

What’s in that Magic Box? The Home Entertainment
Center’s Special Protocol Potion, Revealed

C. E. Palazzi, Member, IEEE, S. Ferretti, M. Roccetti, Member, IEEE,
G. Pau, Member, IEEE, and M. Gerla, Fellow, IEEE

Abstract — Digital entertainment is going to be enjoyed at

home through computer-centered services and broadband
wireless connectivity. The hub of a home entertainment system
will be based on a “magic box” able to handle all sort of
multimedia data and deliver them in a fair and efficient way
throughout the house. Unfortunately, with current systems,
real-time applications (e.g., video streaming, online games)
suffer from delays caused by the interference with elastic (e.g.,
downloading) ones. We provide insight on this problem and
reveal the “special protocol potion” we blended to heal home
entertainment systems from it. Indeed, our recipe is simply
composed by i) an enhanced access point, ii) standard
protocol features, and iii) a smart use of the available
information on the on-going traffic. This way, we are able to
achieve low per-packet delays and high throughputs, thus
satisfying the requirements of both real-time and elastic
applications. Most important to mention, our special potion is
also free from side effects as it does not require modifications
to Internet’s protocols or architecture1.

Index Terms — Home Network, Computer-Centered Home
Entertainment, Enhanced Access Point, Wireless Multimedia.

I. INTRODUCTION
The next frontier in home information systems is the

convergence of personal computer, game console, digital set-
top box, home gateway, and home automation system, into an
integrated home server [3]. In this context, digital
entertainment is going to play a major role having the way
paved by the popular TiVo and Media Center [1], [2]. These
are only two exemplars of what should be integrated in the
home server becoming a module devoted to the digital
entertainment diffusion in the networked home. We name this
module Home Entertainment Center (HEC) and focus our
attention on it. From a consumer’s point of view, a HEC is a
magic box where every game ever thought, every movie ever
made, every song ever sung, plus news, sport events and
shows, will be available for instant enjoyment with just one
click on a button.

1 Partial financial support for this work is provided by: the Italian MIUR
(under the ICTP/E-Grid, Interlink, MOMA, DAMASCO initiatives); the
National Science Foundation (through grants CNS-0435515/ANI-0221528);
and STMicroelectronics (under the UC-CoRe Grant MICRO 05-06).

C. E. Palazzi, G. Pau, and M. Gerla are with the Computer Science
Department, University of California, Los Angeles, CA 90095, USA (e-mail:
{cpalazzi | gpau | gerla}@cs.ucla.edu).

S. Ferretti, and M. Roccetti are with the Dipartimento di Scienze
dell’Informazione, Università di Bologna, 40126, Bologna, Italy (e-mail:
{sferrett | roccetti}@cs.unibo.it).

A HEC can hence be defined as a hub for all in-home
entertainment experiences able to handle heterogeneous media
and to exploit the home gateway to connect client devices
located within the house and the outside world (i.e., the
Internet). Many experts foresee an immediate future where
each home gateway will provide wireless connectivity to the
various devices through an access point (AP), while transport
protocols utilized by applications will remain those that have
been in use for the last 25 years: the Transmission Control
Protocol (TCP) for elastic (e.g., downloading) applications and
the User Datagram Protocol (UDP) for real-time ones (e.g.,
video/music streaming, online gaming) [6].

Unfortunately, in a home entertainment scenario a new
problem emerges, requiring the employment of a specific
solution. This problem is commonly synthesized with real
consumers’ sentences like: “when I use file-sharing programs,
my IP-TV constantly has a delay in airing the images” or “if I
use the Internet while video-chatting, the video stream stalls a
lot”, as well as depicted like in Fig. 1.

Technical motivations behind this problem are deeply
investigated in Section II, yet, in summary, the real fact is that
browsing the Internet and downloading files are still
considered the main applications run by consumers on the
wireless channel. Therefore, to provide reliable delivery and
high throughputs to this kind of applications: i) TCP and its
congestion control functionality are employed at the transport
layer, and ii) buffers and local retransmissions are extensively
used at the MAC layer.

However, these solutions have been demonstrated to be
harmful toward real-time applications as they increase the per-
packet delivery latency [21]. Moreover, the adverse role
played by the TCP’s congestion control mechanism in this
particular context represents an interesting problem as it
embodies the reverse of the well known UDP vs TCP quarrel
by which it is stated that UDP-based flows are aggressive
toward TCP-based ones [5]. Indeed, in Section II we
demonstrate how persistent TCP-based flows are responsible
for performance deterioration of concurrent UDP-based
applications. The completely new point of view on the UDP vs
TCP quarrel makes even more evident how the HEC is in need
of a special protocol potion to become the desired magic box
for consumers’ entertainment.

Aiming at providing high downloading throughputs and low
per-packet delays, we propose a solution that makes use of a
smart AP, standard protocol features, and available
information on the on-going traffic.

Fig. 1. Video stream progression without (a) and with (b) simultaneous downloads.

Indeed, the AP is in a strategic position to gather

information about the channel condition and the on-going
traffic. Our idea is that this information can be used by the AP
to regulate heterogeneous transmission flows and make them
coexist efficiently. More in detail, the idea is as follows:

i) the AP snoops all the transiting packets and computes the
maximum data rate at which downloading applications
can transfer their files without exceeding the factually
available bandwidth;

ii) a cross-layer approach may be implemented that allows
the AP to modify on-the-fly the advertised window of
each transiting TCP packet so as to make it equal to the
maximum data rate mentioned in i), and accordingly limit
the transfer rate of TCP flows.

This way, downloading applications produce a smooth
traffic that efficiently utilizes the available channel without
incurring in congestion losses that would degrade their
performances and, at the same time, does not create queues at
the AP that would increase per-packet delays of real-time
applications.

Since we propose neither a new protocol nor a new
architecture, our special potion is also highly tolerable from a
deployability standpoint. Indeed, we simply design an
enhanced AP with a re-engineered packet forwarding
functionality. Customers have hence just to get our AP (or the
HEC with our AP already included) from their preferred
electronics seller and plug-it-in at home. Results gathered on
the field showed that performances of entertainment
applications in wireless homes will be improved in this simple
way, with absolutely no need for updates of Internet’s
protocols. Comparative results contrasted against alternative
approaches, such as TCP Vegas, have been obtained, which
showed the superiority of our solution.

The rest of the paper is organized as follows. Section II
focuses on the real problem at the basis of this work. In
Section III, we discuss our solution to the problem and review
the best alternatives available in scientific literature. A
simulation assessment is presented in Section IV, while
obtained results are shown in Section V. Finally, Section VI
concludes this paper.

II. PROBLEM STATEMENT
We provide here further insight on the interference caused

by downloading applications to real-time ones over a wireless

channel.
Applications can be grouped into two main classes

depending on which protocol they use at the transport layer:
TCP or UDP. TCP is a protocol that guarantees the reliable
and ordered delivery of every packet sent; to this aim it
establishes a session and performs retransmissions of lost
packets. Since these features, TCP is utilized by elastic
applications that involve the download/transmission of
files/commands (i.e., FTP, HTTP, SMTP, Telnet). Where not
differently stated, with the term TCP we refer to the two most
common versions, i.e., TCP New Reno and TCP SACK.

A very important component of TCP is represented by its
congestion control functionality. Through it, every TCP flow
probes the link with higher and higher data rates eventually
filling up the channel. At that point, packets will be queued at
the buffer associated with the bottleneck of the link until it
overflows causing packet losses. TCP retransmits the lost
packets, and halves its sending rate to diminish the congestion
level. Finally, the regular increase of the sending rate is
reestablished and so forth.

UDP is simpler: packets are immediately sent toward the
receiver with a data rate decided by the sender. UDP does not
guarantee reliable and ordered delivery of packets but, at the
same time, its small overhead and lack of retransmissions
make it less prone to generate delays in the packets delivery.
For this reason, UDP is usually employed by applications
characterized by stringent real-time constraints and that can
tolerate sporadic packet losses (i.e., audio/video streaming,
online games). The lack of congestion control functionalities
of UDP had lead the scientific community to wisely consider
UDP as unfair toward TCP. Indeed, citing from [5]: “Although
commonly done today, running multimedia applications over
UDP is controversial to say the least. […] the lack of
congestion control in UDP can result in high loss rates
between a UDP sender and receiver, and the crowding out of
TCP sessions - a potentially serious problem.”

Even if this is true when the available bandwidth is very
scarce, the broadband connectivity offered today may overturn
this situation.

Larger and larger bandwidths are offered even to home
consumers so that the traffic generated by UDP-based
applications can be accommodated. Yet, a problem emerges
when real-time applications (UDP-based) coexist with
downloading ones (TCP-based) on a wireless channel, causing

the former to experience a scattered flow progression.
Major causes for this problem can be found in the TCP’s

congestion control functionality. In particular, TCP
continuously probes for higher transfer rates, also queuing
packets on the buffer associated with the bottleneck of the
connection. If one considers that the same wireless connection
might be shared by several devices and applications thus
increasing the congestion level and queue lengths, it is even
more evident how packets can be delayed in queue,
jeopardizing requirements of real-time applications.

This negative situation is further worsened by the following
three factors due to the wireless nature of the link. First, the
wireless medium allows the transmission of only one packet at
a time and is not full-duplex as wired links. Packets have
hence to wait their turns to be transmitted. Second, as
interference, errors, fading, and mobility may cause packet
loss, the IEEE 802.11 MAC layer reacts through local
retransmissions (4 at most, [22]) which, in turn, cause
subsequent packets to wait in queue until the preceding ones
or their retransmissions eventually reach the receiver. Last but
not least, the back-off mechanism of the IEEE 802.11
introduces an increasing amount of time before attempting
again a transmission [22].

As an example of problems caused by this mixture of
causes, we show in Fig. 2 the inter-arrival time experienced by
online game packets in a realistic wireless in-home
environment, with an AP configured in an off-the-shelf
fashion, and a constant inter-departure time of 50 ms. Details
for this scenario will be exhaustively discussed in Section IV.
At this point, it is sufficient to know that the considered online
game application (UDP-based) is started at 45 s, when a
video-stream application (UDP-based) was already active, and
both lasts for the whole experiment. At 90 s, a video-chat
conversation (UDP-based) is added but, still, the traffic
generated by the combination of these three applications is far
from consuming all the available bandwidth. Instead, at 135 s
an FTP (TCP-based) starts to download a file and quickly
saturates the channel.

As it is evident in Fig. 2, the inter-arrival time remains
regular until the FTP/TCP flow takes action. At that point, a
multitude of packets start to experience high delays that cause
a scattered progression of the online game flow.

What technically happens is even more evident in Fig. 3
that reports the congestion/sending window2 (“cwnd”) and
slow start threshold (“ssth”) of the TCP flow, as well as the
pipe size, i.e., the Bandwidth-RTT product (“RTTxBW”) of
the channel. By comparing Fig. 2 and Fig. 3 we notice that the
irregularity in the interarrival-time of online game packets is
directly proportional to the size of the congestion/sending
window (i.e., the transfer rate). Every time the
congestion/sending window exceeds the pipe size, packets are
queued at the buffer of the bottleneck link. Delay increments
of online game packets can hit also tens of milliseconds thus

2 We use the term “congestion/sending window” to indicate when the

sending window exactly corresponds to the congestion window.

representing a huge waste of time when trying to deliver real-
time information for entertainment services. For instance,
transmission delays of interactive online games should be
inferior to 100 ms, with a maximum endurable value of 150 ms
[7]. (Just to mention, in this configuration the average
throughput was 14.51 Mb/s).

Fig. 2. Measured inter-arrival time of online game packets with 50 ms of
inter-departing time. Regular AP and IEEE 802.11g are employed; from
135 s, a FTP/TCP New Reno flow is competing for the channel.

Fig. 3. TCP New Reno’s congestion/sending window with a standard AP.

III. AVOIDING QUEUE UTILIZATION
In this Section we provide two recipes for special potions

we have blended to solve the aforementioned problem. Our
solutions are finally contrasted with the best known alternative
for limiting queuing delays.

We start from a simple, even if only moderately effective,
solution that focuses on the MAC layer parameters [21]. Then,
we propose a second solution which is based on the
coordinated use of an enhanced AP, information available at
the AP, and existing features of the TCP. We show how we
can mix these ingredients in a simple way and obtain an
efficient coexistence among downloading and real-time flows.
This is our favorite solution among those we have explored
and we name it Smart Access Point with Limited Advertised
Window (SAP-LAW).

Obviously, several other alternatives can be found in
literature that can be used to tackle this problem (e.g.,

CLAMP, IEEE 802.11e,…). Among them, TCP Vegas has
emerged as one of the more promising. Hence, at the end of
this Section, we provide a synthesis of this approach and
compare it with our solution both in terms of efficacy and
factual deployability.

A. Mixing a potion at the MAC layer: MAC-Setting
Our first solution regards the utilization of more appropriate

setting for parameters of the IEEE 802.11 MAC protocol.
Historically, parameters such as the maximum number of
retransmissions and the buffer size were decided in a period
when the TCP-based traffic was largely predominant in the
Internet. Consequently, the main concerns for designers were
reliability and high throughput.

Nowadays, the consumers’ massive request for real-time
applications partially contradicts the initial assumption that
reliability were the most important issue over wireless links:
ensuring low per-packet delays has to be considered equally
crucial. Therefore, IEEE 802.11’s parameters should be
modified to make it more sensitive toward the requirements of
real-time applications. In particular, the maximum number of
local retransmissions could be diminished from 4 to 3 in order
to find a solution to the tradeoff between reliability and low
delays in packet delivery [21].

Similarly, large buffer sizes at the AP help TCP connections
in maintaining a high sending rate for a longer period and
diminish the impact of bursty traffic. On the other hand, larger
buffers generate longer queuing times when fully utilized, thus
jeopardizing the performance achieved by time-sensitive
applications. By adjusting the buffer size to an appropriate
value we can try to find a compromise between the needs of
TCP-based applications and those of UDP-based ones. In
particular, the buffer size should not exceeds 50 packets [21].

However, as shown in Section V, by only reducing the
maximum number of retransmissions and the buffer size at the
MAC layer, we can expect only a slight decrease of delays,
which is paid with a loss increase and a consistent throughput
reduction.

B. SAP-LAW: Blending Together a Smart Access Point with
a Limited Advertisement Window
Here we are aiming at finding the best solution for the

tradeoff relationship existing between FTP/TCP throughput
and real-time application delays. The two types of traffic
should be able to coexist without interfering each other and the
employed solution should be easily and factually deployable.
An appropriate technique to solve this tradeoff relationship
should exploit existing features of legacy protocols in order to
be easily deployable. Our most effective potion is inspired by
this principle and can be explained by stepping through the
following three main points.

1) The Basic Idea: The actual sending rate (i.e., the sending
window) of a TCP flow is determined as the minimum
between the congestion window (continuously recomputed by
the sender) and the advertised window (provided by the
receiver via returning ACK packets) [5]. Our idea is hence that

of exploiting dynamic modifications of the advertised window
to limit the growth of the TCP flow’s sending rate. Indeed, an
optimal tradeoff between throughput and low delays could be
achieved by maintaining the sending rate of the TCP flows
high enough to efficiently utilize the available bandwidth and,
at the same time, limited in its growth so as to not utilize
buffers. This way, per-packet delays are minimized by the
absence of queues along the route from the sender to the
receiver, while the throughput is kept elevated by the absence
of packet losses that would halve the congestion window.

time

cwnd

pipe size

limited cwnd

regular cwnd

time

cwnd

pipe size

limited cwnd

regular cwnd

Fig. 4. Comparison between regular and limited sending window.

We provide in Fig. 4 a little evidence that the TCP

throughput is not diminished by our proposed solution.
Specifically, we show in Fig. 4 a typical saw tooth shaped
congestion/sending window of a TCP flow and overlap it with
one limited by the advertised window. As it is evident, the
latter is more stable since it does not use the buffer at the
bottleneck link and consequently experiences no losses. The
minus signs in the chart represent situations in which the
regular sending window provides TCP with a sending rate that
is inferior to the one guaranteed by the limited
congestion/sending window. The plus signs represent the
inverse situation (generally accompanied by having packets
queuing on the buffer preceding the bottleneck link). If the
upper bound for the sending window is appropriately chosen,
the balance between the plus and minus signs will guarantee to
the flow with a limited sending window an equal, or even
superior, final throughput with respect to an equivalent regular
flow. At the same time, queuing delays will be avoided.

We need now to address two important issues: how to
determine an appropriate upper bound and how to practically
implement it. Here follow our solutions to these issues.

2) Determining the Upper Bound: The most appropriate
formula to compute the upper bound can be derived from the
two main goals we want to achieve: full utilization of the
available bandwidth and no queuing delays.

Real-time traffic generally exploits UDP to transmit at a
predetermined rate with no concern about other traffic on the
channel. Therefore, to avoid queuing delays, the aggregate
bandwidth utilized by TCP flows cannot exceed the total
capacity of the bottleneck link at the AP diminished by the
portion of the channel already occupied by the concurrent real-
time traffic.

If we call UDPtraffic the amount of bandwidth occupied by
the UDP-based traffic, #TCPflows the concurrent number of
TCP flows, and C the capacity of the bottleneck link, we can

formulate the upper bound for the sending rate allowed to each
TCP flows at time t as follows:

)(#
))((

)(
tTCPflows

tUDPtrafficC
tmaxTCPrate

−
= (1)

3) Practical Implementation: To practically employ eq. (1)

we have to i) identify the location for its implementation, and
ii) propose a method to compute the value of the various
variables.

Regarding i), the advertised window is generally imposed
by the receiver; however, this could not represent the most
suitable place to set it. As it is evident from eq. (1),
determining the most appropriate value for the advertised
window requires a comprehensive knowledge about all the
flows that are transiting through the bottleneck. Since all flows
have to pass through the AP, this represents the most
appropriate node to host the intelligence of our solution.
Indeed, the AP is integrated with the HEC and the mechanism
can take advantage of this to retrieve all the necessary
information.

Focusing on ii), in any commercial operating system it is
possible to know which kind of connection is in use and its
nominal speed just by looking at the status of the network
interface. Through snooping the channel or exploiting
information known at the HEC we can also infer both the
number of active TCP connections and the aggregate amount
of concurrent UDP traffic. The AP can hence easily compute
the best maxTCPrate(t) utilizing eq. (1) and modify the
advertised window included in the transiting ACKs
accordingly.

C. The incapability to do magic: the TCP Vegas Solution
Our work would not be complete if we did not compare our

special potion with the best existing alternatives in avoiding
excessive buffer utilization such as TCP Vegas, IEEE 802.11e,
and CLAMP [8], [22], [20]. We focus here only on TCP
Vegas as this protocol emerges as the best-endowed to avoid
queuing. Indeed, this transport protocol embodies one of the
most cited alternatives to regular TCP in scientific papers. Its
applicability to the considered problem lies in the fact that
TCP Vegas tries to avoid congestion before it happens. In
particular, it augments its congestion window until buffers
along the path between sender and receiver have a low
utilization, whereas it reduces its congestion window when
queuing is sensed. Therefore, TCP Vegas perfectly fits real-
time applications’ need for low buffer utilization.

In Section V we will show TCP Vegas’ outcomes in our
considered scenario; instead, here we provide more insight
into TCP Vegas’ behavior for the sake of the reader’s
comprehension.

While regular TCP utilizes packet loss to determine network
congestion, TCP Vegas is sensitive to end-to-end queuing
delay. With TCP Vegas, the sender monitors every round trip
time (RTT) the difference between its expected rate and the
actually achieved one. The difference is compared with a

couple of parameters, namely α and β, to determine whether
the congestion window has to be incremented or decremented
(by 1) during the next RTT [8], [9]. In essence, parameters α
and β determine the amount of buffer that can be utilized by
transiting flows and can be seen as knobs able to move the
tradeoff between the per-packet delay and the total throughput
toward one direction or the other. If the buffer at the
bottleneck is large enough then TCP Vegas reaches an
equilibrium. In this case, TCP Vegas flows should experience
zero packet losses, a stable congestion/sending window, and a
buffer utilization that is proportional to the number of TCP
Vegas flows sharing the same bottleneck.

Nonetheless, TCP Vegas is not capable to do the magic in
the context of the HEC without heavy side effects. Indeed,
even if TCP Vegas has been proven to fairly share the channel
with other TCP Vegas flows, it behaves too conservatively in
presence of simultaneous regular TCP flows. TCP fully
exploits the available buffer and TCP Vegas interprets the
consequent RTT trend as an indicator of excessive congestion,
thus progressively reducing its sending rate to very low values
[10]. In essence, the dramatic efficiency decrease experienced
when competing with regular TCP traffic impedes TCP Vegas’
factual deployment.

IV. SIMULATION ASSESSMENT
To evaluate the efficacy of our potion and the existing best

alternative (TCP Vegas) we have built an experimental
scenario utilizing the NS-2 simulator [12]. In particular, we
intend to analyze a general house environment with four
wirelessly connected devices and the home server that
incorporates also the HEC and the AP. The distance between
each device and the AP is 10m and the MAC layer parameters
have been set accordingly to the IEEE802.11g standard
allowing us to reach a maximum bandwidth of circa 20 Mb/s.
This represents a reasonable value over the declared 54 Mb/s
even in the real world [13].

For the wireless medium we chose the Shadowing Model to
realistically simulate signal fading. We followed the directions
provided by the official NS-2 manual to represent a home
environment partitioned into several rooms. Specifically, the
path loss exponent and the shadowing deviation parameters
were set to the worst possible case suggested for an indoor
environment, i.e., 4 and 9 respectively.

As recently demonstrated by measurements on a real OC48
link, the available capacity in the Internet core is generally
larger than the aggregate utilized by transiting flows [14].
Moreover, tools are available to consumers to verify that their
connection is factually supporting the high speed advertised by
the provider [15]-[17]. We can hence assume the bottleneck
located at the edge of the path connecting a sender and a
receiver: the 20 Mb/s effectively available over the wireless
link. Over this topology, several kinds of application were
simulated that used different transport protocols, starting
times, and RTTs (as shown by Table I). Just to mention, the
video-stream had almost no propagation latency since the

video was supposed to be stored at the HEC.
In order to uplift the trustworthiness degree of the

simulations, we have exploited real trace files for the video-
stream and for the video-chat. Specifically, adopted trace files
correspond respectively to high quality MPEG4 Star Wars IV
for the movie, and two VBR H.263 Lecture Room-Cam for the
video-chat, available in [18].

Parameters characterizing the game-generated traffic were
chosen following directions provided by scientific literature
related to this field. We assumed that the user in the house
were engaged in one of the very popular first person shooter
games, e.g. Quake Counter Strike, with other ~25 players,
geographically away from each other and connected through
the Internet. To model the packet size and inter-arrival time of
the traffic generated by online games, we used some of the
approximations suggested in [19], which are based on real
game platform measurements. Game events were hence
generated at the client side every 60 ms; whereas the server
was transmitting back game state updates every 50 ms toward
the client. Moreover, game packet sizes generated by client
and server were set to 42 Bytes and 200 Bytes, respectively.

TABLE I

SIMULATED APPLICATION FLOWS
Flow Type Transp. Prot. Start End RTT

Video-Stream UDP 0 s 180 s ~0 ms

Online Game UDP 45 s 180 s 40 ms

Video-Chat UDP 90 s 180 s 60 ms

FTP TCP 135 s 180 s 80 ms

TABLE II

TUNABLE PARAMETERS IN THE SIMULATED CONFIGURATIONS
Parameter Values Comment

MAC data retransmissions 1, 2, 3, 4 default value = 4

MAC queue size (pkts) 50, 100 common default values

Simulation experiments have been replicated to examine the

effects generated by different configurations of the parameters
involved in the considered scenario (see Table II). Where not
differently stated, simulations were run utilizing some realistic
default values for the simulative parameters. These values are
written in bold in Table II.

We focus our attention on the most significative results with
respect to the problem experienced by online game packets.
However, no significant information is retained since the per-
packet delay and jitter for all the considered real-time
applications showed a homogeneous trend. Aimed at finding
the best solution to provide both high throughput and low per-
packet delay we use the following metrics:
• the inter-arrival time and the jitter experienced by

packets of one of the simulated real-time applications;
• the throughput achieved by the FTP/TCP application.
In the next Section we test the various special potions to

find the most successful one and verify the presence of any
side effect.

V. RESULTS
Exploiting the metrics highlighted in Section IV, we discuss

in the following subsections the most relevant results from the
extensive set of simulations we have run for each discussed
solution. We start with a comparison of the various outcomes
and continue with detailed results on each technique.

A. Preview of Results
We conducted a comparative measurement of the various

solutions and statistical outcomes of the online game traffic,
plus the average throughput achieved by the concurrent TCP
connection, are reported in Fig. 5. As it is evident, the TCP
Vegas solution and our SAP-LAW are the two approaches that
would guarantee the best performances. Indeed, they both
show the lowest values for average, variance, and maximum
jitter experienced by the online game stream, as well as high
TCP’s throughput.

However, even if TCP Vegas’ outcomes result slightly
better than those achieved by SAP-LAW, the former cannot be
actually deployed in the Internet since it is not able to
efficiently coexist with the legacy TCP [10]. Conversely,
SAP-LAW can be easily implemented as it only involves the
presence of slightly “smarter” APs. Modifications required at
the AP are very limited, thus minimally impacting on their
cost. Moreover, our scheme utilizes only existing features of
currently employed protocols and is hence perfectly
compatible with the Internet. Considering this fundamental
advantage and the remarkable results achieved, SAP-LAW
represents the optimal candidate for enhancing HECs in
wireless home scenarios.

To better understand results shown in Fig. 14, in the rest of
this Section we provide further insight on the outcomes of the
various solutions explored.

0
5

10
15
20
25
30
35
40
45

jitt_avg(ms) jitt_var(ms^2) max_jitt(ms) dwnl_thr(Mb/s)

Statistical Parameters

Regular MAC-Setting TCP-Vegas SAP-LAW
Fig. 5. Statistical outcomes for the compared schemes during the
simulative interval 135–180 s.

B. Setting MAC Layer Parameters: Outcomes
Utilizing different buffer sizes and/or maximum number of

retransmissions at the MAC layer amounts to the simplest
solution among those we have explored. However, this
solution leads to just a moderate improvement of performances
achieved by the various real-time applications at the cost of a
reasonable throughput decrease for downloading flows.

This is clearly visible in Fig. 6 that shows a (moderate)

reduction of the height of the inter-arrival time peaks with
respect to the regular case (compare values on the y-axis with
those in Fig. 2). This result was achieved by changing the
normal setting of the AP (buffer size = 100 packets, maximum
number of retransmissions at the MAC layer = 4) with 50
packets of buffer size and 3 retransmissions, at most, at the
MAC layer. The rationale behind this decision can be found
also in Fig. 7 that shows downloading flow’s throughputs
achieved in our simulations with various combinations of the
considered parameters. The throughput achieved with this
solution has been reduced with respect to the regular case but
it still represents a decent value if compared to other
configurations (i.e., 1 or 2 maximum number of
retransmissions) and corresponds to 14.37 Mb/s.

Finally, Fig. 8 shows how the congestion/sending window
peaks of the concurrent TCP flow do not exceed the pipe size
as much as they were doing in Fig. 3 since they have been
reduced in height as an effect of the utilized configuration of
the MAC layer parameters.

Fig. 6. Measured inter-arrival time of online game packets with 50 ms of
inter-departing time. Max 3 retransmissions at the MAC layer and buffer
size = 50 packets; from 135 s, a FTP/TCP New Reno flow is competing for
the channel.

0
2
4
6
8

10
12
14
16

1 2 3 4
max number of MAC retransmissions

Th
ro

ug
hp

ut
 M

b/
s

buffer_size = 50pkts buffer_size = 100pkts

Fig. 7. FTP total throughput with different MAC buffer sizes.

Fig. 8. TCP New Reno’s congestion/sending window; max 3
retransmissions at the MAC layer and buffer size = 50 packets.

C. Utilizing SAP-LAW: Outcomes
As shown by Fig. 9, SAP-LAW is able to sensibly reduce

the variation of the inter-arrival time suffered by online game
packets in our considered scenario (compare values on the y-
axis with those in Fig. 2). More in detail, Fig. 9 was obtained
with parameter C in eq. (1) set to 18 Mb/s (the 90% of the
maximum achievable bandwidth in our scenario).

Statistics (i.e. average, variance, and maximum value) about
the jitter experienced by online game packets and the
throughput trend of the concurrent TCP flow are shown in
Fig. 10 as obtained by varying the value of parameter C. As
expected, to higher values of C corresponds higher utilization
of the buffer at the AP and hence higher average, standard
deviation, and maximum value of the per-packet delays
experienced by the online game flow. Moreover, an
appropriate setting of C also helps in preserving, or even
augmenting, the throughput. In particular, with C = 18 Mb/s,
SAP-LAW allowed the TCP flow to achieve an average
throughput of 15.23 Mb/s.

Fig. 9. Measured inter-arrival time of online game packets with 50 ms of
inter-departing time. SAP-LAW and regular IEEE 802.11g are employed;
from 135 s, a FTP/TCP New Reno flow is competing for the channel.

0

5

10

15

20

25

30

15 16 17 18 19 20 21 22 23

Parameter C (Mb/s)

downloading
throughput(Mb/s)
max jitter(ms)

jitter variance(ms^2)

jitter average(ms)

Fig. 10. Throughput achieved by the FTP/TCP New Reno flow and jitter
statistics of the game flow when employing SAP-LAW and regular
802.11g setting.

Fig. 11. TCP New Reno’s sending window; SAP-LAW, C = 18 Mb/s, and
regular 802.11g setting.

As for the precedent solution, even in this case we have to

analyze the TCP’s sending window as it represents the
determining factor in generating packet delivery delays and
TCP’s throughput. Therefore, Fig. 11 shows the sending
window (“swnd”) generated by SAP-LAW as the minimum
between the congestion window and the advertised window,
with the latter dynamically computed by exploiting eq. (1).
The aim is that of keeping the sending window high enough to
achieve an high throughput but, at the same time, lower than
the pipe size so as to not generate excessive queuing delays.
As can be seen in Fig. 11, this result is perfectly achieved by
SAP-LAW thus explaining the good performance obtained by
our scheme in terms of low per-packet delay and high
throughput.

D. TCP Vegas in Place of Regular TCP: Outcomes
Here we discuss the effect of utilizing TCP Vegas in place

of regular TCP to download files in the wireless home
scenario. In particular, we can appreciate in Fig. 12 how TCP
Vegas’ ability in avoiding queuing is reflected in a limited
range extension of interarrival-times experienced by the
concurrent online game flow (compare values on the y-axis
with those in Fig. 2).

Such a result was achieved by using α = 3 and β = 7 and

generated also a high average TCP throughput (15.57 Mb/s as
can be seen in Fig. 13). The corresponding congestion/sending
window is depicted in Fig. 14 and demonstrates how TCP
Vegas’ transfer rate is kept lower than the pipe size for the
presence of other traffic, thus avoiding congestion and queues.

Fig. 12. Measured inter-arrival time of online game packets with 50 ms of
inter-departing time. Regular AP and IEEE 802.11g are employed; from
135 s, a FTP/TCP Vegas flow with α = 3 and β = 7 is competing for the
channel.

0
2
4
6
8

10
12
14
16
18

alfa=1, beta=3 alfa=3, beta=7 alfa=5, beta=10

TCP Vegas' Parameters Configurations

Th
ro

ug
hp

ut
 (M

b/
s)

Fig. 13. FTP/TCP Vegas’ total throughput with different setting of
parameters α and β.

Fig. 14. TCP Vegas’ congestion/sending window with α = 3 and β = 7;
regular AP and 802.11g setting.

Unfortunately, TCP Vegas suffers from three main
drawbacks that are well known in the scientific community
and that pose drastic limits to its factual deployability. First,
setting its parameters is not a trivial task and depends on many
factors such as the buffer size at the bottleneck and the number
of flows sharing that link. In particular, the last factor
continuously changes while it is not possible to continuously
adapt α and β. Second, TCP Vegas has been shown to be
rather unstable [11]. Third, TCP Vegas behaves very poorly in
terms of throughput when coexisting with the legacy TCP as
shown, for instance, in [10].

VI. CONCLUSION
We took into account a scenario where in-home

entertainment is delivered to wireless devices through a HEC.
Our analysis focused on the mutual influence among

concurrent transmissions of two kind of different streams
through a wireless HEC. The former being TCP-based elastic
(e.g., downloading) applications and the latter being UDP-
based real-time (e.g., video streaming and online gaming)
applications.

We showed how even a single persistent TCP connection
can conspicuously increase the queuing delay suffered by
concurrent real-time applications. This constitutes the reverse
of the well known argument by which UDP’s lack of
congestion control would harm TCP, whereas we have shown
how the TCP’s lack of buffering control is harmful as well
toward UDP-based applications.

To solve this problem, we proposed SAP-LAW, a solution
consisting in an enhanced AP that does not need to modify
existing Internet’s protocols. We compared SAP-LAW to two
other possible solutions. The first one is an home made
technique based on the idea of optimizing parameters at the
MAC layer, while the second amounts to the use of TCP
Vegas. Results showed that SAP-LAW and TCP Vegas
achieved similar results and were both able to consistently
ameliorate the global performance of computer-centered home
entertainment services. However, while TCP Vegas cannot
coexist with legacy TCP, SAP-LAW is fully compatible with
the Internet and requires only the plugging-in of an enhanced
AP with no protocol modifications at the Internet side.

Therefore, SAP-LAW emerges as the perfect magic potion
to reduce consumers’ frustrations with scattered progression of
real-time flows when concurrent downloading applications are
heavily competing for the channel usage.

REFERENCES
[1] The TiVo Homepage. http://www.tivo.com/
[2] Windows XP Media Center Edition 2005 Home Page.

http://www.microsoft.com/windowsxp/mediacenter/
[3] I. Han, H.-S. Park, Y.-K. Jeong, K.-R. Park, “An Integrated Home

Server for Communication, Broadcast Reception, and Home
Automation,” IEEE Transactions on Consumer Electronics, vol. 52,
no. 1, pp. 104-109, Feb 2006.

[4] IEEE Standard for Information Technology, “Telecommunications and
Information Exchange between Systems - Local and Metropolitan Area
Networks - Specific Requirements Part 11: Wireless LAN Medium
Access Control (MAC) and Physical Layer (PHY) Specifications:

Amendment: Medium Access Control (MAC) Quality of Service
Enhancements”, P802.11e/D13.0, Jan 2005.

[5] J. F: Kurose, K. W. Ross, Computer Networking: A Top-Down
Approach Featuring the Internet, Addison Wesley Longman, Boston
MA, USA, 2001.

[6] L. L. Peterson, B. S. Davie, Computer Networks, a System Approach,
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1996.

[7] L. Pantel, L. C. Wolf, “On the Impact of Delay on Real-Time
Multiplayer Games,” in Proc. of the 12th International Workshop on
Network and Operating Systems Support for Digital Audio and Video,
Miami, FL, USA, pp. 23-29 May 2002.

[8] S. Low, L. Peterson, L. Wang, “Understanding Vegas: a Duality Model,”
Journal of ACM, vol. 49, no. 2, pp. 207-235, 2002.

[9] L. Brakmo, S. O'Malley, L. Peterson, “TCP Vegas: New Techniques for
Congestion Detection and Avoidance,” in Proc. of the SIGCOMM '94
Symposium, London, UK, pp. 24-35, Aug 1994.

[10] G. Marfia, C. E. Palazzi, G. Pau, M. Gerla, M. Y. Sanadidi, M. Roccetti,
“TCP Libra: Exploring RTT-Fairness for TCP,” UCLA CSD Technical
Report #TR050037, 2005.

[11] C. Jin, D. Wei, S. H. Low, G. Buhrmaster, J. Bunn, D. H. Choe, R. L. A.
Cottrell, J. C. Doyle, W. C. Feng, O. Martin, H. Newman, F. Paganini, S.
Ravot, and S. Singh, “Fast TCP: From Background Theory to
Experiments,” IEEE Network, vol. 19, no. 1, pp. 4-11, 2005.

[12] The Network Simulator, NS-2. http://www.isi.edu/nsnam/ns/
[13] A. L. Wijesinha, Y. Song, M. Krishnan, V. Mathur, J. Ahn, V.

Shyamasundar, “Throughput Measurement for UDP Traffic in an IEEE
802.11g WLAN, ” in Proc. of 6th International Conference on Software
Engineering, Artificial Intelligence, Networking and
Parallel/Distributed Computing and First ACIS International Workshop
on Self-Assembling Wireless Networks (SNPD/SAWN'05), Towson, MD,
USA, pp. 220-225, May 2005.

[14] H. Jiang, C. Dovrolis, “Why is the Internet traffic bursty in short (sub-
RTT) time scales?” in Proc. of ACM SIGMETRICS 2005, Banff, AL,
Canada, pp. 241 - 252, Jun 2005.

[15] Broadband Speed Tests. http://www.dslreports.com/stest
[16] Verizon Online DSL. http://www.verizon.com/dsl/
[17] AT&T Worldnet DSL Service. http://www.att.net/dsl/
[18] Movie Trace Files.

http://www-tkn.ee.tu-berlin.de/research/trace/ltvt.html
[19] J. Farber, “Traffic Modelling for Fast Action Network Games,”

Multimedia Tools and Applications, vol. 23, no. 1, pp. 31-46, 2004.
[20] L. L. H. Andrew, S. V. Hanly, R. G. Mukhtar, “CLAMP: Active Queue

Management at Wireless Access Points,” in Proc. of the 11th European
Wireless Conference 2005, Cyprus, Apr 2005.

[21] C. E. Palazzi, G. Pau, M. Roccetti, M. Gerla, “In-Home Online
Entertainment: Analyzing the Impact of the Wireless MAC-Transport
Protocols Interference,” in Proc. of IEEE International Conference on
Wireless Networks, Communications and Mobile Computing
(WIRELESSCOM 2005), Maui, HI, USA, pp. 516- 521, Jun 2005.

[22] IEEE, “Standard for Wireless LAN Medium Access Control (MAC) and
Physical Layer (PHY) Specifications,” Specifications, ISO/IEC 8802-
11:1999(E), 1999.

Claudio E. Palazzi received a PhD from the University of Bologna in 2006.
His research interests include wireless multimedia entertainment. (Photo N/A).

Stefano Ferretti is currently an assistant professor at the University of
Bologna. His research interests include distributed multimedia systems. (Photo
N/A).

Marco Roccetti is a professor of Computer Science at the University of
Bologna His work focuses on computer-centered entertainment system and
wireless multimedia. (Photo N/A).

Giovanni Pau is currently a research scientist at UCLA. His area of expertise
includes mobile computer network environment. (Photo N/A).

Mario Gerla is a professor at UCLA. His area of interest is focused on
analysis, design, and control of computer communication networks. (Photo
N/A).

