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Abstract — Digital entertainment is going to be enjoyed at 

home through computer-centered services and broadband 
wireless connectivity. The hub of a home entertainment system 
will be based on a “magic box” able to handle all sort of 
multimedia data and deliver them in a fair and efficient way 
throughout the house. Unfortunately, with current systems, 
real-time applications (e.g., video streaming, online games) 
suffer from delays caused by the interference with elastic (e.g., 
downloading) ones. We provide insight on this problem and 
reveal the “special protocol potion” we blended to heal home 
entertainment systems from it. Indeed, our recipe is simply 
composed by i) an enhanced access point, ii) standard 
protocol features, and iii) a smart use of the available 
information on the on-going traffic. This way, we are able to 
achieve low per-packet delays and high throughputs, thus 
satisfying the requirements of both real-time and elastic 
applications. Most important to mention, our special potion is 
also free from side effects as it does not require modifications 
to Internet’s protocols or architecture1. 
 

Index Terms — Home Network, Computer-Centered Home 
Entertainment, Enhanced Access Point, Wireless Multimedia. 

I. INTRODUCTION 
The next frontier in home information systems is the 

convergence of personal computer, game console, digital set-
top box, home gateway, and home automation system, into an 
integrated home server [3]. In this context, digital 
entertainment is going to play a major role having the way 
paved by the popular TiVo and Media Center [1], [2]. These 
are only two exemplars of what should be integrated in the 
home server becoming a module devoted to the digital 
entertainment diffusion in the networked home. We name this 
module Home Entertainment Center (HEC) and focus our 
attention on it. From a consumer’s point of view, a HEC is a 
magic box where every game ever thought, every movie ever 
made, every song ever sung, plus news, sport events and 
shows, will be available for instant enjoyment with just one 
click on a button. 
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A HEC can hence be defined as a hub for all in-home 
entertainment experiences able to handle heterogeneous media 
and to exploit the home gateway to connect client devices 
located within the house and the outside world (i.e., the 
Internet). Many experts foresee an immediate future where 
each home gateway will provide wireless connectivity to the 
various devices through an access point (AP), while transport 
protocols utilized by applications will remain those that have 
been in use for the last 25 years: the Transmission Control 
Protocol (TCP) for elastic (e.g., downloading) applications and 
the User Datagram Protocol (UDP) for real-time ones (e.g., 
video/music streaming, online gaming) [6]. 

Unfortunately, in a home entertainment scenario a new 
problem emerges, requiring the employment of a specific 
solution. This problem is commonly synthesized with real 
consumers’ sentences like: “when I use file-sharing programs, 
my IP-TV constantly has a delay in airing the images” or “if I 
use the Internet while video-chatting, the video stream stalls a 
lot”, as well as depicted like in Fig. 1. 

Technical motivations behind this problem are deeply 
investigated in Section II, yet, in summary, the real fact is that 
browsing the Internet and downloading files are still 
considered the main applications run by consumers on the 
wireless channel. Therefore, to provide reliable delivery and 
high throughputs to this kind of applications: i) TCP and its 
congestion control functionality are employed at the transport 
layer, and ii) buffers and local retransmissions are extensively 
used at the MAC layer. 

However, these solutions have been demonstrated to be 
harmful toward real-time applications as they increase the per-
packet delivery latency [21]. Moreover, the adverse role 
played by the TCP’s congestion control mechanism in this 
particular context represents an interesting problem as it 
embodies the reverse of the well known UDP vs TCP quarrel 
by which it is stated that UDP-based flows are aggressive 
toward TCP-based ones [5]. Indeed, in Section II we 
demonstrate how persistent TCP-based flows are responsible 
for performance deterioration of concurrent UDP-based 
applications. The completely new point of view on the UDP vs 
TCP quarrel makes even more evident how the HEC is in need 
of a special protocol potion to become the desired magic box 
for consumers’ entertainment. 

Aiming at providing high downloading throughputs and low 
per-packet delays, we propose a solution that makes use of a 
smart AP, standard protocol features, and available 
information on the on-going traffic.  



 

 
Fig. 1. Video stream progression without (a) and with (b) simultaneous downloads. 

 
Indeed, the AP is in a strategic position to gather 

information about the channel condition and the on-going 
traffic. Our idea is that this information can be used by the AP 
to regulate heterogeneous transmission flows and make them 
coexist efficiently. More in detail, the idea is as follows: 

i) the AP snoops all the transiting packets and computes the 
maximum data rate at which downloading applications 
can transfer their files without exceeding the factually 
available bandwidth;  

ii) a cross-layer approach may be implemented that allows 
the AP to modify on-the-fly the advertised window of 
each transiting TCP packet so as to make it equal to the 
maximum data rate mentioned in i), and accordingly limit 
the transfer rate of TCP flows. 

This way, downloading applications produce a smooth 
traffic that efficiently utilizes the available channel without 
incurring in congestion losses that would degrade their 
performances and, at the same time, does not create queues at 
the AP that would increase per-packet delays of real-time 
applications.  

Since we propose neither a new protocol nor a new 
architecture, our special potion is also highly tolerable from a 
deployability standpoint. Indeed, we simply design an 
enhanced AP with a re-engineered packet forwarding 
functionality. Customers have hence just to get our AP (or the 
HEC with our AP already included) from their preferred 
electronics seller and plug-it-in at home. Results gathered on 
the field showed that performances of entertainment 
applications in wireless homes will be improved in this simple 
way, with absolutely no need for updates of Internet’s 
protocols. Comparative results contrasted against alternative 
approaches, such as TCP Vegas, have been obtained, which 
showed the superiority of our solution. 

The rest of the paper is organized as follows. Section II 
focuses on the real problem at the basis of this work. In 
Section III, we discuss our solution to the problem and review 
the best alternatives available in scientific literature. A 
simulation assessment is presented in Section IV, while 
obtained results are shown in Section V. Finally, Section VI 
concludes this paper. 

II. PROBLEM STATEMENT  
We provide here further insight on the interference caused 

by downloading applications to real-time ones over a wireless 

channel. 
Applications can be grouped into two main classes 

depending on which protocol they use at the transport layer: 
TCP or UDP. TCP is a protocol that guarantees the reliable 
and ordered delivery of every packet sent; to this aim it 
establishes a session and performs retransmissions of lost 
packets. Since these features, TCP is utilized by elastic 
applications that involve the download/transmission of 
files/commands (i.e., FTP, HTTP, SMTP, Telnet). Where not 
differently stated, with the term TCP we refer to the two most 
common versions, i.e., TCP New Reno and TCP SACK. 

A very important component of TCP is represented by its 
congestion control functionality. Through it, every TCP flow 
probes the link with higher and higher data rates eventually 
filling up the channel. At that point, packets will be queued at 
the buffer associated with the bottleneck of the link until it 
overflows causing packet losses. TCP retransmits the lost 
packets, and halves its sending rate to diminish the congestion 
level. Finally, the regular increase of the sending rate is 
reestablished and so forth. 

UDP is simpler: packets are immediately sent toward the 
receiver with a data rate decided by the sender. UDP does not 
guarantee reliable and ordered delivery of packets but, at the 
same time, its small overhead and lack of retransmissions 
make it less prone to generate delays in the packets delivery. 
For this reason, UDP is usually employed by applications 
characterized by stringent real-time constraints and that can 
tolerate sporadic packet losses (i.e., audio/video streaming, 
online games). The lack of congestion control functionalities 
of UDP had lead the scientific community to wisely consider 
UDP as unfair toward TCP. Indeed, citing from [5]: “Although 
commonly done today, running multimedia applications over 
UDP is controversial to say the least. […] the lack of 
congestion control in UDP can result in high loss rates 
between a UDP sender and receiver, and the crowding out of 
TCP sessions - a potentially serious problem.” 

Even if this is true when the available bandwidth is very 
scarce, the broadband connectivity offered today may overturn 
this situation. 

Larger and larger bandwidths are offered even to home 
consumers so that the traffic generated by UDP-based 
applications can be accommodated. Yet, a problem emerges 
when real-time applications (UDP-based) coexist with 
downloading ones (TCP-based) on a wireless channel, causing 



 

the former to experience a scattered flow progression. 
Major causes for this problem can be found in the TCP’s 

congestion control functionality. In particular, TCP 
continuously probes for higher transfer rates, also queuing 
packets on the buffer associated with the bottleneck of the 
connection. If one considers that the same wireless connection 
might be shared by several devices and applications thus 
increasing the congestion level and queue lengths, it is even 
more evident how packets can be delayed in queue, 
jeopardizing requirements of real-time applications.  

This negative situation is further worsened by the following 
three factors due to the wireless nature of the link. First, the 
wireless medium allows the transmission of only one packet at 
a time and is not full-duplex as wired links. Packets have 
hence to wait their turns to be transmitted. Second, as 
interference, errors, fading, and mobility may cause packet 
loss, the IEEE 802.11 MAC layer reacts through local 
retransmissions (4 at most, [22]) which, in turn, cause 
subsequent packets to wait in queue until the preceding ones 
or their retransmissions eventually reach the receiver. Last but 
not least, the back-off mechanism of the IEEE 802.11 
introduces an increasing amount of time before attempting 
again a transmission [22]. 

As an example of problems caused by this mixture of 
causes, we show in Fig. 2 the inter-arrival time experienced by 
online game packets in a realistic wireless in-home 
environment, with an AP configured in an off-the-shelf 
fashion, and a constant inter-departure time of 50 ms. Details 
for this scenario will be exhaustively discussed in Section IV. 
At this point, it is sufficient to know that the considered online 
game application (UDP-based) is started at 45 s, when a 
video-stream application (UDP-based) was already active, and 
both lasts for the whole experiment. At 90 s, a video-chat 
conversation (UDP-based) is added but, still, the traffic 
generated by the combination of these three applications is far 
from consuming all the available bandwidth. Instead, at 135 s 
an FTP (TCP-based) starts to download a file and quickly 
saturates the channel. 

As it is evident in Fig. 2, the inter-arrival time remains 
regular until the FTP/TCP flow takes action. At that point, a 
multitude of packets start to experience high delays that cause 
a scattered progression of the online game flow. 

What technically happens is even more evident in Fig. 3 
that reports the congestion/sending window2 (“cwnd”) and 
slow start threshold (“ssth”) of the TCP flow, as well as the 
pipe size, i.e., the Bandwidth-RTT product (“RTTxBW”) of 
the channel. By comparing Fig. 2 and Fig. 3 we notice that the 
irregularity in the interarrival-time of online game packets is 
directly proportional to the size of the congestion/sending 
window (i.e., the transfer rate). Every time the 
congestion/sending window exceeds the pipe size, packets are 
queued at the buffer of the bottleneck link. Delay increments 
of online game packets can hit also tens of milliseconds thus 

 
2 We use the term “congestion/sending window” to indicate when the 

sending window exactly corresponds to the congestion window. 

representing a huge waste of time when trying to deliver real-
time information for entertainment services. For instance, 
transmission delays of interactive online games should be 
inferior to 100 ms, with a maximum endurable value of 150 ms 
[7]. (Just to mention, in this configuration the average 
throughput was 14.51 Mb/s). 

 
Fig. 2. Measured inter-arrival time of online game packets with 50 ms of 
inter-departing time. Regular AP and IEEE 802.11g are employed; from 
135 s, a FTP/TCP New Reno flow is competing for the channel. 

 

 
Fig. 3. TCP New Reno’s congestion/sending window with a standard AP. 

III. AVOIDING QUEUE UTILIZATION 
In this Section we provide two recipes for special potions 

we have blended to solve the aforementioned problem. Our 
solutions are finally contrasted with the best known alternative 
for limiting queuing delays. 

We start from a simple, even if only moderately effective, 
solution that focuses on the MAC layer parameters [21]. Then, 
we propose a second solution which is based on the 
coordinated use of an enhanced AP, information available at 
the AP, and existing features of the TCP. We show how we 
can mix these ingredients in a simple way and obtain an 
efficient coexistence among downloading and real-time flows. 
This is our favorite solution among those we have explored 
and we name it Smart Access Point with Limited Advertised 
Window (SAP-LAW). 

Obviously, several other alternatives can be found in 
literature that can be used to tackle this problem (e.g., 



 

CLAMP, IEEE 802.11e,…). Among them, TCP Vegas has 
emerged as one of the more promising. Hence, at the end of 
this Section, we provide a synthesis of this approach and 
compare it with our solution both in terms of efficacy and 
factual deployability. 

A. Mixing a potion at the MAC layer: MAC-Setting 
Our first solution regards the utilization of more appropriate 

setting for parameters of the IEEE 802.11 MAC protocol. 
Historically, parameters such as the maximum number of 
retransmissions and the buffer size were decided in a period 
when the TCP-based traffic was largely predominant in the 
Internet. Consequently, the main concerns for designers were 
reliability and high throughput.  

Nowadays, the consumers’ massive request for real-time 
applications partially contradicts the initial assumption that 
reliability were the most important issue over wireless links: 
ensuring low per-packet delays has to be considered equally 
crucial. Therefore, IEEE 802.11’s parameters should be 
modified to make it more sensitive toward the requirements of 
real-time applications. In particular, the maximum number of 
local retransmissions could be diminished from 4 to 3 in order 
to find a solution to the tradeoff between reliability and low 
delays in packet delivery [21]. 

Similarly, large buffer sizes at the AP help TCP connections 
in maintaining a high sending rate for a longer period and 
diminish the impact of bursty traffic. On the other hand, larger 
buffers generate longer queuing times when fully utilized, thus 
jeopardizing the performance achieved by time-sensitive 
applications. By adjusting the buffer size to an appropriate 
value we can try to find a compromise between the needs of 
TCP-based applications and those of UDP-based ones. In 
particular, the buffer size should not exceeds 50 packets [21]. 

However, as shown in Section V, by only reducing the 
maximum number of retransmissions and the buffer size at the 
MAC layer, we can expect only a slight decrease of delays, 
which is paid with a loss increase and a consistent throughput 
reduction. 

B. SAP-LAW: Blending Together a Smart Access Point with 
a Limited Advertisement Window 
Here we are aiming at finding the best solution for the 

tradeoff relationship existing between FTP/TCP throughput 
and real-time application delays. The two types of traffic 
should be able to coexist without interfering each other and the 
employed solution should be easily and factually deployable. 
An appropriate technique to solve this tradeoff relationship 
should exploit existing features of legacy protocols in order to 
be easily deployable. Our most effective potion is inspired by 
this principle and can be explained by stepping through the 
following three main points. 

1) The Basic Idea: The actual sending rate (i.e., the sending 
window) of a TCP flow is determined as the minimum 
between the congestion window (continuously recomputed by 
the sender) and the advertised window (provided by the 
receiver via returning ACK packets) [5]. Our idea is hence that 

of exploiting dynamic modifications of the advertised window 
to limit the growth of the TCP flow’s sending rate. Indeed, an 
optimal tradeoff between throughput and low delays could be 
achieved by maintaining the sending rate of the TCP flows 
high enough to efficiently utilize the available bandwidth and, 
at the same time, limited in its growth so as to not utilize 
buffers. This way, per-packet delays are minimized by the 
absence of queues along the route from the sender to the 
receiver, while the throughput is kept elevated by the absence 
of packet losses that would halve the congestion window. 

time
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Fig. 4. Comparison between regular and limited sending window. 

 
We provide in Fig. 4 a little evidence that the TCP 

throughput is not diminished by our proposed solution. 
Specifically, we show in Fig. 4 a typical saw tooth shaped 
congestion/sending window of a TCP flow and overlap it with 
one limited by the advertised window. As it is evident, the 
latter is more stable since it does not use the buffer at the 
bottleneck link and consequently experiences no losses. The 
minus signs in the chart represent situations in which the 
regular sending window provides TCP with a sending rate that 
is inferior to the one guaranteed by the limited 
congestion/sending window. The plus signs represent the 
inverse situation (generally accompanied by having packets 
queuing on the buffer preceding the bottleneck link). If the 
upper bound for the sending window is appropriately chosen, 
the balance between the plus and minus signs will guarantee to 
the flow with a limited sending window an equal, or even 
superior, final throughput with respect to an equivalent regular 
flow. At the same time, queuing delays will be avoided. 

We need now to address two important issues: how to 
determine an appropriate upper bound and how to practically 
implement it. Here follow our solutions to these issues. 

2) Determining the Upper Bound: The most appropriate 
formula to compute the upper bound can be derived from the 
two main goals we want to achieve: full utilization of the 
available bandwidth and no queuing delays.  

Real-time traffic generally exploits UDP to transmit at a 
predetermined rate with no concern about other traffic on the 
channel. Therefore, to avoid queuing delays, the aggregate 
bandwidth utilized by TCP flows cannot exceed the total 
capacity of the bottleneck link at the AP diminished by the 
portion of the channel already occupied by the concurrent real-
time traffic. 

If we call UDPtraffic the amount of bandwidth occupied by 
the UDP-based traffic, #TCPflows the concurrent number of 
TCP flows, and C the capacity of the bottleneck link, we can 



 

formulate the upper bound for the sending rate allowed to each 
TCP flows at time t as follows: 
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3) Practical Implementation: To practically employ eq. (1) 

we have to i) identify the location for its implementation, and 
ii) propose a method to compute the value of the various 
variables. 

Regarding i), the advertised window is generally imposed 
by the receiver; however, this could not represent the most 
suitable place to set it. As it is evident from eq. (1), 
determining the most appropriate value for the advertised 
window requires a comprehensive knowledge about all the 
flows that are transiting through the bottleneck. Since all flows 
have to pass through the AP, this represents the most 
appropriate node to host the intelligence of our solution. 
Indeed, the AP is integrated with the HEC and the mechanism 
can take advantage of this to retrieve all the necessary 
information.  

Focusing on ii), in any commercial operating system it is 
possible to know which kind of connection is in use and its 
nominal speed just by looking at the status of the network 
interface. Through snooping the channel or exploiting 
information known at the HEC we can also infer both the 
number of active TCP connections and the aggregate amount 
of concurrent UDP traffic. The AP can hence easily compute 
the best maxTCPrate(t) utilizing eq. (1) and modify the 
advertised window included in the transiting ACKs 
accordingly. 

C. The incapability to do magic: the TCP Vegas Solution 
Our work would not be complete if we did not compare our 

special potion with the best existing alternatives in avoiding 
excessive buffer utilization such as TCP Vegas, IEEE 802.11e, 
and CLAMP [8], [22], [20]. We focus here only on TCP 
Vegas as this protocol emerges as the best-endowed to avoid 
queuing. Indeed, this transport protocol embodies one of the 
most cited alternatives to regular TCP in scientific papers. Its 
applicability to the considered problem lies in the fact that 
TCP Vegas tries to avoid congestion before it happens. In 
particular, it augments its congestion window until buffers 
along the path between sender and receiver have a low 
utilization, whereas it reduces its congestion window when 
queuing is sensed. Therefore, TCP Vegas perfectly fits real-
time applications’ need for low buffer utilization.  

In Section V we will show TCP Vegas’ outcomes in our 
considered scenario; instead, here we provide more insight 
into TCP Vegas’ behavior for the sake of the reader’s 
comprehension. 

While regular TCP utilizes packet loss to determine network 
congestion, TCP Vegas is sensitive to end-to-end queuing 
delay. With TCP Vegas, the sender monitors every round trip 
time (RTT) the difference between its expected rate and the 
actually achieved one. The difference is compared with a 

couple of parameters, namely α and β, to determine whether 
the congestion window has to be incremented or decremented 
(by 1) during the next RTT [8], [9]. In essence, parameters α 
and β determine the amount of buffer that can be utilized by 
transiting flows and can be seen as knobs able to move the 
tradeoff between the per-packet delay and the total throughput 
toward one direction or the other. If the buffer at the 
bottleneck is large enough then TCP Vegas reaches an 
equilibrium. In this case, TCP Vegas flows should experience 
zero packet losses, a stable congestion/sending window, and a 
buffer utilization that is proportional to the number of TCP 
Vegas flows sharing the same bottleneck.  

Nonetheless, TCP Vegas is not capable to do the magic in 
the context of the HEC without heavy side effects. Indeed, 
even if TCP Vegas has been proven to fairly share the channel 
with other TCP Vegas flows, it behaves too conservatively in 
presence of simultaneous regular TCP flows. TCP fully 
exploits the available buffer and TCP Vegas interprets the 
consequent RTT trend as an indicator of excessive congestion, 
thus progressively reducing its sending rate to very low values 
[10]. In essence, the dramatic efficiency decrease experienced 
when competing with regular TCP traffic impedes TCP Vegas’ 
factual deployment. 

IV. SIMULATION ASSESSMENT 
To evaluate the efficacy of our potion and the existing best 

alternative (TCP Vegas) we have built an experimental 
scenario utilizing the NS-2 simulator [12]. In particular, we 
intend to analyze a general house environment with four 
wirelessly connected devices and the home server that 
incorporates also the HEC and the AP. The distance between 
each device and the AP is 10m and the MAC layer parameters 
have been set accordingly to the IEEE802.11g standard 
allowing us to reach a maximum bandwidth of circa 20 Mb/s. 
This represents a reasonable value over the declared 54 Mb/s 
even in the real world [13]. 

For the wireless medium we chose the Shadowing Model to 
realistically simulate signal fading. We followed the directions 
provided by the official NS-2 manual to represent a home 
environment partitioned into several rooms. Specifically, the 
path loss exponent and the shadowing deviation parameters 
were set to the worst possible case suggested for an indoor 
environment, i.e., 4 and 9 respectively. 

As recently demonstrated by measurements on a real OC48 
link, the available capacity in the Internet core is generally 
larger than the aggregate utilized by transiting flows [14]. 
Moreover, tools are available to consumers to verify that their 
connection is factually supporting the high speed advertised by 
the provider [15]-[17]. We can hence assume the bottleneck 
located at the edge of the path connecting a sender and a 
receiver: the 20 Mb/s effectively available over the wireless 
link. Over this topology, several kinds of application were 
simulated that used different transport protocols, starting 
times, and RTTs (as shown by Table I). Just to mention, the 
video-stream had almost no propagation latency since the 



 

video was supposed to be stored at the HEC. 
In order to uplift the trustworthiness degree of the 

simulations, we have exploited real trace files for the video-
stream and for the video-chat. Specifically, adopted trace files 
correspond respectively to high quality MPEG4 Star Wars IV 
for the movie, and two VBR H.263 Lecture Room-Cam for the 
video-chat, available in [18]. 

Parameters characterizing the game-generated traffic were 
chosen following directions provided by scientific literature 
related to this field. We assumed that the user in the house 
were engaged in one of the very popular first person shooter 
games, e.g. Quake Counter Strike, with other ~25 players, 
geographically away from each other and connected through 
the Internet. To model the packet size and inter-arrival time of 
the traffic generated by online games, we used some of the 
approximations suggested in [19], which are based on real 
game platform measurements. Game events were hence 
generated at the client side every 60 ms; whereas the server 
was transmitting back game state updates every 50 ms toward 
the client. Moreover, game packet sizes generated by client 
and server were set to 42 Bytes and 200 Bytes, respectively. 

 
TABLE I 

SIMULATED APPLICATION FLOWS 
Flow Type Transp. Prot. Start End RTT 

Video-Stream UDP 0 s 180 s ~0 ms 

Online Game UDP 45 s 180 s 40 ms 

Video-Chat UDP 90 s 180 s 60 ms 

FTP TCP 135 s 180 s 80 ms 

 
TABLE II 

TUNABLE PARAMETERS IN THE SIMULATED CONFIGURATIONS 
Parameter Values Comment 

MAC data retransmissions 1, 2, 3, 4 default value = 4 

MAC queue size (pkts) 50, 100 common default values 

 
Simulation experiments have been replicated to examine the 

effects generated by different configurations of the parameters 
involved in the considered scenario (see Table II). Where not 
differently stated, simulations were run utilizing some realistic 
default values for the simulative parameters. These values are 
written in bold in Table II. 

We focus our attention on the most significative results with 
respect to the problem experienced by online game packets. 
However, no significant information is retained since the per-
packet delay and jitter for all the considered real-time 
applications showed a homogeneous trend. Aimed at finding 
the best solution to provide both high throughput and low per-
packet delay we use the following metrics: 
• the inter-arrival time and the jitter experienced by 

packets of one of the simulated real-time applications; 
• the throughput achieved by the FTP/TCP application. 
In the next Section we test the various special potions to 

find the most successful one and verify the presence of any 
side effect. 

V. RESULTS 
Exploiting the metrics highlighted in Section IV, we discuss 

in the following subsections the most relevant results from the 
extensive set of simulations we have run for each discussed 
solution. We start with a comparison of the various outcomes 
and continue with detailed results on each technique. 

A. Preview of Results 
We conducted a comparative measurement of the various 

solutions and statistical outcomes of the online game traffic, 
plus the average throughput achieved by the concurrent TCP 
connection, are reported in Fig. 5. As it is evident, the TCP 
Vegas solution and our SAP-LAW are the two approaches that 
would guarantee the best performances. Indeed, they both 
show the lowest values for average, variance, and maximum 
jitter experienced by the online game stream, as well as high 
TCP’s throughput.  

However, even if TCP Vegas’ outcomes result slightly 
better than those achieved by SAP-LAW, the former cannot be 
actually deployed in the Internet since it is not able to 
efficiently coexist with the legacy TCP [10]. Conversely, 
SAP-LAW can be easily implemented as it only involves the 
presence of slightly “smarter” APs. Modifications required at 
the AP are very limited, thus minimally impacting on their 
cost. Moreover, our scheme utilizes only existing features of 
currently employed protocols and is hence perfectly 
compatible with the Internet. Considering this fundamental 
advantage and the remarkable results achieved, SAP-LAW 
represents the optimal candidate for enhancing HECs in 
wireless home scenarios. 

To better understand results shown in Fig. 14, in the rest of 
this Section we provide further insight on the outcomes of the 
various solutions explored. 
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Fig. 5. Statistical outcomes for the compared schemes during the 
simulative interval 135–180 s. 

B. Setting MAC Layer Parameters: Outcomes 
Utilizing different buffer sizes and/or maximum number of 

retransmissions at the MAC layer amounts to the simplest 
solution among those we have explored. However, this 
solution leads to just a moderate improvement of performances 
achieved by the various real-time applications at the cost of a 
reasonable throughput decrease for downloading flows.  

This is clearly visible in Fig. 6 that shows a (moderate) 



 

reduction of the height of the inter-arrival time peaks with 
respect to the regular case (compare values on the y-axis with  
those in Fig. 2). This result was achieved by changing the 
normal setting of the AP (buffer size = 100 packets, maximum 
number of retransmissions at the MAC layer = 4) with 50 
packets of buffer size and 3 retransmissions, at most, at the 
MAC layer. The rationale behind this decision can be found 
also in Fig. 7 that shows downloading flow’s throughputs 
achieved in our simulations with various combinations of the 
considered parameters. The throughput achieved with this 
solution has been reduced with respect to the regular case but 
it still represents a decent value if compared to other 
configurations (i.e., 1 or 2 maximum number of 
retransmissions) and corresponds to 14.37 Mb/s. 

Finally, Fig. 8 shows how the congestion/sending window 
peaks of the concurrent TCP flow do not exceed the pipe size 
as much as they were doing in Fig. 3 since they have been 
reduced in height as an effect of the utilized configuration of 
the MAC layer parameters. 

 

 
Fig. 6. Measured inter-arrival time of online game packets with 50 ms of 
inter-departing time. Max 3 retransmissions at the MAC layer and buffer 
size = 50 packets; from 135 s, a FTP/TCP New Reno flow is competing for 
the channel. 
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Fig. 7. FTP total throughput with different MAC buffer sizes.  
 

 
Fig. 8. TCP New Reno’s congestion/sending window; max 3 
retransmissions at  the MAC layer and buffer size = 50 packets. 

C. Utilizing SAP-LAW: Outcomes 
As shown by Fig. 9, SAP-LAW is able to sensibly reduce 

the variation of the inter-arrival time suffered by online game 
packets in our considered scenario (compare values on the y-
axis with  those in Fig. 2). More in detail, Fig. 9 was obtained 
with parameter C in eq. (1) set to 18 Mb/s (the 90% of the 
maximum achievable bandwidth in our scenario).  

Statistics (i.e. average, variance, and maximum value) about 
the jitter experienced by online game packets and the 
throughput trend of the concurrent TCP flow are shown in 
Fig. 10 as obtained by varying the value of parameter C. As 
expected, to higher values of C corresponds higher utilization 
of the buffer at the AP and hence higher average, standard 
deviation, and maximum value of the per-packet delays 
experienced by the online game flow. Moreover, an 
appropriate setting of C also helps in preserving, or even 
augmenting, the throughput. In particular, with C = 18 Mb/s, 
SAP-LAW allowed the TCP flow to achieve an average 
throughput of 15.23 Mb/s. 

 

 
Fig. 9. Measured inter-arrival time of online game packets with 50 ms of 
inter-departing time. SAP-LAW and regular IEEE 802.11g are employed; 
from 135 s, a FTP/TCP New Reno flow is competing for the channel. 
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Fig. 10. Throughput achieved by the FTP/TCP New Reno flow and jitter 
statistics of the game flow when employing SAP-LAW and regular 
802.11g setting. 

 

 
Fig. 11. TCP New Reno’s sending window; SAP-LAW, C = 18 Mb/s, and 
regular 802.11g setting. 

 
As for the precedent solution, even in this case we have to 

analyze the TCP’s sending window as it represents the 
determining factor in generating packet delivery delays and 
TCP’s throughput. Therefore, Fig. 11 shows the sending 
window (“swnd”) generated by SAP-LAW as the minimum 
between the congestion window and the advertised window, 
with the latter dynamically computed by exploiting eq. (1). 
The aim is that of keeping the sending window high enough to 
achieve an high throughput but, at the same time, lower than 
the pipe size so as to not generate excessive queuing delays. 
As can be seen in Fig. 11, this result is perfectly achieved by 
SAP-LAW thus explaining the good performance obtained by 
our scheme in terms of low per-packet delay and high 
throughput. 

D. TCP Vegas in Place of Regular TCP: Outcomes 
Here we discuss the effect of utilizing TCP Vegas in place 

of regular TCP to download files in the wireless home 
scenario. In particular, we can appreciate in Fig. 12 how TCP 
Vegas’ ability in avoiding queuing is reflected in a limited 
range extension of interarrival-times experienced by the 
concurrent online game flow (compare values on the y-axis 
with  those in Fig. 2).  

Such a result was achieved by using α = 3 and β = 7 and 

generated also a high average TCP throughput (15.57 Mb/s as 
can be seen in Fig. 13). The corresponding congestion/sending 
window is depicted in Fig. 14 and demonstrates how TCP 
Vegas’ transfer rate is kept lower than the pipe size for the 
presence of other traffic, thus avoiding congestion and queues. 

 

 
Fig. 12. Measured inter-arrival time of online game packets with 50 ms of 
inter-departing time. Regular AP and IEEE 802.11g are employed; from 
135 s, a FTP/TCP Vegas flow with α = 3 and β = 7 is competing for the 
channel. 
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Fig. 13. FTP/TCP Vegas’ total throughput with different setting of 
parameters α and β. 

 

 
Fig. 14. TCP Vegas’ congestion/sending window with α = 3 and β = 7; 
regular AP and 802.11g setting. 

 



 

Unfortunately, TCP Vegas suffers from three main 
drawbacks that are well known in the scientific community 
and that pose drastic limits to its factual deployability. First, 
setting its parameters is not a trivial task and depends on many 
factors such as the buffer size at the bottleneck and the number 
of flows sharing that link. In particular, the last factor 
continuously changes while it is not possible to continuously 
adapt α and β. Second, TCP Vegas has been shown to be 
rather unstable [11]. Third, TCP Vegas behaves very poorly in 
terms of throughput when coexisting with the legacy TCP as 
shown, for instance, in [10]. 

VI. CONCLUSION 
We took into account a scenario where in-home 

entertainment is delivered to wireless devices through a HEC.  
Our analysis focused on the mutual influence among 

concurrent transmissions of two kind of different streams 
through a wireless HEC. The former being TCP-based elastic 
(e.g., downloading) applications and the latter being UDP-
based real-time (e.g., video streaming and online gaming) 
applications. 

We showed how even a single persistent TCP connection 
can conspicuously increase the queuing delay suffered by 
concurrent real-time applications. This constitutes the reverse 
of the well known argument by which UDP’s lack of 
congestion control would harm TCP, whereas we have shown 
how the TCP’s lack of buffering control is harmful as well 
toward UDP-based applications. 

To solve this problem, we proposed SAP-LAW, a solution 
consisting in an enhanced AP that does not need to modify 
existing Internet’s protocols. We compared SAP-LAW to two 
other possible solutions. The first one is an home made 
technique based on the idea of optimizing parameters at the 
MAC layer, while the second amounts to the use of TCP 
Vegas. Results showed that SAP-LAW and TCP Vegas 
achieved similar results and were both able to consistently 
ameliorate the global performance of computer-centered home 
entertainment services. However, while TCP Vegas cannot 
coexist with legacy TCP, SAP-LAW is fully compatible with 
the Internet and requires only the plugging-in of an enhanced 
AP with no protocol modifications at the Internet side. 

Therefore, SAP-LAW emerges as the perfect magic potion 
to reduce consumers’ frustrations with scattered progression of 
real-time flows when concurrent downloading applications are 
heavily competing for the channel usage. 
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