization mechanisms 
behave the same when plunged into a low stress environment. Simply stated, our hypothesis is that the 
larger the AIDT value, the more ILA-RED and ON-OFF become equivalent in terms of the number of 
dropped events required to maintain a proper interactivity degree. We intend to find the breakeven point 
in the performance curves between ILA-RED and ON-OFF. For this purpose, we have run additional 
simulations with the lognormal distribution of the departing game packets from each server generated 
with the AIDT value equal to: respectively, 45ms and 60ms. 

With this greater AIDT value both the links and the GSSs result less congested. As a result, the 
difference in the number of discarded game events between ILA-RED and ON-OFF progressively 
diminishes (see Fig. 15 and Fig. 16). With AIDT = 60ms, the number of discarded events is almost the 
same for the two synchronization schemes. At this point, however, also the large advantage against the 
OFF scheme has been sensibly reduced (see Fig. 17 and Fig. 18); despite of this, better average and 
standard deviation of the GTDs still persist (see Table III and Table IV). 

This phenomenon has two clear explanations. First, having lower game event generation rates 
decreases both the latencies in the network and the queuing time at the receiving GSS, thus naturally 
improving the interactivity degree yet without any external intervention. Second, we have to remind that 
both ILA-RED and ON-OFF schemes rely on discarding obsolete events when the interactivity level 
decreases, without wasting time in processing them. Consequently, to be effective, these schemes 
require to have droppable obsolete events queued at the receiving GSS while the server is impacted by 
processing delays; this engulfment of events waiting for being processed is more likely to happen with 
lower AIDT values. 

 
 

TABLE III.  MAXIMUM, MINIMUM, AVERAGE AND STANDARD DEVIATION OF THE GTDS (MS); AIDT = 45MS. 

4 GSSs 5 GSSs 6 GSSs 7 GSSs  

OFF ON-

OFF 

ILA-

RED 

OFF ON-

OFF 

ILA-

RED 

OFF ON-

OFF 

ILA-

RED 

OFF ON-

OFF 

ILA-

RED 

MAX 331 331 331 331 332 331 315 315 281 338 331 332 

MIN 87 87 87 87 87 87 89 89 89 91 91 91 

AVG 139 120 120 148 128 125 145 128 125 164 139 135 

ST.DEV 45 24 22 46 27 22 43 27 20 49 27 21 
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TABLE IV.  MAXIMUM, MINIMUM, AVERAGE AND STANDARD DEVIATION OF THE GTDS (MS); AIDT = 60MS. 

4 GSSs 5 GSSs 6 GSSs 7 GSSs  

OFF ON-

OFF 

ILA-

RED 

OFF ON-

OFF 

ILA-

RED 

OFF ON-

OFF 

ILA-

RED 

OFF ON-

OFF 

ILA-

RED 

MAX 328 326 326 328 325 325 319 286 286 340 328 325 

MIN 88 88 88 88 88 88 87 87 86 92 91 90 

AVG 144 133 133 154 142 142 153 142 142 169 155 154 

ST.DEV 42 29 29 41 29 28 40 29 29 42 27 27 
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Figure 17.  Percentage of events with GTD over GIT; 

AIDT = 45ms 
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Figure 18.  Percentage of events with GTD over 

GIT; AIDT = 60ms. 

 

7.4 ILA-RIO: Some Preliminary Results 

We present some preliminary results related to the use of the ILA-RIO scheme to ensure high 
responsiveness even with fast paced games. In particular, Fig. 19 and Fig. 20 refer to specific event trace 
configurations, respectively utilizing different probabilities of obsolescence among events. 

As observable (Fig. 19-a, Fig. 20-a), in both configurations the obsolescence-based schemes 
outperform again the traditional OFF method in terms of GTDs. Moreover, ILA-RIO further diminishes 
the number of events that are featured with a GTD larger than the predetermined GIT w.r.t. ON-OFF. 
The game evolution fluency results improved as well since ILA-RIO greatly reduces the amount of 
dropped events required (Fig. 20-b). This difference disappears in Fig. 19-b; having a smaller probability 
of obsolescence (50%), in fact, reduces the number of available obsolescent packet that could, in case, 
be discarded. Thereby, both for ILA-RIO and for ON-OFF, even discarding all the obsolete queued 
events could still not be sufficient to promptly restore the required high interactivity degree with the 
considered intense traffic load. Indeed, this is exactly the case when dropping even valid events may 
become acceptable for fast paced games. 

Finally, we evaluated the amount of valid game events dropped by our ILA-RIO approach. Table V 
reports the percentage of obsolete and valid events that are discarded, depending on the event trace. As 
expected, the amount of dropped valid game events diminishes as the percentage of obsolete ones 
becomes greater. This tendency is due to the fact that if an adequate number of obsolete events are 
available during the events exchange activity, then our scheme can exploit the drop of all these 
(obsolete) events to restore responsiveness when entering phase 2, with no need of resorting to valid 
ones.  
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Figure 19.  Probability of obsolescence = 50%;  

(a) Event percentage having GTD > GIT; (b) Percentage of discarded events. 
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Prob. of Obsolescence = 90%
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Figure 20.  Probability of obsolescence = 90%;  

(a) Event percentage having GTD > GIT; (b) Percentage of discarded events. 

 

TABLE V.  PERCENTAGE OF OBSOLETE AND VALID DISCARDED EVENTS IN ILA-RIO. 

Obsolescence Prob. 50% 90% 

Obsolete 9,46% 13,64% 

Valid 0,16% 0% 
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Chapter 4 

To Seek the Fairness by Way of the 

Interactivity 

 

Christopher Columbus’s aim, when he sailed for finding Catai (ancient China) lands across the Atlantic 
Ocean, is perfectly described by the famous claim credited to him: “Buscar el Levante por el Poniente”, 
to seek the East by way of the West. We humbly take inspiration from his genius to synthesize our work 
in the title of this Chapter. The analogy is represented by the fact that the scheme we propose facilitates 
fairness by aiming at increasing the interactivity degree in MMOGs. 

We demonstrate how it is possible to take advantage of a reduced transmission time to magnify the 
efficiency of a local lag-type algorithm in ensuring fairness. This represents a very important result since 
it contradicts the general belief that either interactivity or fairness has to be sacrificed to achieve the 
other. 

 

1 Exploiting Local Lag Technique 

As shortly discussed in Section 2.3 and Section 2.4, Local Lag and other similar algorithms have been 
proposed to ensure fairness (and consistency) among players in MMOGs [54, 78, 94, 104, 105]. The 
idea behind this kind of approach amounts to introducing artificial delays in the display of both 
generated and received game events. These delays are appropriately chosen for each client and depend 
on their subjective client-server latencies. The aim is that of having each game event simultaneously 
displayed, after a total amount of time since its creation, on all the players’ screens. 

Not only does this help in maintaining fairness and consistency, it could also augment the playability 
of the game. Up to a certain level of injected delay, in fact, players could be more comfortable with a 
higher but fixed delay than with smaller but variable ones [78]. In the former case, in fact, a player can 
adapt her/his actions and reaction times to consider also this fixed delay and achieve higher performance 
than in the latter situation. For instance, car race players will learn how to constantly anticipate the 
steering when in proximity of a curve; first person shooter players will learn how to aim a little bit ahead 
of their adversary’s position with respect to their moving direction; etc. 

Lag compensation can thus be proficiently employed to ameliorate the negative effects of latency on 
MMOGs. However, the amount of time used as a parameter for local lag generally corresponds to the 
longest transmission latency experienced by the most unlucky player of the game. In practice, this kind 
of approach increases game delays and may jeopardize interactivity as in some case the unlucky client 
may be connected very far away from its server and/or through a slow connection. 

Consequently, the efficiency and applicability of the local lag approach strongly depend on the 
network conditions and on the interactivity degree required by the game. Indeed, especially in the case 
of a highly interactive MMOG, servers should be optimally located to efficiently serve a large number of 
customers [76]. Yet, guaranteeing both interactivity and full fairness through local lag can sometimes be 
achieved only at the cost of impeding the access to some users whose connectivity is irremediably 
affected by large network delays.  
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A tradeoff relationship thus exists among scalability (especially in terms of geographical dispersion 
of the players), interactivity, and fairness. According to this, interactivity and fairness are traditionally 
seen as incompatible requirements in MMOGs. Conversely, we claim now that upholding interactivity 
may be useful also to the aim of ensuring fairness. To demonstrate this, we have developed a novel 
mechanism named Fairness and Interactivity Loss Avoidance (FILA) [164, 165]. Our scheme can be 
divided into two complementary sub-components. The first one exploits the semantics of the game to 
drop superseded events and speed up the delivery of game events as seen in Chapter 3. The second one 
takes advantage of this reduced transmission time to magnify the efficiency of a local lag-type algorithm 
in ensuring fairness without compromising interactivity. 

 

2 Achieving Fairness through Interactivity 

FILA can be thought of as comprised of two complementary parts. The first one, enforced among GSSs, 
takes substantial inspiration from the aforementioned ILA-RED scheme to speed up the delivery of 
“fresh” game events by dropping some events which have become obsolete. The second part takes 
advantage of this reduced transmission time to magnify the efficiency of a local lag-type of algorithm to 
ensure fairness. FILA utilizes (4) to determine the visualization time of a game event, thus providing 
fairness without compromising interactivity.  

To calculate the appropriate δ in (3), the OD should be determined for each player. For this reason, 
game events are marked at their creation with a generation timestamp and then sent to the destination: 
hence, they are orderable. Obviously, a global concept of time has to be maintained in the system. This 
can be achieved through a variety of solutions that enable the synchronization of GSSs’ physical clocks 
[67, 111], or by employing new technological synchronization devices such as GPS. Thanks to this, 
GSSs are able to monitor the ODs of their engaged players and make them available for the FILA 
algorithm.  

More in detail, the first part of FILA drops queued obsolete game events with a certain probability Pd 
when the average OD, namely avgOD, value increases putting at risk the interactivity of the system. The 
discarding probability Pd is directly proportional to avgOD and dependent on a constant Pmax. Instead, 
the value for avgOD, at iteration n, is computed through the low-pass filter showed in (17), where w is a 
parameter that determines how close the average follows the sample trend: 

 

 
).avgODsample(wavgODavgOD 1nn1nn −−

−×+=
 (17) 
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Figure 21.  Delay definitions. 
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More in detail, with FILA, all the game events are regularly processed and forwarded while avgOD 
is smaller than an alert threshold named tmin. When avgOD exceeds tmin, the GSSs drop obsolete 
events with probability Pd, with neither processing nor forwarding them. Finally, if avgOD exceeds the 
subsequent tmax (>tmin) threshold, then Pd is set equal to 1 and all obsolete events waiting for being 
processed are discarded.  

This stabilization mechanism succeeds is reducing ODi(e) by impacting on qi(e). In fact, the time 
spent in queue by a certain event is diminished by the spared processing time of preceding obsolete 
events which have been dropped with neither processing nor forwarding them. Moreover, since only 
obsolete events are discarded, FILA fully maintains consistency in the game evolution [62, 109]. 

To explain FILA more in detail we use the clarifying help of Fig. 21 which provides the graphical 
definitions for some terms utilized in our explanation: OD, GTD, and LHD (Last Hop Delay). 

First of all, it should be noticed that FILA performs its operations on the GSSs. This choice helps us 
in maintaining a simpler control of the exploited game platform. Under that circumstance, however, for 
each event e, GSSs can compute GTD(e) but not LHD(e). An estimation of LHD(e) is necessary in order 
to compute OD and utilize it in our algorithm. For this reason, each GSS continuously monitors the 
latencies to each of its engaged players and maintains a variable named λGSS. The value of this variable 
represents the maximum among the latencies from the considered GSS to each of its connected clients 
(this set of clients is named C_GSS) and is calculated as follows: 

 

 
}.LHD{max i

GSS_Ci
GSS

∈

=λ
 (18) 

However, we cannot let some irremediably delay-affected client to excessively impact on the 
calculations performed by our scheme. Utilizing, in FILA, the excessively high λGSS generated by some 
player connected very far away from the GSS, in fact, would result in very high sample (and avgOD) 
values with respect to GIT. In this case, FILA would increase the aggressiveness of its discarding 
function as perceived by all the players with no positive results: the “unlucky” player will still not be 
able to receive game events with delays below the interactivity threshold. For this reason, we need to 
consider a Delay Upper Bound (DUB) in order to limit the impact of “unlucky” players on its algorithm. 
To this aim, (19) provides the formula for a fundamental parameter utilized by FILA to handle the 
impact of LHD(e) on its algorithm: 

 

 
}.DUB,{min GSSλσ =

 (19) 
The usage of this parameter depends on the employed version of our scheme and is explained in 

Section 5. To determine DUB we rely on a heuristic that dynamically computes its value based on the 
general network condition during the game. Its formula is as follows: 

 
 }.GTD{maxGITDUB −=  (20) 

where max{GTD} represents the largest among the GTDs experienced over all the connections 
between each GSS and the players engaged by the other GSSs. 

To compute DUB, each GSS has hence to periodically determine the GTD that features in average 
the slowest of its connections with players engaged by the other servers. Then, this value has to be 
communicated back to all the other peers in order to allow a global knowledge of the worst GTD 
endured by each GSS. Finally, the highest among these maximum GTDs can be univocally determined 
by each of the GSSs and used to determine the global DUB in the system as shown in (20). 

The second part of FILA is simply in charge of equalizing the delay differences among players with 
a local lag-type scheme that appropriately computes the δ value shown in (3) so as to satisfy (4) 
whenever possible. We are going now to empirically demonstrate how the combination of phase one and 
two is effective in ensuring fairness and interactivity while allowing a scalable number of contemporary 
players. 

We compare the regular local lag (LL) mechanism against FILA. In particular, LL embodies the 
traditional local lag scheme with no discarding mechanism for obsolete events. Even in this case, 
however, as for all the other compared protocols, the algorithm is not allowed to introduce artificial 

delays if this would result in jeopardizing interactivity (i.e. 
)e(vt  cannot be set greater than 

)e(gt  + GIT).  
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Focusing on FILA, we have set tmax = GIT and tmin < tmax. Moreover, the estimation of the 
LHDi(e) is performed through (18) and (19) and utilized to calculate the new sample upon every new 
event arrival as follows: 

 

 .)e(GTD)e(sample σ+=  (21) 

 

3 Simulation Assessment 

It is well known that MMOG service providers should appropriately position their game servers in such 
a way that their target player market would be located within a circle having 150-180ms of latency 
diameter [76]. Following this rule and aimed at creating a configuration able to factually support a 
highly interactive MMOG, we have simulated a constellation of five GSSs deployed across U.S.A. by 
choosing optimal market locations.  

Clients are supposed to be distributed all over the North American continent and connected through 
various access technologies that provide them with different access delays. We have focused our 
attention on the event receiving aspect of a single GSS (GSS0), pretending that the other GSSs are 
sending events to it (without any loss of generality). 
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Figure 22.  Game servers deployment. 
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Inspired by literature [77], the GTD values were chosen based on a lognormal distribution whose 
approximate average was obtained by means of repeated runs of the ping application. More in detail, 
game events coming from clients connected to the sending GSSs (i.e. GSS1–GSS4) and traveling towards 
GSS0 experience average latencies as reported in Fig. 22, with a standard deviation of 10ms. Further, 

several scenarios were considered where the values of }LHD{max i
GSS_Ci∈

 were chosen for each GSS 

within the following set {25ms, 50ms, 75ms, 100ms, 125ms, 150ms}. This choice is justified by the 
consideration that clients should be located within a circle having a maximum latency diameter of 
150ms. We assumed to have 10 clients connected to each GSS, engaged in a fast-paced game, and 
generating a new action every 300ms in average. This results in a flow of game events having 30ms of 
inter-departing time. Finally, the average game event size (200 Bytes) was inspired by literature about 
games as well [17]. 

Focusing on the parameters in the FILA algorithm, we have set w = 1/8 for all the simulations. The 
alert threshold tmin was equal to GIT – 100ms. Moreover, the probability that an event makes obsolete 
preceding ones was set to 90%. This represents a realistic scenario for a vast plethora of possible games 
(e.g. adventure, strategic, vehicle race, flight simulator, etc.), where most of the events are just 
independent movements as seen in Section 3.6. 

Each experiment was identically replicated to compare the outcomes of FILA against the regular LL 
algorithm. In [104], Zander et al. demonstrated that there is a statistically significant difference between 
the mean kill rates of player groups which are affected from diverse client-server latencies. In essence, 
lower latencies results in higher mean kill rates and thus in unfairness. Coherently, we have chosen to 
evaluate as a performance parameter the percentage of events that were delivered by GSS0 to all of its 
players in time to be contemporary visualized before the GIT expiration. We are hence considering the 
achievement of per-event interactivity and fairness. 

 

4 Results 

In this Section, we demonstrate through results how FILA is able to ensure a higher interactivity and 
fairness degree if compared to the traditional LL scheme. Moreover, we provide a scalability evaluation 
of the two mechanisms showing how FILA improves its performance in situation with intense traffic and 
outperforms regular LL. 
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Figure 23.  Interactivity and fairness improvement (left) and dropped events (right) with GIT=150ms and 

AIDT=30ms. 

 



4   To Seek the Fairness by Way of the Interactivity 

UBLCS-2006-10 46

INTERACTIVE and FAIR EVENTS 

(b) GIT=200ms
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Figure 24.  Interactivity and fairness improvement (left) and dropped events (right) with GIT=200ms and 

AIDT=30ms. 
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Figure 25.  Interactivity and fairness improvement (left) and dropped events (right) with GIT=250ms and 

AIDT=30ms. 
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Figure 26.  Interactivity and fairness improvement (left) and dropped events (right) with GIT=300ms and 

AIDT=30ms. 
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4.1 Interactivity and Fairness 

Fig. 23, Fig. 24, Fig. 25, and Fig. 26 show, respectively, four different sets of experiments, obtained 
varying the GIT from 150ms to 300ms. Each set was comprised of six different experiments and each 
experiment consisted in the transmission of about 4000 game events which experienced, in the worst 
case, a maximal overall latency whose value is reported on the x-axis of each provided chart. The 
maximal overall latency represents the largest average latency experienced on the connection between 
any two players in the system. 

The leftmost graphs of Fig. 23, Fig. 24, Fig. 25 and Fig. 26 show the percentage of game events that 
GSS0 was able to deliver to all of its engaged players in time to be simultaneously delivered with an OL 
lower than GIT. It hence represents the amount of events which satisfied condition (2) and were thus 
fairly processed by all the clients. 

 
 

INTERACTIVE and FAIR EVENTS 

(a) GIT=150ms

0

20

40

60

80

100

90 115 140 165 190 215

Maximal Overall Latency (ms)

%
 I

n
te

ra
c
ti

v
e
 a

n
d

 F
a
ir

LL FILA

0

5

10

15

20

25

30

%
 D

ro
p

p
e
d

 E
v
e
n

ts

90 115 140 165 190 215

Maximal Overall Latency (ms)

FILA Drops - (a) GIT=150ms

 

Figure 27.  Interactivity and fairness improvement (left) and dropped events (right) with GIT=150ms and 

AIDT=20ms. 
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Figure 28.  Interactivity and fairness improvement (left) and dropped events (right) with GIT=200ms and 

AIDT=20ms. 
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As can be seen from these graphs, having a higher GIT improves the efficacy of both the evaluated 
schemes since larger local lags can be utilized. However, regular LL algorithm experiences a premature 
performance decrease when the maximal overall latency increases even if it is still far from the GIT. 
Instead, FILA ensures a good fairness degree for a larger set of overall latencies.  

Obviously, in those configurations where the maximal overall latency is close to (or surpasses) GIT, 
both schemes cannot overwhelm network conditions, thus achieving poor fairness (and interactivity). 
Even in this case, however, FILA behaves better than the regular LL algorithm.  

FILA pays these better results with the drops of some obsolete events. Specifically, the rightmost 
charts of Fig. 23, Fig. 24, Fig. 25, and Fig. 26 reveal the percentage of game events which were 
discarded by FILA. In all the considered cases, less than 20% of the game events were dropped and 
these events were exclusively obsolete ones. 

Results turn out to be even better if we focus only on those cases where the overall latency is not 
irremediably high with respect to GIT. Considering the configurations when the maximal overall latency 
is lower than GIT by 35ms or more, we find that FILA always guarantees more than 86% of fairly 
delivered game events with less than 15% of dropped events. 
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Figure 29.  Interactivity and fairness improvement (left) and dropped events (right) with GIT=250ms and 

AIDT=20ms. 
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Figure 30.  Interactivity and fairness improvement (left) and dropped events (right) with GIT=300ms and 

AIDT=20ms. 
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4.2 About Scalability 

In order to test the scalability of FILA and LL, we have decreased the AIDT to generate scenarios with a 
higher level of game traffic in the network. In particular, Fig. 27, Fig. 28, Fig. 29, and Fig. 30 refer to 
configurations with 20ms of AIDT, while Fig. 31, Fig. 32, Fig. 33 and Fig. 34 correspond to the cases 
where AIDT is equal to 10ms. Again, in each figure we present the outcomes for four different GIT 
values: 150ms, 200ms, 250ms, and 300ms, respectively. The leftmost charts show the percentage of 
game events that were fairly and interactively delivered to all the clients engaged by GSS0. Instead, the 
rightmost ones reveal the percentage of game events which were discarded by FILA. 

As one can expect, the higher the game traffic, the lower the interactivity and fairness degree 
provided by LL. On the contrary, not only is FILA able to manage higher traffic, but its performance 
actually improves when the AIDT decreases. This surprising result has a simple explanation. Higher 
rates in game event transmissions result in larger queues at GSSs; these queues contain packets that have 
not yet been processed. This represenst an insurmountable problem for LL since qi(e) increases for all 
clients putting at risk the performance of the system without having any countermeasures. With FILA, 
instead, a larger queue of game events at a certain GSS represents also a resource. In fact, obsolete game 
events in queue can be discarded, thus reducing the qi(e) that a subsequent event e will experience in its 
traveling towards the various clients i. 
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Figure 31.  Interactivity and fairness improvement (left) and dropped events (right) with GIT=150ms and 

AIDT=10ms. 
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Figure 32.  Interactivity and fairness improvement (left) and dropped events (right) with GIT=200ms and 

AIDT=10ms. 



4   To Seek the Fairness by Way of the Interactivity 

UBLCS-2006-10 50

As a proof for our rationale, we can notice that the number of obsolete game events dropped by 
FILA increases when decreasing the AIDT. This is caused by higher avgOD values due to the increased 
traffic, but is also possible thanks to the presence of more game events in queue that FILA can exploit to 
drop obsolete ones. 

Finally, analogously to the scenario with 30ms of AIDT, even when the AIDT is set equal to 20ms or 
10ms, the percentage of discarded game events remains still reasonably small. 
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Figure 33.  Interactivity and fairness improvement (left) and dropped events (right) with GIT=250ms and 

AIDT=10ms. 
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Figure 34.  Interactivity and fairness improvement (left) and dropped events (right) with GIT=300ms and 

AIDT=10ms. 
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Chapter 5 

Wireless Home Scenario 

 
The market is currently heading toward houses where all the devices (e.g., computers, televisions, 
phones, intelligent appliances, etc.) will be wirelessly connected to the home network and possibly 
controlled by a single hub. This convergence point might be represented by the media center which will 
expand its features becoming, within few years, the engine of the home network and control the whole 
home connectivity. 

In this context, take, for example, a mid-class American household where a family of four people 
lives: two teenage kids and the hardworking parents. Each family member presumably owns several 
networked personal portable devices such as PDAs, MP3 players, game consoles and digital cameras; all 
these being also connected to the home network.  

Based on the market trends, we consider that all those devices are wirelessly connected to a media 
center that controls the in-house media distribution and provides access to the Internet as well as to the 
cable television and companies providing external services (e.g., the alarm company).  

Moreover, we also assume that several family members will be accessing the household network at 
the same time according to their work or leisure needs. In particular, for the sake of our study, we 
consider the following family scenario:  

i) one teenager is watching a movie, streaming it from the media entertainment center;  

ii) the other one is playing with his latest MMOG against a crowd of buddies across the Internet;  

iii) the father is having a conversation through an IP based video-chat;  

iv) the mother is downloading the last U2 greatest hit compilation from the Apple iTunes© music 
store.  

In the above everyday life picture it is worth noticing that each of the aforementioned employed 
applications features different requirements in terms of network performance, as well as suffer from very 
specific problems all due to the best effort nature of the Internet transport protocols. 

These are as follows: 

• Video-Streaming. Streaming applications are affected by the jitter phenomenon while are 
resilient to some packet loss; a network designed mainly for video-streaming should minimize 
the jitter. Buffering techniques can be applied to minimize the impact of variable network 
conditions. 

• Video-Chat and Massive Multiplayer Online Games. Both this applications require a high 
degree of interactivity, they greatly suffer from delays and packet jitter while may tolerate some 
packet loss, as we have seen for the case of superseded events. 

• iTunes Music download. A music download activity is typically performed using TCP, hence 
this type of application is resilient to jitter and delays but decreases the sending rate in presence 
of losses: it hence does not tolerate any error losses (losses that do not depend from 
congestion). 
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1 Transmission Control Protocol 

The success of the Internet is based on several factors; among these, one of the most important is the 
ability to provide a reliable medium for information exchange and file downloading. In particular, traffic 
control functionalities for the most common applications (i.e., FTP, HTTP, SMTP, Telnet) are provided 
by the Transmission Control Protocol (TCP). TCP was initially designed to provide an end-to-end, 
connection-oriented, and reliable service in the ARPANET [138], and later, in the Internet. TCP 
addresses two major issues: reliability and congestion control [139]. To achieve the second goal, TCP 
adapts the sending rate to avoid network overflow or falling into service starvation. TCP congestion 
control has been studied by the research community for the last 25 years, leading to several TCP variants 
with and without the explicit intervention of the network layer (a survey can be found in [140]).  

The most popular version, TCP New Reno, implements a congestion control algorithm, known as the 
AIMD (Additive Increase, Multiplicative Decrease) algorithm. In this context, the sending window 
utilized by the sender represents the number of packets that the sender can send towards the destination 
without having yet received any acknowledgment about their delivery from the receiver. Indeed, for 
every packet received, the receiver sends back to the sender an acknowledgment (ack) that identifies the 
next packet expected and implying that all the precedent packets in the sequence where successfully 
delivered. Acks (and Time Outs [139]) are also used to determine packet losses and to communicate the 
advertised window back to the sender. The advertised window provides the sender with a limit to the 
maximum transmissible sending rate. The final sending window, in fact, is the minimum between the 
advertised window and a variable named congestion window. 

The very basic concept of the congestion control scheme can be summarized as follows:  

• The number of packets sent out without having yet received back their corresponding acks cannot 
be higher than the current sending window. 

• For each successfully delivered packet, a new one is sent. 

• When a whole congestion window of packets has been successfully delivered, the congestion 
window value is increased by 1. 

• When a packet loss is detected the TCP sender assumes congestion on the path to the receiver and 
decreases its congestion window by half (or to 1 if a Time Out occurred). 

This scheme has been developed following the end-to-end paradigm by which the two involved end 
nodes do not have any explicit information about the links connecting them. In essence, the Internet is 
seen as a black box whose contents remain unknown and all the intelligence is left at the edge. Sender 
and receiver are unaware of the available bandwidth on the links among them and of the possible 
presence of other flows along the same path. The sender has hence to continuously probe the channel to 
make use of bandwidth that might be available and to back off when congestion is detected. 

 

2 The IEEE 802.11 

As the availability of digital entertainment devices increases rapidly, the need for interconnecting 
them is felt as ever more urgent, as well as the necessity to extend the reach of entertainment centers to 
the wireless domain. In the today’s market, IEEE 802.11 based wireless LANs are de facto emerging as 
the candidate to lead the mobile revolution providing wireless connectivity and advanced functionalities 
in terms of flexibility, security and throughput to support entertainment applications ranging from 
networked games to in-house digital audio/video distribution and live conferencing etc. [141]. In this 
context, technical standards are currently being defined that address both the methods of wired/wireless 
interconnection and the means to guarantee a full interoperability between digital entertainment 
appliances. Yet not much work has been done in the direction of understanding how can the Internet 
native language (i.e. the TCP/IP protocol) take over this complex scenario for efficiently delivering 
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digital contents to entertainment devices, and which is the impact of diverse MAC layer settings over the 
Internet native transport protocols (e.g. TCP, UDP) during the distribution of in-house entertainment.  

Recalling its main characteristics, the 802.11 MAC layer protocol attempts to face the packet loss 
problem by implementing its own retransmission scheme [142]. In particular, lost packets are 
retransmitted after a certain period of time without having received any corresponding ack. Successive 
retransmissions for the same packet are repeated up to a maximum number of time, which is by default 
set to 4 in the standard IEEE 802.11, or until receiving a successful ack. A back off mechanism 
determines the retransmission timeouts. This scheme hides wireless error losses from the TCP’s 
congestion control mechanism, thus avoiding deleterious multiple reductions of the data sending 
window. On the other hand, local retransmissions affect packet delivery delay by increasing its 
variability and thereby affecting time-constrained applications such as audio or video-stream. 

We are aimed at studying several realistic wireless networking scenarios for entertainment over 
IEEE 802.11 networks. In particular, we are going to consider the IEEE 802.11g standard since its wide 
diffusion and its increased link capacity (54Mbps) with respect to IEEE 802.11b (11Mbps). In essence, 
among the MAC protocols currently in commerce, IEEE 802.11g represents the best candidate for being 
factually exploited in wireless homes to support multimedia applications. 

 

3 Queuing Delay 

As shown in (5), several delay components determine the final delivery time of each game events 
and a significant one is represented by queuing time. Queues are built up along the path from sender to 
receiver when the arriving rate of events at a certain node is superior to the serving rate featuring that 
node. For instance, there could be routers along the path that receives more packets per unit time than 
the transmitting rate available on the outgoing link on which those packets have to be forwarded. 
Another example is represented by Game servers that receive more game events per unit time than the 
rate at which they are capable of processing them. 

However, as recently demonstrated by measurements on a real OC48 link, the capacity of the 
Internet is generally larger than the aggregate bandwidth utilized by transiting flows [156]. Moreover, 
more and more providers are offering today guaranteed high speed connectivity to home customers 
[150, 151, 152, 153, 154, 155]. In essence, tools are offered to customers to verify that their connection 
is actually able to support as much traffic as the declared bandwidth. This implies that the bottleneck of 
the connection is generally located at the edge of the path connecting sender and receiver. 

Focusing on MMOG deployment, we can further support this assumption. In fact, revenues for 
MMOG providers come from the subscription payments of many satisfied customers. Therefore, every 
commercial MMOG is generally supported by adequate resources in terms of connectivity speed among, 
number and capability of their servers [97]. Moreover, we have just demonstrated in Section 3 and 
Section 4 how efficient synchronization policies among GSS can be put to good use to improve 
interactivity and fairness degree. 

However, even when the game network platform is able to bring game events to our house with 
delivery times within the GIT, still problems may arise in the last hop, which represents the bottleneck in 
terms of the available capacity for the connection. In fact, it might be the case when the Access Point 
(AP) receives packets at higher rates that it can forward them to destination. This can happen for several 
reasons as, for instance, the fact that the wireless medium allows the transmission of only one packet at a 
time and is not full-duplex as wired links.  

Moreover, interference, errors, fading, and mobility may cause packet losses which are handled by 
the MAC protocol through local retransmissions. These local retransmissions hide error losses to the 
TCP and are useful to increment the reliability of the connection. Without them, the TCP would 
misinterpret error losses as congestion evidences and reduce its sending rate decreasing its performance. 
On the other hand, retransmissions follows the well known back off mechanism by which an increasing 
amount of time is utilized to determine whether a packet has been lost and hence retransmit it. The 
802.11 MAC protocol performs up to seven retransmissions of short packets (i.e., RTS/CTS, acks) and 
four retransmissions of long packets (i.e., data packets) [157]. This means that following packets have to 
wait in queue until the preceding one or one of its retransmissions finally reaches the receiver and the 
corresponding ack is successfully sent back.  
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Finally, the same wireless connection might be shared by several devices and applications that 
increase the congestion level causing queuing. As it is well known, TCP connections have an aggressive 
behavior and continuously probe the channel for more bandwidth until queues are fully utilized and 
overflowed. In presence of persistent TCP connections it is hence very likely to happen that queues are 
steadily fully utilized, thus periodically slowing down the delivery time of each packet, and deteriorating 
the performance of time-sensitive applications such as MMOGs. 

At the same time large buffers helps TCP-based flows in keeping a high sending rate. This happens 
for several reasons but the most important ones are: i) the link successive to the buffer remains fully 
utilized for longer periods of time since there are (almost) always packets in queue, ready to be sent as 
soon as possible, and ii) traffic bursts can be more easily accommodated thus reducing packet losses and 
maintaining higher sending rates for longer periods of time. In essence, a tradeoff relationship exists 
among the per-packet delay and the total goodput achieved. The solution for this tradeoff depends on the 
queue size and on its utilization. 

As we demonstrate in Section 5.6.1, delay increments caused by TCP-based traffic could hit also 
tens of milliseconds, which represent a huge waste of time when trying to deliver game events within a 
GIT of 150ms. 

 

4 Proposed Solutions 

To solve the aforementioned problem we propose different possible solutions. In particular, we may 
divide them into two main classes depending on the correspondent networking layer where they are 
implemented: transport layer solutions and MAC layer solutions. 

The former mainly regards exploiting some of the existing features of regular TCP or employing an 
alternative TCP version. The solutions belonging to this class does not necessary rely on the fact that the 
last link will be a wireless one. The latter, instead, involves modifications of the 802.11 MAC layer and 
thereby it is specifically intended for the wireless media [166]. 

For all the proposed solutions we investigate both their efficiency and factual deployability to expose 
pros and cons and conclude with a winner. 

4.1 IEEE 802.11 Parameters Setting 

The first proposal regards the utilization of more appropriate setting for parameters of the IEEE 802.11 
MAC protocol. Parameters such as maximum number of retransmissions and buffer size were, in fact, 
decided in a period when the TCP-based traffic was largely predominant in the Internet. The main 
concerns for designers were hence reliability and high throughputs.  

Nowadays, UDP-based real time applications are becoming more and more popular hence 
demanding for low delays in packet delivery. This kind of applications are resilient to some packet loss 
whilst cannot tolerate delays in packets delivery. For this reason, it is preferable to drop a packet than to 
waist time in retransmissions. 

This obviously contradicts the initial assumption that reliability is the most important issue over 
wireless links. Therefore, 802.11 parameters should be modified to make it more sensitive towards real-
time application needs. In particular, the number of local retransmissions could be diminished in order to 
find an efficient solution between reliability and low delays in packet delivery. 

In the same way, large buffer sizes at the AP help TCP connection to maintain large sending rate for 
longer periods and diminish the impact of burst traffic. On the other hand, to a larger buffer corresponds 
a longer queuing time experienced when the buffer is full, thus jeopardizing the performance achieved 
by time-sensitive applications. By adjusting the buffer size to an appropriate value we can again try to 
find an optimal compromise between the needs of TCP-based applications and real-time applications. 

4.2 TCP Vegas 

TCP Vegas embodies one of the most cited alternatives to regular TCP New Reno in scientific papers. 
Its main point of interest is represented by the fact that TCP Vegas tries to avoid congestion instead of 
blindly increase its sending window until a packet loss occurs; it hence perfectly fits our needs for low 
buffer utilization. 
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Figure 35.  Pseudocode of TCP Vegas congestion control. 

 
Indeed, while TCP New Reno utilizes packet loss to determine network congestion, TCP Vegas is 

sensitive to end-to-end queuing delay. With TCP Vegas the sender monitors the difference between its 
expected rate and the actually achieved one. The difference is compared to a couple of parameters, 
namely α and β, to determine whether the congestion window has to be incremented or decremented (by 
1) in the next RTT [143, 144]. The parameter α and β determine the amount of buffer each flow is 
permitted to occupy. 

More in detail, each TCP Vegas source estimates the number of its own packets in the buffer by 
monitoring the RTT. It then accordingly adjusts its congestion window to maintain its estimated rate 
between the two predetermined parameters α and β. If the difference between the expected rate and the 
achieved one is smaller than α, then the congestion window is increased by 1. If this difference surpasses 
β, the congestion window is decremented by 1. Finally, if the difference is comprised between α and β 
then the sender rate is in its stability region and no particular operation is performed.  

The pseudocode of the congestion avoidance algorithm of TCP Vegas is reported in Fig. 35 where 
cwnd is the congestion window. The pseudocode also shows that, in case of a packet loss, the congestion 
window is halved. 

If the buffer at the bottleneck is large enough then TCP Vegas reaches equilibrium. In this case, TCP 
Vegas flows should experience zero packet losses, a stable congestion window, and a queue which is 
proportional to the number of TCP Vegas flows present. Otherwise, it oscillates like TCP New Reno 
flows. Finally, TCP Vegas has been proven to fairly share the link with other TCP Vegas flows but it 
behaves too conservatively in presence of regular TCP flows (i.e., New Reno, Sack). Regular TCP, in 
fact, fully exploits the available buffer space and TCP Vegas interprets the consequent RTT trend as an 
indicator of excessive congestion, thus progressively reducing its sending rate to very low values [148].  

TCP Vegas represents a very appealing transport protocol with interesting features such as the 
possibility to have some control on the amount of buffer utilized. This, in fact, results a fundamental 
property when having to efficiently deal with contemporary real time traffic. On the other hand, the 
dramatic efficiency decrease experienced when competing with regular TCP traffic makes unfeasible its 
factual deployment. 

4.3 Limited Advertised Window 

We are aiming at finding the best solution to the tradeoff relationship existing between TCP throughput 
and real time application delays. Moreover, the two types of traffic should be able to coexist without 
interfering each other and the employed solution should be easily and factually deployable. 

Starting from the last point, i.e. the deployability, it is evident how a technique that would exploit 
existing features of the already utilized protocols could be easily implemented in a real scenario. 
Moreover, we deem that an optimal tradeoff between throughput and low delays could be achieved by 
maintaining the sending rate of the TCP flows high enough to efficiently utilize the available bandwidth 
but, at the same time, limited in its growth so as to not utilize buffers.  

 

  for every RTT 

  { 

      if (cwnd/RTTmin – cwnd/RTT) < α   then cwnd++  

      if (cwnd/RTTmin – cwnd/RTT) > β   then cwnd--  

  } 

   

  for every loss 

      cwnd := cwnd/2 
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Figure 36.  Comparison between regular and limited sending windows. 

 
In this way, in fact, the throughput is maximized by the absence of packet losses which would halve 

the congestion window, while the delay is minimized by the absence of queues.  
To better understand how limiting the congestion window could guarantee the same or even a higher 

throughput with respect to utilizing regular TCP, we show in Fig. 36 a typical saw tooth shaped sending 
window of a regular TCP and overlap it with a limited one. As it is evident, the latter is more stable 
since it does not use the buffer at the bottleneck link and consequently experiences no losses. The minus 
signs in the chart represent situations in which the regular congestion windows provides TCP with a 
sending rate which is inferior to that guaranteed by the limited congestion window, while the plus signs 
represent the inverse situation (generally accompanied by having packets queuing on the buffer 
corresponding to the bottleneck link). If the upper bound for the congestion window is appropriately 
chosen, the balance between the plus and minus signs will guarantee to the limited congestion window 
an equal or even superior final throughput with respect to the regular congestion window, whilst 
avoiding queuing delays.  

To achieve this desirable result we need first to address two important issues: how to determine an 
appropriate upper bound and how to apply it in practice to the sending window. 

Regarding the first point, the most appropriate formula can be derived from the two main goals we 
want to achieve: i) full utilization of the available bandwidth and ii) no queue delays. Real time traffic 
generally exploits UDP and this transport protocol has no congestion control mechanism. Some smart 
applications, however, implements some sort of congestion control at the application layer [158, 159]. In 
any case, to avoid queue delays, the aggregate bandwidth utilized by TCP flows cannot exceed the total 
capacity of the bottleneck link diminished by the portion of the channel occupied by the concurrent real 
time traffic.  

In essence, the maximum sending rate for each TCP flows at time t, namely TCPubrate(t), is 
represented by: 

 

  
)t(TCPflows#

))t(UDPtrafficC(
)t(TCPubrate

−
=  (22) 

where UDPtraffic(t) represents the amount of bandwidth occupied by UDP-based traffic at time t, 
#TCPflows(t) is the concurrent number of TCP flows, and C corresponds to the capacity of the 
bottleneck link. 

The second issue we need to address is how to practically employ this formula in order to have it 
working in a real scenario. This means i) determining an effectively deployable way to utilize it with the 
current state of the art of the Internet, ii) identifying the location for its implementation, and iii) 
proposing a method to compute the value of the various variables. 

To solve the first issue, we have to limit the required scope of intervention since modifying the 
whole Internet in order to run our scheme would obviously not be a feasible option. Moreover, it would 
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definitely be better if we could make good use of some feature already present in the regular TCP. For 
this reason we propose to exploit the existing advertised window to limit the TCP sending rate. In fact, 
as seen in Section 5.1, the actual sending window is determined as the minimum between the congestion 
window and the advertised window. The advertised window perfectly embodies an upper bound to the 
congestion window and is already implemented in all TCP versions. By appropriately modifying it, we 
can achieve both efficiency and low delays. 

The advertised window is generally determined at the receiver; however, this could not represent the 
most suitable place for the modification we need to perform. Indeed, to determine the most appropriate 
value for the advertised window, we need a comprehensive knowledge about all the flows that are 
transiting through the bottleneck (i.e., the last hop links). Since all the flows have to pass through the 
AP, this represents the node where we could be able to implement our scheme. The AP may also 
coincide with the Media Center in a wireless home and the mechanism can take advantage of this. In 
particular, by spoofing the transiting traffic at the AP and/or utilizing the information hold by the Media 
Center, we can obtain all the information required. In any commercial Operating System it is possible to 
know which kind of connection is in use and which its nominal speed is just by looking at the status of 
the network interface. Through spoofing the channel or exploiting information known at the Media 
Center we can also infer the number of active TCP connections and the aggregate amount of current 
UDP traffic. The AP can hence easily compute the best TCPubrate(t) utilizing (22) and modify the 
advertised window included on the transiting acks accordingly. 

 

 

Figure 37.  Simulated topology. 

 

 

TABLE VI.  SIMULATION CONFIGURATION OF THE WIRED LINKS. 

Node 1 Node 2 Physical Latency Link Capacity Queue Size 

W1 W0 10ms 100Mbps 140pkts 

W2 W0 20ms 100Mbps 140pkts 

W3 W0 30ms 100Mbps 140pkts 

W0 AP 10ms 100Mbps 140pkts 
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5 Simulation Assessment 

In order to analyze in depth our scenario, we have utilized the well known NS-2 network simulator 
(version ns-2.28) [1]. Our adopted configuration of the nodes and links can be easily visualized by the 
means of Fig. 37. In particular, the house environment is represented by four mobile nodes named N1, 
N2, N3 and N4, and the Media-Center that incorporates also the AP. The MAC layer parameters have 
been set accordingly to the IEEE802.11g standard. The simulation outcomes showed us that we were 
able to reach a maximum achievable bandwidth of circa 20Mbps. This represents a reasonable value 
over the declared 54Mbps even in the real world [174].  

Focusing on the wired links, their one-way delays and capacities have been configured as listed in 
Table VI, while their queue sizes have been set equal to 140 packets. This value comes out by 
multiplying the longest RTT with the smallest link capacity on the path (i.e. the bottleneck) which is 
represented by the 20Mbps effectively available over the wireless link.  

 

 

Figure 38.  In-home wireless scenario.  

 

TABLE VII.  SIMULATED APPLICATION FLOWS. 

From To Flow Type Transp. Prot. Start End 

AP N0 Video-Stream UDP 0s 180s 

W1 N1 Online Game UDP 45s 180s 

N1 W1 Online Game UDP 46s 180s 

W2 N2 Video-Chat UDP 90s 180s 

N2 W2 Video-Chat UDP 91s 180s 

W3 N3 FTP TCP 135s 180s 
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As shown in Table VII and Fig. 38, several kinds of applications have been run over this network 

topology. In order to uplift the trustworthiness degree of the simulations, we have exploited real trace 
files for the video-stream and for the video-chat. Specifically, adopted trace files correspond respectively 
to high quality MPEG4 Star Wars IV for the movie, and two VBR H.263 Lecture Room-Cam for the 
video-chat, as can be found in [145].  

The parameters characterizing the game-generated traffic have been chosen following the directions 
provided by scientific literature in this field. Indeed, we can assume that the user in the house is engaged 
in one of the very popular first person shooter games, e.g. Quake Counter Strike, with other ~25 players, 
geographically away from each other and connected through the Internet. Hence, to model the traffic 
generated by this kind of MMOG (packet size and interarrival time), we can use some of the 
approximations suggested in [146], which are based on real game platform measurements.  

In particular, in our simulation game events have been generated at client side every 60ms; while the 
server was transmitting game state updates every 50ms toward the client. Moreover, packet size has 
been set to 42Bytes and 200Bytes, respectively for client and server generated game packets. 

Simulation experiments have been replicated to examine the effects generated by differently setting 
some of the parameters involved in the scenario. Table VIII lists all the variable parameters in the 
simulations; each combination of their possible values has been simulated. In particular we have tried 
several values for long packet retransmissions going from the regular 4 down to 1. The distance between 
the AP and the mobile device was either 5 or 10m which represent two realistic values for a normal 
house. The buffer size at the AP was set either equal to 50 or to 100 packets, as these are the two most 
common values in commerce.  

In particular, it is worth to conclude this discussion by mentioning our experimental choices with 
respect to the Shadowing Model, which is a realistic and widely utilized signal fading model available in 
NS-2. We followed the directions provided by the official NS-2 manual to represent a home 
environment partitioned into several rooms. Specifically, in our simulations, the path loss exponent of 
the Shadowing Model was always set equal to 4, while the shadowing deviation had alternatively the 
value of 7 and 9. Transmitted signal attenuation grows with the increase of these parameters; we hence 
expect to face higher percentage of packet losses over the wireless media when setting the shadowing 
deviation to 9. 

However, where not differently stated, simulations were run utilizing some realistic default values 
for the simulative parameters listed in Table VIII. In particular, we had:  

• buffer size at the AP = 100 packets; 

• distance between the AP and the mobile device = 10m; 

• max number of MAC retransmissions for long packets = 4; 

• shadowing deviation of the shadowing model = 7. 

 

TABLE VIII.  CHANGING PARAMETERS IN THE SIMULATED CONFIGURATIONS. 

Parameter Values Comment 

MAC data retransmissions 1, 2, 3, 4 default value = 4 

shadowing deviation 7, 9 medium, high 

user-AP distance (m) 5, 10 same room, different room 

MAC queue size (pkts) 50, 100 common default values 
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Figure 39.  Example of online gaming interarrival delays. 
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Figure 40.  Example of online gaming jitter. 
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Figure 41.  FTP total throughput with different user-AP distances; 

 shadowing deviation = 9, MAC queue size = 50pkts. 

 

 

 

Figure 42.  FTP total throughput with different shadowing deviation values;  

user-AP distance = 10m, MAC queue size = 50pkts. 
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6 Experimental Results 

We present here the most relevant results from the extensive set of simulations we have run. In 
particular, we first demonstrate how concurrent TCP-based traffic can affect the performance of real 
time applications. We then compare the outcome with those of our proposed solutions. 

6.1 FTP Impact on Real-Time Entertainment Applications 

We have intentionally started the various application flows one after the other in order to notice the 
progressive impact of the successively incoming and overlapping traffic on the preexisting ones. In 
particular, we expect to witness increasing delays and jitter in the arrival time of packets as we augment 
the traffic level. However, the bandwidth requirement of the first starting applications in our scenario is 
well below the effectively available capacity of the IEEE802.11g wireless media. We have to wait until 
the FTP flow takes action, quickly saturating the channel and the queues along the path with its packets, 
before being able to clearly detect significant variations in the delays and jitter experienced by the 
various real time flows. This phenomenon is evident in Fig. 39 and Fig. 40 where the mobile device was 
located at 10m from a standard IEEE802.11g AP.  

6.2 Shadowing and Distance Impact on TCP Throughput 

The distance between the AP and the mobile device represents an important factor in determining the 
transmission quality, especially in a partitioned environment as a house. In fact, Fig. 41 shows that, 
positioning the mobile device at a distance of 5m from the AP, the maximum throughput achievable by 
the FTP application is already obtained when utilizing only two retransmissions at the MAC layer. The 
quality of the transmission signal also depends on the impediments that it may encounter along its path 
between the AP and the mobile device.  
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Figure 43.  Example of TCP congestion window; max MAC retransmissions = 2. 
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Figure 44.  Example of TCP congestion window; max MAC retransmissions = 3. 

 

 

Figure 45.  FTP total throughput with different MAC queue sizes;  

user-AP distance = 10m, shadowing deviation = 9. 
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Figure 46.  FTP total throughput with different MAC queue sizes;  

user-AP distance = 5m, shadowing deviation = 9. 

 
We compare now a house environment constituted by medium level partitions (parameter set to 7), 

with another one having more unfavorable partitions to wireless transmissions (parameter set to 9). Fig. 
42 confirms our expectations by showing the throughput gain achievable in the first case. However, Fig. 
42 also reports a case where having just two retransmissions at the MAC layer produces a higher total 
throughput than utilizing a greater number.  

 

TABLE IX.  GAMING FLOW JITTER STATISTICS; MAX MAC RETRANSMISSIONS = 4, SHADOWING DEVIATION = 9. 

CONSIDERED PERIOD = [0 – 180]s 

Jitter 50 pkts 100 pkts 

maximum (ms) 33.740 108.36 

average (ms) 1.306 2.041 

variance 7.360 22.079 

pkts received 2658 2658 

 
CONSIDERED PERIOD = [135 – 180]s 

Jitter 50 pkts 100 pkts 

maximum (ms) 33.740 108.36 

average (ms) 3.056 5.229 

variance 16.665 49.470 

pkts received 899 899 
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TABLE X.  GAMING FLOW JITTER STATISTICS; MAX MAC RETRANSMISSIONS = 3, SHADOWING DEVIATION = 9. 

CONSIDERED PERIOD = [0 – 180]s 

Jitter 50 pkts 100 pkts 

maximum (ms) 31.091 44.632 

average (ms) 1.045 1.566 

variance 4.833 11.034 

pkts received 2654 2655 

 
CONSIDERED PERIOD = [135 – 180]s 

Jitter 50 pkts 100 pkts 

maximum (ms) 31.091 44.632 

average (ms) 2.292 3.835 

variance 11.502 24.431 

pkts received 896 897 

 
This apparent paradox has instead a rational explanation. First, we should remember that 

IEEE802.11 has a limited buffer for transmissions and retransmissions. Second, the game and the video-
chat applications generate some reverse traffic that shares path and networking resources with the 
acknowledgment (ack) packets generated by TCP as transport protocol under the FTP application. When 
the channel is fully utilized, some acks get lost and may cause timeouts.  

As a confirmation of this, Figure 43 and Figure 44 refer to the same configuration of Fig. 42 and 
present the congestion window, the slow start threshold and the bandwidth delay product of the 
underlying TCP flow when the maximum number of retransmissions at the MAC layer was set equal to 
2 and 3, respectively. The two charts show a higher frequency of timeouts when a higher number of 
retransmissions at the MAC layer helps the traffic to reach a higher level. 

6.3 Appropriately Setting MAC Layer Parameters 

Finally we intend to highlight the impact of having different queue sizes and maximum number of 
retransmissions at the MAC layer on the performance of the various types of traffic present in our 
considered scenario. Starting with the first parameter, Fig. 45 and Fig. 46 confirm that having larger 
queue size helps TCP in achieving higher throughputs. However, there is no difference in the achieved 
throughput when wireless losses, not recovered via MAC retransmissions, are frequent enough to keep 
the TCP transmission rates low and hence never have the possibility to utilize more than 50 queue slots.  

On the other hand, having large queues along the path may augment the total delay time experienced 
by packets. In fact, each packet waits in queue for a time which proportionally grows with the number of 
anterior packets already present in the same queue at its arrival. In case of intense traffic, queues tend to 
be congested and hence queuing delays may become a significant component of the global delays 
experienced by each packet. At the same time, having larger queue size on a link also spreads the range 
of possible queuing delays that packets may experience while traveling on that link (depending on the 
filling level of the queue). The resulting jitter strongly impact on the performance achieved by real time 
applications and, in particular, by highly interactive applications as video-chats and MMOGs. Statistics 
of the aforementioned game flow jitter permit a clearer understanding of the performance disparity 
generated by diverse queue sizes. In particular, the upper part of Table IX refers to the whole simulated 
duration of the MMOG application, while the rest of it considers only the period when the FTP 
application is running (from second 135 to second 180).  
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In any case, the worst jitter is experienced when queues are steadily filled up by the FTP flow. To 
limit this problem we should find a way to barter part of the FTP throughput with lower queuing delays. 
This can be attained also by simply reducing the maximum number of retransmission at the MAC layer 
as it is evident by comparing Table X with Table IX.  

Even better jitter average and variance can be gained further diminishing the maximum number of 
MAC retransmission to 2. However, we advice against this choice, unless placing the device hosting the 
FTP application closer to the AP or in a house with a better shadowing deviation of the transmitted 
signal. Otherwise, the FTP throughput descends significantly as can be observed in Fig. 41, Fig. 42, Fig. 
45, and Fig. 46.  

Summarizing, we can say that a more appropriate configuration of the IEEE802.11g than the 
traditional one would probably make use of a maximum number of 3 retransmissions, thus guaranteeing 
a high FTP throughput whilst maintaining a low per-packet delay and jitter. Moreover, when a unique 
queue is maintained for all the traffic flows, a small size (50 packets) should be preferred.  

In particular, for a scenario where the shadowing deviation is set to 7 and we have 10m of distance 
between the AP and the mobile device, this configuration of the MAC layer parameters allows a TCP 
goodput of 55371 packets during the 45 seconds when the FTP application was running. The 
corresponding congestion window, slow start threshold and bandwidth-RTT product is shown in Fig. 47. 
The interarrival packet time and the jitter for the online game flow traveling from the server to the client 
are reported in Fig. 48 and Fig. 49, respectively. 
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Figure 47.  TCP congestion window; MAC max retransmissions = 4, buffer size = 50 packets. 
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Figure 48.  Online game interarrival time; MAC max retransmissions = 4, buffer size = 50 packets. 
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Figure 49.  Online game jitter; MAC max retransmissions = 4, buffer size = 50 packets. 
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6.4 Utilizing TCP Vegas in Place of TCP New Reno 

The ability of TCP Vegas in detecting queues and anticipating their further growth is evident in Fig. 50, 
which shows the congestion window when parameters are set as follows: α = 1, β = 3, γ = 2. This 
parameter setting corresponds to utilize a very small amount of buffer at the bottleneck. Consequently, 
both the queuing time and the achieved goodput will be reduced. The congestion window, in fact, results 
evidently limited by TCP Vegas algorithm and reaches very low values. The final goodput is obviously 
affected as well: 43950 packets acknowledged in 45s instead of 46580 and 54137 packets for a buffer 
size of 50 and 100 packets, respectively, for the regular configuration with TCP New Reno (as seen in 
Fig. 45).  
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Figure 50.  TCP Vegas congestion window; α = 1, β = 3, γ = 2. 
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Figure 51.  Online game interarrival time with concurrent TCP Vegas; α = 1, β = 3, γ = 2. 
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Figure 52.  Online game jitter with concurrent TCP Vegas; α = 1, β = 3, γ = 2. 
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Figure 53.  Online game interarrival time with concurrent TCP Vegas: α = 5, β = 10, γ = 8. 
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Figure 54.  Online game jitter with concurrent TCP Vegas; α = 5, β = 10, γ = 8. 
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Figure 55.  TCP Vegas congestion window; α = 1, β = 3, γ = 2. 
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On the other hand, having no packets in queue helps real time traffic in reducing its per-packet delay. 

In particular, in Fig. 51 and Fig. 52 we show the packet interarrival time and the jitter for the online 
game flow going from the server to the client. The tremendous reduction for these values results evident 
from the charts: the jitter, for instance, never reaches 4.5 ms.  

With different values of its parameters, TCP Vegas becomes able to make use of more buffer space 
at the AP. This results in higher delays but, at the same time, higher goodputs. Indeed, the tradeoff 
relationship between the per-packet delay and the total goodput highlighted in Section 5.3 is perfectly 
embodied in TCP Vegas parameters. By setting the queue target size, those parameters could be seen as 
knobs able to move that tradeoff towards one direction or the other.  

As an example, if we set α = 5, β = 10, and γ = 8, then the total goodput raises to 59999 packets 
acknowledged in 45s. On the other hand, the packet interarrival time and the jitter for the online game 
flow going from the server to the client result increased as shown by Fig. 53 and Fig. 54. 

The best tradeoff between goodput and real-time traffic jitter could be obtained for this configuration 
by using α = 3, β = 7, and γ = 5. For this set of parameters, in fact, the achieved goodput is still high: 
57171. At the same time, the interarrival time and the jitter of real time traffic achieves very good 
results. Specifically, we can see the trend of the congestion window in Fig. 55, while the interarrival 
time and the jitter of online game packets going from the server to the client is depicted in Fig. 56 and 
Fig. 57, respectively. 

Unfortunately, TCP Vegas suffers from three main drawbacks which are well known in the scientific 
community. First, setting its parameters is not a trivial task and depends on many factors such as the 
buffer size at the bottleneck and the number of flows sharing that link. In particular, the last factor 
continuously changes and it is not possible to continuously adapt α, β, and γ. Second, TCP Vegas has 
been shown to be unstable since the contemporary presence of two poles [160]. Third, TCP Vegas 
behaves very poorly in terms of throughput when competing with the traditional TCP New Reno and 
TCP Sack (which support the large majority of the data flows in the current Internet) [148]. In presence 
of congestion, in fact, queues will be fully exploited by traditional TCP, while TCP Vegas will shrink its 
congestion window as it will sense continuous queue utilization.  
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Figure 56.  Online game interarrival time with concurrent TCP Vegas: α = 3, β = 7, γ = 5. 
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Figure 57.  Online game jitter with concurrent TCP Vegas; α = 3, β = 7, γ = 5. 

 

Since these problems and, in particular, the last one, TCP Vegas is not factually deployable in the 
Internet. We need hence to find an alternative solution that could be practically employed. 

6.5 Limiting TCP’s Advertised Window 

The link capacity actually achieved by a wireless connection is usually less than half of the nominal one. 
From tests run in our lab with a real 802.11b antenna we were able to get only a maximum of about 
5Mbps over a nominal rate of 11Mbps. However this was the result of a tuning of the connectivity 
obtained by choosing the best positioning for the AP and the mobile device. Under regular 
circumstances, the factual transmission rate would be even less than that. We obtained coherent results 
also by simulating an 802.11b link on NS-2. 

We have then simulated an 802.11g link on NS-2 and measured a maximum effectively achievable 
transmission rate of circa 20Mbps. We have enhanced our scenario by enabling the AP to modify the 
advertised window of returning acks accordingly with the bandwidth left available by the UDP-based 
flows as determined in (22). In particular, the average UDP-based aggregate traffic was computed 
through a simple low-pass filter and the new advertised window was determined every 200ms. 

In this configuration, various values for the parameter C in (22) have been tested and results are 
reported in Fig. 58. In this chart, we can see the average, the standard deviation and the maximum value 
for the delays experienced by the gaming application in its flows directed from the server to the client. 
Moreover, it also contains the throughput trend of the concurrent TCP flow. We do not report here the 
equivalent charts corresponding to all the other real time traffic flows since their results are coherent 
with those presented in Fig. 58 and do not need further explanation. 

As clearly shown, both the average and the standard deviation of the online game flow 
increase when we utilize higher values for C. This is obviously due to the fact that higher C 
values decrease the resilience to TCP bursts thus leading to some queuing at the AP. However, 
both the average and the standard deviation are very low for all C values and we could have the 
wrong impression that the online game flow always experience good performance. 
Unfortunately, this is not true as can be noticed by looking at the curve representing the maximum delay 
value experienced by packets traveling through the AP. 
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Finally, Fig. 58 also demonstrates how the throughput decreases when C is set too low. Instead, if C 
is set higher than the maximum achievable throughput on the channel (in this case, 20Mbps), then the 
sender will be allowed to send more packets than those bearable by the bottleneck link causing queuing 
delays. Moreover, at a certain point, some packets will overflow the buffer and the consequent packet 
loss will cause the reduction of the sending window and average throughput. 
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Figure 58.  Statistical values when employing limited advertised window. 
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Figure 59.  TCP behavior with limited advertised window and C = 18Mbps. 
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Figure 60.  Online game interarrival time with concurrent TCP, limited advertised window, C = 18Mbps. 
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Figure 61.  Online game jitter with concurrent TCP, limited advertised window, C = 18Mbps. 

 



5   Wireless Home Scenario 

UBLCS-2006-10 75

Setting C as 18Mbps (i.e., the 90% of the maximum achievable bandwidth) seems to be an 
appropriate choice able to guarantee both low queuing delays and high TCP efficiency. The advertised 
window exploited by the TCP flow is evident in Fig. 59, which also reports the congestion window, the 
slow start threshold, and the bandwidth-RTT. We have to keep in mind that the TCP flow starts at 
second 135 of the simulation time and that the actual sending window is determined as the minimum 
between the advertised window and the congestion window. Said that, we can appreciate from the chart 
how the AP is able to keep track of the concurrent real time traffic and determine the most appropriate 
advertised window. In particular, for this configuration, the final goodput in terms of acknowledged 
packets over 45 seconds hits 58677, while the interarrival time and the jitter experienced by online game 
packets are maintained low as demonstrated by Fig. 60 and Fig. 61, respectively. 

Another interesting outcome shown by Fig. 59 is the proximity of the advertised window curve and 
the bandwidth-RTT product ones. The advertised window is prudently set close to the bandwidth-RTT 
product (i.e., the link pipe size) minus the aggregate UDP based traffic, and this difference also 
represents an estimate of the amount of real time traffic present on the channel. We have to remind that 
the real time traffic was simulated considering three simultaneously running applications of various type 
and exploiting real traffic traces. As it is evident from the chart, the difference between the two curves is 
relatively small if compared to the whole channel capacity thus demonstrating that real time applications 
generally do not have to face bandwidth shortage in an 802.11g wireless home, whilst they still have to 
deal with high and variable delays. 

6.6 Summarizing Results 

In order to compare the various proposed scheme we have summarized in Fig. 62 statistical results 
obtained by: i) utilizing regular TCP New Reno on a standard IEEE 802.11g MAC configuration 
(Regular) ii) appropriately setting the MAC layer parameters (MAC-Setting), iii) utilizing TCP Vegas in 
place of regular TCP (TCP-Vegas), and iv) TCP with Limited Advertised Window (TCP-LAW) 
implemented at the AP.  

More specifically, the MAC layer parameters for MAC-Setting were set with a maximum number of 
retransmissions equal to 3 and a buffer size of 50 packets at the AP. Instead, TCP Vegas was configured 
with α = 3, β = 7, γ = 5 and TCP-LAW considered C = 18. 

The compared statistical parameters are the average, the standard deviation and the maximum value 
of jitter experienced by online game packets entering the house (thus going from the server to the client) 
via the AP. Results obtained from the other real time applications running in the simulated scenario (i.e. 
video-stream and video-chat) are coherent with the showed ones; we hence skip to present their charts. 
Rather, we also show the average throughput achieved by the concurrent TCP connection. 
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Figure 62.  Statistical values for the various schemes. 
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As it is evident, employing TCP Vegas to support FTP traffic is the solution that would guarantee the 
best performance both in terms of lowest per packet delay and highest throughput. However, as already 
mentioned in Section 5.4.2, TCP Vegas cannot be actually deployed in the Internet since it is not able to 
efficiently coexist with regular TCP flows [148].  

Conversely, TCP-LAW could be easily implemented as it only requires the presence of slightly 
“smarter” APs. The modifications to the AP are very limited thus minimally impacting on their cost and, 
at the same time, our scheme can perfectly coexist with the current Internet and its employed protocols. 
Considering this and the remarkable results achieved, TCP-LAW represents the optimal candidate for 
enhancing wireless home scenarios. 
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Chapter 6 

Conclusion 

 

We are living in a world which is faster and faster spinning toward a continuous, ubiquitous, and 
seamless wireless connectivity. Customers are more and more attracted by high quality entertainment 
applications, and mobility represents the next frontier for this kind of technology. On the other hand, real 
time applications require continuous connectivity and have stringent delays bounds. MMOG represents 
an exemplar and very interesting case study among the various entertainment applications that would be 
soon ubiquitously available. 

Several factors concur in creating a pleasant game experience for online players: high 
responsiveness, uniform view of the game state and fairness represent the most important of them. We 
have hence deeply analyzed issues related to entertainment applications requiring high responsiveness 
degree as MMOGs.  

Particular attention has been devoted to latency issues, since they represent the most important 
prerequisite in developing online games. We have addressed this problem from two standpoints: the 
server-to-server synchronization and the client-server communication in a congested wireless 
environment. We have aimed at creating an effective online game platform able to sustain game sessions 
even in the challenging scenario involving wirelessly connected players. 

In particular, we have first developed a hybrid architecture combining the scalability of peer-to-peer 
paradigm with the easy management of the client-server one.  

We have then devised an efficient synchronization scheme among these servers (GSS) that makes 
use of a proactive event discarding mechanism, named ILA, to preserve responsiveness. The proposed 
mechanism relies on the concept of obsolescence and correlation to drop old game events at GSSs, thus 
accelerating the processing of fresher ones. We have shown simulation results that demonstrate the 
benefits attainable by employing our scheme in place of traditional ones. In particular, with a limited 
number of obsolete event drops, ILA is able to proactively guarantee a high interactivity degree also 
maintaining, in the ILA-RED version, full consistency. 

Following a holistic approach we have been able to further refine our synchronization mechanism to 
improve the degree of fairness experienced by players. We have named this upgraded version FILA and 
we have presented simulation results showing the improvements in terms of game events that were fairly 
and interactively delivered to destination with respect to traditional Local Lag schemes. 

Finally, to support engaged players even in a mobile scenario, we have proposed and evaluated 
solutions able to diminish queuing delays even in congested wireless environments. In particular we 
have devised an easily deployable scheme that exploits enhanced APs and the TCP’s advertised window 
to ensure both goodput efficiency and high responsiveness. 

 

1 Future Work 

From here on, our work can proceed toward several directions such as the development of new tools 
proficient at evaluating MMOG performance or the utilization of SIP technology to support various 
MMOG functionalities. Among the many possibilities, we elaborate on two potential future studies that 
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will soon be object of exceptional interest from the scientific community: the IEEE 802.11e standard 
and the convergence between MMOGs and vehicular networks. 

1.1 Utilizing IEEE 802.11e 

We have demonstrated how the standard IEEE 802.11 MAC protocol is not well suited for supporting 
real time traffic and in particular highly interactive applications. Problems raise both from the setting of 
its parameters, which have been mainly intended for TCP-based traffic, and from the lack of an efficient 
Quality of Service (QoS) mechanism. 

In particular, the regular IEEE 802.11b/g standard implements a contention scheme as previously 
summarized in Section 5.2. This mechanism is named Distributed Coordination Function (DCF) and 
supports only best effort services, with no guarantee for bandwidth, packet delay, and jitter. 
Alternatively, a contention avoidance service intended to better sustain time-bounded traffic makes use 
of the polling access method offered by the Point Coordination Function (PCF) [161].  

PCF scheme provides stations with a prioritized access to the wireless medium. However, several 
unresolved problems led to the development of enhancements to the protocol which have been very 
recently finalized in the IEEE 802.11e standard (the definitive document has been released during the 
final draw up of this Thesis) [102]. 

Better results in terms of low jitter and per packet delays could be obtained through the utilization of 
the IEEE 802.11e in place of the regular IEEE 802.11b/g [55, 162]. The IEEE 802.11e defines different 
classes of traffic and, for each class, diverse configurations of the parameters permit the creation of 
priorities. These parameters, in fact, determine the various contention delays that packets have to 
experience before having access to the wireless medium. 

From the application point of view, video-chats and online games will belong to the highest priority 
class of traffic. Since video-stream applications could make use of buffering techniques, they could be 
featured with a medium priority level. Finally, TCP packets could have a low priority level in order to 
minimize the impact on real time traffic.  

Since the specifications of the IEEE 802.11e have been finally defined only very recently, first 
experiments will obviously involve simulations. We would like to compare the performance of this new 
MAC protocol, both in terms of TCP goodput and per-packet delays, with those of the schemes here 
proposed and, in particular with those of TCP-LAW. Moreover, we would also like to investigate the 
deployability and the performance of a combination of the two technologies. 

1.2 MMOG in Vehicular Networks 

Cars represent the next frontier in mobile communication for the forthcoming years, as they become 
more endowed with entertainment technology. Having 410K cars and SUVs sold in first half of 2004 
with pre-installed DVD systems [149], it is not hard to foresee a future where all vehicles will be 
capable of connecting to the Internet, and passengers will represent a conspicuous slice of the online 
entertainment market. 

In fact, as anticipated in the introduction (Section 1), MMOGs are going to reach also the realm of 
car-networking. Starting from the assumption of having our mirrored game server architecture endowed 
with the ILA scheme, we are going to run simulations and real experiments focused on the client-server 
part of the game platform. In order to test the feasibility of running interactive applications as MMOGs 
in highly mobile environments, simulations could be run utilizing one of the most popular and trusted 
simulators in the scientific literature: NS-2 or QualNet [1, 2].  

Scenarios involving different kinds of available antennas, as well as diverse dislocation of APs and 
traffic conditions, could be tested and compared in order to provide useful information about 
connectivity and latency. Alternative solutions able to compensate AP’s lacks of coverage could also 
exploit car-to-car ad-hoc connections or a combination with 3G full coverage connectivity [11]. 

In particular, when coverage from APs is missing, some cars could be connected through 3G 
architecture. These cars could download and upload game packets for themselves but also on behalf of 
other players sit in cars around them. The general small size of game packets, in fact, limits the 
bandwidth requirement. Therefore, one single connection could be enough to let several players 
updating their game status.  
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Figure 63.  Hybrid architecture for distributed game entertainment in heterogeneous scenarios including 

car-networking. 

This is useful for two main reasons: first, to increase throughput and latency efficiency, and second, 
to circumvent the current limitation that imposes boundaries on the number of contemporary connected 
customers for each cell [11]. Wi-Fi connections exploiting car-to-car ad-hoc topology will then be used 
to diffuse game events between relay vehicles and others in proximity. Cellular and ad-hoc network 
architecture may thus be both present and combined on each automobile to ensure a continuous 
connectivity while waiting for being in range of the next AP on the road (as depicted in Fig. 63). 
Previous studies demonstrated how the aggregate throughput may increase by utilizing a unified cellular 
and had-hoc network architecture [21]. However, the latency issue involved in this combination has not 
yet been investigated. Moreover, car-networking scenario further increases the mobility, thus asking for 
frequent changes of utilized access technology.  

Talking about 3G communications, pricing techniques should be investigated in order to put in 
practice a scenario where people are continuously connected also to propagate other customers’ traffic. 
A mechanism aimed at billing the right final player even when not directly connected to a 3G antenna 
should be defined. Each player should pay for its own traffic, and only for it. A possible alternative is 
represented by having flat rates for all the customers. With this solution, players would pay just a 
monthly fee for their 3G traffic thus increasing the appeal of this architecture and simplifying pricing 
problems especially in our considered hybrid scenario. 

Obviously, simulations will result very helpful at the beginning to evaluate novel solutions in this 
field. Indeed, real experiments aimed at testing connectivity under diverse conditions could require the 
deployment of unsustainable investments to provide an adequate amount of participating cars and 
antennas on the road.  
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However, simple but meaningful real experiments can be performed to obtain real measurements 
about the time involved in connectivity settling, handovers, car-to-car communication and different 
access technology adopted. A limited number of moving automobiles can be used to carry out 
meaningful experiments. Equipped with devices to communicate with APs, these vehicles will transport 
users engaged in MMOGs. Even simpler but still valuable experiments can be run inside a laboratory, 
where a couple of APs and some wireless connected devices could permit some useful delay and 
connectivity measurements. 
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