
viaaa

Fast and Fair Event Delivery in Large Scale Online

Games over Heterogeneous Networks (Ph.D. thesis)

Claudio Enrico Palazzi

Technical Report UBLCS-2006-10

March 2006

Department of Computer Science

University of Bologna
Mura A. Zamboni 7

40127 Bologna (Italy)

viaaa

The University of Bologna Department of Computer Science Research Technical Reports are available in PDF and
gzipped PostScript formats via anonymous FTP from the area ftp.cs.unibo.it:/pub/TR/UBLCS or via
WWW at URL http://www.cs.unibo.it/. Plain-text abstracts organized by year are available in the
directory ABSTRACTS.

Recent Titles from the UBLCS Technical Report Series

2005-10 Fault Tolerant Knowledge Level Communication in Open Asynchronous Multi-Agent Systems, Dragoni, N.,
Gaspari, M., April 2005.

2005-11 The AEDSS Application Ontology: Enhanced Automatic Assessment of EDSS in Multiple Sclerosis,
Gaspari, M., Saletti, N., Scandellari, C., Stecchi, S., April 2005.

2005-12 How to cheat BitTorrent and why nobody does, Hales, D., Patarin, S., May 2005.

2005-13 Choose Your Tribe! - Evolution at the Next Level in a Peer-to-Peer network, Hales, D., May 2005.

2005-14 Knowledge-Based Jobs and the Boundaries of Firms: Agent-based simulation of Firms Learning and

Workforce Skill Set Dynamics, Mollona, E., Hales, D., June 2005.

2005-15 Tag-Based Cooperation in Peer-to-Peer Networks with Newscast, Marcozzi, A., Hales, D., Jesi, G.,
Arteconi, S., Babaoglu, O., June 2005.

2005-16 Atomic Commit and Negotiation in Service Oriented Computing, Bocchi, L., Ciancarini, P., Lucchi, R.,
June 2005.

2005-17 Efficient and Robust Fully Distributed Power Method with an Application to Link Analysis, Canright, G.,
Engo-Monsen, K., Jelasity, M., September 2005.

2005-18 On Computing the Topological Entropy of One-sided Cellular Automata, Di Lena, P., September 2005.

2005-19 A model for imperfect XML data based on Dempster-Shafer’s theory of evidence, Magnani, M., Montesi,
D., September 2005.

2005-20 riends for Free: Self-Organizing Artificial Social Networks for Trust and Cooperation, Hales, D., Arteconi,
S., November 2005.

2005-21 Greedy Cheating Liars and the Fools Who Believe Them, Arteconi, S., Hales, D., December 2005.

2006-01 Lambda-Types on the Lambda-Calculus with Abbreviations: a Certified Specification, Guidi, F., January
2006.

2006-02 On the Quality-Based Evaluation and Selection of Grid Services (Ph.D. Thesis), Andreozzi, S., March
2006.

2006-03 Transactional Aspects in Coordination and Composition of Web Services (Ph.D. Thesis), Bocchi, L.,
March 2006.

2006-04 Semantic Frameworks for Implicit Computational Complexity (Ph.D. Thesis), Dal Lago, U., March 2006.

2006-05 Fault Tolerant Knowledge Level Inter-Agent Communication in Open Multi-Agent Systems (Ph.D. Thesis),
Dragoni, N., March 2006.

2006-06 Middleware Services for Dynamic Clustering of Application Servers (Ph.D. Thesis), Lodi, G., March 2006.

2006-07 Meta Model Management for (Semi) Structured and Uncertain Models (Ph.D. Thesis), Magnani, M.,
March 2006.

2006-08 Towards Abstractions for Web Services Composition (Ph.D. Thesis), Mazzara, M., March 2006.

2006-09 Global Computing: an Analysis of Trust and Wireless Communications (Ph.D. Thesis), Mezzetti, N.,
March 2006.

UBLCS-2006-10 1

Fast and Fair Event Delivery in Large Scale Online

Games over Heterogeneous Networks (Ph.D. thesis)

Claudio Enrico Palazzi1

Technical Report UBLCS-2006-10

March 2006

Abstract

The increasing need for people to be always connected, as well as the request for new amusement

applications, poses several interesting issues in wireless networks. Nowadays, two main reasons are

motivating several researchers around the world in striving to find effective solutions for these issues.

First, revenues generated every year by electronic amusements follow a trend which is expected to

increase further. Second, but certainly not less important, problems that emerge in developing

innovative entertaining experiences are correlated with those belonging to various other “conventional”

research fields in Computer Science.

In this context, online games for a large group of contemporary players are gaining attention as

their participants are increasing in number. From a research point of view, they represent a very

interesting and challenging topic especially in wireless environments. In this scenario, in fact, many

issues arise such as authentication, session handling, interactivity, scalability and mobility, which are

just a few and the more obvious of them.

Here, we propose a scalable architecture able to support fairness and interactivity in order to

provide a cutting-edge online gaming experience to engaged players. In particular, we exploit a hybrid

solution combining both the advantages of client-server and peer-to-peer paradigms. As part of our

architecture, we have designed a novel synchronization mechanism among mirrored servers composing

the online game platform. Our mechanism exploits the semantics of a game and follows a holistic

approach to increase interactivity, fairness, and scalability, whilst maintaining full consistency of the

game state. We provide extensive results that demonstrate our assertion.

However, even if our scheme is proficient in maintaining a high degree of responsiveness among the

game servers, problems may arise at the edge of the considered topology. Concurrent traffic may

generate queues that build up at the last (or first) link of a connection, thus delaying the game event

delivery. This problem is worsened in case of players relying on wireless connectivity. The wireless

medium, in fact, is naturally prone to be shared by several contemporary users interfering with each

others’ performance goals.

A typical case study is represented by a wireless home. Indeed, online entertainment is now possible

at home by a plethora of ubiquitous services that can be provided based on wireless technologies, for

instance, the common Wi-Fi IEEE802.11g network technology. Among the various home applications,

entertainment is going to play a major role. As the availability of digital entertainment devices rapidly

increases, the need for interconnecting them becomes even more urgent, as well as the necessity to

extend the reach of entertainment to the wireless domain.

Applications run in this context may vary and, as we demonstrate in this thesis work, some of these

may be particularly harmful toward real time traffic (i.e., online games, but also video-streaming and

video-chats). In particular, we show how the very popular TCP-based FTP application for downloading

files increases queuing delays to such an extent that responsiveness may be jeopardized.

1 Department of Computer Science, University of Bologna, Mura A. Zamboni 7, 40127 Bologna, Italy.

UBLCS-2006-10 2

To solve this problem, we propose and compare a set of possible solutions: i) appropriately setting

MAC layer parameters, ii) employing TCP Vegas in place of the traditional TCP New Reno and, iii)

limiting the advertised window for TCP flows. Extensive simulation results for a realistic in-home

wireless scenario are provided.

Finally, we provide conclusion and future directions for our work. To this aim, it would be of

particular interest to evaluate the IEEE 802.11e MAC protocol to investigate its capability to support

real time applications and its impact on TCP-based traffic. Moreover, a particularly challenging case

study is represented by the juxtaposition of our architecture with a vehicular networking scenario.

CONTENTS

UBLCS-2006-10 3

Contents

List of Figures 5
List of Tables 7

1 Introduction 8
1 Problem Statement and Thesis Contribution 10
2 Thesis Outline 13

2 Background 14
1 MMOG Issues 14
2 Fundamental Problems 15
3 Related Work 17
3.1 Responsiveness 17
3.2 Consistency and Fairness 19
3.3 Cheating 20
3.4 Performance Evaluation over Wireless Links 21

4 System Model 21
5 Architectures 23

3 Fast Synchronization Framework 26

1 Proposed Architecture 26
2 Obsolescence and Correlation: Maintaining Responsiveness and Consistency 26
3 Interactivity Restoring Mechanism 28
4 RED/RIO Techniques 28
5 Enhancing Interactivity with RED/RIO Techniques 29
6 Simulation Assessment 33
7 Current Results 35
7.1 Obsolescence-Based Scheme vs Traditional One 35
7.2 ILA-RED cs ON-OFF: a Comparative Evaluation 36
7.3 ILA-RED: Sensitività Analysis 38

7.4 ILA-RIO: Some Preliminary Results 39

4 To Seek the Fairness by Way of the Interactivity 41
1 Exploiting Local Lag Technique 41
2 Achieving Fairness through Interactivity 42
3 Simulation Assessment 44
4 Results 45
4.1 Interactivity and Fairness 47
4.2 About Scalability 49

5 Wireless Home Scenario 51
1 Transmission Control Protocol 52
2 The IEEE 802.11 52
3 Queuing Delay 53
4 Proposed Solution 54
4.1 IEEE 802.11 Parameters Setting 54
4.2 TCP Vegas 54
4.3 Limited Advertised Window 55

5 Simulation Assessment 58
6 Experimental Results 62
6.1 FTP Impact on Real-Time Entertainment Applications 62
6.2 Shadowing and Distance Impact on TCP Throughput 62
6.3 Appropriately Setting MAC Layer Parameters 65
6.4 Utilizing TCP Vegas in Place of TCP New Reno 68
6.5 Limiting TCP’s Advertised Window 72

CONTENTS

UBLCS-2006-10 4

6.6 Summarizing Results 75

6 Conclusion 77

1 Future Work 77
4.1 Utilizing IEEE 802.11e 78
4.2 MMOG in Vehicular Networks 78

Acknowledgment 81
References 82

LIST OF FIGURES

UBLCS-2006-10 5

List of Figures

Fig. 1The exponential increase of MMOG subscriptions (1997-2005) [25]9
Fig. 2MMOG revenue by Region (2003) [25]. ..9
Fig. 3Half-Life message format [171]..11
Fig. 4Online game architectures...24
Fig. 5-aExamples of obsolescence and correlation: event e2 makes obsolete e127
Fig. 5-b........Examples of obsolescence and correlation: event ec is correlated to e1 and rescinds the
obsolescence of e1...27
Fig. 6Discarding probability functions for ILA-RIO ...30
Fig. 7ILA-RIO algorithm ...30
Fig. 8The adopted configuration ..32
Fig. 9Percentage of events with GTD over GIT; AIDT = 30ms ..35
Fig. 10Cumulative function of the GTDs in a scenario with 7 GSSs; AIDT = 30ms...................35
Fig. 11Percentage of discarded events; AIDT = 30ms ...36
Fig. 12# of activations of phase ON and phase 2 for ON-OFF and ILA respectively; AIDT = 30ms
..................... ..36
Fig. 13Average size of non-interactive bursts; AIDT = 30ms..37
Fig. 14Total Number of bursts of non-interactive events; AIDT = 30ms37
Fig. 15Percentage of discarded events; AIDT = 45ms ...37
Fig. 16Percentage of discarded events; AIDT = 60ms ...37
Fig. 17Percentage of events with GTD over GIT; AIDT = 45ms ..39
Fig. 18Percentage of events with GTD over GIT; AIDT = 60ms ..39
Fig. 19-aProbability of obsolescence = 50%: event percentage having GTD > GIT40
Fig. 19-b......Probability of obsolescence = 50%: percentage of discarded events40
Fig. 20-aProbability of obsolescence = 90%: event percentage having GTD > GIT40
Fig. 20-b......Probability of obsolescence = 90%; percentage of discarded events40
Fig. 21Delay definitions ...42
Fig. 22Game servers deployment ...44
Fig. 23Interactivity and fairness improvement (left) and dropped events (right) with GIT=150ms
and AIDT=30ms...45
Fig. 24Interactivity and fairness improvement (left) and dropped events (right) with GIT=200ms
and AIDT=30ms...46
Fig. 25Interactivity and fairness improvement (left) and dropped events (right) with GIT=250ms
and AIDT=30ms...46
Fig. 26Interactivity and fairness improvement (left) and dropped events (right) with GIT=300ms
and AIDT=30ms...46
Fig. 27Interactivity and fairness improvement (left) and dropped events (right) with GIT=150ms
and AIDT=20ms...47
Fig. 28Interactivity and fairness improvement (left) and dropped events (right) with GIT=200ms
and AIDT=20ms...47
Fig. 29Interactivity and fairness improvement (left) and dropped events (right) with GIT=250ms
and AIDT=20ms...48
Fig. 30Interactivity and fairness improvement (left) and dropped events (right) with GIT=300ms
and AIDT=20ms...48
Fig. 31Interactivity and fairness improvement (left) and dropped events (right) with GIT=150ms
and AIDT=10ms...49
Fig. 32Interactivity and fairness improvement (left) and dropped events (right) with GIT=200ms
and AIDT=10ms...49
Fig. 33Interactivity and fairness improvement (left) and dropped events (right) with GIT=250ms
and AIDT=10ms...50
Fig. 34Interactivity and fairness improvement (left) and dropped events (right) with GIT=300ms
and AIDT=10ms...50
Fig. 35Pseudocode of TCP Vegas congestion control..55
Fig. 36Comparison between regular and limited sending windows...56
Fig. 37Simulated topology ..57

LIST OF FIGURES

UBLCS-2006-10 6

Fig. 38In-home wireless scenario...58
Fig. 39Example of online gaming interarrival delays ..60
Fig. 40Example of online gaming jitter..60
Fig. 41FTP total throughput with different user-AP distances; shadowing deviation = 9, MAC
queue size = 50pkts ..61
Fig. 42FTP total throughput with different shadowing deviation values; user-AP distance = 10m,
MAC queue size = 50pkts ..61
Fig. 43Example of TCP congestion window; max MAC retransmissions = 262
Fig. 44Example of TCP congestion window; max MAC retransmissions = 363
Fig. 45FTP total throughput with different MAC queue sizes; user-AP distance = 10m, shadowing
deviation = 9 ..63
Fig. 46FTP total throughput with different MAC queue sizes; user-AP distance = 5m, shadowing
deviation = 9 ..64
Fig. 47TCP congestion window; MAC max retransmissions = 4, buffer size = 50 packets66
Fig. 48Online game interarrival time; MAC max retransmissions = 4, buffer size = 50 packets.....

..67
Fig. 49Online game jitter; MAC max retransmissions = 4, buffer size = 50 packets...................67
Fig. 50TCP Vegas congestion window; α = 1, β = 3, γ = 2..68
Fig. 51Online game interarrival time with concurrent TCP Vegas; α = 1, β = 3, γ = 2.............68
Fig. 52Online game jitter with concurrent TCP Vegas; α = 1, β = 3, γ = 2..................................69
Fig. 53Online game interarrival time with concurrent TCP Vegas: α = 5, β = 10, γ = 8...........69
Fig. 54Online game jitter with concurrent TCP Vegas; α = 5, β = 10, γ = 870
Fig. 55TCP Vegas congestion window; α = 1, β = 3, γ = 2..70
Fig. 56Online game interarrival time with concurrent TCP Vegas: α = 3, β = 7, γ = 5.............71
Fig. 57Online game jitter with concurrent TCP Vegas; α = 3, β = 7, γ = 5..................................72
Fig. 58Statistical values when employing limited advertised window...73
Fig. 59TCP behavior with limited advertised window and C = 18Mbps73
Fig. 60Online game interarrival time with concurrent TCP, limited advertised window, C =
18Mbps........ ..74
Fig. 61Online game jitter with concurrent TCP, limited advertised window, C = 18Mbps74
Fig. 62Statistical values for the various schemes ...75
Fig. 63Hybrid architecture for distributed game entertainment in heterogeneous scenarios
including car-networking..79

LIST OF TABLES

UBLCS-2006-10 7

List of Tables

Table I............ Sending GSSs involved in the simulations ..33
Table II Maximum, minimum, average and standard deviation of the GTDs (ms); AIDT = 30ms
........................ ...36
Table III......... Maximum, minimum, average and standard deviation of the GTDs (ms); AIDT = 45ms
........................ ...38
Table IV......... Maximum, minimum, average and standard deviation of the GTDs (ms); AIDT = 60ms
........................ ...39
Table V Percentage of obsolete and valid discarded events in ILA-RIO40
Table VI......... Simulation configuration of the wired links ..57
Table VII Simulated application flows ..58
Table VIII...... Changing parameters in the simulated configurations...59
Table IX......... Gaming flow jitter statistics; max MAC retransmissions = 4, shadowing deviation = 9...
........................ ...64
Table X Gaming flow jitter statistics; max MAC retransmissions = 3, shadowing deviation = 9...
........................ ...65

1 Introduction

UBLCS-2006-10 8

Chapter 1

Introduction

The current status of the Internet as a widely utilized tool and the overwhelming development of
wireless access technology lead us to a future in which the synergy between wireless and the Internet
will be integral part of our everyday life. Virtual libraries, remote-working, video-telephony and voice
over IP, traffic control, remote-medicine, video and music on demand, on-line games, location based
resource discovery, navigation support, are only a few of the innumerable services that will be
ubiquitously available [5, 6, 9, 10, 12, 37, 40, 42, 45, 46].

People will be continuously connected during the whole day, regardless of their location and
utilizing a plethora of traditional or new devices. Furthermore, connectivity will follow the always best

connected paradigm so that the connection will seamlessly switch from one access technology to another
guaranteeing always the best conditions for customers (i.e., cost, bandwidth, coverage, personal
preferences) [13].

We are crossing a technology threshold that will revolutionize every area of our lives. It will affect
all of our everyday habits and businesses in ways far more pervasive than people may imagine. Devices
that we use today for a limited range of special purposes will become multiple application platforms.
Even common objects such as wristwatches, cars, PDAs are evolving and their enhancement toward
multipurpose tools will accelerate as we move forward.

Wristwatch capabilities will be augmented making it able to communicate, download/play music,
keep personal/medical information, identify us to our car/home/devices, etc. Cars will be elevated from a
simple transportation vehicle to an office on the move, as well as an information provider and
entertainment center. Passengers will be allowed to access the Internet, engage in teleconferencing, play
distributed videogames, learn location based information as low traffic paths to the destination or special
offers for hotel reservations [114, 115, 116], participate in ad hoc or mesh networks [92], be part of an
urban grid [93], etc.

Paper money and coins will be completely substituted by electronic transactions. Credit cards are
already more and more frequently used by customers for their real or on-line purchases. The availability
of always connected devices will further push commerce in this direction. Pocket sized PDAs, in fact,
could be enhanced to be an easy-to-use way of payment. Customers will buy their objects and services
connecting to a web page or simply making their PDAs interact with the cashier. Even tickets for events
or travel will disappear in the paper format: PDAs or equivalent multipurpose devices will be able to
provide the information required to authenticate the completed transaction.

As a proof for this forthcoming scenario, hot spots are rapidly increasing in number providing people
with wireless connectivity in almost all the buildings they enter (e.g. home, work, cafeteria, etc.) and all
the streets they walk and drive in. A large amount of static and nomadic users relies today on a wireless
access to the Internet to run their favourite applications: email, web surfing, P2P file sharing, chatting,
and video/audio downloading/streaming.

Mobile and highly mobile users will soon be using both traditional and innovative applications.
Novel services will be provided whose utility sensibly rises for mobile users: location-dependent
information, information exchange with people around, mobile market, safe driving alert system, urban
grid for traffic control, Video/Voice over IP, Text/Voice-Chat on the move, and many others that we are
still not able to imagine [16, 22, 23, 47, 82, 113].

1 Introduction

UBLCS-2006-10 9

MMOG Subscriptions

0

2000000

4000000

6000000

8000000

10000000

J
u

n
-9

7

D
e

c
-9

7

J
u

n
-9

8

D
e

c
-9

8

J
u

n
-9

9

D
e

c
-9

9

J
u

n
-0

0

D
e

c
-0

0

J
u

n
-0

1

D
e

c
-0

1

J
u

n
-0

2

D
e

c
-0

2

J
u

n
-0

3

D
e

c
-0

3

J
u

n
-0

4

D
e

c
-0

4

J
u

n
-0

5

Figure 1. The exponential increase of MMOG subscriptions (1997-2005) [25].

Figure 2. MMOG revenue by Region (2003) [25].

Houses will not be spared by this wireless revolution. Nowadays, home networking is still limited to
few PCs and electronic equipments located in different rooms of the house; yet the vision for the near
future includes many devices networked within a single household and connected to the Internet [117].
The domotic philosophy is steadily increasing the number of habitations which combine technology and
services to improve living in the areas of safety, comfort and technical management. Smart houses will

1 Introduction

UBLCS-2006-10 10

be endowed with devices, appliances and sensors, communicating through the means of wireless
technologies and embodying active partners in managing our everyday life.

The trend of the market strongly suggests that entertainment applications are going to play a major
role in this scenario and, among them, video games are gaining more and more attention. In the last
decade, in fact, thanks to their impressive progression in plunging players into terrifically realistic and
capturing virtual worlds, videogames have expanded their market with a persistent and accelerating
growth (see Fig. 1) [24, 25].

Furthermore, this market is still far from being mature and presents large growth margins. In fact, as
can be seen in Fig. 2, a very large portion of MMOG revenues comes exclusively from South Korea
(~50 millions of habitants). By projecting this value over the whole world and pretending that all the
other developed country will eventually reach the same percentage of online players on their whole
population, we can have a clue of the astonishing potentiality which hides behind this market.

Nowadays, two main reasons above the others attract an increasing number of researchers and
practitioners toward the MMOG field. The first one is the explosive growth of the computer games
market, with an increasing trend whose end is still not in sight [26]. The second reason is represented by
the correlation between problems that emerge in developing innovative game experiences and those
typical of various other conventional research fields in Computer Science and Engineering. Indeed,
creating enjoyable online games requires the convergence of solutions belonging to extremely diverse
technical areas. Examples are represented by networking, computer graphics, animation, music and
sound, multimedia design, Artificial Intelligence (AI), human-computer interaction, software
engineering, virtual environments and distributed simulation [27, 28, 29, 30, 31, 32].

Massively Multiplayer Online Games (MMOGs) are further extending the boundaries of what has
been defined “the tenth art” with the possibility of contemporary engaging, in the same virtual scenario,
millions of players located all over the world. Indeed, one of the main elements that determine the
success of a game has always been represented by the possibility to engage in multiplayer sessions.
Humans are social beings and generally consider challenging other humans as funnier than playing alone
against an artificial intelligence. Nowadays, the boom in the Internet usage has brought the logistic
advantage of an always available virtual arena where millions of players can contemporary participate in
electronic multiuser amusements.

Furthermore, the exploding market of connectable handheld devices, always looking for new killer
applications, pushes the game industry to propose effective distributed game platforms proficient at
engaging an unlimited number of contemporary users [33, 34]. This large and emerging market is
driving researchers and practitioners to develop novel distributed solutions able to efficiently sustain
interactive multiplayer networked game sessions over best effort networks such as the Internet [7, 35,
36, 38].

1 Problem Statement and Thesis Contribution

In this Thesis we focus on problems that arise in heterogeneous networks that involve also wireless users
when trying to deploy a highly interactive entertainment system; in this context, MMOGs represents an
emblematic and challenging example.

We define the game state in the system as the set of information that univocally describes the current
configuration of the game. Players perform moves based on their perception of the game state.
Specifically, their terminals periodically render a projection of the game state on screens. Players can
hence be aware of the surrounding virtual world and influence it by generating game events which
includes, but are not limited to, the movement of an avatar, hitting/missing a target, changing difficulty
level.

In its simplest version, with no particular techniques employed, Game events are propagated from
clients to some decision point(s) which utilize(s) them to determine the new game state that will be
broadcasted. Decision point(s) could be represented by a centralized server, or a constellation of
mirrored servers, or just other players, depending on the underlying architecture (see Section 2.5).
Indeed, it is of particular interest to discuss potentially efficient game server architectures by analyzing
network and computational issues related to the maintenance of a consistent game state in the whole
game platform.

1 Introduction

UBLCS-2006-10 11

 typedef struct usercmd_s

 {

 // Interpolation time on client

 short lerp_msec;

 // Duration in ms of command

 byte msec;

 // Command view angles.

 vec3_t viewangles;

 // intended velocities

 // Forward velocity.

 float forwardmove;

 // Sideways velocity.

 float sidemove;

 // Upward velocity.

 float upmove;

 // Attack buttons

 unsigned short buttons;

 //

 // Additional fields omitted…

 //

 } usercmd_t;

Figure 3. Half-Life message format [171].

Residential broadband connectivity is currently becoming more and more common. Moreover,

MMOGs generally utilizes very small packets thus easing the bandwidth requirement for this kind of
application. As a confirmation, Fig. 3 shows the format of packets sent from client to server in Half-Life
[74, 171]. Fields represent basic information that could be contained within few tens of bytes [146].

In this context, we intend to provide cutting-edge MMOG experience both to wired and wireless
users. To this aim, we propose a scalable system able to support fairness and interactivity even when
players are connected through the wireless medium. More in detail, in order to ensure optimal
performance to players we have to split the problem into two sub-parts which requires specific solutions
applyed by different subjects.

The first sub-part regards the communications and synchronization among game servers and
represents the portion of the total connectivity that can be handled by the MMOG service provider
(either directly, or through ISP-domain managers). It is up to the MMOG service provider to deploy the
ultimate MMOG technology in this portion of the game platform.

The second sub-part, instead, is concerned with the links between game servers and their engaged
players, thus including also the wireless hops. This portion of the connectivity is out of the control of the
MMOG service provider: customers decide on their own whether they are going to subscribe cable/DSL
connectivity, set up a wireless last hop, and/or install a particular Media Center. Yet, it is a critical part,
as it generally includes the bottleneck of the connection and may include large queuing delays.

1 Introduction

UBLCS-2006-10 12

Therefore, to obtain an optimal solution we propose to proceed through successive steps and address
the two sub-problems one independently from the other. Our mechanisms complement each other since
their scopes are detached (even if connected) and, although they generate the best performance result
when combined, they produce benefits also when singularly applied.

In particular, for the first part we exploit a hybrid architecture combining both the advantages of
client-server and peer-to-peer paradigms. Our solution deploys over the network a constellation of
communicating replicated Game State Servers (GSSs), each of which locally maintains a redundant
version of the game state. Each GSS manages and updates its copy of the game state as follows: i) it
collects game events coming both from its engaged players and from other GSS peers; ii) it forwards to
all other GSSs the events generated by its connected players; iii) it updates the game state considering
the set of received game events; iv) it finally delivers the newly updated game state to its connected
players.

It goes without saying that, within this scenario, an efficient event synchronization scheme among
GSSs needs to be employed to guarantee a consistent and responsive evolution of the game state.
Indeed, one of the key factors in determining the success of an online game is represented by the ability
to rapidly deliver events among the various GSSs. While simpler turn-based games do not have to face
this problem, as only one player is allowed to perform an action at any given time, the task of providing
players with responsiveness and real-time interactions is probably the most stringent requirement for
MMOGs (especially for fast-paced MMOGs). In fact, in case of intense traffic in the network or when
excessive computational loads are slowing down some GSSs, the game delivery activity turns out to be
quite complex. As a consequence, the responsiveness of the distributed game system may be
jeopardized.

With this in mind, we propose a scheme that takes inspiration from Active Queue Management
techniques to maintain the game event delivery delays under a human perceptivity threshold and uplift
the playability degree of MMOGs. Our scheme follows a holistic approach aiming at preserving also
consistency and fairness. At the basis of our scheme lies the idea of exploiting the semantics of the game
and, in particular, the notion of obsolescence. Simply put, obsolescence entails that during a game
session some events can lose their significance as time passes, i.e., new actions may make the previous
ones irrelevant. For example, where there is a rapid succession of movements performed by a single
agent in a virtual world, the event representing the last destination supersedes the previous ones
(obsolete events).

Obsolescence allows the system to drop those game events that lose their importance during the
game evolution. Discarding superseded events for processing fresher ones may be of great help for
delay-affected GSSs. This means that, during the game event exchange activity, while responsive GSSs
may deliver all game events to provide their connected clients with a fluent game state evolution, those
GSSs that are experiencing loss of interactivity may skip the execution of obsolete events in order to
speed up the event processing activity, thus gaining interactivity.

Upholding interactivity may be useful also to the aim of ensuring fairness. In fact, we demonstrate
how our system is able to take advantage of the reduced transmission time to magnify the efficiency of a
local lag-type algorithm in ensuring fairness without compromising interactivity. This represents a very
important result since it contradicts the general belief that interactivity and fairness embodies antithetic
objectives.

However, even if our scheme is proficient in maintaining a high degree of responsiveness among
game servers, still problems may arise at the edges of the considered topology. This represents the
aforementioned second part of our problem.

Concurrent traffic may generate queues that build up at the last (or first) link of the connection, thus
delaying the game event delivery. This problem is worsened in case of players relying on wireless
connectivity. The wireless medium, in fact, is naturally prone to be easily shared by several
contemporary users who may interfere with each other. The applications run in this context may vary
and we demonstrate as some of these may be particularly harmful toward real time traffic (online games
but also video-streaming, video-chats, etc.). In particular, we show how the very popular TCP-based
FTP application for downloading files increases queuing delays to such an extent that responsiveness
may be completely jeopardized.

To this aim, we propose and compare some possible solutions aimed at maintaining low transmission
delays even on the client-server link. In particular, we evaluate different approaches which involve
diverse networking layers: i) appropriately setting IEEE 802.11b/g MAC layer parameters, ii) employing

1 Introduction

UBLCS-2006-10 13

TCP Vegas in place of the traditional TCP New Reno and, iii) limiting the advertised window for TCP
flows. Extensive simulation results for realistic wireless scenarios are provided.

The contribution of this Thesis is hence that of providing a scalable MMOG architecture endowed
with a set of solutions able to ensure interactive, fair, and consistent game event delivery even for
frenetic action games. Summarizing it with a motto: fast and fair event delivery for fast and furious

online games.

2 Thesis Outline

The remaining of this Thesis is organized as illustrated below.
In Chapter 2 we introduce the reader in the MMOG field by analyzing the most important issues in

this research area. In particular, we overview key requirements and fundamental problems shared with
traditional field in computer science, we summarize previous work that constitutes helpful background,
we propose a model for MMOG delays, and we analyze possible system architectures.

Chapter 3 depicts the general framework that we use to guarantee fast synchronization among
servers. It introduces the concepts of obsolescence and correlation and explains how to use them in
combination with queuing management techniques in order to uplift the interactivity level of the system.
Extensive results are provided to show the benefits attainable through our scheme.

Our proposed synchronization scheme is further refined in Chapter 4 where we show how increasing
interactivity is not incompatible with aiming at fairness among players. On the contrary, the latter could
be more easily achieved through the means of the former. We present experiments and outcomes that
prove our assertion.

In Chapter 5 we describe the wireless home as an important scenario where MMOGs are going to
play a major role. In particular, we demonstrate how MMOG performance could be affected by
concurrent traffic of diverse nature. We then propose and evaluate different possible techniques to find
an efficient and effectively deployable solution.

Finally, Chapter 6 concludes this Thesis and proposes a couple of very promising directions for
future research work.

2 Background

UBLCS-2006-10 14

Chapter 2

Background

We present a general introduction to the MMOG research field. In particular, we first discuss the major
MMOG issues and wrong assumptions generally made by online game developers. We then explain
fundamental problems that MMOGs share with other traditional field in computer science, thus elevating
themselves to the rank of scientific topic. After this, we propose a model for delays in MMOGs. Finally,
we analyze possible architecture for online games and survey related work in this area.

1 MMOG Issues

Several elements contribute to the success of a game: capturing graphics and visual effects, original plot,
fair difficulty, multiplayer sessions, high interactivity level, etc. MMOG is, by definition, a class of
games devised to engage a multitude of users, contemporary present in the same virtual arena even if
physically located far away from each other. This scenario could be realized through the Internet;
however, the best effort nature of the Net poses several challenges before being able to proficiently
deploy really scalable and interactive game sessions.

In this sense, a MMOG is subject to similar major issues and fundamental principles which emerge
when developing a general distributed application [75]. These are well summarized by Peter Deutsch’s
“Eight Fallacies of Distributed Computing” [130].

Essentially, developers building a general distributed application (or a MMOG) may fall in one or
more of the following wrong assumptions generating a system that is intrinsically unable to guarantee
high performance:

1. “The network is reliable”. Errors, losses, and wrong order delivery are common issues when
utilizing a network to transmit messages. The larger is the scale of our MMOG, the higher is the
probability that one of these events happens contradicting this assumption. Therefore, the
application should be able to face these issues through mechanisms able to provide reliability
without affecting the interactivity of the game system.

2. “Latency is zero”. Depending on the topology of the game network and on its conditions, delays
may conspicuously increase. Objective delays as perceived by players are impacted both by
network delays and by processing workload delays. At the same time, since MMOG requirements
for interactivity and fairness, latency is the main issue to address in this kind of application.

3. “Bandwidth is infinite”. In a LAN scale network game this assumption may still hold since the
available bandwidth is generally much larger than the required one to run a MMOG. On the other
hand, when moving to wide area networks, congestion due to a very large and unpredictable
traffic may generate bottlenecks that could invalidate this assumption.

4. “The network is secure”. Security in a large scale MMOG includes various issues that can be
shared with traditional distributed systems or even be completely new. Authentication,
subscription transactions, and cheating represent the most relevant among them.

2 Background

UBLCS-2006-10 15

5. “Topology doesn’t change”. In a LAN, failures can suddenly lead to having isolated PCs that
cannot anymore communicate among themselves nor, obviously, be engaged in a MMOG.
Considering the larger scale case of the Internet, failures are addressed by the presence of
redundant alternatives. Yet, the consequent topology change and congestion increase may
noticeably impact on the system performance.

6. “There is one administrator”. MMOGs can be deployed across large geographic areas requiring a
decentralized control of networking resources. Therefore, multiple domains and administrators
may be involved in the resource allocation.

7. “Transport cost is zero”. The exchange of messages among nodes is a characteristic that belongs
to the nature of a MMOG. These messages have to be forwarded through some infrastructure that
needs to be provided and therefore bought/rented. Moreover, as the involved network spreads
across different domains, resources among shared infrastructures have to be allocated to support
the MMOG. Transport costs are hence inflated by providers’ rates.

8. “The network is homogeneous”. The Internet is heterogeneous in nature and this characteristic is
going to become even more evident in future. As new wireless and mobile technologies are
coming into the picture, different network accesses, as well as different devices, are offered to
players. Moreover, the core of the Internet evolves gradually and slowly since the cost and the
large number of domains involved. Evolution at its edge, instead, proceeds by leaps and bounces,
thus generating an interoperating mix of components that increases the heterogeneity of the
infrastructure.

As a demonstration of the wide diffusion of these wrong assumptions, many games have been
initially developed to be singularly played on PCs. Since more and more houses have became endowed
with high speed connectivity such as cable and DSL, game vendors started to endow their products with
the possibility of playing online with other users. However, this feature has been added as an extension
of single use designed games, thus clearly inheriting the above wrong assumptions. Instead, MMOGs
aimed at providing an amusing experience to their players have to be designed since the beginning, as
intended to be played over the Internet and taking into account all the involved implications.

2 Fundamental Problems

Delving into the Internet, the first video game appears to be a simple Tennis for Two created by
Higginbotham in 1958 to entertain visitors of the Brookhaven National Laboratory, a US nuclear
research lab in Upton, New York. Since then, video games have evolved from a simple pastime into a
real business and an important research field.

Indeed, certain games simulate, relatively cheaply and safely, situations which could be much more
expensive or dangerous in the real world. Technical solutions introduced by game developers are now
employed in medical surgery, military simulations, distributed simulations, virtual reality, interactive
collaboration, distance learning, e-commerce and manufacturing systems. In this sense, several works
have been presented that describe the convergence between game technology and non-game
applications.

For example, interactive storytelling may gain benefits by employing synchronization schemes
developed for online games [64, 125]. Collaborative applications require augmented reality interfaces to
support group interaction [124]. Combat video games are utilized to enhance strategic, combat, and
decision-making skills of military commanders [126, 129, 178]. Psychology is requesting for immersive
collaborative virtual environments to investigate human behaviors and interaction [122, 123], as well as
to support traumatized patients [121]. Real time video-streaming, voice over IP, and online games are all
extremely delay sensitive applications that need fast delivery support [40, 99]. Finally, surgery
simulations and video games share a quest for realistic object behavior, immediate response to given
commands, and high-quality images [128].

These represent only a few of the innumerable intersections between video games and non-game
applications. It is hence easy to see how issues emerging with online games represent fundamental

2 Background

UBLCS-2006-10 16

problems also shared by other traditional fields in computer science, and how adapting elements of
computer games may enable the creation of compelling user experiences in several domains [120].

Under a networking point of view, distributed multiplayer games are characterized by four main
requirements which are intrinsically correlated and correspond to major research challenges involved
with MMOG, namely: interactivity, consistency, fairness, and scalability.

Interactivity (or responsiveness) refers to the delay between the generation of a game event in a node
and the time at which other nodes become aware of that event. Therefore, it includes both the network
latency and the processing time. Having a high level of interactivity represents a fundamental quality for
a MMOG. In order to assure an enjoyable playability to the final user, external stimuli generated by
players need to be processed under a human-perceptivity threshold. This means that the time elapsed
from the game event generation at a certain node and its processing time at every other node
participating in the same game session must maintain a low average value. Unfortunately, not only could
this be very hard to be accomplished in a best-effort network, but we will probably face also a high
variance in the delivery time of game packets. Variable congestion conditions in Internet could, in fact,
result in sudden slow down of the perceived game fluency on screen. Moreover, players in the same
virtual arena can increase in number, even sensibly, with almost no predictability. Some game server
may thus experience impulsive computational load and loose interactivity. These problems are obviously
amplified when plunged into a wireless scenario.

Consistency, on the other hand, regards the contemporary uniformity of the game state view in all
the nodes belonging to the system. Depending on the features of the game, consistency requirements
may be absolute or partial. The easiest way to guarantee absolute consistency would be that of making
the game proceed through discrete locksteps [98]. At each step, the system waits until having received
all the actions generated by the final users; only at this moment a new instance of the game is produced
and propagated to all the nodes. Having a single move allowed for each player and synchronizing all the
agents before moving toward the next round, for sure grants absolute consistency but, on the other hand,
impairs the responsiveness of the system. Obtaining both absolute consistency and high interactivity
would require the employment of almost unlimited network and computation resources (very high
bandwidth, very low latencies, very high speed at server to process events). A trade-off between the two
attributes needs to be found in order to develop a proficient game platform.

Fairness among users is another major issue in MMOGs. In fact, to ensure a rewarding game
experience to users, every player needs to posses the same chances of winning than any other, regardless
of the different network connections. Indeed, we are here interested in networking fairness for MMOGs
as it represents one of the major issues that need to be addressed when developing new online games. In
this context, relative delays have to be considered as important as absolute ones. Simultaneous game
evolution with identical speed should be guaranteed as much as possible to all the participants [78]. To
this aim, introducing appropriate artificial delays before displaying both generated and received game
events may represent a feasible solution. However, similar to consistency, aiming at a full fairness may
result in excessively increasing game delays, thus jeopardizing interactivity. Indeed, it is generally
believed that interactivity and fairness/consistency embodies antithetic requirements [104, 105, 127].

Scalability regards the capability of the system to provide an efficient support to a large community
of players. Regarding this point, it should be noticed that the interest of companies in online gaming
emerges from the huge revenues that may be generated by a very elevated number of customers.
Besides, humans are social beings which enjoy the presence of others in most of their amusement
activities (i.e. team sports, movies in theatres) and the competition in challenging their skills against real
adversaries. However, especially in the case of fast-paced MMOG, scalability is sometimes sacrificed to
maintain a high degree of interactivity. In some cases, in fact, the system could deny the MMOG access
to some users depending on their experienced delays [179]. These delays could have been generated by
several factors such as the location of these users with respect to the server, the network conditions, and
the current computational load of the system. Limiting the access to some customers obviously eases the
achievement of interactivity, consistency, and fairness, but at the cost of a reduced scalability.

A well designed game architecture could help in devising a MMOG which possesses all the required
qualities. The positioning of servers affects network latencies; thereby, they should be optimally located
to efficiently serve their customers [76]. Moreover, every time a new scheme is proposed as a solution
for MMOGs, all the four aforementioned key factors should be ensured and verified. Generalizing this
concept, developers should follow a holistic approach when designing a new MMOG, considering the

2 Background

UBLCS-2006-10 17

whole set of requirements and aiming at the intersection of their solutions. Addressing only one
requirement, in fact, could produce the unexpected and undesired result of jeopardizing the others.

3 Related Work

Here, we present a commented summary of research contributions that have to be considered in our
scenario. For each of them, we introduce the proposed technique and then highlight both the advantages
and disadvantages of using it. In particular, we first evaluate existing techniques aimed at increasing the
responsiveness degree of online games. We then analyze solutions proposed to ensure fairness and
consistency (solutions developed to satisfy the fairness can generally be extended to satisfy consistency
too, and viceversa). For the sake of completeness, we also provide a panoramic of anti-cheating
mechanisms analyzing their impact on the other requirements. Finally, we are interested in efficiently
extending the boundaries of MMOGs also to the wireless domain. Therefore, we discuss research about
the impact of a wireless link on measured performance.

3.1 Responsiveness

Trying to improve the responsiveness of a distributed game architecture, two main causes for delays
have to be analyzed: network latencies and computational costs. Several research works have already
brought contributions to the factual developing of efficient synchronization schemes. Compression and
aggregation consider networking having a dominant position when dealing with the delays and thus with
the playability of a MMOG [39].

More in detail, packet compression tries to speed up transmissions by reducing the amount of
payload bytes to be transmitted. However, the provided benefits are very limited as the size of online
game packets is already very small (see Fig. 3 and [146]). Aggregation, instead, merges packets together
in the attempt of reducing the transmission overhead. Both compression and aggregation pay the
achieved latency benefits with an increment in computational costs. Moreover, aggregation can generate
further waste of time if a transmission is delayed while waiting for having available other events that
could be aggregated.

In the attempt of reducing both the traffic load in the network and the computational cost to process
each game event, interest management techniques rely on the area-of-interest concept to filter events.
Players, in fact, are not impacted by game events happening far away from their current virtual position.
Therefore, sending all the game events to all the players represents a waste of network and
computational resources with no utility counterpart. Instead, an appropriate multicast based scheme
could match every packet with the nodes that really need to receive it in order to reduce both the traffic
on the channel and the processing burden at each node.

On the other hand, a tradeoff exists between the computation spared at the destination by receiving
only a limited number of packets and the required one for implementing the filtering scheme at the
sending GSS. Moreover, interest management techniques could further delay packet delivery when
applied to games having almost all the game actions to be forwarded to the majority of the participants.
Finally, area-of-interest techniques do not help in reducing latency as there is no correspondence
between players’ position in the virtual world and their actual location in the real one. In simple words,
players positioned in the same virtual area-of-interest might be physically located very far from each
other, thus not gaining any benefits in terms of propagation and queuing delay.

Slightly detaching playability from the real responsiveness of the network, optimistic algorithms for
synchronizing game state at servers can be utilized in order to avoid delay perception at destination. In
case of high delays in events forwarding between GSSs, in fact, an optimistic approach may execute
game actions on clients before really knowing if ordering would require processing other on-the-way
ones first. Game instances are thus processed without wasting any time in waiting for other packets that
might arrive later. On the other hand, this performance gain is paid with some occurrence of temporary
consistency loss. Standard Time Warp and Breathing Time Warp represent typical exemplars of this
family of algorithms [52, 53, 105]. Rollback based techniques are exploited to reestablish the
consistency of the game state but may further impact on the responsiveness of the system.

Based on this concept, a new synchronization mechanism for online games called trailing state

synchronization was presented by Cronin et al. [59]. According to this approach, every GSS locally
maintains a fixed number of copies of the game state, each of which is kept at a different simulation

2 Background

UBLCS-2006-10 18

time. In essence, each copy of the game state is associated with a particular execution, and each
execution is delayed for a fixed time interval. If no inconsistencies are detected, the game proceeds in
rendering the copy of the game state which is more forward in time; as a result, players perceive the
game evolution as being very responsive.

With this trailing state synchronization, inconsistencies are identified by comparing the leading state
(that optimistically processes game events without any additional delay) with the game states of the
delayed executions that reorder and then process the received game events. If an inconsistency is
detected, a rollback is performed by copying the (consistent) game state from the delayed execution to
the leading execution and then the rolled back game events are re-processed in the proper order. It goes
without saying that a tradeoff relationship exists between the number of game state copies maintained by
each GSS and the number of game events that need to be re-processed in case of a rollback. Moreover,
this scheme does not avoid short-term inconsistencies: it just provides a mechanism to detect and correct
them after they happened.

Optimistic algorithms can be employed also at the boundaries of the game platform. Clients could, in
fact, be equipped with the intelligence required to perform predictions of other players’ movements.
Obviously, unless utilizing a fully distributed architecture, servers have still to validate clients’
predictions. If the prediction results wrong, the server(s) will eventually correct the mistake and restore a
consistent game state. However, a full Round Trip Time (RTT) may elapse between the generation of an
inconsistency due to wrong prediction and its correction. If this period of time surpasses the human
perceptivity threshold, players could be annoyed by it.

In general, prediction techniques rest upon the assumption that a consistent game state exists at some
point. From this starting point, new actions are predicted and executed on clients’ screen. For instance,
50 frames per second represent a typical refreshing rate for an online game and correspond to one new
game state sent from the server to the client every 20ms. Considering a connection of 100ms of RTT,
this amounts to 5 game events that could be subject to rollback if the server does not confirm the
correctness of the predictions [171].

A tradeoff between the speed of executing game actions and the frequency of short-term
inconsistencies is hence present in this kind of solutions. Moreover, client side prediction techniques
require that clients and servers share the same predictive code; this solution could hence be not
applicable on clients equipped with low computational resources. Finally, having portions of code
shared between all clients and servers gives an advantage to malicious players. Cheaters, in fact, could
become aware of the next expected (and predicted) actions of regular players and modify their behaviors
in order to obtain the maximum benefits out of it.

Extrapolation and Interpolation are particular instances of the optimistic approach. With
extrapolation, the next action and position of a virtual object (even an avatar) are predicted by exploiting
the current available information (i.e. current position, speed, direction). Actions can thus be rendered on
the screen before really receiving the related game event.

In games where physical rules of the real world are respected, the task of predicting events forward
in time is made easier. Unfortunately, most of the games available in commerce present very poor
similarities with real physical laws or ballistic models. Indeed, virtual object in games are usually
allowed to perform sudden actions featured with huge acceleration/deceleration and instantaneous
change of direction. These unrealistic movements cannot be anticipated by extrapolation and result in
inconsistencies that affect the player’s perception of the game evolution. Depending on the extension of
the extrapolated time, these errors can be more or less evident. Therefore a tradeoff exists between the
impact of these inconsistencies and the augment of responsiveness that can be simulated by this scheme.

Interpolation is another technique that tries to guess the position/action of a virtual object at a certain
moment without having precise information about it. In particular, interpolation uses exact information
about two valid positions/actions of an object at two different moments to determine how to display the
in-between movements of that object.

When interpolation is employed the constraint for reliability in game event delivery can be relaxed.
For instance, if some of the movements of an avatar, leading from an initial to a final position, are lost,
the system is still able to reconstruct the whole sequence. However, some critical movements cannot be
interpolated without creating inconsistencies, thus requiring reliable transmission (see the notion of
correlated events in Section 3.2).

2 Background

UBLCS-2006-10 19

3.2 Consistency and Fairness

The simplest way to enforce fairness and consistency in the game is that of proceeding through discrete
locksteps [98]. Simply stated, the game evolves by marching in step and players have to wait their turn
before making any action. Every game event is thereby reliably received by all the players before any
new move could be instantiated. Consistency and fairness are hence ensured by the fact that before
proceeding to any new step, all the nodes in the game platform will share the same identical game state
view.

Unfortunately, this scheme is affected by some important drawbacks. The most relevant one is the
fact that locksteps cannot be used for interactive games since updates are displayed on screens only after
having received game events from all the players. This requires reliable transmission of game events and
may sometimes require many seconds, thus making the game proceed very slowly. Moreover, if one
node in the system fails, then all the others could wait indefinitely before receiving updates from that
node and impeding any progress in the game evolution.

In [71, 105, 131], Mauve et al. presented an optimistic approach for the consistency control in
networked multiplayer games. Their approach utilizes the local lag control mechanism combined with a
modified Time Warp (executed only when necessary) in the attempt of solving the trade-off relationship
existing between responsiveness and consistency.

In particular, Mauve et al. devised a synchronization approach based on the idea of intentionally
decreasing the responsiveness of the application in order to eliminate short-term inconsistencies.
Exploiting a local lag approach, game events are delayed for a certain amount of time before being
executed by clients. This additional delay permits the reordering of the received events in order to
minimize inconsistencies. However, the presence of this delay is not always sufficient to prevent short-
term inconsistencies as game events might still arrive late due to jitter or packet loss in the network.

In [137], Li et al. presented a continuous consistency control mechanism for supporting networked
multiplayer games. Similar to [105], this approach rests on the idea that game events should not be
considered as discrete updates of the game state, but rather as continuous actions in the game world. In
this context, the authors proposed a relaxed time-dependent consistency control scheme which gradually
synchronizes the nodes in the system and ensures that the possible discrepancy among game states
stored at each node never exceeds a predefined threshold.

As it is evident, this scheme does not avoid short-term inconsistency. Rather, it deals with them after
a certain period of time to avoid that the divergence among the various game state views does not
become excessive. However, players’ gaming experience could still result affected.

Other approaches simply assume that delaying the game event processing activity for a
predetermined amount of time may be sufficient to guarantee a uniform evolution of the game state at
different nodes without any need to resort to rollback. Following this idea, Diot and Gautier depicted in
[132] a synchronization mechanism which embodies an optimistic version of the well known
conservative bucket synchronization algorithm.

Their approach assumes that there exists a processing deadline (which defines a time bucket) and
that a correct evolution of the game requires that all game events are received prior to this deadline. In
essence, the idea behind this scheme is that of ordering and processing game events at the end of the
time bucket. If some game events are not received before the time bucket expiration, dead reckoning
techniques are exploited to compensate event losses [134, 135]. A similar approach was presented also
in [133]; in both cases, the main drawback is that dead reckoning does not ensure the full consistency of
the distributed game state.

Short-term inconsistencies may still arise if the bucket size is set excessively small but, on the other
hand, using large buckets may induce severe responsiveness degradation. Further, a complex problem is
that of fitting the bucket size with the unstable condition of the Internet where large and variable jitter
values may be experienced.

Fairness among users is a very important issue in online games. Every player has to possess the same
chances of winning than any other. To this aim, it is fundamental that delays impact on all participants in
equal measure. Fairness could be enforced by compensating latency differences among players with an
appropriate queuing of game events at each client before presenting them onto the screen [54, 78, 94,
104, 105]. This artificial injection of an appropriate amount of delay is usually referred to as Local Lag
technique.

In essence, this scheme normalizes the game state so as to have all the players virtually brought back
at the time when a certain game event was generated. Unfortunately, pure Local Lag algorithm does not

2 Background

UBLCS-2006-10 20

solve the tradeoff between interactivity and fairness anticipated in Section 2.2.. Lags, in fact, can be
inflated only up to the delay perceptivity threshold; otherwise all the players will be affected by
excessive delays which jeopardize the interactivity degree of the whole game platform.

Finally, aiming at ensuring consistency, Knutsson et al. propose in [136] the use of coordinators to
solve update conflicts that may occur in a peer-to-peer architecture. In particular, they split the game
state management into different classes handled by different coordinators within a group of interested
peers. Aiming at guaranteeing fault tolerance, they also propose the use of a primary-backup protocol to
address possible fail-stop failures of coordinators. However, several issues arise in this context such as,
coordinator election, fairness maintenance among different kind of nodes, authentication, and cheating
avoidance from malicious intruders that become coordinators.

3.3 Cheating

A deep analysis on cheating and proposed solutions is out of the scope of this Thesis. Nonetheless, for
the sake of completeness we provide a short panoramic of work on this topic. Moreover, research in this
area generally proposes protocols which also include solutions aimed at sustaining other key
requirements such as interactivity, consistency, and fairness. Conversely, none of the schemes reviewed
till now proposes any cheat-proof mechanism.

A general taxonomy of cheating in online games can be found in [169]. A more detailed one,
adopting a classification based on networking layers and then further categorizing the protocol level

cheats class, is presented in [167]. In [167], the authors also present NEO, a low-latency event ordering
protocol for a distributed architecture. Designed to improve the responsiveness of the game while
preventing protocol level cheats, NEO takes inspiration from bucket synchronization and divides the
time into equal intervals called rounds. Within these rounds, players send encrypted updates to each
other and, in the following round, players send key to decrypt the updates sent. After this, a voting
mechanism is employed to achieve majority based consistency and responsiveness.

Specifically, every new game state update is accepted by players only if a majority of them has
received it on time. Consistency is hence maintained through a distributed voting system which collects
positive votes from players who have received the game state update in time, and negative votes from
delay affected players. In order to avoid interactivity loss, NEO does not wait for receiving all the votes.
The relationship between game progression and communication reliability is weakened, any non-
received votes at the end of the round are considered abstentions, and only the receiving of a majority of
votes is required to consider the election as valid.

Therefore, NEO does not guarantee continuous global consistency or interactivity. Rather, its aim is
that of ensuring these properties for a majority of players, and utilizing dead reckoning techniques in
order to adjust the game state view for the rest of them (a minority). Obviously, depending on the
definitions of majority and minority a different tradeoff can be found for interactivity and consistency.
However, the length of a round is limited by the maximum latency acceptable to still consider the system
as responsive, and no effort is devoted to facilitate a more efficient solution for this tradeoff by
effectively decreasing the delays caused by traffic conditions. On the contrary, a bucket synchronization
mechanism which also requires multiple rounds in order to send updates, encrypt them, and voting for
determining their consistency, definitely affects the responsiveness of the system, and is therefore not
well suited for highly interactive games.

An extreme solution for the protocol level cheats makes use of the aforementioned concept of
locksteps. In particular, Baughman and Levine design in [168] a protocol that forces players to reveal
their moves before actually performing them and, most important, before receiving any plain-text move
from any other player. Thereby, this scheme prevents anyone from performing late changes of their
moves based on the knowledge about other players’ actions.

Two steps characterize this protocol. First, each player has to communicate her/his next move
utilizing an encrypted message; the move is hence committed even if not revealed ahead of time. Finally,
each player sends her/his move in clear. The authors also propose the utilization of area-of-interest
techniques to reduce the overhead in the system caused by the reliable transport of commitment
messages. Nonetheless, any lockstep based mechanism leaves unresolved several problems and, among
the others the most critical one is the lack of responsiveness (as already seen in Section 2.3.1).

Another method based on locksteps is presented in [170]. In this work, Chen and Maheswaran
developed a mechanism for P2P architecture composed by two protocols: the first one aimed at ensuring

2 Background

UBLCS-2006-10 21

fairness among all players regardless of their latencies, and the second one able to prevent certain types
of time-cheats.

The fairness ensuring protocol makes use of specific nodes called pulser, and of network sensors.
The former are elected nodes which periodically broadcast game state updates (pulses), while the latter
detect the current status of the network and adapt the pulses sending rate in order to meet the fairness
requirement.

Pulsers are also used to implement encryption on game messages in order to avoid time-cheats. In
particular, they forward encrypted messages at a pace which corresponds to that one achieved by the
slowest player. The authors demonstrate how this is sufficient to prevent faster players from maliciously
peek into the future with respect to slower players.

Unfortunately this scheme presents several lacks. First, there is no real guarantee about the fine
precision of the estimated network conditions; this is particularly true in the case where nodes are
dispersed and sensors are not in close proximity of each of them. Second, this scheme works only if the
whole structure (i.e., sensors and pulsars) can be adequately distributed over the Internet. Indeed,
providing efficient clusterization of the nodes with respect to the sensors and the pulsers remains an
open problem for this scheme. Finally, the anti-cheating mechanism only addresses time-cheats, while
many other possible ways to gain unfair advantages have not been treated.

3.4 Performance Evaluation over Wireless Links

In recent years, many researchers have focused their studies on the problems encountered in a wireless
environment [15, 56]. We try to limit the scope of our survey to those works that are related to problems
we are trying to address in this Thesis and to the solutions we propose and evaluate in Chapter 5.

Focusing on MAC layer retransmissions, TCP and UDP flows have been tested by Nam et al over a
IEEE 802.11 wireless link when different signal levels were present. They showed that without
retransmissions implemented at the link layer, loss rates become unacceptable for any application [3].
The claim that MAC layer retransmissions improve TCP performance was confirmed also by Xylomenos
and Polyzos, who experimented TCP and UDP on a WLAN and analyzed their behavior with different
interfaces and bidirectional TCP traffic [4].

Said that, we may ask ourselves whether the current number of MAC layer retransmissions
represents the optimal choice to support both TCP-based traffic and real time applications. Indeed, a
high number of repeated retransmissions could still be not enough to prevent TCP from experiencing
timeouts and retransmitting the same data as the MAC layer. At the same time, MAC retransmissions
can be wasteful and potentially harmful for time-sensitive applications, such as real time video/audio or
online games over UDP [166].

It should be said that a vast collection of research papers focusing on 802.11 could be found by
delving into the Internet. They present analysis, problems, and solutions. Nonetheless, the vast majority
of them provides results that focus on a throughput/losses point of view [57, 172, 173, 174, 176, 177],
while the performance of real time applications depends on the measured per packet delay and jitter
[58]. Even if some recent works present delay measurements for real time applications over IEEE
802.11, a deep analysis of this issue with respect to MMOG is still missing, as well as efficient solutions
aimed at reducing queuing delay over wireless links [166, 175].

4 System Model

Aimed at providing a holistic solution for MMOGs and being aware of related works, we can now
analytically study the four main requirements seen in Section 2.2 and the tradeoff relationship existing
among them.

Every class of game is featured by a peculiar (and fixed) Game Interactivity Threshold (GIT) that
represents the maximum delay endurable before visualizing a game event on players’ screens if one
wishes to preserve interactivity. The typical GIT for fast paced games (i.e. vehicle racing, first person
shooter) corresponds to 150-200ms but this value can be increased up to seconds in case of slow paced
games (i.e. strategic, role play game) [77, 78, 80, 106, 107].

2 Background

UBLCS-2006-10 22

If we call
)e(gt the generation time of event e and

)e(v

it the visualization time of the same event at
player i, then interactivity is preserved at i during the delivery of e when the following condition is
satisfied:

 .GITtt
)e(g)e(v

i ≤− (1)
Both consistency and fairness regards having the same game state contemporary viewed in all the

nodes of the system. Therefore, the same class of techniques is generally used to achieve each of them
(or both). The easiest way to guarantee consistency and fairness is to make the game proceeding through
discrete locksteps. Unfortunately, as discussed in Section 2.3, this scheme cannot be applied to
interactive games.

To ensure fairness (and consistency) in continuously evolving games several studies propose
schemes based on the introduction of artificial delays in order to contemporary visualize game events on
all the players’ screens (i.e., local lag schemes) [54, 78, 94, 104, 105].

With local lag, game advancements are delayed for a sufficient amount of time in order to guarantee
that all the clients in the system process and perceive the generated game events at the same time and in
the same order. Indeed, since the generation time of each event is unique and considering CC, the set of
clients, we can say that we have event-related fairness [109] for event e if condition (2) is satisfied,

simply stated, if there is a unique
)e(vt value for all the players:

 .CCitt)e(v)e(v

i ∈∀= (2)

Since a single game event experiences different overall delays (OD) in its paths from the source to
all the diverse destinations, different amounts of artificial delay δ should be added in order to
contemporary visualize the same event e on all the players’ screens and hence to satisfy the following
condition:

 .CCit)e()e(ODt)e(v

ii

)e(g
∈∀=++ δ (3)

A possible value typically chosen for the unique
)e(vt is represented by the highest OD in

transmitting events amongst nodes. When the highest OD is greater than GIT, however, fairness is
preserved at the cost of jeopardizing interactivity for all the players. Conversely, if we use GIT as an

upper bound to
)e(vt , then we can guarantee interactivity but not fairness.

Consequently, in order to maximize the possibility to obtain both interactivity and fairness
)e(vt

should be set as

 .GITtt)e(g)e(v
+= (4)

The ODi(e) experienced by an event e when it finally reaches client i is composed by several delay
components, respectively: physical latency li(e), queuing time qi(e) on nodes along the path, and
processing time pi(e). Therefore, ODi(e) can be written as

).e(p)e(q)e(l)e(OD iiii ++= (5)

Even when the network latency would allow having values of OD, and hence also of
)e(vt , lower

than GIT, a large number of players generating a huge amount of traffic may raise the value of the other
two components (i.e., qi(e) and pi(e)), thus leading us again to the crossroad between fairness and
interactivity.

To conclude, the efficiency and applicability of popular delayed-based algorithms such as local lag
strongly depend on the network conditions and on the interactivity degree required by the game. Yet,
guaranteeing both interactivity and full fairness through local lag can sometimes be achieved only at the
cost of limiting the scalability of the game by bounding the number of contemporary participants and the
geographical extension of the target player market.

It hence becomes evident how MMOGs require the use of architectural solutions and algorithms able
to reduce the delay components in (5) in order to find the most efficient tradeoff among interactivity,
consistency, fairness, and scalability.

2 Background

UBLCS-2006-10 23

5 Architectures

Typically, network architectures supporting MMOGs can be distinguished based on three main
categories as depicted by Fig. 4: centralized client-server, fully distributed, and mirrored game server.

In the centralized client-server architecture, we have a single authoritative point which is responsible
to run the main logic of the game. We report here only a few of its tasks: execute players’ commands,
enforce consistency, send back to the client the new game state update, etc. Clients have only to receive
the new game state update, render it on the screen, and forward player’s commands. The single
authoritative point is usually represented by a single server; however, a cluster of computers could be
utilized as well in order to increase the performance of the system [97].

The centralized client-server architecture represents the simplest solution for authentication
procedures, security issues, and consistency maintenance [35, 95, 96, 97]. Moreover, assuming to have
N simultaneous players, the generated messages are in the order of O(N). On the other hand, the unique
bottleneck limits the efficiency and scalability of this solution.

Fully distributed architectures are well represented by the peer-to-peer paradigm. In this case, all the
involved nodes share the same intelligence and are responsible for running the whole logic of the
system. In this case, in fact, each client has to autonomously update the game state view based on its
player’s commands and on game actions received from other players. This obviously requires terminals
endowed with higher computational capabilities.

The main advantage in employing a fully distributed architecture is that of spreading the traffic load
among many nodes thus generating a more scalable and failure resilient system [94, 112]. However,
identical copies of the current game state need to be stored at each node. This requires some complex
coordination scheme among peers; in fact, this scheme has to be distributed over the set of involved
nodes and has to be able to guarantee the coherence of all game state views. Moreover, with fully
distributed architecture, multicast should be employed to reduce the bandwidth requirements, but
multicast technology is neither generally available nor mature enough for the specific application we are
considering here. The exchanged messages could hence raise to the order of O(N

2
). Finally,

authentication, cheating, and general consensus among all the peers are harder to be addressed than
when a centralized architecture is employed.

Mirrored game server architectures represent a hybrid solution which efficiently embraces all the
positive aspects of both centralized client-server and fully distributed architectures [59]. Based on this
approach, GSSs are interconnected in a peer-to-peer fashion over the Internet and contain replicas of the
same game state view. Players communicate with their closest GSS through the client-server paradigm.
Each GSS gathers all the game events of its engaged players, updates the game state and regularly
forwards it to all its players and GSS peers.

The presence of multiple high performance GSSs helps in distributing the traffic over the system and
reduces the processing burden at each node [112]. Moreover, having each player connected to a close
GSS reduces the impact of the player-dependent access technology (e.g., dial-up, cable, DSL) on the
total delay experienced [110]. In this case, in fact, the communication among players results mainly
deployed over links physically connecting GSSs, which can exploit the fastest available technology
(e.g., optical fibers) to reduce latency. As a result, this architecture helps one in finding better solutions
for the tradeoff among interactivity, consistency, fairness and scalability.

Other advantages in employing mirrored game server architecture are the absence of a single point of
failure, the networking complexity maintained at server side, and the possibility to easily implement
authentication procedures. Even if synchronization is still required to ensure the global consistency of
the game state held by the various servers, this requirement is made easier with respect to fully
distributed architectures thanks to the lower number of involved nodes. Assuming to have N players and
M GSSs, for example, the generated game messages amount to O(N+M), which is again O(N) unless
considering the unlikely case of having more servers than players.

2 Background

UBLCS-2006-10 24

Internet

Centralized Client-Server

GSS

Internet

Centralized Client-Server

GSS

Internet

Fully Distributed

Internet

Fully Distributed

GSS
1

GSS
2

GSS
5

GSS
3

Internet

GSS
4

Mirrored Game Server

GSS
1

GSS
2

GSS
5

GSS
3

Internet

GSS
4

Mirrored Game Server

Figure 4. Online game architectures.

2 Background

UBLCS-2006-10 25

3 Fast Synchronization Framework

UBLCS-2006-10 26

Chapter 3

Fast Synchronization Framework

1 Proposed Architecture

Since the analysis of advantages and disadvantages about the various possibilities illustrated in
Section 2.5, mirrored game server emerges as the most appropriate architecture in order to efficiently
manage large-scale distributed games. Indeed, this architecture embodies the advantages of both client-
server and fully distributed paradigms and, in particular, it preserves the two most important features
required by a MMOG architecture: scalability and controllability. The former is required to allow a
multitude of players to engage in the same virtual arena. The latter regards the possibility to control the
access to the game, avoid cheating, and have a centralized core where new techniques could be easily
deployed to improve performance. Indeed, based on this architecture, we have devised an efficient
synchronization scheme among GSSs able to enforce a high interactivity degree while guaranteeing a
uniform view of the current game state.

Moreover, in Section 4 we will demonstrate how to exploit this architecture and our synchronization
scheme to achieve also fairness, while in Section 5 we will focus on preserving interactivity and fairness
also in the last hop of the connection. We will show how to enhance the mirrored game server
architecture to make it able to sustain MMOG applications regardless of the connectivity type exploited
on the client-server link.

2 Obsolescence and Correlation: Maintaining Responsiveness and

Consistency

Absolute Consistency can be attained through the employment of a totally ordered event delivery
scheme [60, 61]. On the other hand, this would imply an increment of the complexity and of the total
delay experienced by the system. Waiting for the next in order action to be processed, while having
other events ready in queue, may sensibly slow down the evolution of the game thus jeopardizing
responsiveness.

Exploiting the semantics of the game can be put to good use to relax the total order delivery
requirement and augment responsiveness [63, 64]. Some events, in fact, can lose their significance as
time passes: new actions could make irrelevant previous ones. For example, player’s movements are
generally represented by final absolute position and, in case of rapid succession of movements of a
single agent, the event representing its last destination makes obsolete the older ones.

Obsolescence can thus be defined as the relation between two received events e1 and e2, generated at
different times t(e1) < t(e2), by which the existence of event e2 diminishes the importance of processing
also event e1, without affecting consistency (see Fig. 5-a). Dropping obsolete events before processing
them clearly reduces computation at GSSs and speeds up the execution of fresher events.

3 Fast Synchronization Framework

UBLCS-2006-10 27

Figure 5. Examples of obsolescence and correlation

(a) Event e2 makes obsolete e1; (b) Event ec is correlated to e1 and rescinds the obsolescence of e1.

To define as obsolete a game event, we have to be sure that consistency would not be weakened. To

this aim, we have also to take into account the notion of correlation. Two events, say e1 and ec, are
correlated if the final game state depends on their execution order. Correlation has to be taken into
account to determine the obsolescence of an event. As depicted in Fig. 5-b, it might be the case when e2
would make obsolete a previous event e1 but a further event ec (correlated to e1), temporary interleaved
between e1 and e2, rescinds this relationship of obsolescence. However, they are the only events that
really need to be reliably delivered to all destined GSSs and in the same order as they were generated.

Total order delivery requirement can thus be relaxed in case of non-correlated game events. Their
semantic independence, in fact, allows different GSSs to process them in diverse orders without
affecting consistency. This means that non-correlated game events can be processed as soon as they are
received without wasting any time in waiting preceding ones, thus augmenting responsiveness; missing
game events can be interpolated and rendered on players’ screens (see Section 2.3.1). Interested readers
may find a deeper analysis on obsolescence and correlation in [63, 64].

On the other hand, our experiences with online games over a best effort network lead us to claim that
there exist cases where even dropping all the obsolete events in a game is not enough to ensure an
adequate interactivity degree. This is particularly true for a class of games that requires frenetic, and
often redundant, players’ actions. This class of games is widely recognized in the gaming community as
fast-paced (or fast and furious) games: shoot/beat’em up games represent typical exemplars. For this
class of games, even discarding some non-obsolete events may be preferred to compromise
responsiveness and consequently users’ perceived playability. Discarding some non obsolete event may
generate some sporadic inconsistencies in the game state; nonetheless, we deem that partial consistency
for a small amount of time becomes acceptable for the specific class of fast and furious online games. In

time

GSS1

GSS2

GSS3

e2 – A moves in
(x2,y2)

e1 - A moves in
(x1,y1)

e1 is

obsolete

(a)

(b)
time

e2 – A moves in
(x2,y2)

ec - B shoots at A

GSS1

GSS2

GSS3

e1 – A moves in
(x1,y1)

e1 is

non-obsolete

3 Fast Synchronization Framework

UBLCS-2006-10 28

this scenario, in fact, the necessity of a very high interactivity degree emerges as overwhelming even on
the full-consistency requirement.

3 Interactivity Restoring Mechanism

Exploiting the notions of obsolescence and correlation, Ferretti and Roccetti propose a mechanism to
restore interactivity in mirrored game server architecture [63]. The player’s actions are collected by the
closer GSS, transformed into events and finally forwarded to other GSSs in order to maintain a global
identical view of the game state. Events are marked at their creation with a generation timestamp and
then sent to destination: they are hence orderable. Obviously, a global concept of time has to be
maintained by all the GSSs. Different solutions proposed in literature can synchronize the clocks at each
GSS [65, 66, 67]. Alternatively, this can also be obtained by exploiting some new technological
synchronization device such as GPS.

Since UDP is used as the transmission protocol, missing packets are handled at the application level.
Game state updates transmitted by GSSs, in fact, are identified by sequence number. By the means of
NACK (Negative ACKnowledgment) packets it is possible to determine which ones are missing and
decide whether to retransmit them or not.

Each receiving GSS considers the arrival time of the event and measures the difference elapsed since
its generation; the resulting value is named Game Time Difference (GTD). The GTD of the event is then
compared with the predefined constant GIT (see Section 4) and normal delivery operations are
performed until the former value is lower than the latter. When the GTD value exceeds the GIT, the GSS
turns on a stabilization mechanism which exploits the obsolescence notion to drop useless events so as
to bring the GTD back within the GIT. Moreover, messages are sent to the connected GSSs in order to
make them aware of the witnessed lack of responsiveness. These GSSs can thus avoid to forward
obsolete and missing events to the non interactive GSS thus helping in restoring faster

4 RED/RIO Techniques

Random Early Detection (RED) algorithm is an active congestion avoidance mechanism enforced at
routers [68]. Traditional queue management employs simple “tail drop” schemes that drop packets only
when the queue overflows. Conversely, RED algorithm randomly performs early packet discards to
notify sources about the incipient congestion. In this way, a single loss experienced by a sender
smoothly decreases the entire congestion level of the network and keeps the average queue size at a low
level. The rationale lies in the gained capability of better accommodating occasional bursts of packets
and avoiding situations in which several connections simultaneously decrease their sending rate.
Summarizing, RED avoids severe congestion and maintains a stable traffic level in place of dealing with
congestion after already occurred.

Every time the router receives a packet, the RED algorithm calculates the new average queue size
and the probability to discard the packet. The computing method utilizes a uniform random variable,
which has been proven to be more adequate to this aim than a geometric random variable. In fact, a
uniformly distributed discarding function avoids global synchronization thus attaining an unwavering
course of transmissions. The dropping probability is bounded by two thresholds of the queue size: min
and max. Within this interval, the probability to drop a packet increases from 0 to a maximum discarding
probability (Pmax). Under min, no packet is dropped and beyond max all packets are discarded.

RIO (RED with In and Out) scheme is an enhanced version of RED mechanism able to discriminate
between two different classes of traffic, non-prioritized (Out) and prioritized (In), and calculates two
distinct dropping probabilities [70]. The two dropping functions work independently and are featured
with specific boundaries and slopes. They hence permit to discard packets utilizing different
probabilities and congestion levels depending on the packets’ traffic class.

3 Fast Synchronization Framework

UBLCS-2006-10 29

5 Enhancing Interactivity with RED/RIO Techniques

Taking inspiration from the RED approach in case of incipient congestion in best effort networks, we
have recently enhanced the aforementioned Interactivity Restoring mechanism with the Interactivity-
Loss Avoidance (ILA) approach [62]. The main innovation is the capability to preempt responsiveness
disruption instead of restoring it after having already lost playability. To this aim, the system discards
some packets when the responsiveness among GSSs descends significantly. In practice, ILA replaces the
basic binary dropping mechanism for obsolete events (OFF when interactivity is present and ON when
interactivity is lost) with a continuously-working proactive mechanism that drops obsolete events with a
probability that depends on the level of responsiveness of the system.

Even if, similarly to RED, ILA utilizes a uniformly distributed dropping function, the parameter
taken under control is the average GTD instead of the average queue size. Upon each packet arrival, in
fact, each GSS determines the GTD of the arrived event, namely sample_GTD, and feeds a low pass
filter to compute the updated average GTD, namely avg_GTD. When avg_GTD exceeds a certain
threshold, the GSS drops obsolete events with a certain probability p, without processing them. If
avg_GTD exceeds a subsequent limit, p is set equal to 1, and all obsolete events waiting for being
processed are discarded.

Obviously, if the low interactivity degree perceived by some GSSs is not affecting other GSSs, the
latter can process and forward to their clients even those packets discarded by the formers. Indeed, since
obsolete events are actions that can be considered non-critical for the game evolution, there is no
unfairness generated by processing them only in some GSSs. On the other hand, not processing those
events in highly interactive GSSs would represent an unjustified limitation, even if light, to the number
of events visualized at some player’s side. For instance, an intermediate movement of a game character,
when the final position is further ahead and no shooting nor other hazards could harm it, could receive
different treatments: it can be dropped by some GSSs to preserve interactivity, or can as well be
processed by other GSSs for the sake of a complete and fluent game visualization on the screens of their
clients without relying on imprecise and computationally expensive interpolations.

To ensure an adequate playability degree even to the class of fast and furious games we have then
further enhanced our ILA scheme. For this class of games, in fact, the core attractiveness for players
emerges from a feverish, sometimes even chaotic, action sequence of user’s actions. We have hence
enhanced our ILA scheme with features derived from the integration of a RIO-like algorithm in place of
the RED-like one [69]. The additional dropping probability provides the possibility to discard even non-
obsolete game events when dropping all the obsolete ones is not yet sufficient to maintain an adequate
level of responsiveness. The two discarding functions are featured with specific parameters; they work
independently one from the other and take action in sequence with the increasing of the game event
GTDs at the GSSs.

Dropping non-obsolete events can be done without consequences only for a category of games where
little inconsistencies are not highly deleterious for the aim of the game and for player’s fun (e.g., fast-
paced games). Even in this case, if the number of dropped non-obsolete events becomes significant, a
consistency restoring mechanism may be required to re-establish a coherent game state view among all
GSSs [71]. For the sake of clarity, from here on we are going to call ILA-RED the ILA version that
discards only obsolete events, while ILA-RIO represents the version with two discarding functions.
When we want to refer to both the algorithm with no distinction we just use the word ILA.

In Fig. 6 we depict the two discarding functions of ILA-RIO. Three parameters (and three phases)
characterize each of the twin algorithms: mino, maxo and Pmaxo, for obsolete events, and minv, maxv and
Pmaxv for valid (i.e., non obsolete) ones. In the graph, the y-axis represents the dropping probability
corresponding to the avg_GTD indicated by the x-axis. Focusing on obsolete events, for values of
avg_GTD in [0, mino) the mechanism performs normal operations, with no packet drops, while in [mino,
maxo) obsolete packets are discarded with a computed probability, and finally in [maxo, ∞) all obsolete
packets are thrown away. The intervals [0, minv), [minv, maxv), and [maxv, ∞) define the corresponding
phases for valid events. The dropping probabilities are computed as a function of avg_GTD and of
Pmaxo or Pmaxv, respectively. Persistent situations of low interactivity degree result in high avg_GTD
and hence in high discarding probabilities. High dropping probability values (for Pmaxo or Pmaxv) will
make the GSS discarding events without processing nor forwarding them, thus helping in restoring an
adequate level of time interaction between servers.

3 Fast Synchronization Framework

UBLCS-2006-10 30

mino avg_GTD

Pmaxo

1

Dropping

Probability

maxo

Pmaxv

minv maxv

phase 0 phase 1 phase 2 phase 3 phase 4

Figure 6. Discarding probability functions for ILA-RIO.

0] for each event_packet arrival {

1] determine the sample_GTD

2] calculate the new average delay avg_GTD

3] if (mino ≤ avg_GTD < maxo) then

4] calculate the probability Po of dropping an obsolete event

5] determine if ONE obsolete event has to be discarded

6] else if (maxo ≤ avg_GTD) then

7] drop ALL obsolete events

8] if (minv ≤ avg_GTD < maxv) then

9] calculate the probability Pv of dropping a valid event

10] determine if ONE valid event has to be discarded

11] else if (maxv ≤ avg_GTD) then

12] drop ALL valid events

13] endif

14] endif

15] endfor

Figure 7. ILA-RIO algorithm.

3 Fast Synchronization Framework

UBLCS-2006-10 31

Since valid events are strictly linked to consistency, the possibility to discard them should be taken
into account only as last resort, in case of heavy disruption of responsiveness. For this reason, ILA-RIO
starts dropping obsolete packets much earlier than valid ones. In addition, the algorithm throws away all
the obsolete packets before considering any dropping probability on valid events; simply stated: maxo is
smaller than minv. Finally, diverse aggressiveness in dropping packets, depending on their class, can be
decided by adjusting the values of Pmaxo and Pmaxv.

In essence, the algorithm repeats a block of operations (listed in Fig. 7) each time a new event arrives
at the considered GSS. In particular, the GTD of the game event is calculated (sample_GTD, line 1) as
the difference between the generation time at the sending GSS and its delivery time to the considered
receiving GSS. The scheme feeds a low pass filter with the just calculated sample_GTD in order to
update the average of the GTDs (avg_GTD, line 2):

 avg_GTD = avg_GTD + w*(sample_GTD - avg_GTD). (6)

In (6), w is a sensitivity coefficient, with values comprised in (0, 1], that determines how closely the
trajectory of the average follows the movements of the samples. Higher values of w correspond to
heavier relative weights of the last sample in the current average.

While avg_GTD lies below mino, the process stays in phase 0 and no particular operation is
performed. Conversely, when avg_GTD is comprised between mino and maxo, then the scheme is in
phase 1 and lines 4-5 are executed. Basically, a dropping probability Po is computed as a fraction of
Pmaxo in order to establish whether an obsolete event must be discarded; this fraction linearly
corresponds to the position of avg_GTD in the interval [mino, maxo).

)min(max

)min(avg_GTDPmax
P

oo

oo
o

−

−×
= . (7)

Analogously, when avg_GTD is comprised between minv and maxv, then the scheme lies in phase 3
and lines 9-10 are executed. The probability Pv to discard a valid event is then calculated as a fraction of
Pmaxv depending on the position of avg_GTD in the interval [minv, maxv).

)min(max

)min(avg_GTDPmax
P

vv

vv
v

−

−×
= . (8)

If the algorithm stays in phase 1 or 3 the corresponding dropping probability increases until an event
is discarded. In particular, two couple of constants, L1 and L2 for Po, H1 and H2 for Pv, are defined as
shown in (9), (10), (11), and (12), respectively.

)min(max

Pmax
L1

oo

o

−
= , (9)

)min(max

minPmax
L2

oo

oo

−

×
= , (10)

)min(max

Pmax
H1

vv

v

−
= , (11)

)min(max

minPmax
H2

vv

vv

−

×
= . (12)

Utilizing these constants to rewrite (7) and (8), we obtain (13) and (14) which are employed
respectively in line (4) and (9) of the ILA-RIO algorithm.

 L2avg_GTDL1P −×=o

 (13)

 H2avg_GTDH1P −×=v

 (14)

3 Fast Synchronization Framework

UBLCS-2006-10 32

So far, the two probability functions result in geometric random variable distributions of the drops,
while it would be desirable to discard events at fairly regular intervals. This can be obtained by applying
an incrementing counter to augment, at each iteration, the weight of the considered discarding
probability; as result, we generate a uniform distribution of the dropping dispersion, which makes the
ILA scheme more resilient to temporary bursty periods [68]. To this aim, when the algorithm is in phase
1 or 3, Po or Pv is compared with a number which is randomly generated within the interval [0, 1). If we
call Ro and Rv, the two random numbers, we can see from (15) and (16) how they are used to take into
account the number of iterations elapsed since the last drop to increment the discarding probability.
Basically, in phase 1 an obsolete event is dropped (line 5) if

)PR(counter ooo ≥ . (15)

Analogously, in phase 3 a valid event is dropped (line 10) if

)PR(counter vvv ≥ . (16)

The variables countero and Ro are reinitialized to respectively 0 and a new random value each time
the algorithm enters phase 1, or some obsolete packet is discarded. Analogously, variables counterv, and
Rv are reinitialized each time the algorithm drops a valid packet. Conversely, if the scheme is
respectively in phase 1 or 3, the two dropping probabilities, Po and Pv, are recomputed every new event
arrival. Moreover, countero and counterv are incremented by 1 every time ILA-RIO stays in phase 1 or
phase 3, respectively, without dropping any game event.

Considering the remaining of the algorithm, if avg_GTD grows beyond maxo, the scheme enters in
phase 2 and all obsolete packets have to be discarded in the attempt of re-establishing interactivity (line
7). Moreover if the value of avg_GTD surpasses even maxv, all the events, with no distinction between
obsolete or valid, are dropped (line 12). At this point, in fact, the extremely jeopardized responsiveness
conditions suggest resetting and reinitializing the game session.

Finally, it is easy to notice that ILA-RED can be considered a particular instance of ILA-RIO. In
fact, if we set to 0 the probability of dropping a non obsolete event, or to ∞ the GTD value at which it
takes action, then the two schemes behave identically. Simply stated, a chart representing ILA-RED
behavior, equivalent to that one presented in Fig. 6, would contain just phase 0, phase 1 and phase 2,
respectively contained in the intervals [0, mino), [mino, maxo) and [maxo, ∞). Analogously, the algorithm
for ILA-RED can be obtained by simply eliminating lines 8-13 from Fig. 7.

G SS 0

G SS 1

G SS 2
G SS 4G SS 3

G SS 5

G SS 6

G SS 7

a:15 sd:15

a:40 sd:15 a:75 sd:30 a:90 sd:10

a:80 sd:20

a:30 sd:15

a:100 sd:25

Processing
& D elivery

a: latency average (m s) sd: latency standard devia tion (m s)L egend:

Figure 8. The adopted configuration.

3 Fast Synchronization Framework

UBLCS-2006-10 33

TABLE I. SENDING GSSS INVOLVED IN THE SIMULATIONS.

Number of

Sending GSSs
Corresponding GSSs employed

4 GSS1, GSS2, GSS3 and GSS4

5 GSS1, GSS2, GSS3, GSS4 and GSS5

6 GSS1, GSS2, GSS3 GSS4, GSS5 and GSS6

7 GSS1, GSS2, GSS3 GSS4, GSS5, GSS6 and GSS7

6 Simulation Assessment

To evaluate our event processing strategy, we have created a mathematical model simulating a general
Mirrored Game Server architecture comprising various GSSs connected via diverse links over the
Internet. As said, we assume that the events generated in the system can be totally ordered by exploiting
a global notion of time.

Different numbers of GSSs have been simulated in our scenario. In order to permit a deeper analysis
of the dynamics related to game event traffic and processing, simulations have focused on the packet
receiving aspect of a single GSS, while the other GSSs are involved as game event transmitters. Fig. 8
depicts the adopted configuration of the network and shows the values assigned to the simulation
parameters. GSS0 is the receiving GSS and the others are the sending GSSs. We carried out several
simulation experiments (30) with a number of sending servers varying in the range from four to seven.
The involved GSSs, for each different configuration, are listed in Table I.

We have been inspired by the scientific literature on MMOGs to set the values of the network
latencies among the GSSs [72]. Specifically, GTDs follow a lognormal distribution having the average
and standard deviation values as shown in Fig. 8. If each client connects to the “nearest” GSS to bound
the impact of the client-server latency on the total delay experienced by the game events, we can assume
to have the client-server latency portion already comprised in the network latency values mentioned
above. Finally, the event generation rate at each GSS and the average event size (200 Bytes) have been
chosen as inspired by the games literature and varies from a normal traffic situation to an intensely
loaded one [73].

We define as Average Inter-Departure Time (AIDT) the time that elapses, in average, between two
subsequent game packet departures at a single server. The AIDT values have been used to generate the
lognormal distribution of the event departures from each involved server. Various simulations have been
run having the AIDT parameter set to 30ms, 45ms or 60ms. The standard deviation was always equal to
10ms. The chosen AIDT values produce an amount of events as those typically generated by from 5 to
tens of players for each given GSS. Based on these values, we have generated three diverse trace files
containing 1000 events for each GSS. Each trace file also included the information needed to identify
(correlated and) obsolete events. Where not differently stated, we have set to 90% the probability that an
event makes obsolete preceding ones. This represents a realistic scenario for a vast plethora of possible
games where critical (correlated) game events that cannot become obsolete have to be considered only
sporadically, such as during collisions or shots, and may represent even less than the 10% of the whole
set of game events.

As a confirmation of this claim, an extensive study of players’ behavior on Quake 3 is presented in
[76]. In that paper, a measure of the average number of kill actions per minute as a function of the
median ping time between client and server is reported. Using those measures we can provide a
numerical explanation that demonstrates how 10% of correlated events and 90% of obsolescence
probability may represent a realistic scenario for interactive MMOGs [81].

Specifically, in [76] it is shown that when the 80% of players is located within 180ms of range from
the server, the average of kill actions per minute varies in the interval from 1.60 to 3.25. Considering the
median of this interval (2.425) we obtain 0.04 kill events per second. With an AIDT of 60ms at client

3 Fast Synchronization Framework

UBLCS-2006-10 34

side [73, 77], 16.67 game events are generated every second. Therefore, the resulting percentage of kill
events over the whole set of game actions amounts to just 0.24%. Pessimistically assuming that a kill
event can be issued only after an average number of 40 correlated actions (e.g., various shots,
movements of the character into the location where it will be shot or out of the position where it would
have been shot) we get 9.6% of critical events. Therefore, 10% of correlated events and 90% of
obsolescence probability represent a realistic configuration for online games simulations.

Since real commercial games employ UDP as the transport protocol, we have adopted it too for our
simulations [75]. Moreover, to circumvent the problems deriving from UDP’s unreliability, we have
implemented an application level retransmission scheme based on NACKs (Negative
ACKnowledgments).

Each experiment has been replicated to compare the outcomes of three different synchronization
schemes: our proposed ILA-RED scheme, the ON-OFF mechanism (Interactivity Restoring as reviewed
in Section 3.3), the traditional OFF approach (having no discrimination of obsolete packets and no event
discarding nor other algorithms to restore interactivity). We have then also run some preliminary
experiments involving ILA-RIO.

As to the algorithm, we have chosen to set w=1/8 in (6) in the attempt to make the algorithm able to
filter out sporadic high GTDs, while being able to promptly react to a persistent decline of
responsiveness. In the ILA-RED case, we have set parameters as follows: mino = 50ms, maxo = 150ms
(equivalent to the GIT for the ON-OFF scheme) and Pmaxo = 0.2. Parameters in ILA-RIO were chosen
as mino = 50ms, maxo = 100ms, Pmaxo = 0.2, minv = 150 ms (equivalent to the GIT for the ON-OFF
scheme), maxv = 225 ms and Pmaxv = 0.3.

Choosing appropriate values for the above cited parameters is an important part of implementing
ILA algorithm. The various phases, in fact, should take place in precise situations experienced by the
game platform. In particular, phase 1 have to be activated when the delay between the generation of a
player’s action and its execution on the screens provides the first perceivable symptoms of
responsiveness degradation. Since phase 2 corresponds to dropping all the obsolete events, it should take
action when the lag becomes annoying and low-performance determining for players. In case of fast
paced games, the parameter of these two phases should be chosen in a further conservative way, in order
to anticipate the triggering times for the discarding functions. Phase 3 represents the last resort to restore
responsiveness in the system, whilst still having latencies that can be temporary tolerated by players.
Finally, since entering in phase 4 amounts to reinitialize the game session, its entering threshold have to
be chosen as the higher latency value at which users still can compensate the poor playing conditions by
anticipating their moves.

The various thresholds should be hence set differently depending on the played game or at list on the
belonging game class (e.g. adventures, shoot/beat’em up, car racing, etc.). However, as rationale for our
chosen values, scientific literature declares that a delay of 50ms is not perceived at all by players while
at 150ms (i.e., our GIT parameters) player’s performance results disturbed by the lag. Finally, 225ms of
delay could represent an upper bound for playable interaction [76, 77, 78, 79]. These limits hold for
games like vehicle racing, first person shooters and fast shoot/beat’em-up, but can be augmented in case
of strategic games (e.g. Starcraft, Age of Empire, etc.) [80].

The interactivity benefits attained by obsolete event discarding schemes can be analyzed in terms of
delays experienced by game events before being processed. Therefore, we have compared the
responsiveness of all the three schemes considered (i.e. ILA-RED, ON-OFF, OFF), exploiting the
following metrics: i) the number of events having a GTD larger than the GIT; ii) the cumulative function
of the GTD values; iii) the average of the GTD values, their standard deviation, the minimum and
maximum values.

The fluency of the game evolution on players’ screens passes through having just a very limited
number of discarded game events. We have hence compared the two obsolete event discarding schemes
(i.e. ILA-RED, ON-OFF), measuring: i) the number of obsolete events dropped; ii) the number of times
all the pending obsolete events have to be discarded; iii) the average number of subsequent game events
with GTD over GIT; iv) the total number of bursts of game events with GTD over GIT.

In order to deeply understand the benefits attainable by employing a proactive mechanism as ILA-
RED, under different levels of stress of the game platform, we have performed a sensitivity analysis
depending on the considered AIDT parameter. In particular, we have compared ILA-RED and ON-OFF,
under different values of AIDT, by measuring: i) the number of obsolete events dropped; ii) the average
of the GTD values, their standard deviation, and the minimum and maximum values.

3 Fast Synchronization Framework

UBLCS-2006-10 35

Finally, some preliminary results about ILA-RIO have been obtained by comparing it against ON-
OFF and OFF mechanisms under different conditions. Specifically, considering different probabilities of
obsolescence among game events, we have measured: i) the number of events having a GTD larger than
the GIT; ii) the number of events dropped, both obsolete and valid ones.

7 Current Results

We present here the most relevant results among those we obtained.
In particular we compare the different schemes by showing the outcomes of simulations having the

AIDT parameter set to 30ms, 45ms, and 60ms, respectively. Having a low AIDT corresponds to a higher
frequency in game event transmissions at each server and therefore in a higher congestion and
computational workload.

7.1 Obsolescence-Based Scheme vs Traditional One

As predicted, the two obsolescence-based discarding mechanisms outperform the traditional one,
especially with high traffic load at the servers. In fact, Fig. 9 compares, for ILA-RED, ON-OFF and
OFF schemes, the percentage of events arrived at GSS0 with a GTD value larger than the GIT. This also
represents the percentage of events that cannot be considered interactive.

The cumulative function of the GTDs (Fig. 10) represents another tool proficient in evaluating the
efficacy of ILA-RED and ON-OFF schemes. Indeed, the more the line is concentrated in the left side of
the chart, the higher is the percentage of events having a GTD lower than a certain threshold. In
particular, Fig. 10 depicts the cumulative function of the GTDs in a scenario considering seven sending
GSSs, each one sending events to the receiving GSS0 with an AIDT of 30ms. In this configuration, ILA-
RED has 93.86% of events with a GTD less or equal than the GIT of 150ms, ON-OFF hits the 89.40%,
and OFF reaches only the 49.94%.

These results are coherent with the values of the average and the standard deviation of the GTDs
considering all the events transmitted. Table II shows sensible reductions in the values of both these
metrics when ILA-RED or ON-OFF are implemented. Moreover, the two obsolescence-based discarding
schemes result more resilient to an increased event generation activity within our mirrored game server
architecture. This is evident if the case of seven sending GSSs is compared with the one employing only
four sending GSSs. In this case, the average of the GTDs decreases from 19.72% (OFF) to 12.07% (ON-
OFF) and 11.71% (ILA-RED).

0

10

20

30

40

50

60

4 5 6 7

Number of Senders

%
 G

T
D

 o
v
e
r

G
IT

OFF ON-OFF ILA-RED

Figure 9. Percentage of events with GTD over

GIT; AIDT = 30ms.

0

0,2

0,4

0,6

0,8

1

1,2

0 30 60 90 120 150 180 210 240 270 300 330

ms

P
ro

b
(G

T
D

 <
 x

)

OFF ON-OFF ILA-RED

Figure 10. Cumulative function of the GTDs in a

scenario with 7 GSSs; AIDT = 30ms.

3 Fast Synchronization Framework

UBLCS-2006-10 36

TABLE II. MAXIMUM, MINIMUM, AVERAGE AND STANDARD DEVIATION OF THE GTDS (MS); AIDT = 30MS.

4 GSSs 5 GSSs 6 GSSs 7 GSSs

OFF

ON-

OFF

ILA-

RED
OFF

ON-

OFF

ILA-

RED
OFF

ON-

OFF

ILA-

RED
OFF

ON-

OFF

ILA-

RED

MAX 324 324 325 325 324 277 318 319 278 345 345 300

MIN 88 88 86 88 88 88 87 88 88 93 93 93

AVG 142 116 111 153 120 115 148 119 114 170 130 124

ST.DEV 52 30 20 53 32 19 50 28 18 56 32 19

7.2 ILA-RED vs ON-OFF: a Comparative Evaluation

The proactive mechanism implemented by ILA-RED does not just slightly improve the already good
performance achieved by the ON-OFF scheme. Indeed, Table II also shows that the standard deviation
of the GTDs attained employing ILA-RED is always sensibly smaller than the one obtained utilizing
ON-OFF. The game actions flow more homogeneously on the screen thus providing a more pleasant
game experience for the user.

Not only obtains ILA-RED a slightly better interaction level with respect to ON-OFF, but the total
number of discarded events to attain this positive result is definitively lower. Again, with the AIDT
parameter equal to 30ms at each GSS, we can analyze the behavior of the compared synchronization
schemes in the challenging situation of a stressed game platform. To this aim, Fig. 11 shows that the
results in Fig. 9 and Table II are obtained by ILA-RED at the cost of circa only 40% of the obsolete
events dropped by ON-OFF. In essence, by anticipating some event drops, ILA-RED preempts the loss
of an acceptable interactivity degree and smoothes the experienced GTDs.

Discarding too many obsolete events can result in sudden jumps and temporary interruptions of the
images/video flow on the player’s screen. Even interpolation experiences an increasing number of errors
when gaps are too wide and the consequent jerky rendering could be very annoying for customers.
Drops should hence be avoided whenever possible. Since ILA-RED needs less pervasive interventions
to be effective, we can say that even if both schemes ensure responsiveness and consistency, ILA-RED
outperforms ON-OFF and founds an efficient tradeoff between the percentage of obsolete events to be
discarded and a fluent visual progression of the game.

0

5

10

15

20

25

30

35

40

4 5 6 7

Number of Senders

%
 D

ro
p

p
e
d

 E
v
e
n

ts

ON-OFF ILA-RED

Figure 11. Percentage of discarded events;

AIDT = 30ms.

0

20

40

60

80

100

120

140

4 5 6 7

Number of Senders

#
 A

c
ti

v
a
ti

o
n

s
 o

f
O

N
 /

 P
h

a
s
e
 2

ON-OFF ILA-RED

Figure 12. # of activations of phase ON and phase

2 for ON-OFF and ILA respectively; AIDT = 30ms.

3 Fast Synchronization Framework

UBLCS-2006-10 37

Figure 13. Average size of non-interactive bursts; AIDT = 30ms.

Figure 14. Total Number of bursts of non-interactive events; AIDT = 30ms.

0

2

4

6

8

10

12

14

16

18

4 5 6 7

Number of Senders

%
D

ro
p

p
e

d
 E

v
e

n
ts

ON-OFF ILA-RED

Figure 15. Percentage of discarded events;

AIDT = 45ms.

0

1

2

3

4

5

6

7

8

4 5 6 7

Number of Senders

%
 D

ro
p

p
e

d
 E

v
e

n
ts

ON-OFF ILA-RED

Figure 16. Percentage of discarded events;

 AIDT = 60ms.

0

20

40

60

80

100

120

140

4 5 6 7

Number of Senders

ON-OFF ILA-RED

of

 B
ur

st
s

of
 n

on
-i

nt
er

ac
ti

ve
 E

ve
nt

s
0

0.5

1

1.5

2

2.5

3

3.5

4

4 5 6 7

Number of Senders

ON-OFF ILA-RED

of
 E

ve
nt

s

3 Fast Synchronization Framework

UBLCS-2006-10 38

The positive effects gained by the probabilistic preemptive discarding mechanism are further
highlighted by Fig. 12. The columns in the picture correspond to the number of times the employed
scheme resorts to dropping obsolete events to restore the disrupted responsiveness. As it is evident from
the great difference between the columns, the preventive probabilistic drop of some game events in
phase 1 strongly reduces the number of times ILA-RED needs to discard all the obsolete packets.

Another important metric to better evaluate synchronization schemes is concerned with the
distribution of the event drops throughout the game. Fig. 13 and Fig. 14 contribute to provide further
insight along this direction. In particular, Fig. 13 shows the average number of consecutive game events
with an instantaneous GTD value larger than GIT (average size of non-interactive bursts). Fig. 14,
instead, shows the total number of non-interactive bursts obtained during our simulations. As it is
evident from these two charts, while ILA-RED and ON-OFF schemes have an almost equal average size
of bursts of non-interactive events, the former allows only a reduced number of these bursts, thus
confirming the benefits announced by Fig. 11.

7.3 ILA-RED: Sensitivity Analysis

It is evident from the previous sections that ILA-RED results more efficient than ON-OFF scheme in
ensuring responsiveness whilst minimizing the number of drops. We deem that this advantage becomes
more evident when the game event traffic is more intense, while the two synchronization mechanisms
behave the same when plunged into a low stress environment. Simply stated, our hypothesis is that the
larger the AIDT value, the more ILA-RED and ON-OFF become equivalent in terms of the number of
dropped events required to maintain a proper interactivity degree. We intend to find the breakeven point
in the performance curves between ILA-RED and ON-OFF. For this purpose, we have run additional
simulations with the lognormal distribution of the departing game packets from each server generated
with the AIDT value equal to: respectively, 45ms and 60ms.

With this greater AIDT value both the links and the GSSs result less congested. As a result, the
difference in the number of discarded game events between ILA-RED and ON-OFF progressively
diminishes (see Fig. 15 and Fig. 16). With AIDT = 60ms, the number of discarded events is almost the
same for the two synchronization schemes. At this point, however, also the large advantage against the
OFF scheme has been sensibly reduced (see Fig. 17 and Fig. 18); despite of this, better average and
standard deviation of the GTDs still persist (see Table III and Table IV).

This phenomenon has two clear explanations. First, having lower game event generation rates
decreases both the latencies in the network and the queuing time at the receiving GSS, thus naturally
improving the interactivity degree yet without any external intervention. Second, we have to remind that
both ILA-RED and ON-OFF schemes rely on discarding obsolete events when the interactivity level
decreases, without wasting time in processing them. Consequently, to be effective, these schemes
require to have droppable obsolete events queued at the receiving GSS while the server is impacted by
processing delays; this engulfment of events waiting for being processed is more likely to happen with
lower AIDT values.

TABLE III. MAXIMUM, MINIMUM, AVERAGE AND STANDARD DEVIATION OF THE GTDS (MS); AIDT = 45MS.

4 GSSs 5 GSSs 6 GSSs 7 GSSs

OFF ON-

OFF

ILA-

RED

OFF ON-

OFF

ILA-

RED

OFF ON-

OFF

ILA-

RED

OFF ON-

OFF

ILA-

RED

MAX 331 331 331 331 332 331 315 315 281 338 331 332

MIN 87 87 87 87 87 87 89 89 89 91 91 91

AVG 139 120 120 148 128 125 145 128 125 164 139 135

ST.DEV 45 24 22 46 27 22 43 27 20 49 27 21

3 Fast Synchronization Framework

UBLCS-2006-10 39

TABLE IV. MAXIMUM, MINIMUM, AVERAGE AND STANDARD DEVIATION OF THE GTDS (MS); AIDT = 60MS.

4 GSSs 5 GSSs 6 GSSs 7 GSSs

OFF ON-

OFF

ILA-

RED

OFF ON-

OFF

ILA-

RED

OFF ON-

OFF

ILA-

RED

OFF ON-

OFF

ILA-

RED

MAX 328 326 326 328 325 325 319 286 286 340 328 325

MIN 88 88 88 88 88 88 87 87 86 92 91 90

AVG 144 133 133 154 142 142 153 142 142 169 155 154

ST.DEV 42 29 29 41 29 28 40 29 29 42 27 27

0

5

10

15

20

25

30

35

40

45

50

4 5 6 7

Number of Server

%
G

T
D

 o
ve

r
G

IT

OFF ON-OFF ILA

Figure 17. Percentage of events with GTD over GIT;

AIDT = 45ms

0

10

20

30

40

50

60

70

4 5 6 7

Number of Sender

%
G

T
D

 o
v
er

 G
IT

OFF ON-OFF ILA

Figure 18. Percentage of events with GTD over

GIT; AIDT = 60ms.

7.4 ILA-RIO: Some Preliminary Results

We present some preliminary results related to the use of the ILA-RIO scheme to ensure high
responsiveness even with fast paced games. In particular, Fig. 19 and Fig. 20 refer to specific event trace
configurations, respectively utilizing different probabilities of obsolescence among events.

As observable (Fig. 19-a, Fig. 20-a), in both configurations the obsolescence-based schemes
outperform again the traditional OFF method in terms of GTDs. Moreover, ILA-RIO further diminishes
the number of events that are featured with a GTD larger than the predetermined GIT w.r.t. ON-OFF.
The game evolution fluency results improved as well since ILA-RIO greatly reduces the amount of
dropped events required (Fig. 20-b). This difference disappears in Fig. 19-b; having a smaller probability
of obsolescence (50%), in fact, reduces the number of available obsolescent packet that could, in case,
be discarded. Thereby, both for ILA-RIO and for ON-OFF, even discarding all the obsolete queued
events could still not be sufficient to promptly restore the required high interactivity degree with the
considered intense traffic load. Indeed, this is exactly the case when dropping even valid events may
become acceptable for fast paced games.

Finally, we evaluated the amount of valid game events dropped by our ILA-RIO approach. Table V
reports the percentage of obsolete and valid events that are discarded, depending on the event trace. As
expected, the amount of dropped valid game events diminishes as the percentage of obsolete ones
becomes greater. This tendency is due to the fact that if an adequate number of obsolete events are
available during the events exchange activity, then our scheme can exploit the drop of all these
(obsolete) events to restore responsiveness when entering phase 2, with no need of resorting to valid
ones.

3 Fast Synchronization Framework

UBLCS-2006-10 40

(a)

Prob. of Obsolescence = 50%

0

10

20

30

40

50

60

%
 G

T
D

 o
v
e
r

G
IT

OFF ON-OFF ILA-RIO

Prob. of Obsolescence = 50%

0

2

4

6

8

10

12

%
 D

ro
p

p
e
d

 E
v
e
n

ts

ON-OFF ILA-RIO

 (b)

Figure 19. Probability of obsolescence = 50%;

(a) Event percentage having GTD > GIT; (b) Percentage of discarded events.

(a)

Prob. of Obsolescence = 90%

0

10

20

30

40

50

60

%
 G

T
D

 o
v
e
r

G
IT

OFF ON-OFF ILA-RIO

Prob. of Obsolescence = 90%

0

5

10

15

20

25

30

35

40

%
 D

ro
p

p
e
d

 E
v
e
n

ts

ON-OFF ILA-RIO

 (b)

Figure 20. Probability of obsolescence = 90%;

(a) Event percentage having GTD > GIT; (b) Percentage of discarded events.

TABLE V. PERCENTAGE OF OBSOLETE AND VALID DISCARDED EVENTS IN ILA-RIO.

Obsolescence Prob. 50% 90%

Obsolete 9,46% 13,64%

Valid 0,16% 0%

4 To Seek the Fairness by Way of the Interactivity

UBLCS-2006-10 41

Chapter 4

To Seek the Fairness by Way of the

Interactivity

Christopher Columbus’s aim, when he sailed for finding Catai (ancient China) lands across the Atlantic
Ocean, is perfectly described by the famous claim credited to him: “Buscar el Levante por el Poniente”,
to seek the East by way of the West. We humbly take inspiration from his genius to synthesize our work
in the title of this Chapter. The analogy is represented by the fact that the scheme we propose facilitates
fairness by aiming at increasing the interactivity degree in MMOGs.

We demonstrate how it is possible to take advantage of a reduced transmission time to magnify the
efficiency of a local lag-type algorithm in ensuring fairness. This represents a very important result since
it contradicts the general belief that either interactivity or fairness has to be sacrificed to achieve the
other.

1 Exploiting Local Lag Technique

As shortly discussed in Section 2.3 and Section 2.4, Local Lag and other similar algorithms have been
proposed to ensure fairness (and consistency) among players in MMOGs [54, 78, 94, 104, 105]. The
idea behind this kind of approach amounts to introducing artificial delays in the display of both
generated and received game events. These delays are appropriately chosen for each client and depend
on their subjective client-server latencies. The aim is that of having each game event simultaneously
displayed, after a total amount of time since its creation, on all the players’ screens.

Not only does this help in maintaining fairness and consistency, it could also augment the playability
of the game. Up to a certain level of injected delay, in fact, players could be more comfortable with a
higher but fixed delay than with smaller but variable ones [78]. In the former case, in fact, a player can
adapt her/his actions and reaction times to consider also this fixed delay and achieve higher performance
than in the latter situation. For instance, car race players will learn how to constantly anticipate the
steering when in proximity of a curve; first person shooter players will learn how to aim a little bit ahead
of their adversary’s position with respect to their moving direction; etc.

Lag compensation can thus be proficiently employed to ameliorate the negative effects of latency on
MMOGs. However, the amount of time used as a parameter for local lag generally corresponds to the
longest transmission latency experienced by the most unlucky player of the game. In practice, this kind
of approach increases game delays and may jeopardize interactivity as in some case the unlucky client
may be connected very far away from its server and/or through a slow connection.

Consequently, the efficiency and applicability of the local lag approach strongly depend on the
network conditions and on the interactivity degree required by the game. Indeed, especially in the case
of a highly interactive MMOG, servers should be optimally located to efficiently serve a large number of
customers [76]. Yet, guaranteeing both interactivity and full fairness through local lag can sometimes be
achieved only at the cost of impeding the access to some users whose connectivity is irremediably
affected by large network delays.

4 To Seek the Fairness by Way of the Interactivity

UBLCS-2006-10 42

A tradeoff relationship thus exists among scalability (especially in terms of geographical dispersion
of the players), interactivity, and fairness. According to this, interactivity and fairness are traditionally
seen as incompatible requirements in MMOGs. Conversely, we claim now that upholding interactivity
may be useful also to the aim of ensuring fairness. To demonstrate this, we have developed a novel
mechanism named Fairness and Interactivity Loss Avoidance (FILA) [164, 165]. Our scheme can be
divided into two complementary sub-components. The first one exploits the semantics of the game to
drop superseded events and speed up the delivery of game events as seen in Chapter 3. The second one
takes advantage of this reduced transmission time to magnify the efficiency of a local lag-type algorithm
in ensuring fairness without compromising interactivity.

2 Achieving Fairness through Interactivity

FILA can be thought of as comprised of two complementary parts. The first one, enforced among GSSs,
takes substantial inspiration from the aforementioned ILA-RED scheme to speed up the delivery of
“fresh” game events by dropping some events which have become obsolete. The second part takes
advantage of this reduced transmission time to magnify the efficiency of a local lag-type of algorithm to
ensure fairness. FILA utilizes (4) to determine the visualization time of a game event, thus providing
fairness without compromising interactivity.

To calculate the appropriate δ in (3), the OD should be determined for each player. For this reason,
game events are marked at their creation with a generation timestamp and then sent to the destination:
hence, they are orderable. Obviously, a global concept of time has to be maintained in the system. This
can be achieved through a variety of solutions that enable the synchronization of GSSs’ physical clocks
[67, 111], or by employing new technological synchronization devices such as GPS. Thanks to this,
GSSs are able to monitor the ODs of their engaged players and make them available for the FILA
algorithm.

More in detail, the first part of FILA drops queued obsolete game events with a certain probability Pd
when the average OD, namely avgOD, value increases putting at risk the interactivity of the system. The
discarding probability Pd is directly proportional to avgOD and dependent on a constant Pmax. Instead,
the value for avgOD, at iteration n, is computed through the low-pass filter showed in (17), where w is a
parameter that determines how close the average follows the sample trend:

).avgODsample(wavgODavgOD 1nn1nn −−

−×+=
 (17)

IInntteerrnneett

GSS GSS

game event sent between players

GTD LHD

OD

player player

Figure 21. Delay definitions.

4 To Seek the Fairness by Way of the Interactivity

UBLCS-2006-10 43

More in detail, with FILA, all the game events are regularly processed and forwarded while avgOD
is smaller than an alert threshold named tmin. When avgOD exceeds tmin, the GSSs drop obsolete
events with probability Pd, with neither processing nor forwarding them. Finally, if avgOD exceeds the
subsequent tmax (>tmin) threshold, then Pd is set equal to 1 and all obsolete events waiting for being
processed are discarded.

This stabilization mechanism succeeds is reducing ODi(e) by impacting on qi(e). In fact, the time
spent in queue by a certain event is diminished by the spared processing time of preceding obsolete
events which have been dropped with neither processing nor forwarding them. Moreover, since only
obsolete events are discarded, FILA fully maintains consistency in the game evolution [62, 109].

To explain FILA more in detail we use the clarifying help of Fig. 21 which provides the graphical
definitions for some terms utilized in our explanation: OD, GTD, and LHD (Last Hop Delay).

First of all, it should be noticed that FILA performs its operations on the GSSs. This choice helps us
in maintaining a simpler control of the exploited game platform. Under that circumstance, however, for
each event e, GSSs can compute GTD(e) but not LHD(e). An estimation of LHD(e) is necessary in order
to compute OD and utilize it in our algorithm. For this reason, each GSS continuously monitors the
latencies to each of its engaged players and maintains a variable named λGSS. The value of this variable
represents the maximum among the latencies from the considered GSS to each of its connected clients
(this set of clients is named C_GSS) and is calculated as follows:

}.LHD{max i

GSS_Ci
GSS

∈

=λ
 (18)

However, we cannot let some irremediably delay-affected client to excessively impact on the
calculations performed by our scheme. Utilizing, in FILA, the excessively high λGSS generated by some
player connected very far away from the GSS, in fact, would result in very high sample (and avgOD)
values with respect to GIT. In this case, FILA would increase the aggressiveness of its discarding
function as perceived by all the players with no positive results: the “unlucky” player will still not be
able to receive game events with delays below the interactivity threshold. For this reason, we need to
consider a Delay Upper Bound (DUB) in order to limit the impact of “unlucky” players on its algorithm.
To this aim, (19) provides the formula for a fundamental parameter utilized by FILA to handle the
impact of LHD(e) on its algorithm:

}.DUB,{min GSSλσ =

 (19)
The usage of this parameter depends on the employed version of our scheme and is explained in

Section 5. To determine DUB we rely on a heuristic that dynamically computes its value based on the
general network condition during the game. Its formula is as follows:

 }.GTD{maxGITDUB −= (20)

where max{GTD} represents the largest among the GTDs experienced over all the connections
between each GSS and the players engaged by the other GSSs.

To compute DUB, each GSS has hence to periodically determine the GTD that features in average
the slowest of its connections with players engaged by the other servers. Then, this value has to be
communicated back to all the other peers in order to allow a global knowledge of the worst GTD
endured by each GSS. Finally, the highest among these maximum GTDs can be univocally determined
by each of the GSSs and used to determine the global DUB in the system as shown in (20).

The second part of FILA is simply in charge of equalizing the delay differences among players with
a local lag-type scheme that appropriately computes the δ value shown in (3) so as to satisfy (4)
whenever possible. We are going now to empirically demonstrate how the combination of phase one and
two is effective in ensuring fairness and interactivity while allowing a scalable number of contemporary
players.

We compare the regular local lag (LL) mechanism against FILA. In particular, LL embodies the
traditional local lag scheme with no discarding mechanism for obsolete events. Even in this case,
however, as for all the other compared protocols, the algorithm is not allowed to introduce artificial

delays if this would result in jeopardizing interactivity (i.e.
)e(vt cannot be set greater than

)e(gt + GIT).

4 To Seek the Fairness by Way of the Interactivity

UBLCS-2006-10 44

Focusing on FILA, we have set tmax = GIT and tmin < tmax. Moreover, the estimation of the
LHDi(e) is performed through (18) and (19) and utilized to calculate the new sample upon every new
event arrival as follows:

 .)e(GTD)e(sample σ+= (21)

3 Simulation Assessment

It is well known that MMOG service providers should appropriately position their game servers in such
a way that their target player market would be located within a circle having 150-180ms of latency
diameter [76]. Following this rule and aimed at creating a configuration able to factually support a
highly interactive MMOG, we have simulated a constellation of five GSSs deployed across U.S.A. by
choosing optimal market locations.

Clients are supposed to be distributed all over the North American continent and connected through
various access technologies that provide them with different access delays. We have focused our
attention on the event receiving aspect of a single GSS (GSS0), pretending that the other GSSs are
sending events to it (without any loss of generality).

1

0

3

4

21

0

3

4

2

4896 kmBoston65 ms4

3870 kmOrlando50 ms3

1650 kmDenver35 ms2

602 kmSan Francisco20 ms1

0 kmLos Angeles0 ms0

Road distanceCityAvg latencyGSS

4896 kmBoston65 ms4

3870 kmOrlando50 ms3

1650 kmDenver35 ms2

602 kmSan Francisco20 ms1

0 kmLos Angeles0 ms0

Road distanceCityAvg latencyGSS

Figure 22. Game servers deployment.

4 To Seek the Fairness by Way of the Interactivity

UBLCS-2006-10 45

Inspired by literature [77], the GTD values were chosen based on a lognormal distribution whose
approximate average was obtained by means of repeated runs of the ping application. More in detail,
game events coming from clients connected to the sending GSSs (i.e. GSS1–GSS4) and traveling towards
GSS0 experience average latencies as reported in Fig. 22, with a standard deviation of 10ms. Further,

several scenarios were considered where the values of }LHD{max i
GSS_Ci∈

 were chosen for each GSS

within the following set {25ms, 50ms, 75ms, 100ms, 125ms, 150ms}. This choice is justified by the
consideration that clients should be located within a circle having a maximum latency diameter of
150ms. We assumed to have 10 clients connected to each GSS, engaged in a fast-paced game, and
generating a new action every 300ms in average. This results in a flow of game events having 30ms of
inter-departing time. Finally, the average game event size (200 Bytes) was inspired by literature about
games as well [17].

Focusing on the parameters in the FILA algorithm, we have set w = 1/8 for all the simulations. The
alert threshold tmin was equal to GIT – 100ms. Moreover, the probability that an event makes obsolete
preceding ones was set to 90%. This represents a realistic scenario for a vast plethora of possible games
(e.g. adventure, strategic, vehicle race, flight simulator, etc.), where most of the events are just
independent movements as seen in Section 3.6.

Each experiment was identically replicated to compare the outcomes of FILA against the regular LL
algorithm. In [104], Zander et al. demonstrated that there is a statistically significant difference between
the mean kill rates of player groups which are affected from diverse client-server latencies. In essence,
lower latencies results in higher mean kill rates and thus in unfairness. Coherently, we have chosen to
evaluate as a performance parameter the percentage of events that were delivered by GSS0 to all of its
players in time to be contemporary visualized before the GIT expiration. We are hence considering the
achievement of per-event interactivity and fairness.

4 Results

In this Section, we demonstrate through results how FILA is able to ensure a higher interactivity and
fairness degree if compared to the traditional LL scheme. Moreover, we provide a scalability evaluation
of the two mechanisms showing how FILA improves its performance in situation with intense traffic and
outperforms regular LL.

INTERACTIVE and FAIR EVENTS

(a) GIT=150ms

0

20

40

60

80

100

90 115 140 165 190 215

Maximal Overall Latency (ms)

%
 I

n
te

ra
c
ti

v
e
 a

n
d

 F
a
ir

LL FILA

0

2

4

6

8

10

12

14

16

18

20

%
 D

ro
p

p
e
d

 E
v
e
n

ts

90 115 140 165 190 215

Maximal Overall Latency (ms)

FILA Drops - (a) GIT=150ms

Figure 23. Interactivity and fairness improvement (left) and dropped events (right) with GIT=150ms and

AIDT=30ms.

4 To Seek the Fairness by Way of the Interactivity

UBLCS-2006-10 46

INTERACTIVE and FAIR EVENTS

(b) GIT=200ms

0

20

40

60

80

100

90 115 140 165 190 215

Maximal Overall Latency (ms)

%
 I

n
te

ra
c
ti

v
e
 a

n
d

 F
a
ir

LL FILA

0

2

4

6

8

10

12

14

16

18

20

%
 D

ro
p

p
e
d

 E
v
e
n

ts

90 115 140 165 190 215

Maximal Overall Latency (ms)

FILA Drops - (b) GIT=200ms

Figure 24. Interactivity and fairness improvement (left) and dropped events (right) with GIT=200ms and

AIDT=30ms.

INTERACTIVE and FAIR EVENTS

(c) GIT=250ms

0

20

40

60

80

100

90 115 140 165 190 215

Maximal Overall Latency (ms)

%
 I

n
te

ra
c
ti

v
e
 a

n
d

 F
a
ir

LL FILA

0

2

4

6

8

10

12

14

16

18

20

%
 D

ro
p

p
e
d

 E
v
e
n

ts

90 115 140 165 190 215

Maximal Overall Latency (ms)

FILA Drops - (c) GIT=250ms

Figure 25. Interactivity and fairness improvement (left) and dropped events (right) with GIT=250ms and

AIDT=30ms.

INTERACTIVE and FAIR EVENTS

(d) GIT=300ms

0

20

40

60

80

100

90 115 140 165 190 215

Maximal Overall Latency (ms)

%
 I

n
te

ra
c
ti

v
e
 a

n
d

 F
a
ir

LL FILA

0

2

4

6

8

10

12

14

16

18

20

%
 D

ro
p

p
e
d

 E
v
e
n

ts

90 115 140 165 190 215

Maximal Overall Latency (ms)

FILA Drops - (d) GIT=300ms

Figure 26. Interactivity and fairness improvement (left) and dropped events (right) with GIT=300ms and

AIDT=30ms.

4 To Seek the Fairness by Way of the Interactivity

UBLCS-2006-10 47

4.1 Interactivity and Fairness

Fig. 23, Fig. 24, Fig. 25, and Fig. 26 show, respectively, four different sets of experiments, obtained
varying the GIT from 150ms to 300ms. Each set was comprised of six different experiments and each
experiment consisted in the transmission of about 4000 game events which experienced, in the worst
case, a maximal overall latency whose value is reported on the x-axis of each provided chart. The
maximal overall latency represents the largest average latency experienced on the connection between
any two players in the system.

The leftmost graphs of Fig. 23, Fig. 24, Fig. 25 and Fig. 26 show the percentage of game events that
GSS0 was able to deliver to all of its engaged players in time to be simultaneously delivered with an OL
lower than GIT. It hence represents the amount of events which satisfied condition (2) and were thus
fairly processed by all the clients.

INTERACTIVE and FAIR EVENTS

(a) GIT=150ms

0

20

40

60

80

100

90 115 140 165 190 215

Maximal Overall Latency (ms)

%
 I

n
te

ra
c
ti

v
e
 a

n
d

 F
a
ir

LL FILA

0

5

10

15

20

25

30

%
 D

ro
p

p
e
d

 E
v
e
n

ts

90 115 140 165 190 215

Maximal Overall Latency (ms)

FILA Drops - (a) GIT=150ms

Figure 27. Interactivity and fairness improvement (left) and dropped events (right) with GIT=150ms and

AIDT=20ms.

INTERACTIVE and FAIR EVENTS

(b) GIT=200ms

0

20

40

60

80

100

90 115 140 165 190 215

Maximal Overall Latency (ms)

%
 I

n
te

ra
c
ti

v
e
 a

n
d

 F
a
ir

LL FILA

0

5

10

15

20

25

30

%
 D

ro
p

p
e
d

 E
v
e
n

ts

90 115 140 165 190 215

Maximal Overall Latency (ms)

FILA Drops - (b) GIT=200ms

Figure 28. Interactivity and fairness improvement (left) and dropped events (right) with GIT=200ms and

AIDT=20ms.

4 To Seek the Fairness by Way of the Interactivity

UBLCS-2006-10 48

As can be seen from these graphs, having a higher GIT improves the efficacy of both the evaluated
schemes since larger local lags can be utilized. However, regular LL algorithm experiences a premature
performance decrease when the maximal overall latency increases even if it is still far from the GIT.
Instead, FILA ensures a good fairness degree for a larger set of overall latencies.

Obviously, in those configurations where the maximal overall latency is close to (or surpasses) GIT,
both schemes cannot overwhelm network conditions, thus achieving poor fairness (and interactivity).
Even in this case, however, FILA behaves better than the regular LL algorithm.

FILA pays these better results with the drops of some obsolete events. Specifically, the rightmost
charts of Fig. 23, Fig. 24, Fig. 25, and Fig. 26 reveal the percentage of game events which were
discarded by FILA. In all the considered cases, less than 20% of the game events were dropped and
these events were exclusively obsolete ones.

Results turn out to be even better if we focus only on those cases where the overall latency is not
irremediably high with respect to GIT. Considering the configurations when the maximal overall latency
is lower than GIT by 35ms or more, we find that FILA always guarantees more than 86% of fairly
delivered game events with less than 15% of dropped events.

INTERACTIVE and FAIR EVENTS

(c) GIT=250ms

0

20

40

60

80

100

90 115 140 165 190 215

Maximal Overall Latency (ms)

%
 I

n
te

ra
c
ti

v
e
 a

n
d

 F
a
ir

LL FILA

0

5

10

15

20

25

30

%
 D

ro
p

p
e
d

 E
v
e
n

ts

90 115 140 165 190 215

Maximal Overall Latency (ms)

FILA Drops - (c) GIT=250ms

Figure 29. Interactivity and fairness improvement (left) and dropped events (right) with GIT=250ms and

AIDT=20ms.

INTERACTIVE and FAIR EVENTS

(d) GIT=300ms

0

20

40

60

80

100

90 115 140 165 190 215

Maximal Overall Latency (ms)

%
 I

n
te

ra
c
ti

v
e
 a

n
d

 F
a
ir

LL FILA

0

5

10

15

20

25

30

%
 D

ro
p

p
e
d

 E
v
e
n

ts

90 115 140 165 190 215

Maximal Overall Latency (ms)

FILA Drops - (d) GIT=300ms

Figure 30. Interactivity and fairness improvement (left) and dropped events (right) with GIT=300ms and

AIDT=20ms.

4 To Seek the Fairness by Way of the Interactivity

UBLCS-2006-10 49

4.2 About Scalability

In order to test the scalability of FILA and LL, we have decreased the AIDT to generate scenarios with a
higher level of game traffic in the network. In particular, Fig. 27, Fig. 28, Fig. 29, and Fig. 30 refer to
configurations with 20ms of AIDT, while Fig. 31, Fig. 32, Fig. 33 and Fig. 34 correspond to the cases
where AIDT is equal to 10ms. Again, in each figure we present the outcomes for four different GIT
values: 150ms, 200ms, 250ms, and 300ms, respectively. The leftmost charts show the percentage of
game events that were fairly and interactively delivered to all the clients engaged by GSS0. Instead, the
rightmost ones reveal the percentage of game events which were discarded by FILA.

As one can expect, the higher the game traffic, the lower the interactivity and fairness degree
provided by LL. On the contrary, not only is FILA able to manage higher traffic, but its performance
actually improves when the AIDT decreases. This surprising result has a simple explanation. Higher
rates in game event transmissions result in larger queues at GSSs; these queues contain packets that have
not yet been processed. This represenst an insurmountable problem for LL since qi(e) increases for all
clients putting at risk the performance of the system without having any countermeasures. With FILA,
instead, a larger queue of game events at a certain GSS represents also a resource. In fact, obsolete game
events in queue can be discarded, thus reducing the qi(e) that a subsequent event e will experience in its
traveling towards the various clients i.

INTERACTIVE and FAIR EVENTS

(a) GIT=150ms

0

20

40

60

80

100

90 115 140 165 190 215

Maximal Overall Latency (ms)

%
 I

n
te

ra
c
ti

v
e
 a

n
d

 F
a
ir

LL FILA

0

5

10

15

20

25

30

35

40

45

50

%
 D

ro
p

p
e
d

 E
v
e
n

ts

90 115 140 165 190 215

Maximal Overall Latency (ms)

FILA Drops - (a) GIT=150ms

Figure 31. Interactivity and fairness improvement (left) and dropped events (right) with GIT=150ms and

AIDT=10ms.

INTERACTIVE and FAIR EVENTS

(b) GIT=200ms

0

20

40

60

80

100

90 115 140 165 190 215

Maximal Overall Latency (ms)

%
 I

n
te

ra
c
ti

v
e
 a

n
d

 F
a
ir

LL FILA

0

5

10

15

20

25

30

35

40

45

50

%
 D

ro
p

p
e
d

 E
v
e
n

ts

90 115 140 165 190 215

Maximal Overall Latency (ms)

FILA Drops - (b) GIT=200ms

Figure 32. Interactivity and fairness improvement (left) and dropped events (right) with GIT=200ms and

AIDT=10ms.

4 To Seek the Fairness by Way of the Interactivity

UBLCS-2006-10 50

As a proof for our rationale, we can notice that the number of obsolete game events dropped by
FILA increases when decreasing the AIDT. This is caused by higher avgOD values due to the increased
traffic, but is also possible thanks to the presence of more game events in queue that FILA can exploit to
drop obsolete ones.

Finally, analogously to the scenario with 30ms of AIDT, even when the AIDT is set equal to 20ms or
10ms, the percentage of discarded game events remains still reasonably small.

INTERACTIVE and FAIR EVENTS

(c) GIT=250ms

0

20

40

60

80

100

90 115 140 165 190 215

Maximal Overall Latency (ms)

%
 I

n
te

ra
c
ti

v
e
 a

n
d

 F
a
ir

LL FILA

0

5

10

15

20

25

30

35

40

45

50

%
 D

ro
p

p
e
d

 E
v
e
n

ts

90 115 140 165 190 215

Maximal Overall Latency (ms)

FILA Drops - (c) GIT=250ms

Figure 33. Interactivity and fairness improvement (left) and dropped events (right) with GIT=250ms and

AIDT=10ms.

INTERACTIVE and FAIR EVENTS

(d) GIT=300ms

0

20

40

60

80

100

90 115 140 165 190 215

Maximal Overall Latency (ms)

%
 I

n
te

ra
c
ti

v
e
 a

n
d

 F
a
ir

LL FILA

0

5

10

15

20

25

30

35

40

45

50

%
 D

ro
p

p
e
d

 E
v
e
n

ts

90 115 140 165 190 215

Maximal Overall Latency (ms)

FILA Drops - (d) GIT=300ms

Figure 34. Interactivity and fairness improvement (left) and dropped events (right) with GIT=300ms and

AIDT=10ms.

5 Wireless Home Scenario

UBLCS-2006-10 51

Chapter 5

Wireless Home Scenario

The market is currently heading toward houses where all the devices (e.g., computers, televisions,
phones, intelligent appliances, etc.) will be wirelessly connected to the home network and possibly
controlled by a single hub. This convergence point might be represented by the media center which will
expand its features becoming, within few years, the engine of the home network and control the whole
home connectivity.

In this context, take, for example, a mid-class American household where a family of four people
lives: two teenage kids and the hardworking parents. Each family member presumably owns several
networked personal portable devices such as PDAs, MP3 players, game consoles and digital cameras; all
these being also connected to the home network.

Based on the market trends, we consider that all those devices are wirelessly connected to a media
center that controls the in-house media distribution and provides access to the Internet as well as to the
cable television and companies providing external services (e.g., the alarm company).

Moreover, we also assume that several family members will be accessing the household network at
the same time according to their work or leisure needs. In particular, for the sake of our study, we
consider the following family scenario:

i) one teenager is watching a movie, streaming it from the media entertainment center;

ii) the other one is playing with his latest MMOG against a crowd of buddies across the Internet;

iii) the father is having a conversation through an IP based video-chat;

iv) the mother is downloading the last U2 greatest hit compilation from the Apple iTunes© music
store.

In the above everyday life picture it is worth noticing that each of the aforementioned employed
applications features different requirements in terms of network performance, as well as suffer from very
specific problems all due to the best effort nature of the Internet transport protocols.

These are as follows:

• Video-Streaming. Streaming applications are affected by the jitter phenomenon while are
resilient to some packet loss; a network designed mainly for video-streaming should minimize
the jitter. Buffering techniques can be applied to minimize the impact of variable network
conditions.

• Video-Chat and Massive Multiplayer Online Games. Both this applications require a high
degree of interactivity, they greatly suffer from delays and packet jitter while may tolerate some
packet loss, as we have seen for the case of superseded events.

• iTunes Music download. A music download activity is typically performed using TCP, hence
this type of application is resilient to jitter and delays but decreases the sending rate in presence
of losses: it hence does not tolerate any error losses (losses that do not depend from
congestion).

5 Wireless Home Scenario

UBLCS-2006-10 52

1 Transmission Control Protocol

The success of the Internet is based on several factors; among these, one of the most important is the
ability to provide a reliable medium for information exchange and file downloading. In particular, traffic
control functionalities for the most common applications (i.e., FTP, HTTP, SMTP, Telnet) are provided
by the Transmission Control Protocol (TCP). TCP was initially designed to provide an end-to-end,
connection-oriented, and reliable service in the ARPANET [138], and later, in the Internet. TCP
addresses two major issues: reliability and congestion control [139]. To achieve the second goal, TCP
adapts the sending rate to avoid network overflow or falling into service starvation. TCP congestion
control has been studied by the research community for the last 25 years, leading to several TCP variants
with and without the explicit intervention of the network layer (a survey can be found in [140]).

The most popular version, TCP New Reno, implements a congestion control algorithm, known as the
AIMD (Additive Increase, Multiplicative Decrease) algorithm. In this context, the sending window
utilized by the sender represents the number of packets that the sender can send towards the destination
without having yet received any acknowledgment about their delivery from the receiver. Indeed, for
every packet received, the receiver sends back to the sender an acknowledgment (ack) that identifies the
next packet expected and implying that all the precedent packets in the sequence where successfully
delivered. Acks (and Time Outs [139]) are also used to determine packet losses and to communicate the
advertised window back to the sender. The advertised window provides the sender with a limit to the
maximum transmissible sending rate. The final sending window, in fact, is the minimum between the
advertised window and a variable named congestion window.

The very basic concept of the congestion control scheme can be summarized as follows:

• The number of packets sent out without having yet received back their corresponding acks cannot
be higher than the current sending window.

• For each successfully delivered packet, a new one is sent.

• When a whole congestion window of packets has been successfully delivered, the congestion
window value is increased by 1.

• When a packet loss is detected the TCP sender assumes congestion on the path to the receiver and
decreases its congestion window by half (or to 1 if a Time Out occurred).

This scheme has been developed following the end-to-end paradigm by which the two involved end
nodes do not have any explicit information about the links connecting them. In essence, the Internet is
seen as a black box whose contents remain unknown and all the intelligence is left at the edge. Sender
and receiver are unaware of the available bandwidth on the links among them and of the possible
presence of other flows along the same path. The sender has hence to continuously probe the channel to
make use of bandwidth that might be available and to back off when congestion is detected.

2 The IEEE 802.11

As the availability of digital entertainment devices increases rapidly, the need for interconnecting
them is felt as ever more urgent, as well as the necessity to extend the reach of entertainment centers to
the wireless domain. In the today’s market, IEEE 802.11 based wireless LANs are de facto emerging as
the candidate to lead the mobile revolution providing wireless connectivity and advanced functionalities
in terms of flexibility, security and throughput to support entertainment applications ranging from
networked games to in-house digital audio/video distribution and live conferencing etc. [141]. In this
context, technical standards are currently being defined that address both the methods of wired/wireless
interconnection and the means to guarantee a full interoperability between digital entertainment
appliances. Yet not much work has been done in the direction of understanding how can the Internet
native language (i.e. the TCP/IP protocol) take over this complex scenario for efficiently delivering

5 Wireless Home Scenario

UBLCS-2006-10 53

digital contents to entertainment devices, and which is the impact of diverse MAC layer settings over the
Internet native transport protocols (e.g. TCP, UDP) during the distribution of in-house entertainment.

Recalling its main characteristics, the 802.11 MAC layer protocol attempts to face the packet loss
problem by implementing its own retransmission scheme [142]. In particular, lost packets are
retransmitted after a certain period of time without having received any corresponding ack. Successive
retransmissions for the same packet are repeated up to a maximum number of time, which is by default
set to 4 in the standard IEEE 802.11, or until receiving a successful ack. A back off mechanism
determines the retransmission timeouts. This scheme hides wireless error losses from the TCP’s
congestion control mechanism, thus avoiding deleterious multiple reductions of the data sending
window. On the other hand, local retransmissions affect packet delivery delay by increasing its
variability and thereby affecting time-constrained applications such as audio or video-stream.

We are aimed at studying several realistic wireless networking scenarios for entertainment over
IEEE 802.11 networks. In particular, we are going to consider the IEEE 802.11g standard since its wide
diffusion and its increased link capacity (54Mbps) with respect to IEEE 802.11b (11Mbps). In essence,
among the MAC protocols currently in commerce, IEEE 802.11g represents the best candidate for being
factually exploited in wireless homes to support multimedia applications.

3 Queuing Delay

As shown in (5), several delay components determine the final delivery time of each game events
and a significant one is represented by queuing time. Queues are built up along the path from sender to
receiver when the arriving rate of events at a certain node is superior to the serving rate featuring that
node. For instance, there could be routers along the path that receives more packets per unit time than
the transmitting rate available on the outgoing link on which those packets have to be forwarded.
Another example is represented by Game servers that receive more game events per unit time than the
rate at which they are capable of processing them.

However, as recently demonstrated by measurements on a real OC48 link, the capacity of the
Internet is generally larger than the aggregate bandwidth utilized by transiting flows [156]. Moreover,
more and more providers are offering today guaranteed high speed connectivity to home customers
[150, 151, 152, 153, 154, 155]. In essence, tools are offered to customers to verify that their connection
is actually able to support as much traffic as the declared bandwidth. This implies that the bottleneck of
the connection is generally located at the edge of the path connecting sender and receiver.

Focusing on MMOG deployment, we can further support this assumption. In fact, revenues for
MMOG providers come from the subscription payments of many satisfied customers. Therefore, every
commercial MMOG is generally supported by adequate resources in terms of connectivity speed among,
number and capability of their servers [97]. Moreover, we have just demonstrated in Section 3 and
Section 4 how efficient synchronization policies among GSS can be put to good use to improve
interactivity and fairness degree.

However, even when the game network platform is able to bring game events to our house with
delivery times within the GIT, still problems may arise in the last hop, which represents the bottleneck in
terms of the available capacity for the connection. In fact, it might be the case when the Access Point
(AP) receives packets at higher rates that it can forward them to destination. This can happen for several
reasons as, for instance, the fact that the wireless medium allows the transmission of only one packet at a
time and is not full-duplex as wired links.

Moreover, interference, errors, fading, and mobility may cause packet losses which are handled by
the MAC protocol through local retransmissions. These local retransmissions hide error losses to the
TCP and are useful to increment the reliability of the connection. Without them, the TCP would
misinterpret error losses as congestion evidences and reduce its sending rate decreasing its performance.
On the other hand, retransmissions follows the well known back off mechanism by which an increasing
amount of time is utilized to determine whether a packet has been lost and hence retransmit it. The
802.11 MAC protocol performs up to seven retransmissions of short packets (i.e., RTS/CTS, acks) and
four retransmissions of long packets (i.e., data packets) [157]. This means that following packets have to
wait in queue until the preceding one or one of its retransmissions finally reaches the receiver and the
corresponding ack is successfully sent back.

5 Wireless Home Scenario

UBLCS-2006-10 54

Finally, the same wireless connection might be shared by several devices and applications that
increase the congestion level causing queuing. As it is well known, TCP connections have an aggressive
behavior and continuously probe the channel for more bandwidth until queues are fully utilized and
overflowed. In presence of persistent TCP connections it is hence very likely to happen that queues are
steadily fully utilized, thus periodically slowing down the delivery time of each packet, and deteriorating
the performance of time-sensitive applications such as MMOGs.

At the same time large buffers helps TCP-based flows in keeping a high sending rate. This happens
for several reasons but the most important ones are: i) the link successive to the buffer remains fully
utilized for longer periods of time since there are (almost) always packets in queue, ready to be sent as
soon as possible, and ii) traffic bursts can be more easily accommodated thus reducing packet losses and
maintaining higher sending rates for longer periods of time. In essence, a tradeoff relationship exists
among the per-packet delay and the total goodput achieved. The solution for this tradeoff depends on the
queue size and on its utilization.

As we demonstrate in Section 5.6.1, delay increments caused by TCP-based traffic could hit also
tens of milliseconds, which represent a huge waste of time when trying to deliver game events within a
GIT of 150ms.

4 Proposed Solutions

To solve the aforementioned problem we propose different possible solutions. In particular, we may
divide them into two main classes depending on the correspondent networking layer where they are
implemented: transport layer solutions and MAC layer solutions.

The former mainly regards exploiting some of the existing features of regular TCP or employing an
alternative TCP version. The solutions belonging to this class does not necessary rely on the fact that the
last link will be a wireless one. The latter, instead, involves modifications of the 802.11 MAC layer and
thereby it is specifically intended for the wireless media [166].

For all the proposed solutions we investigate both their efficiency and factual deployability to expose
pros and cons and conclude with a winner.

4.1 IEEE 802.11 Parameters Setting

The first proposal regards the utilization of more appropriate setting for parameters of the IEEE 802.11
MAC protocol. Parameters such as maximum number of retransmissions and buffer size were, in fact,
decided in a period when the TCP-based traffic was largely predominant in the Internet. The main
concerns for designers were hence reliability and high throughputs.

Nowadays, UDP-based real time applications are becoming more and more popular hence
demanding for low delays in packet delivery. This kind of applications are resilient to some packet loss
whilst cannot tolerate delays in packets delivery. For this reason, it is preferable to drop a packet than to
waist time in retransmissions.

This obviously contradicts the initial assumption that reliability is the most important issue over
wireless links. Therefore, 802.11 parameters should be modified to make it more sensitive towards real-
time application needs. In particular, the number of local retransmissions could be diminished in order to
find an efficient solution between reliability and low delays in packet delivery.

In the same way, large buffer sizes at the AP help TCP connection to maintain large sending rate for
longer periods and diminish the impact of burst traffic. On the other hand, to a larger buffer corresponds
a longer queuing time experienced when the buffer is full, thus jeopardizing the performance achieved
by time-sensitive applications. By adjusting the buffer size to an appropriate value we can again try to
find an optimal compromise between the needs of TCP-based applications and real-time applications.

4.2 TCP Vegas

TCP Vegas embodies one of the most cited alternatives to regular TCP New Reno in scientific papers.
Its main point of interest is represented by the fact that TCP Vegas tries to avoid congestion instead of
blindly increase its sending window until a packet loss occurs; it hence perfectly fits our needs for low
buffer utilization.

5 Wireless Home Scenario

UBLCS-2006-10 55

Figure 35. Pseudocode of TCP Vegas congestion control.

Indeed, while TCP New Reno utilizes packet loss to determine network congestion, TCP Vegas is

sensitive to end-to-end queuing delay. With TCP Vegas the sender monitors the difference between its
expected rate and the actually achieved one. The difference is compared to a couple of parameters,
namely α and β, to determine whether the congestion window has to be incremented or decremented (by
1) in the next RTT [143, 144]. The parameter α and β determine the amount of buffer each flow is
permitted to occupy.

More in detail, each TCP Vegas source estimates the number of its own packets in the buffer by
monitoring the RTT. It then accordingly adjusts its congestion window to maintain its estimated rate
between the two predetermined parameters α and β. If the difference between the expected rate and the
achieved one is smaller than α, then the congestion window is increased by 1. If this difference surpasses
β, the congestion window is decremented by 1. Finally, if the difference is comprised between α and β
then the sender rate is in its stability region and no particular operation is performed.

The pseudocode of the congestion avoidance algorithm of TCP Vegas is reported in Fig. 35 where
cwnd is the congestion window. The pseudocode also shows that, in case of a packet loss, the congestion
window is halved.

If the buffer at the bottleneck is large enough then TCP Vegas reaches equilibrium. In this case, TCP
Vegas flows should experience zero packet losses, a stable congestion window, and a queue which is
proportional to the number of TCP Vegas flows present. Otherwise, it oscillates like TCP New Reno
flows. Finally, TCP Vegas has been proven to fairly share the link with other TCP Vegas flows but it
behaves too conservatively in presence of regular TCP flows (i.e., New Reno, Sack). Regular TCP, in
fact, fully exploits the available buffer space and TCP Vegas interprets the consequent RTT trend as an
indicator of excessive congestion, thus progressively reducing its sending rate to very low values [148].

TCP Vegas represents a very appealing transport protocol with interesting features such as the
possibility to have some control on the amount of buffer utilized. This, in fact, results a fundamental
property when having to efficiently deal with contemporary real time traffic. On the other hand, the
dramatic efficiency decrease experienced when competing with regular TCP traffic makes unfeasible its
factual deployment.

4.3 Limited Advertised Window

We are aiming at finding the best solution to the tradeoff relationship existing between TCP throughput
and real time application delays. Moreover, the two types of traffic should be able to coexist without
interfering each other and the employed solution should be easily and factually deployable.

Starting from the last point, i.e. the deployability, it is evident how a technique that would exploit
existing features of the already utilized protocols could be easily implemented in a real scenario.
Moreover, we deem that an optimal tradeoff between throughput and low delays could be achieved by
maintaining the sending rate of the TCP flows high enough to efficiently utilize the available bandwidth
but, at the same time, limited in its growth so as to not utilize buffers.

 for every RTT

 {

 if (cwnd/RTTmin – cwnd/RTT) < α then cwnd++

 if (cwnd/RTTmin – cwnd/RTT) > β then cwnd--

 }

 for every loss

 cwnd := cwnd/2

5 Wireless Home Scenario

UBLCS-2006-10 56

time

cwnd

pipe size

limited cwnd

regular cwnd

time

cwnd

pipe size

limited cwnd

regular cwnd

Figure 36. Comparison between regular and limited sending windows.

In this way, in fact, the throughput is maximized by the absence of packet losses which would halve

the congestion window, while the delay is minimized by the absence of queues.
To better understand how limiting the congestion window could guarantee the same or even a higher

throughput with respect to utilizing regular TCP, we show in Fig. 36 a typical saw tooth shaped sending
window of a regular TCP and overlap it with a limited one. As it is evident, the latter is more stable
since it does not use the buffer at the bottleneck link and consequently experiences no losses. The minus
signs in the chart represent situations in which the regular congestion windows provides TCP with a
sending rate which is inferior to that guaranteed by the limited congestion window, while the plus signs
represent the inverse situation (generally accompanied by having packets queuing on the buffer
corresponding to the bottleneck link). If the upper bound for the congestion window is appropriately
chosen, the balance between the plus and minus signs will guarantee to the limited congestion window
an equal or even superior final throughput with respect to the regular congestion window, whilst
avoiding queuing delays.

To achieve this desirable result we need first to address two important issues: how to determine an
appropriate upper bound and how to apply it in practice to the sending window.

Regarding the first point, the most appropriate formula can be derived from the two main goals we
want to achieve: i) full utilization of the available bandwidth and ii) no queue delays. Real time traffic
generally exploits UDP and this transport protocol has no congestion control mechanism. Some smart
applications, however, implements some sort of congestion control at the application layer [158, 159]. In
any case, to avoid queue delays, the aggregate bandwidth utilized by TCP flows cannot exceed the total
capacity of the bottleneck link diminished by the portion of the channel occupied by the concurrent real
time traffic.

In essence, the maximum sending rate for each TCP flows at time t, namely TCPubrate(t), is
represented by:

)t(TCPflows#

))t(UDPtrafficC(
)t(TCPubrate

−
= (22)

where UDPtraffic(t) represents the amount of bandwidth occupied by UDP-based traffic at time t,
#TCPflows(t) is the concurrent number of TCP flows, and C corresponds to the capacity of the
bottleneck link.

The second issue we need to address is how to practically employ this formula in order to have it
working in a real scenario. This means i) determining an effectively deployable way to utilize it with the
current state of the art of the Internet, ii) identifying the location for its implementation, and iii)
proposing a method to compute the value of the various variables.

To solve the first issue, we have to limit the required scope of intervention since modifying the
whole Internet in order to run our scheme would obviously not be a feasible option. Moreover, it would

5 Wireless Home Scenario

UBLCS-2006-10 57

definitely be better if we could make good use of some feature already present in the regular TCP. For
this reason we propose to exploit the existing advertised window to limit the TCP sending rate. In fact,
as seen in Section 5.1, the actual sending window is determined as the minimum between the congestion
window and the advertised window. The advertised window perfectly embodies an upper bound to the
congestion window and is already implemented in all TCP versions. By appropriately modifying it, we
can achieve both efficiency and low delays.

The advertised window is generally determined at the receiver; however, this could not represent the
most suitable place for the modification we need to perform. Indeed, to determine the most appropriate
value for the advertised window, we need a comprehensive knowledge about all the flows that are
transiting through the bottleneck (i.e., the last hop links). Since all the flows have to pass through the
AP, this represents the node where we could be able to implement our scheme. The AP may also
coincide with the Media Center in a wireless home and the mechanism can take advantage of this. In
particular, by spoofing the transiting traffic at the AP and/or utilizing the information hold by the Media
Center, we can obtain all the information required. In any commercial Operating System it is possible to
know which kind of connection is in use and which its nominal speed is just by looking at the status of
the network interface. Through spoofing the channel or exploiting information known at the Media
Center we can also infer the number of active TCP connections and the aggregate amount of current
UDP traffic. The AP can hence easily compute the best TCPubrate(t) utilizing (22) and modify the
advertised window included on the transiting acks accordingly.

Figure 37. Simulated topology.

TABLE VI. SIMULATION CONFIGURATION OF THE WIRED LINKS.

Node 1 Node 2 Physical Latency Link Capacity Queue Size

W1 W0 10ms 100Mbps 140pkts

W2 W0 20ms 100Mbps 140pkts

W3 W0 30ms 100Mbps 140pkts

W0 AP 10ms 100Mbps 140pkts

5 Wireless Home Scenario

UBLCS-2006-10 58

5 Simulation Assessment

In order to analyze in depth our scenario, we have utilized the well known NS-2 network simulator
(version ns-2.28) [1]. Our adopted configuration of the nodes and links can be easily visualized by the
means of Fig. 37. In particular, the house environment is represented by four mobile nodes named N1,
N2, N3 and N4, and the Media-Center that incorporates also the AP. The MAC layer parameters have
been set accordingly to the IEEE802.11g standard. The simulation outcomes showed us that we were
able to reach a maximum achievable bandwidth of circa 20Mbps. This represents a reasonable value
over the declared 54Mbps even in the real world [174].

Focusing on the wired links, their one-way delays and capacities have been configured as listed in
Table VI, while their queue sizes have been set equal to 140 packets. This value comes out by
multiplying the longest RTT with the smallest link capacity on the path (i.e. the bottleneck) which is
represented by the 20Mbps effectively available over the wireless link.

Figure 38. In-home wireless scenario.

TABLE VII. SIMULATED APPLICATION FLOWS.

From To Flow Type Transp. Prot. Start End

AP N0 Video-Stream UDP 0s 180s

W1 N1 Online Game UDP 45s 180s

N1 W1 Online Game UDP 46s 180s

W2 N2 Video-Chat UDP 90s 180s

N2 W2 Video-Chat UDP 91s 180s

W3 N3 FTP TCP 135s 180s

5 Wireless Home Scenario

UBLCS-2006-10 59

As shown in Table VII and Fig. 38, several kinds of applications have been run over this network

topology. In order to uplift the trustworthiness degree of the simulations, we have exploited real trace
files for the video-stream and for the video-chat. Specifically, adopted trace files correspond respectively
to high quality MPEG4 Star Wars IV for the movie, and two VBR H.263 Lecture Room-Cam for the
video-chat, as can be found in [145].

The parameters characterizing the game-generated traffic have been chosen following the directions
provided by scientific literature in this field. Indeed, we can assume that the user in the house is engaged
in one of the very popular first person shooter games, e.g. Quake Counter Strike, with other ~25 players,
geographically away from each other and connected through the Internet. Hence, to model the traffic
generated by this kind of MMOG (packet size and interarrival time), we can use some of the
approximations suggested in [146], which are based on real game platform measurements.

In particular, in our simulation game events have been generated at client side every 60ms; while the
server was transmitting game state updates every 50ms toward the client. Moreover, packet size has
been set to 42Bytes and 200Bytes, respectively for client and server generated game packets.

Simulation experiments have been replicated to examine the effects generated by differently setting
some of the parameters involved in the scenario. Table VIII lists all the variable parameters in the
simulations; each combination of their possible values has been simulated. In particular we have tried
several values for long packet retransmissions going from the regular 4 down to 1. The distance between
the AP and the mobile device was either 5 or 10m which represent two realistic values for a normal
house. The buffer size at the AP was set either equal to 50 or to 100 packets, as these are the two most
common values in commerce.

In particular, it is worth to conclude this discussion by mentioning our experimental choices with
respect to the Shadowing Model, which is a realistic and widely utilized signal fading model available in
NS-2. We followed the directions provided by the official NS-2 manual to represent a home
environment partitioned into several rooms. Specifically, in our simulations, the path loss exponent of
the Shadowing Model was always set equal to 4, while the shadowing deviation had alternatively the
value of 7 and 9. Transmitted signal attenuation grows with the increase of these parameters; we hence
expect to face higher percentage of packet losses over the wireless media when setting the shadowing
deviation to 9.

However, where not differently stated, simulations were run utilizing some realistic default values
for the simulative parameters listed in Table VIII. In particular, we had:

• buffer size at the AP = 100 packets;

• distance between the AP and the mobile device = 10m;

• max number of MAC retransmissions for long packets = 4;

• shadowing deviation of the shadowing model = 7.

TABLE VIII. CHANGING PARAMETERS IN THE SIMULATED CONFIGURATIONS.

Parameter Values Comment

MAC data retransmissions 1, 2, 3, 4 default value = 4

shadowing deviation 7, 9 medium, high

user-AP distance (m) 5, 10 same room, different room

MAC queue size (pkts) 50, 100 common default values

5 Wireless Home Scenario

UBLCS-2006-10 60

 20

 30

 40

 50

 60

 70

 80

 90

 40 60 80 100 120 140 160 180

in
te

ra
rr

(m
s
e

c
)

time(sec)

"interarr_game11"

Figure 39. Example of online gaming interarrival delays.

 0

 5

 10

 15

 20

 25

 30

 35

 40 60 80 100 120 140 160 180

jit
te

r(
m

s
e
c
)

time(sec)

"jitter_game11"

Figure 40. Example of online gaming jitter.

5 Wireless Home Scenario

UBLCS-2006-10 61

Figure 41. FTP total throughput with different user-AP distances;

 shadowing deviation = 9, MAC queue size = 50pkts.

Figure 42. FTP total throughput with different shadowing deviation values;

user-AP distance = 10m, MAC queue size = 50pkts.

Tot Throughput

0

10000

20000

30000

40000

50000

60000

1 2 3 4

max number of MAC retransmission

p
a
c
k
e
ts

7 9

Tot Throughput

0

10000

20000

30000

40000

50000

60000

1 2 3 4

max number of MAC retransmission

p
a

c
k

e
ts

5m 10m

5 Wireless Home Scenario

UBLCS-2006-10 62

6 Experimental Results

We present here the most relevant results from the extensive set of simulations we have run. In
particular, we first demonstrate how concurrent TCP-based traffic can affect the performance of real
time applications. We then compare the outcome with those of our proposed solutions.

6.1 FTP Impact on Real-Time Entertainment Applications

We have intentionally started the various application flows one after the other in order to notice the
progressive impact of the successively incoming and overlapping traffic on the preexisting ones. In
particular, we expect to witness increasing delays and jitter in the arrival time of packets as we augment
the traffic level. However, the bandwidth requirement of the first starting applications in our scenario is
well below the effectively available capacity of the IEEE802.11g wireless media. We have to wait until
the FTP flow takes action, quickly saturating the channel and the queues along the path with its packets,
before being able to clearly detect significant variations in the delays and jitter experienced by the
various real time flows. This phenomenon is evident in Fig. 39 and Fig. 40 where the mobile device was
located at 10m from a standard IEEE802.11g AP.

6.2 Shadowing and Distance Impact on TCP Throughput

The distance between the AP and the mobile device represents an important factor in determining the
transmission quality, especially in a partitioned environment as a house. In fact, Fig. 41 shows that,
positioning the mobile device at a distance of 5m from the AP, the maximum throughput achievable by
the FTP application is already obtained when utilizing only two retransmissions at the MAC layer. The
quality of the transmission signal also depends on the impediments that it may encounter along its path
between the AP and the mobile device.

 0

 50

 100

 150

 200

 250

 0 20 40 60 80 100 120 140 160 180 200

p
a

c
k
e

ts

time(sec)

"cwnd"
"ssth"

"RTTxBW"

Figure 43. Example of TCP congestion window; max MAC retransmissions = 2.

5 Wireless Home Scenario

UBLCS-2006-10 63

 0

 50

 100

 150

 200

 250

 0 20 40 60 80 100 120 140 160 180 200

p
a
c
k
e
ts

time(sec)

"cwnd"
"ssth"

"RTTxBW"

Figure 44. Example of TCP congestion window; max MAC retransmissions = 3.

Figure 45. FTP total throughput with different MAC queue sizes;

user-AP distance = 10m, shadowing deviation = 9.

Tot Throughput

0

10000

20000

30000

40000

50000

60000

1 2 3 4

max number of MAC retransmission

p
a
c

k
e
ts

50 pkts 100 pkts

5 Wireless Home Scenario

UBLCS-2006-10 64

Figure 46. FTP total throughput with different MAC queue sizes;

user-AP distance = 5m, shadowing deviation = 9.

We compare now a house environment constituted by medium level partitions (parameter set to 7),

with another one having more unfavorable partitions to wireless transmissions (parameter set to 9). Fig.
42 confirms our expectations by showing the throughput gain achievable in the first case. However, Fig.
42 also reports a case where having just two retransmissions at the MAC layer produces a higher total
throughput than utilizing a greater number.

TABLE IX. GAMING FLOW JITTER STATISTICS; MAX MAC RETRANSMISSIONS = 4, SHADOWING DEVIATION = 9.

CONSIDERED PERIOD = [0 – 180]s

Jitter 50 pkts 100 pkts

maximum (ms) 33.740 108.36

average (ms) 1.306 2.041

variance 7.360 22.079

pkts received 2658 2658

CONSIDERED PERIOD = [135 – 180]s

Jitter 50 pkts 100 pkts

maximum (ms) 33.740 108.36

average (ms) 3.056 5.229

variance 16.665 49.470

pkts received 899 899

Tot Throughput

0

10000

20000

30000

40000

50000

60000

70000

1 2 3 4

max number of MAC retransmission

p
a
c

k
e
ts

50 pkts 100 pkts

5 Wireless Home Scenario

UBLCS-2006-10 65

TABLE X. GAMING FLOW JITTER STATISTICS; MAX MAC RETRANSMISSIONS = 3, SHADOWING DEVIATION = 9.

CONSIDERED PERIOD = [0 – 180]s

Jitter 50 pkts 100 pkts

maximum (ms) 31.091 44.632

average (ms) 1.045 1.566

variance 4.833 11.034

pkts received 2654 2655

CONSIDERED PERIOD = [135 – 180]s

Jitter 50 pkts 100 pkts

maximum (ms) 31.091 44.632

average (ms) 2.292 3.835

variance 11.502 24.431

pkts received 896 897

This apparent paradox has instead a rational explanation. First, we should remember that

IEEE802.11 has a limited buffer for transmissions and retransmissions. Second, the game and the video-
chat applications generate some reverse traffic that shares path and networking resources with the
acknowledgment (ack) packets generated by TCP as transport protocol under the FTP application. When
the channel is fully utilized, some acks get lost and may cause timeouts.

As a confirmation of this, Figure 43 and Figure 44 refer to the same configuration of Fig. 42 and
present the congestion window, the slow start threshold and the bandwidth delay product of the
underlying TCP flow when the maximum number of retransmissions at the MAC layer was set equal to
2 and 3, respectively. The two charts show a higher frequency of timeouts when a higher number of
retransmissions at the MAC layer helps the traffic to reach a higher level.

6.3 Appropriately Setting MAC Layer Parameters

Finally we intend to highlight the impact of having different queue sizes and maximum number of
retransmissions at the MAC layer on the performance of the various types of traffic present in our
considered scenario. Starting with the first parameter, Fig. 45 and Fig. 46 confirm that having larger
queue size helps TCP in achieving higher throughputs. However, there is no difference in the achieved
throughput when wireless losses, not recovered via MAC retransmissions, are frequent enough to keep
the TCP transmission rates low and hence never have the possibility to utilize more than 50 queue slots.

On the other hand, having large queues along the path may augment the total delay time experienced
by packets. In fact, each packet waits in queue for a time which proportionally grows with the number of
anterior packets already present in the same queue at its arrival. In case of intense traffic, queues tend to
be congested and hence queuing delays may become a significant component of the global delays
experienced by each packet. At the same time, having larger queue size on a link also spreads the range
of possible queuing delays that packets may experience while traveling on that link (depending on the
filling level of the queue). The resulting jitter strongly impact on the performance achieved by real time
applications and, in particular, by highly interactive applications as video-chats and MMOGs. Statistics
of the aforementioned game flow jitter permit a clearer understanding of the performance disparity
generated by diverse queue sizes. In particular, the upper part of Table IX refers to the whole simulated
duration of the MMOG application, while the rest of it considers only the period when the FTP
application is running (from second 135 to second 180).

5 Wireless Home Scenario

UBLCS-2006-10 66

In any case, the worst jitter is experienced when queues are steadily filled up by the FTP flow. To
limit this problem we should find a way to barter part of the FTP throughput with lower queuing delays.
This can be attained also by simply reducing the maximum number of retransmission at the MAC layer
as it is evident by comparing Table X with Table IX.

Even better jitter average and variance can be gained further diminishing the maximum number of
MAC retransmission to 2. However, we advice against this choice, unless placing the device hosting the
FTP application closer to the AP or in a house with a better shadowing deviation of the transmitted
signal. Otherwise, the FTP throughput descends significantly as can be observed in Fig. 41, Fig. 42, Fig.
45, and Fig. 46.

Summarizing, we can say that a more appropriate configuration of the IEEE802.11g than the
traditional one would probably make use of a maximum number of 3 retransmissions, thus guaranteeing
a high FTP throughput whilst maintaining a low per-packet delay and jitter. Moreover, when a unique
queue is maintained for all the traffic flows, a small size (50 packets) should be preferred.

In particular, for a scenario where the shadowing deviation is set to 7 and we have 10m of distance
between the AP and the mobile device, this configuration of the MAC layer parameters allows a TCP
goodput of 55371 packets during the 45 seconds when the FTP application was running. The
corresponding congestion window, slow start threshold and bandwidth-RTT product is shown in Fig. 47.
The interarrival packet time and the jitter for the online game flow traveling from the server to the client
are reported in Fig. 48 and Fig. 49, respectively.

 0

 50

 100

 150

 200

 250

 300

 0 20 40 60 80 100 120 140 160 180

p
a
ck

e
ts

time(sec)

"cwnd"
"ssth"

"RTTxBW"

Figure 47. TCP congestion window; MAC max retransmissions = 4, buffer size = 50 packets.

5 Wireless Home Scenario

UBLCS-2006-10 67

 40

 42

 44

 46

 48

 50

 52

 54

 56

 58

 60

 40 60 80 100 120 140 160 180

in
te

ra
rr

(m
s
e
c
)

time(sec)

"interarr_game11"

Figure 48. Online game interarrival time; MAC max retransmissions = 4, buffer size = 50 packets.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 40 60 80 100 120 140 160 180

jit
te

r(
m

s
e
c
)

time(sec)

"jitter_game11"

Figure 49. Online game jitter; MAC max retransmissions = 4, buffer size = 50 packets.

5 Wireless Home Scenario

UBLCS-2006-10 68

6.4 Utilizing TCP Vegas in Place of TCP New Reno

The ability of TCP Vegas in detecting queues and anticipating their further growth is evident in Fig. 50,
which shows the congestion window when parameters are set as follows: α = 1, β = 3, γ = 2. This
parameter setting corresponds to utilize a very small amount of buffer at the bottleneck. Consequently,
both the queuing time and the achieved goodput will be reduced. The congestion window, in fact, results
evidently limited by TCP Vegas algorithm and reaches very low values. The final goodput is obviously
affected as well: 43950 packets acknowledged in 45s instead of 46580 and 54137 packets for a buffer
size of 50 and 100 packets, respectively, for the regular configuration with TCP New Reno (as seen in
Fig. 45).

 0

 50

 100

 150

 200

 250

 300

 0 20 40 60 80 100 120 140 160 180

p
a

c
k
e

ts

time(sec)

"cwnd"
"ssth"

"RTTxBW"

Figure 50. TCP Vegas congestion window; α = 1, β = 3, γ = 2.

 45

 46

 47

 48

 49

 50

 51

 52

 53

 54

 55

 40 60 80 100 120 140 160 180

in
te

ra
rr

(m
s
e

c
)

time(sec)

"interarr_game11"

Figure 51. Online game interarrival time with concurrent TCP Vegas; α = 1, β = 3, γ = 2.

5 Wireless Home Scenario

UBLCS-2006-10 69

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 40 60 80 100 120 140 160 180

jit
te

r(
m

s
e

c
)

time(sec)

"jitter_game11"

Figure 52. Online game jitter with concurrent TCP Vegas; α = 1, β = 3, γ = 2.

 35

 40

 45

 50

 55

 60

 65

 40 60 80 100 120 140 160 180

in
te

ra
rr

(m
s
e

c
)

time(sec)

"interarr_game11"

Figure 53. Online game interarrival time with concurrent TCP Vegas: α = 5, β = 10, γ = 8.

5 Wireless Home Scenario

UBLCS-2006-10 70

 0

 2

 4

 6

 8

 10

 12

 14

 40 60 80 100 120 140 160 180

jit
te

r(
m

s
e

c
)

time(sec)

"jitter_game11"

Figure 54. Online game jitter with concurrent TCP Vegas; α = 5, β = 10, γ = 8.

 0

 50

 100

 150

 200

 250

 300

 0 20 40 60 80 100 120 140 160 180

p
a

c
k
e

ts

time(sec)

"cwnd"
"ssth"

"RTTxBW"

Figure 55. TCP Vegas congestion window; α = 1, β = 3, γ = 2.

5 Wireless Home Scenario

UBLCS-2006-10 71

On the other hand, having no packets in queue helps real time traffic in reducing its per-packet delay.

In particular, in Fig. 51 and Fig. 52 we show the packet interarrival time and the jitter for the online
game flow going from the server to the client. The tremendous reduction for these values results evident
from the charts: the jitter, for instance, never reaches 4.5 ms.

With different values of its parameters, TCP Vegas becomes able to make use of more buffer space
at the AP. This results in higher delays but, at the same time, higher goodputs. Indeed, the tradeoff
relationship between the per-packet delay and the total goodput highlighted in Section 5.3 is perfectly
embodied in TCP Vegas parameters. By setting the queue target size, those parameters could be seen as
knobs able to move that tradeoff towards one direction or the other.

As an example, if we set α = 5, β = 10, and γ = 8, then the total goodput raises to 59999 packets
acknowledged in 45s. On the other hand, the packet interarrival time and the jitter for the online game
flow going from the server to the client result increased as shown by Fig. 53 and Fig. 54.

The best tradeoff between goodput and real-time traffic jitter could be obtained for this configuration
by using α = 3, β = 7, and γ = 5. For this set of parameters, in fact, the achieved goodput is still high:
57171. At the same time, the interarrival time and the jitter of real time traffic achieves very good
results. Specifically, we can see the trend of the congestion window in Fig. 55, while the interarrival
time and the jitter of online game packets going from the server to the client is depicted in Fig. 56 and
Fig. 57, respectively.

Unfortunately, TCP Vegas suffers from three main drawbacks which are well known in the scientific
community. First, setting its parameters is not a trivial task and depends on many factors such as the
buffer size at the bottleneck and the number of flows sharing that link. In particular, the last factor
continuously changes and it is not possible to continuously adapt α, β, and γ. Second, TCP Vegas has
been shown to be unstable since the contemporary presence of two poles [160]. Third, TCP Vegas
behaves very poorly in terms of throughput when competing with the traditional TCP New Reno and
TCP Sack (which support the large majority of the data flows in the current Internet) [148]. In presence
of congestion, in fact, queues will be fully exploited by traditional TCP, while TCP Vegas will shrink its
congestion window as it will sense continuous queue utilization.

 40

 42

 44

 46

 48

 50

 52

 54

 56

 58

 60

 40 60 80 100 120 140 160 180

in
te

ra
rr

(m
s
e

c
)

time(sec)

"interarr_game11"

Figure 56. Online game interarrival time with concurrent TCP Vegas: α = 3, β = 7, γ = 5.

5 Wireless Home Scenario

UBLCS-2006-10 72

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 40 60 80 100 120 140 160 180

jit
te

r(
m

s
e

c
)

time(sec)

"jitter_game11"

Figure 57. Online game jitter with concurrent TCP Vegas; α = 3, β = 7, γ = 5.

Since these problems and, in particular, the last one, TCP Vegas is not factually deployable in the
Internet. We need hence to find an alternative solution that could be practically employed.

6.5 Limiting TCP’s Advertised Window

The link capacity actually achieved by a wireless connection is usually less than half of the nominal one.
From tests run in our lab with a real 802.11b antenna we were able to get only a maximum of about
5Mbps over a nominal rate of 11Mbps. However this was the result of a tuning of the connectivity
obtained by choosing the best positioning for the AP and the mobile device. Under regular
circumstances, the factual transmission rate would be even less than that. We obtained coherent results
also by simulating an 802.11b link on NS-2.

We have then simulated an 802.11g link on NS-2 and measured a maximum effectively achievable
transmission rate of circa 20Mbps. We have enhanced our scenario by enabling the AP to modify the
advertised window of returning acks accordingly with the bandwidth left available by the UDP-based
flows as determined in (22). In particular, the average UDP-based aggregate traffic was computed
through a simple low-pass filter and the new advertised window was determined every 200ms.

In this configuration, various values for the parameter C in (22) have been tested and results are
reported in Fig. 58. In this chart, we can see the average, the standard deviation and the maximum value
for the delays experienced by the gaming application in its flows directed from the server to the client.
Moreover, it also contains the throughput trend of the concurrent TCP flow. We do not report here the
equivalent charts corresponding to all the other real time traffic flows since their results are coherent
with those presented in Fig. 58 and do not need further explanation.

As clearly shown, both the average and the standard deviation of the online game flow
increase when we utilize higher values for C. This is obviously due to the fact that higher C
values decrease the resilience to TCP bursts thus leading to some queuing at the AP. However,
both the average and the standard deviation are very low for all C values and we could have the
wrong impression that the online game flow always experience good performance.
Unfortunately, this is not true as can be noticed by looking at the curve representing the maximum delay
value experienced by packets traveling through the AP.

5 Wireless Home Scenario

UBLCS-2006-10 73

Finally, Fig. 58 also demonstrates how the throughput decreases when C is set too low. Instead, if C
is set higher than the maximum achievable throughput on the channel (in this case, 20Mbps), then the
sender will be allowed to send more packets than those bearable by the bottleneck link causing queuing
delays. Moreover, at a certain point, some packets will overflow the buffer and the consequent packet
loss will cause the reduction of the sending window and average throughput.

0

2

4

6

8

10

12

14

16

18

20

22

24

26

28

15 16 17 18 19 20 21 22 23

Parameter C (Mbps)

V
a

lu
e

s

avg(ms)

stdev(ms)

max(ms)

thr(Mbps)

Figure 58. Statistical values when employing limited advertised window.

 0

 50

 100

 150

 200

 250

 300

 350

 0 20 40 60 80 100 120 140 160 180

p
a

c
k
e

ts

time(sec)

"cwnd"
"ssth"

"RTTxBW"
"adv_win"

Figure 59. TCP behavior with limited advertised window and C = 18Mbps.

5 Wireless Home Scenario

UBLCS-2006-10 74

 40

 42

 44

 46

 48

 50

 52

 54

 56

 58

 60

 62

 40 60 80 100 120 140 160 180

in
te

ra
rr

(m
s
e

c
)

time(sec)

"interarr_game11"

Figure 60. Online game interarrival time with concurrent TCP, limited advertised window, C = 18Mbps.

 0

 2

 4

 6

 8

 10

 12

 40 60 80 100 120 140 160 180

jit
te

r(
m

s
e
c
)

time(sec)

"jitter_game11"

Figure 61. Online game jitter with concurrent TCP, limited advertised window, C = 18Mbps.

5 Wireless Home Scenario

UBLCS-2006-10 75

Setting C as 18Mbps (i.e., the 90% of the maximum achievable bandwidth) seems to be an
appropriate choice able to guarantee both low queuing delays and high TCP efficiency. The advertised
window exploited by the TCP flow is evident in Fig. 59, which also reports the congestion window, the
slow start threshold, and the bandwidth-RTT. We have to keep in mind that the TCP flow starts at
second 135 of the simulation time and that the actual sending window is determined as the minimum
between the advertised window and the congestion window. Said that, we can appreciate from the chart
how the AP is able to keep track of the concurrent real time traffic and determine the most appropriate
advertised window. In particular, for this configuration, the final goodput in terms of acknowledged
packets over 45 seconds hits 58677, while the interarrival time and the jitter experienced by online game
packets are maintained low as demonstrated by Fig. 60 and Fig. 61, respectively.

Another interesting outcome shown by Fig. 59 is the proximity of the advertised window curve and
the bandwidth-RTT product ones. The advertised window is prudently set close to the bandwidth-RTT
product (i.e., the link pipe size) minus the aggregate UDP based traffic, and this difference also
represents an estimate of the amount of real time traffic present on the channel. We have to remind that
the real time traffic was simulated considering three simultaneously running applications of various type
and exploiting real traffic traces. As it is evident from the chart, the difference between the two curves is
relatively small if compared to the whole channel capacity thus demonstrating that real time applications
generally do not have to face bandwidth shortage in an 802.11g wireless home, whilst they still have to
deal with high and variable delays.

6.6 Summarizing Results

In order to compare the various proposed scheme we have summarized in Fig. 62 statistical results
obtained by: i) utilizing regular TCP New Reno on a standard IEEE 802.11g MAC configuration
(Regular) ii) appropriately setting the MAC layer parameters (MAC-Setting), iii) utilizing TCP Vegas in
place of regular TCP (TCP-Vegas), and iv) TCP with Limited Advertised Window (TCP-LAW)
implemented at the AP.

More specifically, the MAC layer parameters for MAC-Setting were set with a maximum number of
retransmissions equal to 3 and a buffer size of 50 packets at the AP. Instead, TCP Vegas was configured
with α = 3, β = 7, γ = 5 and TCP-LAW considered C = 18.

The compared statistical parameters are the average, the standard deviation and the maximum value
of jitter experienced by online game packets entering the house (thus going from the server to the client)
via the AP. Results obtained from the other real time applications running in the simulated scenario (i.e.
video-stream and video-chat) are coherent with the showed ones; we hence skip to present their charts.
Rather, we also show the average throughput achieved by the concurrent TCP connection.

0

5

10

15

20

25

30

35

40

45

avg(ms) st_dev(ms) max(ms) thr(Mbps)

Statistical Parameters

V
a

lu
e

s

Regular MAC-Setting TCP-Vegas TCP-LAW

Figure 62. Statistical values for the various schemes.

5 Wireless Home Scenario

UBLCS-2006-10 76

As it is evident, employing TCP Vegas to support FTP traffic is the solution that would guarantee the
best performance both in terms of lowest per packet delay and highest throughput. However, as already
mentioned in Section 5.4.2, TCP Vegas cannot be actually deployed in the Internet since it is not able to
efficiently coexist with regular TCP flows [148].

Conversely, TCP-LAW could be easily implemented as it only requires the presence of slightly
“smarter” APs. The modifications to the AP are very limited thus minimally impacting on their cost and,
at the same time, our scheme can perfectly coexist with the current Internet and its employed protocols.
Considering this and the remarkable results achieved, TCP-LAW represents the optimal candidate for
enhancing wireless home scenarios.

6 Conclusion

UBLCS-2006-10 77

Chapter 6

Conclusion

We are living in a world which is faster and faster spinning toward a continuous, ubiquitous, and
seamless wireless connectivity. Customers are more and more attracted by high quality entertainment
applications, and mobility represents the next frontier for this kind of technology. On the other hand, real
time applications require continuous connectivity and have stringent delays bounds. MMOG represents
an exemplar and very interesting case study among the various entertainment applications that would be
soon ubiquitously available.

Several factors concur in creating a pleasant game experience for online players: high
responsiveness, uniform view of the game state and fairness represent the most important of them. We
have hence deeply analyzed issues related to entertainment applications requiring high responsiveness
degree as MMOGs.

Particular attention has been devoted to latency issues, since they represent the most important
prerequisite in developing online games. We have addressed this problem from two standpoints: the
server-to-server synchronization and the client-server communication in a congested wireless
environment. We have aimed at creating an effective online game platform able to sustain game sessions
even in the challenging scenario involving wirelessly connected players.

In particular, we have first developed a hybrid architecture combining the scalability of peer-to-peer
paradigm with the easy management of the client-server one.

We have then devised an efficient synchronization scheme among these servers (GSS) that makes
use of a proactive event discarding mechanism, named ILA, to preserve responsiveness. The proposed
mechanism relies on the concept of obsolescence and correlation to drop old game events at GSSs, thus
accelerating the processing of fresher ones. We have shown simulation results that demonstrate the
benefits attainable by employing our scheme in place of traditional ones. In particular, with a limited
number of obsolete event drops, ILA is able to proactively guarantee a high interactivity degree also
maintaining, in the ILA-RED version, full consistency.

Following a holistic approach we have been able to further refine our synchronization mechanism to
improve the degree of fairness experienced by players. We have named this upgraded version FILA and
we have presented simulation results showing the improvements in terms of game events that were fairly
and interactively delivered to destination with respect to traditional Local Lag schemes.

Finally, to support engaged players even in a mobile scenario, we have proposed and evaluated
solutions able to diminish queuing delays even in congested wireless environments. In particular we
have devised an easily deployable scheme that exploits enhanced APs and the TCP’s advertised window
to ensure both goodput efficiency and high responsiveness.

1 Future Work

From here on, our work can proceed toward several directions such as the development of new tools
proficient at evaluating MMOG performance or the utilization of SIP technology to support various
MMOG functionalities. Among the many possibilities, we elaborate on two potential future studies that

6 Conclusion

UBLCS-2006-10 78

will soon be object of exceptional interest from the scientific community: the IEEE 802.11e standard
and the convergence between MMOGs and vehicular networks.

1.1 Utilizing IEEE 802.11e

We have demonstrated how the standard IEEE 802.11 MAC protocol is not well suited for supporting
real time traffic and in particular highly interactive applications. Problems raise both from the setting of
its parameters, which have been mainly intended for TCP-based traffic, and from the lack of an efficient
Quality of Service (QoS) mechanism.

In particular, the regular IEEE 802.11b/g standard implements a contention scheme as previously
summarized in Section 5.2. This mechanism is named Distributed Coordination Function (DCF) and
supports only best effort services, with no guarantee for bandwidth, packet delay, and jitter.
Alternatively, a contention avoidance service intended to better sustain time-bounded traffic makes use
of the polling access method offered by the Point Coordination Function (PCF) [161].

PCF scheme provides stations with a prioritized access to the wireless medium. However, several
unresolved problems led to the development of enhancements to the protocol which have been very
recently finalized in the IEEE 802.11e standard (the definitive document has been released during the
final draw up of this Thesis) [102].

Better results in terms of low jitter and per packet delays could be obtained through the utilization of
the IEEE 802.11e in place of the regular IEEE 802.11b/g [55, 162]. The IEEE 802.11e defines different
classes of traffic and, for each class, diverse configurations of the parameters permit the creation of
priorities. These parameters, in fact, determine the various contention delays that packets have to
experience before having access to the wireless medium.

From the application point of view, video-chats and online games will belong to the highest priority
class of traffic. Since video-stream applications could make use of buffering techniques, they could be
featured with a medium priority level. Finally, TCP packets could have a low priority level in order to
minimize the impact on real time traffic.

Since the specifications of the IEEE 802.11e have been finally defined only very recently, first
experiments will obviously involve simulations. We would like to compare the performance of this new
MAC protocol, both in terms of TCP goodput and per-packet delays, with those of the schemes here
proposed and, in particular with those of TCP-LAW. Moreover, we would also like to investigate the
deployability and the performance of a combination of the two technologies.

1.2 MMOG in Vehicular Networks

Cars represent the next frontier in mobile communication for the forthcoming years, as they become
more endowed with entertainment technology. Having 410K cars and SUVs sold in first half of 2004
with pre-installed DVD systems [149], it is not hard to foresee a future where all vehicles will be
capable of connecting to the Internet, and passengers will represent a conspicuous slice of the online
entertainment market.

In fact, as anticipated in the introduction (Section 1), MMOGs are going to reach also the realm of
car-networking. Starting from the assumption of having our mirrored game server architecture endowed
with the ILA scheme, we are going to run simulations and real experiments focused on the client-server
part of the game platform. In order to test the feasibility of running interactive applications as MMOGs
in highly mobile environments, simulations could be run utilizing one of the most popular and trusted
simulators in the scientific literature: NS-2 or QualNet [1, 2].

Scenarios involving different kinds of available antennas, as well as diverse dislocation of APs and
traffic conditions, could be tested and compared in order to provide useful information about
connectivity and latency. Alternative solutions able to compensate AP’s lacks of coverage could also
exploit car-to-car ad-hoc connections or a combination with 3G full coverage connectivity [11].

In particular, when coverage from APs is missing, some cars could be connected through 3G
architecture. These cars could download and upload game packets for themselves but also on behalf of
other players sit in cars around them. The general small size of game packets, in fact, limits the
bandwidth requirement. Therefore, one single connection could be enough to let several players
updating their game status.

6 Conclusion

UBLCS-2006-10 79

Figure 63. Hybrid architecture for distributed game entertainment in heterogeneous scenarios including

car-networking.

This is useful for two main reasons: first, to increase throughput and latency efficiency, and second,
to circumvent the current limitation that imposes boundaries on the number of contemporary connected
customers for each cell [11]. Wi-Fi connections exploiting car-to-car ad-hoc topology will then be used
to diffuse game events between relay vehicles and others in proximity. Cellular and ad-hoc network
architecture may thus be both present and combined on each automobile to ensure a continuous
connectivity while waiting for being in range of the next AP on the road (as depicted in Fig. 63).
Previous studies demonstrated how the aggregate throughput may increase by utilizing a unified cellular
and had-hoc network architecture [21]. However, the latency issue involved in this combination has not
yet been investigated. Moreover, car-networking scenario further increases the mobility, thus asking for
frequent changes of utilized access technology.

Talking about 3G communications, pricing techniques should be investigated in order to put in
practice a scenario where people are continuously connected also to propagate other customers’ traffic.
A mechanism aimed at billing the right final player even when not directly connected to a 3G antenna
should be defined. Each player should pay for its own traffic, and only for it. A possible alternative is
represented by having flat rates for all the customers. With this solution, players would pay just a
monthly fee for their 3G traffic thus increasing the appeal of this architecture and simplifying pricing
problems especially in our considered hybrid scenario.

Obviously, simulations will result very helpful at the beginning to evaluate novel solutions in this
field. Indeed, real experiments aimed at testing connectivity under diverse conditions could require the
deployment of unsustainable investments to provide an adequate amount of participating cars and
antennas on the road.

GSS1

GSS2

GSS5

GSS3

Internet

GSS4

C

A

B
D

6 Conclusion

UBLCS-2006-10 80

However, simple but meaningful real experiments can be performed to obtain real measurements
about the time involved in connectivity settling, handovers, car-to-car communication and different
access technology adopted. A limited number of moving automobiles can be used to carry out
meaningful experiments. Equipped with devices to communicate with APs, these vehicles will transport
users engaged in MMOGs. Even simpler but still valuable experiments can be run inside a laboratory,
where a couple of APs and some wireless connected devices could permit some useful delay and
connectivity measurements.

ACKNOWLEDGMENT

UBLCS-2006-10 81

Acknowledgment

This PhD thesis has been developed as part of my joint PhD program. Thanks to the Interlink project, in
fact, I am a PhD student in both the Dipartimento di Scienze dell’Informazione, Università di Bologna,
and in the Department of Computer Science, UCLA. As part of my education and research work, every
year I spend a period in each of these two institutions, under the supervision of Prof. Marco Roccetti and
Prof. Mario Gerla, respectively. My first thanks goes hence to them for the great opportunity they gave
me and for their fundamental guidance in these years.

I cannot forget Giovanni Pau that conceived, first, this great adventure of a joint PhD. He has been a
true friend, a great co-worker, and an unlimited source of astute suggestions.

Many thanks also to Stefano Cacciaguerra, Maria Fazio, Stefano Ferretti, Gustavo Marfia, Daniela
Maniezzo, Matteo Roffilli, and Cesare Roseti. With them my papers have been better works, my time in
the office enjoyable, and my life richer of precious friends. My thanks have to be extended also to all the
people in the Network Research Lab, Radio Lab, and Studio 16 for all the interesting discussion we had.

Finally I wish to thank the reviewers of this thesis for their important comments and suggestions.

This work is dedicated with love to my family.

REFERENCES

UBLCS-2006-10 82

References

[1] The Network Simulator, NS-2. http://www.isi.edu/nsnam/ns/

[2] QualNet Network Simulator. http://www.qualnet.com/

[3] C.H. Nam, Soung C. Liew, C.P. Fu, “An Experimental Study of ARQ Protocol in 802.11b
Wireless LAN”, in Proc. of IEEE VTC 2003, 2003.

[4] G. Xylomenos and G. C. Polyzos, “TCP and UDP Performance over a Wireless LAN”, in Proc.
of IEEE INFOCOM ’99, 1999.

[5] C. E. Palazzi, C. Roseti, M. Luglio, M. Gerla, M. Y. Sanadidi, and J. Stepanek, “Satellite
coverage in urban areas using Unmanned Airborne Vehicles (UAVs)”, in Proc. of VTC2004
Spring, Milan, Italy, May 2004.

[6] C. E. Palazzi, C. Roseti, M. Luglio, M. Gerla, M. Y. Sanadidi, and J. Stepanek, “Enhancing
Transport Layer Capability in HAPS-Satellite Integrated Architecture”, Wireless Personal
Communications International Journal, Special Issue on "High Altitude Platforms: Research and
Application Activities", Kluwer Academic Publishers, 2004.

[7] C. Griwodz, “State Replication for Multiplayer Games”, in Proc. of NetGames2002, pp. 29-35,
Braunschweig, Germany, 2002.

[8] S. Mascolo, A. Grieco, G. Pau, M. Gerla, C. Casetti, “End-to-End Bandwidth Estimation in TCP
to Improve Wireless Link Utilization”, European Wireless Conference, Florence, Italy, Feb 2002.

[9] M. Roccetti, V. Ghini and P. Salomoni, “Distributing Music from IP Networks to UMTS
Terminals: an Experimental Study'', in Proc. 2002 SCS Euromedia Conference
(EUROMEDIA2002), (M. Roccetti Ed.) The Society for Modeling and Simulation International,
Modena (Italy), pp. 147-154, Apr 2002.

[10] V. Ghini, G. Pau, M. Roccetti, P. Salomoni, M. Gerla, “For Here or To Go? Downloading Music
on the Move with an Ultra Reliable Wireless Internet Application”, IEEE ICC’2004, Paris, 2004.

[11] UMTS Forum. http://www.umts-forum.org

[12] J. Weatherall and A. Jones, “Ubiquitous Networks and their applications”, in IEEE Wireless
Communication, Feb 2002.

[13] E. Gustafsson and A. Jonsson, “Always Best Connected”, IEEE Wireless Communications, pp.
49-55, Feb 2003.

[14] G. Huston, “The future for TCP”, The Internet Protocol Journal, vol. 3, n. 3, Sep 2000.

[15] G. Huston, “TCP in a Wireless World”, IEEE Internet Computing, pp. 82 – 84, Mar-Apr 2001.

[16] Mattias Esbjörnsson, Oskar Juhlin and Mattias Östergren, “The Hocman Prototype – Fast Motor
Biders and Ad-hoc Networking”, in Proc. of MUM, 2002.

[17] H. Balakrishnan, V. N. Padmanabhan, S. Sehan, and R. H. Katz, "A comparison of mechanism
for improving TCP performance over wireless links", IEEE/ACM Trans. Networking, vol. 5, no.
6, pp. 756 – 769, Dec 1997.

[18] M. Mauve, J. Widmer and H. Hartenstein, “A Survey on Position-Based Routing in Mobile Ad
Hoc Networks”, IEEE Network, vol. 15, no. 6., pp. 30-39, 2001.

[19] J. Ott and D. Kutscher, “Drive-thru Internet: IEEE 802.11b for Automobile Users”, In Proc. of
IEEE INFOCOM 2004, Mar 2004.

REFERENCES

UBLCS-2006-10 83

[20] A. Nandan, S. Das, G. Pau., M. Gerla, M. Y. Sanadidi, “Co-operative Downloading in Vehicular
Ad-hoc Wireless Networks”, in Proc. of WONS 2005, Saint Moritz, Switzerland, Jan 2005.

[21] H. Luo, R. Ramjee, P. Sinha, L. Li, S. Lu, “UCAN: A Unified Cellular and Ad-Hoc Network
Architecture”, in Proc. of ACM MobiCom 2003, San Diego, CA, Sep 2003.

[22] Q. Xu, T. Mak, J. Ko, R. Sengupta, “Vehicle-to-Vehicle Safety Messaging in DSRC”, in Proc. of
ACM VANET’04, Philadelphia, PA, Oct 2004.

[23] B. Hughes, R. Meier, R. Cunningham, V. Cahill, “Towards Real-Time Middleware for Vehicular
Ad Hoc Networks”, in Proc. of ACM VANET’04, Philadelphia, PA, Oct 2004.

[24] Mobile Monday. http://www.mobilemonday.net/mm/story.php?story_id=3748

[25] MMOGCHART. http://www.mmogchart.com/

[26] D. Kushner, Masters of Doom, Random House, New York, NY, 2002.

[27] J. Smed, T. Kaukoranta, H. Hakonen, “Aspects of Networking in Multiplayer Computer Games”,
in Proc. of International Conference on Application and Development of Computer Games in the
21st Century, pp.74-81, Hong Kong, China, 2001.

[28] M. R. Macedonia, A Network Software Architecture for Large Scale Virtual Environments, Ph.D.
Thesis, Naval Postgraduate School, Monterey, CA, 1995.

[29] D. L. Neyland Virtual Combat: A Guide to Distributed Interactive Simulation, Stackpole Books,
Mechanicsburg, PA, 1997.

[30] V. Normand, “The COVEN project: Exploring Applicative, Technical, and Usage Dimensions of
Collaborative Virtual Environments”, Presence, vol.8, no.2, pp. 218-236, 1999.

[31] E. Frécon, M. Stenius, “DIVE: A Scaleable Network Architecture for Distributed Virtual
Environments”, Distributed Systems Engineering, vol. 5, no. 3, pp. 91-100, 1998.

[32] T. A. Funkhouser, “RING: A Client-Server System for Multi-User Virtual Environments”, in
Proc. of the 1995 Symposium on Interactive 3D Graphics, pp. 85-92, Monterey, CA, 1995.

[33] Nindtendo DS. http://www.nintendo.com/ds/index.jsp

[34] Sony PSP. http://www.us.playstation.com/pressreleases.aspx?id=207

[35] Quake Forge Project. http://www.quakeforge.org/

[36] R. M. Mine, J. Shochet, R. Hughston, “Building a Massively Multiplayer Game for the Million:
Disney's Toontown Online”, ACM Computers in Entertainment (CIE), vol. 1, no. 1, pp. 15-15,
2003.

[37] P. Mehta and S. Udani. “Voice over IP”, in IEEE Potentials, vol. 20, no. 4, Oct 2001.

[38] W. Cai, P. Xavier, S. J. Turner, B. Lee, “A Scalable Architecture for Supporting Interactive
Games on the Internet”, in Proc. of the 16th Workshop on Parallel and Distributed Simulation, pp.
54-61, Washington, DC, 2002.

[39] S. Singhal, M. Zyda, Networked Virtual Environments: Design and Implementation, Addison
Wesley, 1999.

[40] T. Kanter and C. Olrog, “VoIP in Applications for Wireless Access”, in IEEE Workshop on Local
and Metropolitan Area Networks, Nov 1999.

[41] K. Svanbro, J. Wiorek, and B. Olin, “Voice-over-IP-over-wireless”, in IEEE PIMRC '00, Sep
2000.

REFERENCES

UBLCS-2006-10 84

[42] C. E. Palazzi, “Buddy-Finder: A Proposal for a Novel Entertainment Application for GSM”, in
Proc. of the 1st IEEE International Workshop on Networking Issues in Multimedia Entertainment
(NIME'04), GLOBECOM 2004, Dallas, TX, Nov 2004.

[43] C. E. Palazzi, “Residual Capacity Estimator for TCP on wired/wireless links”, in Proc. of
WCC2004-Student-Forum IFIP World Computer Congress 2004, Tolouse, France, Aug 2004.

[44] S. Tekinay and B. Jabbari, “Handover and channel assignment in mobile cellular networks”, in
IEEE Commununication Magazine, vol. 29, no, 11, pp. 42-46, Nov 1991.

[45] N. Davies, K. Cheverst, A. Friday and K.Mitchell, “Future Wireless Applications for a
Networked City: Services for Visitors and Residents”, Feb 2002.

[46] V. Ghini, G. Pau, M. Roccetti, P. Salomoni and M. Gerla, “Smart Download on the Go: A
Wireless Internet Application for Music Distribution over heterogeneous Networks”, in Proc.
IEEE International Conference on Communications - Access and Home Networks Symposium
(ICC'04), accepted for publication, Paris, France, IEEE Communications Society, Jun 2004.

[47] M. Roccetti and P. Salomoni, “The Design and Performance of a Wireless Internet Application
for Supporting Multimedia City Guides”, in Proc. of IEEE International Conference on
Information Technology: Research and Education (ITRE 2003), Special Session on Multimedia
Transport in Heterogeneous Wireless Networks, Newark (USA), Aug 2003.

[48] M. Stemm and R. H. Katz. “Vertical handoffs in wireless overlay networks”, in Mobile Networks
and Applications, vol. 3, no. 4, 1998.

[49] K. Wang, S.K. Tripathi, "Mobile-End Transport Protocols: An Alternative to TCP/IP Over
Wireless Links", in Proc. IEEE Infocom ‘98, San Francisco, California, USA, pp. 1046-1053, Apr
1998.

[50] M. Stemm and R. H. Katz, "Vertical Handoffs in Wireless Overlay Networks", ACM Mobile
Networks and Applications (MONET) Journal, Special Issue on Mobile Networking in the
Internet, 1998.

[51] K. Brown, S. Singh, “M-TCP: TCP for Mobile Cellular Networks”, ACM Computer
Communication Review, vol. 27, no. 5, Jul 1997.

[52] J. S. Steinman, R. Bagrodia, D. Jefferson, “Breathing Time Warp”, in Proc. of the 1993
Workshop on Parallel and Distributed Simulation, San Diego, CA pp. 109-118, 1993.

[53] D. R. Jefferson, “Virtual Time”, ACM Transaction on Programming Languages and Systems, vol.
7, no. 3, pp. 404-425, 1985.

[54] S. J. Kim, F. Kuester, K. H. Kim “A Global Timestamp-based Scalable Framework for Multi-
player Online Games”, in Proc. of the IEEE Fourth International Symposium on Multimedia
Software Engineering (MSE’02), 2002.

[55] H. Yoon, J. W. Kim, D. Y. Shin, “Dynamic Admission Control in IEEE 802.11e EDCA-based
Wireless Home Network”, in Proc. of IEEE Consumer Communications and Networking
Conference (CCNC 2006), Las Vegas, NV, Jan 2006.

[56] M. Gerla, K. Tang, R. Bagrodia, “TCP Performance in Wireless Multi-hop Networks”, in Proc. of
the 2nd IEEE Workshop on Mobile Computer Systems and Applications (WMCSA ’99).
Washington, DC, USA, p. 41-50, 1999.

[57] M. Heusse, F. Rousseau, G. Berger-Sabbatel, A. Duda, “Performance Anomaly of 802.11b”, in
Proc. of IEEE INFOCOM 2003, San Francisco, CA, USA, Apr 2003.

[58] T. Beigbeder, R. Coughlan, C. Lusher, J. Plunkett, E. Agu, M. Claypool, “The Effects of Loss
and Latency on User Performance in Unreal Tournament 2003”, in Proc. of ACM Network and
System Support for Games Workshop (NetGames), Portland, OG, USA, Sep 2004.

REFERENCES

UBLCS-2006-10 85

[59] E. Cronin, A. R. Kurc, B. Filstrup, S. Jamin, “An Efficient Synchronization Mechanism for
Mirrored Game Architectures”, Multimedia Tools and Applications, vol. 23, no. 1, pp. 7-30,
2004.

[60] D. R. Cheriton, D. Skeen, “Understanding the Limitations of Causal and Totally Ordered
Multicast”, in Proc. of the 14th Symposium on Operating System Principles (SOSP '93), pp. 44-
57, Asheville, NC, 1993.

[61] X. Défago, A. Schiper, P. Urban, “Totally Ordered Broadcast and Multicast Algorithms: a
Comprehensive Study”, Technical Report, DSC/2000/036, Swiss Federal Ecole Politechnique
Fédérale de Lausanne, Switzerland, 2000.

[62] C. E. Palazzi, S. Ferretti, S. Cacciaguerra, M. Roccetti, “On Maintaining Interactivity in Event
Delivery Synchronization for Mirrored Game Architectures”, in Proc. of 1st IEEE International
Workshop on Networking Issues in Multimedia Entertainment (NIME'04), GLOBECOM 2004,
Dallas, TX, 2004.

[63] S. Ferretti, M. Roccetti, “A Novel Obsolescence-based approach to Event Delivery
Synchronization in Multiplayer Games”, International Journal of Intelligent Games and
Simulation, vol. 3, no. 1, pp. 7-19, 2004.

[64] S. Ferretti, M. Roccetti, S. Cacciaguerra, “On Distributing Interactive Storytelling: Issues of
Event Synchronization and a Solution”, in Proc. of the 2nd International Conference on
Technologies for Interactive Digital Storytelling and Entertainment (TIDSE 2004), LNCS 3105,
Darmstadt, Germany, pp. 219-231, 2004.

[65] R. Drummond, O. Babaoglu, “Low-Cost Clock Synchronization”, Distributed Computing, vol. 6,
no. 3, pp. 193-203, 1993.

[66] F. Cristian, “Probabilistic clock synchronization”, Distributed Computing, vol. 3, no. 3, pp. 146-
158, 1989.

[67] D. L. Mills, “Internet Time Synchronization: the Network Time Protocol”, IEEE Transactions on
Communications, vol. 39, no. 10 pp. 1482-1493, 1991.

[68] S. Floyd, V. Jacobson, “Random Early Detection Gateways for Congestion Avoidance”,
IEEE/ACM Transactions on Networking, vol. 1, no. 4, pp. 397-413, 1993.

[69] C. E. Palazzi, S. Ferretti, S. Cacciaguerra, M. Roccetti, “A RIO-like Technique for Interactivity
Loss Avoidance in Fast-Paced Multiplayer Online Games: a Preliminary Study”, in Proc. of the
2nd Annual International Workshop in Computer Game Design and Technology (GDTW 2004),
Liverpool, UK, 2004.

[70] D. D. Clark, W. Fang, “Explicit Allocation of Best-Effort Packet Delivery Service”, IEEE/ACM
Transactions on Networking, vol.6, no.4, pp.362-373, 1998.

[71] M. Mauve, Distributed Interactive Media, PhD thesis, University of Mannheim, ISBN 3-89838-
471-3. infix., Berlin, 2000.

[72] K. Park, W. Willinger, Self-Similar Network Traffic and Performance Evaluation, Wiley-
Interscience, 1st Edition, 2000.

[73] J. Farber, “Network Game Traffic Modelling” in Proc. of NetGames2002, pp.53-57,
Braunschweig, Germany, 2002.

[74] Half-Life. http://counterstrike.sierra.com/

[75] S. Wright, S. Tischer, “Architectural Considerations in Online Game Services over DSL
Networks”, in Proc. IEEE International Conference on Communications - (ICC'04), IEEE
Communications Society, Paris, France, 2004.

REFERENCES

UBLCS-2006-10 86

[76] G. Armitage, “An Experimental Estimation of Latency Sensitivity in Multiplayer Quake 3”, in
Proc. of ICON, pp. 137-141, Sydney, Australia, 2003.

[77] M. S. Borella, “Source Models for Network Game Traffic”, Computer Communications, vol. 23,
no. 4, pp. 403-410, 2000.

[78] L. Pantel, L. C. Wolf, “On the Impact of Delay on Real-Time Multiplayer Games”, in Proc of the
12th International Workshop on Network and Operating Systems Support for Digital Audio and
Video, Miami, FL, May 2002.

[79] T. Henderson, "Latency and User Behaviour on a Multiplayer Game Server", in Proc. of the 3rd
International Workshop on Networked Group Communication (NGC01) pp. 1-13, London, UK,
Nov 2001.

[80] F. Fitzek, G. Schulte, M. Reisslein, “System Architecture for Billing of Multi-Player Games in a
Wireless Environment Using GSM/UMTS and WLAN Services”, in Proc. of NetGames2002, pp.
58-64, Bruanschweig, Germany, Apr 2002.

[81] C. E. Palazzi, S. Ferretti, S. Cacciaguerra, M. Roccetti, “Interactivity-Loss Avoidance in Event
Delivery Synchronization for Mirrored Game Architectures”, IEEE Transactions on Multimedia,
Oct 2005. Accepted for publication.

[82] Mesh Meets Ad Hoc: the Urban Vehicular Grid. http://www.cs.ucla.edu/ST/

[83] Methods for Subjective Determination of Transmission Quality, ITU-T Recommendation P.800,
Aug 1996.

[84] A. Rix, R. Reynolds, M. Hollier, “Perceptual Measurement of End-to-End Speech Quality over
Audio and Packet-Based Networks”, AES 106th Convention, Munich, Germany, May 1999.

[85] Methods for the Subjective Assessment of Small Impairments in Audio Systems Including
Multichannel Sound Systems, ITU-R Recommendation BS.1116, Jul 1998.

[86] Method for Objective Measurements of Perceived Audio Quality, ITU-R Recommendation
BS.1387, Jan 1999.

[87] A. Rix, R. Reynolds, M. Hollier, “Robust Perceptual Assessment of End-to-End Audio Quality”,
in Proc. of 1999 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics,
New Paltz, NY, Oct 1999.

[88] M. Handley et al., “SIP: Session Initiation Protocol”, IETF RFC 2543, Mar 1999.

[89] H. Hartenstein, B. Bochow, A. Ebner, M. Lott, M. Radimirsch, D. Vollmer, “Position-Aware Ad
Hoc Networks for Inter-vehicle Communications: The Fleenet Project”, in ACM Symposium on
Mobile Ad Hoc Networking and Computing, MobiHOC, Oct 2001.

[90] Federal Communications Commission, FCC 99-305, FCC Report and Order, Oct 1999.

[91] Federal Communications Commission, FCC 03-024, FCC Report and Order, Feb 2004.

[92] J. Jun and M. L. Sichitiu, “The Nominal Capacity of Wireless Mesh Networks”, IEEE Wireless
Communications magazine, Oct 2003.

[93] I. Foster and C. Kesselman, editors. The Grid: Blueprint for a New Computing Infrastructure.
Morgan-Kaufmann, 1999.

[94] L. Gautier, C. Diot, “Design and Evaluation of MiMaze, a Multi-player Game on the Internet”, in
Proc. of IEEE Multimedia (ICMCS’98), pp. 234-236 Austin, TX, USA, 1998.

[95] Everquest. http://www.everquest.com

[96] Ultima Online. http://www.uo.com

REFERENCES

UBLCS-2006-10 87

[97] Butterfly Grid Solution for Online Games. http://www.butterfly.net

[98] J. S. Steinman, “Scalable Parallel and Distributed Military Simulations Using the SPEEDES
Framework”, in Proc. of 2nd Electronic Simulation Conference (ELECSIM95), Internet, 1995.

[99] A. Balk, M. Gerla, M. Sanadidi, D. Maggiorini “Adaptive Video Streaming: Pre-encoded MPEG-
4 with Bandwidth Scaling”, Computer Networks vol. 44, no. 4, pp. 415-439, 2004.

[100] C. Boyd, A. Mathuria, “Key Establishment Protocols for Secure Mobile Communications: a
Critical Survey”, Computer Communications, vol. 23, pp. 575-587, 2000.

[101] P. Mohapatra, J. Li, C. Gui, “QoS in Mobile Ad Hoc Networks”, IEEE Wireless Communications
magazine, Jun 2003.

[102] IEEE Standard for Information Technology, “Telecommunications and Information Exchange
between Systems - Local and Metropolitan Area Networks - Specific Requirements Part 11:
Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications:
Amendment: Medium Access Control (MAC) Quality of Service Enhancements”,
P802.11e/D13.0, 2005.

[103] S. Cacciaguerra, M. Roccetti, M. Roffilli, A. Lomi, “A Wireless Software Architecture for Fast
3D Rendering of Agent-Based Multimedia Simulations on Portable Devices” in Proc. of the First
Consumer Communications and Networking Conference (CCNC), IEEE Communications
Society, Las Vegas, NV, Jan 2004.

[104] S. Zander, I. Leeder, G. Armitage, “Achieving Fairness in Multiplayer Network Games through
Automated Latency Balancing”, in Proc. of ACM SIGCHI ACE2005, pp. 117-124, Valencia,
Spain, 2005.

[105] M. Mauve, J. Vogel, V. Hilt, W. Effelsberg, “Local-lag and Timewarp: Providing Consistency for
Replicated Continuous Applications”, IEEE Transactions on Multimedia, vol. 6, no. 1, pp. 47-57,
2004.

[106] F. Fitzek, G. Schulte, M. Reisslein, “System Architecture for Billing of Multi-Player Games in a
Wireless Environment Using GSM/UMTS and WLAN Services”, in Proc. of the 1st Workshop on
Network and System Support for Games (NetGames2002), ACM SIG MM, pp. 58-64,
Braunschweig, Germany, 2002.

[108] Sheldon N., Girard E., Borg S., Claypool M., Agu E. The Effect of Latency on User Performance
in Warcraft III. In Proceedings of the 2nd Workshop on Network and System Support for Games
(NetGames 2003), ACM SIGCOMM and SIG MM, pp. 3-14, Redwood City, CA, USA, 2003.

[109] S. Ferretti, C. E. Palazzi, M. Roccetti, M. Gerla, G. Pau, “Buscar el Levante por el Poniente: In
Search of Fairness Through Interactivity in Massively Multiplayer Online Games”, in Proc. of the
2nd IEEE International Workshop on Networking Issues in Multimedia Entertainment (NIME'06),
CCNC 2006, Las Vegas, NV, Jan 2006.

[110] T. Jehaes, D. De Vleeschauwer, T. Coppens, B. Van Doorselaer, E. Deckers, W. Naudts, K.
Spruyt, R. Smets, “Access Network Delay in Networked Games”, in Proc. of the 2nd Workshop
on Network and System Support for Games (NetGames 2003), ACM SIGCOMM and SIG MM,
pp. 63-71, Redwood City, CA, USA, 2003.

[111] P. Ramanathan, K. G. Shin, R. W. Butler, “Fault Tolerant Clock Synchronization in Distributed
Systems”, IEEE Computer, vol. 23, no. 10, pp. 33-42, 1990.

[112] F. Safaei, P. Boustead, C. D. Nguyen, J. Brun, M. Dowlatshahi, “Latency Driven Distribution:
Infrastructure Needs of Participatory Entertainment Applications”, IEEE Communications
Magazine, IEEE Communications Society, Special Issue on “Entertainment Everywhere: System
and Networking Issues in Emerging Network-Centric Entertainments Systems”, Part I, May 2005.

[113] Skype for Pocket PC. http://www.skype.com/products/skype/pocketpc/

REFERENCES

UBLCS-2006-10 88

[114] A. Nandan, S. Das, B. Zhou, G. Pau, M. Gerla, “AdTorrent: Digital Billboards for Vehicular
Networks”, in Proc. of IEEE/ACM International Workshop on Vehicle-to-Vehicle
Communications (V2VCOM), San Diego, CA, USA, Jul 2005.

[115] A. Nandan, S. Das, G. Pau, M.Y. Sanadidi, M. Gerla “Cooperative Downloading in Vehicular Ad
Hoc Wireless Networks”, in Proc. of IEEE/IFIP International Conference on Wireless On demand
Network Systems and Services, St. Moritz, Switzerland, pp. 32-41, Jan 2005.

[116] S. Das, A. Nandan, G. Pau, M.Y. Sanadidi, M. Gerla “SPAWN: Swarming Protocols for
Vehicular Ad Hoc Wireless Networks”, in Proc. of the First ACM International Workshop on
Vehicular Ad Hoc Networks (VANET 2004), MOBICOM 2004, Berkeley, CA, USA, pp. 93-94,
2004.

[117] S. Moyer, D. Marples, S. Tsang, and A. Ghosh, “Service Portability of Networked Appliances,”
2002. [Online]. Available at: http://citeseer.ist.psu.edu/moyer00service.html

[118] A. Mani, H. Sundaram, D. Birchfield, and G. Qian, “The Networked Home as a User-Centric
Multimedia System,” in NRBC ’04: Proceedings of the 2004 ACM Workshop on Next-
Generation Residential Broadband Challenges. New York, NY, USA: ACM Press, pp. 19-30,
2004.

[119] G. Bell, J. Gemmell, “A Call for the Home Media Network”, Communications of the ACM, vol.
45, no. 7, pp. 71-75, 2002.

[120] M. Tsang, G. Fitzmaurice, G. Kurtenbach, A. Khan, “Game-Like Navigation and Responsiveness
in Non-Game Applications”, Communications of the ACM, vol. 46, no. 7, pp. 56-61, Jun 2003.

[121] A. E. Cha, “Recalling Iraq's Terrors Through Virtual Reality”, Washington Post, Mar 2005.
http://www.washingtonpost.com/wp-dyn/articles/A58360-2005Mar22.html

[122] A. Spagnolli, L. Gamberini, F. Scarpetta, S. Colognesi, “Ironia e ristrutturazione del participant
framework: il caso degli ambienti virtuali”, Rivista di Psicolinguistica Applicata, vol. 2, pp. 165-
176, 2004.

[123] A. Spagnolli, L. Gamberini, P. Cottone, G. Mantovani, “Ergonomics of Virtual Environments for
Clinical Applications”, Internet and Virtual Reality as Assessment and Rehabilitation Tools for
Clinical Psychology and Neuroscience, Amsterdam, IOS Press (Netherlands), pp. 217-230, 2004.

[124] M. Billinghurst, H Kato, “Collaborative Augments Reality”, Communications of the ACM, vol.
45, no. 7, pp. 64-70, Jul 2002.

[125] S. Ferretti, M. Roccetti, “Event Synchronization for Interactive Cyberdrama Generation on the
Web: a Distributed Approach”, in Proc. of 13th International World Wide Web Conference
(WWW 2004), vol. WWW2004 Poster Track, W3C/ACM editor, New York, NY, USA, May
2004.

[126] T. M. Rhyne, “Computer Games and Scientific Visualization”, Communications of the ACM,
vol. 45, no. 7, pp. 40-44, Jul 2002.

[127] J. Brun, P. Boustead, F. Safaei, “Fairness and Playability in Online Multiplayer Games”, in Proc.
of the 2nd IEEE International Workshop on Networking Issues in Multimedia Entertainment
(NIME'06), CCNC 2006, Las Vegas, NV, Jan 2006.

[128] C. Wagner, M. Schill, R. Manner, “Intraocular Surgery on a Virtual Eye”, Communications of the
ACM, vol. 45, no. 7 pp. 45-49, Jul 2002.

[129] J. Kumagai, “Fighting in the streets”, IEEE Spectrum, vol. 38, no. 2, pp. 68-71, Feb 2001.

[130] The Eight Fallacies of Distributed Computing. http://today.java.net/jag/Fallacies.html

REFERENCES

UBLCS-2006-10 89

[131] M. Mauve, S. Fischer, J. Widmer, “A Generic Proxy System for Networked Computer Games”,
in Proc. of the 1st Workshop on Network and System Support for Games, pp. 25-28, 2002.

[132] C. Diot, L. Gautier, “A Distributed Architecture for Multiplayer Interactive Applications on the
Internet”, IEEE Network Magazine, vol. 13, no. 4, Jul/Aug 1999.

[133] K. W. Lee, B. J. Ko, S. Calo, “Adaptive Server Selection for Large Scale Interactive Online
Games”, in Proc. of the 14th International Workshop on Network and Operating Systems Support
for Digital Audio and Video, pp. 152-157. 2004.

[134] K. Alex, S. Taylor, “Using Determinism to Improve the Accuracy of Dead Reckoning
Algorithms”, in Proc. of Simulation Technologies and Training Conference, Sydney, 2000.

[135] L. Pantel, L. C. Wolf, “On the Suitability of Dead Reckoning Schemes for Games”, in Proc. of
the 1st Workshop on Network and System Support for Games, pp. 79-84, 2002.

[136] B. Knutsson, H. Lu, W. Xu, B. Hopkins, “Peer-to-Peer Support for Massively Multiplayer
Games”, in Proc. of the Twenty-third Annual Joint Conference of the IEEE Computer and
Communications Societies (INFOCOM 2004), pp. 96-107, Mar 2004.

[137] F. W. B. Li, L. W. F. Li, R. W. H. Lau, “Supporting Continuous Consistency in Multiplayer
Online Games”, in Proc. of the 12th Annual ACM International Conference on Multimedia, pp.
388-391, 2004.

[138] J. Postel, “Rfc0793: Transmission Control Protocol,” Internet Engineering Task Force (IETF),
Tech. Rep., 1981.

[139] V. Jacobson, “Congestion Avoidance and Control”, in Proc. of ACM SIGCOMM’88, pp. 314-
329, 1988.

[140] S. Floyd, “A Report on Recent Developments in TCP Congestion Control”, IEEE
Communications, vol. 39, no. 4, pp. 84-90, 2001.

[141] Y. M. Wang, W. Russell, A. Arora, R. K., Jagannathan, J. Xu, “Towards Dependable Home
Networking: an Experience Report”, in Proc. of IEEE International Conference on Dependable
Systems and Networks (DSN 2000), New York, USA, pp. 43-49, Jun 2000.

[142] IEEE, “Standard for Wireless LAN Medium Access Control (MAC) and Physical Layer (Phy)
Specifications,” Specifications, ISO/IEC 8802-11:1999(E), 1999.

[143] S. Low, L. Peterson, L. Wang, “Understanding Vegas: a Duality Model,” Journal of ACM, vol.
49, no. 2, pp. 207-235, Mar 2002.

[144] L. Brakmo, S. O'Malley, L. Peterson, “TCP Vegas: New Techniques for Congestion Detection
and Avoidance”, in Proc. of the SIGCOMM '94 Symposium, pp. 24-35, Aug 1994.

[145] Movie Trace Files. http://www-tkn.ee.tu-berlin.de/research/trace/ltvt.html

[146] J. Farber, “Traffic Modelling for Fast Action Network Games,” Multimedia Tools and
Applications, vol. 23, no. 1, pp. 31-46, 2004.

[147] IEEE Standard for Information Technology, “Telecommunications and Information Exchange
between Systems - Local and Metropolitan Area Networks - Specific Requirements Part 11:
Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications:
Amendment: Medium Access Control (MAC) Quality of Service Enhancements”,
P802.11e/D13.0, 2005.

[148] G. Marfia, C. E. Palazzi, G. Pau, M. Gerla, M. Y. Sanadidi, M. Roccetti, "TCP Libra: Exploring
RTT-Fairness for TCP", UCLA CSD Technical Report #TR050037, 2005.

[149] Consumer Electronics - IT Facts. http://www.itfacts.biz/index.php?id=P1861

REFERENCES

UBLCS-2006-10 90

[150] InternetFrog.com. http://www.internetfrog.com/mypc/speedtest/

[151] Bandwidth Speed Test. http://www.bandwidthplace.com/speedtest/

[152] Broadband Speed Tests. http://www.dslreports.com/stest

[153] Verizon Online DSL. http://www.verizon.com/dsl/

[154] Bellsouth Fastaccess DSL https://www.fastaccess.com/content/splash/

[155] AT&T Worldnet DSL Service. http://www.att.net/dsl/

[156] H. Jiang, C. Dovrolis, “Why is the Internet traffic bursty in short (sub-RTT) time scales?”, in
Proc. of ACM SIGMETRICS 2005, Banff, AL, Canada, 2005.

[157] IEEE, “Standard for Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
Specifications,” Specifications, ISO/IEC 8802-11:1999(E), 1999.

[158] A. Balk, M. Gerla, M. Sanadidi, D. Maggiorini, “Adaptive Video Streaming: Pre-encoded
MPEG-4 with Bandwidth Scaling”, Computer Networks: The International Journal of Computer
and Telecommunications Networking, vol. 44, no. 4, pp. 415-439, 2004.

[159] J. Padhye, V. Firoiu, D. Towsley, J. Kurose, “Modeling TCP Throughput: A Simple Model and
its Empirical Validation”, in Proc. of the ACM SIGCOMM '98 Conference on Applications,
Technologies, Architectures, and Protocols for Computer Communication, pp. 303-314,
Vancouver, B.C., Canada, 1998.

[160] C. Jin, D. Wei, S. H. Low, G. Buhrmaster, J. Bunn, D. H. Choe, R. L. A. Cottrell, J. C. Doyle, W.
C. Feng, O. Martin, H. Newman, F. Paganini, S. Ravot, and S. Singh, “Fast TCP: From
Background Theory to Experiments,” IEEE Network, vol. 19, no. 1, pp. 4-11, 2005.

[161] D.-Y. Chen, S. Garg, M. Kappes, K. S. Trivedi, “Supporting VBR VoIP Traffic with IEEE
802.11 WLAN in PCF Mode”, in Proc. of OPNETWork 2002, Washington D.C., 2002.

[162] D. Chen, D. Gu, J. Zhang, “Supporting Real-time Traffic with QoS in IEEE 802.11e Based Home
Networks”, Mitsubishi Electric Research Laboratory, TR-2004-006, 2004.

[163] C. E. Palazzi, S. Ferretti, S. Cacciaguerra, M. Roccetti, “A RIO-like Technique for Interactivity
Loss Avoidance in Fast-Paced Multiplayer Online Games”, ACM Journal of Computers in
Entertainment, vol.3, no.2, Apr 2005.

[164] S. Ferretti, C. E. Palazzi, M. Roccetti, G. Pau, M. Gerla, “FILA, a Holistic Approach to Massive
Online Gaming: Algorithm Comparison and Performance Analysis”, in Proc. of the 3rd ACM
International Conference in Computer Game Design and Technology (GDTW 2005), Liverpool,
UK, pp. 68-76, Nov 2005.

[165] S. Ferretti, C. E. Palazzi, M. Roccetti, G. Pau, M. Gerla, “FILA, a Holistic Approach to Massive
Multiplayer Online Gaming: Algorithm Comparison and Performance Analysis”, to appear in the
ACM Journal of Computers in Entertainment.

[166] C. E. Palazzi, G. Pau, M. Roccetti, M. Gerla, “In-Home Online Entertainment: Analyzing the
Impact of the Wireless MAC-Transport Protocols Interference”, in Proc. of IEEE International
Conference on Wireless Networks, Communications and Mobile Computing (WIRELESSCOM
2005), Maui, HI, USA, Jun 2005.

[167] C. Gauthier Dickey, D. Zappala, V. Lo, J. Marr, “Low Latency and Cheat-Proof Event Ordering
for Peer-to-Peer Games”, in Proc. of ACM International Workshop on Network and Operating
System Support for Digital Audio and Video (NOSSDAV), Kinsale, County Cork, Ireland, pp.
134-139, Jun 2004.

REFERENCES

UBLCS-2006-10 91

[168] N. E. Baughman, B. N. Levine, “Cheat-proof Playout for Centralized and Distributed Online
Games”, in Proc. of IEEE Infocom, Anchorage, AK, USA, pp. 104-113, Apr 2001.

[169] Gamasutra. http://www.gamasutra.com/features/20000724/pritchard_01.htm

[170] B. D. Chen, M. Maheswaran, “A Fair Synchronization Protocol with Cheat Proofing for
Decentralized Online Multiplayer Games”, in 3rd IEEE Symposium on Network Computing and
Applications (NCA), Cambridge, MA, USA, pp. 372-375, Aug 2004

[171] W. Bernier, “Latency Compensating Methods in Client/Server In-game Protocol Design and
Optimization”, in Game Developer Conference (GDC), Mar 2001.
http://www.resourcecode.de/stuff/clientsideprediction.pdf

[172] M. Bottigliengo, C. Casetti, C. Chiasserini, M. Meo “Short-Term Fairness for TCP Flows in
802.11b WLANs”, in Proc. of IEEE INFOCOM 2004, Hong Kong, China, Mar 2004.

[173] S. Garg, M. Kappes, “An Experimental Study of Throughput for UDP and VoIP Traffic in IEEE
802.11b Networks”, IEEE Wireless Communications and Networking Conference (WCNC 2003),
New Orleans, LA, USA, pp. 1748-1753, Mar 2003.

[174] A. L. Wijesinha, Y. Song, M. Krishnan, V. Mathur, J. Ahn, V. Shyamasundar, “Throughput
Measurement for UDP Traffic in an IEEE 802.11g WLAN”, in Proc. of 6th International
Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed
Computing and First ACIS International Workshop on Self-Assembling Wireless Networks
(SNPD/SAWN'05), Towson, MD, USA, pp. 220-225, May 2005.

[175] D. P. Hole, F. A. Tobagi, “Capacity of an IEEE 802.11b Wireless LAN supporting VoIP”, in
Proc. IEEE International Conference on Communications (ICC 2004), Paris, France, pp. 196-201,
Jun 2004.

[176] G. Bianchi, “IEEE 802.11-Saturation Throughput Analysis” IEEE Communications Letters, vol.
2, no. 12, pp. 318-320, Dec 1998.

[177] G. Bianchi, “Performance Analysis of the IEEE 802.11 Distributed Coordination Function”, IEEE
Journal on Selected Areas in Communications, vol. 18, no. 3, pp.535-547, Mar 2000.

[178] N. Shachtman, “New Army Soldiers: Game Gamers”, Wired News, Oct 2001.
http://www.wired.com/news/conflict/0,2100,47931,00.html

[179] Rakion. http://www.rakion.com/

