Exploiting TCP Vegas’ Algorithm to Improve
Real-Time Multimedia Applications

Michele Massaro, Claudio E. Palazzi, Armir Bujari
Department of Mathematics
University of Padua
Padua, Italy
Email: michele.massaro@me.com, cpalazzi@math.unipd.it, abujari @math.unipd.it

Abstract—Computer-centered services and broadband wire-
less connectivity have boosted the demand for delivery of
multimedia-based entertainment from the Internet to in-house
wireless appliances. In this context, rich-media applications
can be supported by a variety of protocols, each sharing the
same bottleneck, affecting one another’s performance. Indeed,
in current systems, real-time applications (e.g., video streaming,
online games) suffer from delays caused by the interference of
elastic, best-effort (e.g., TCP-based download sessions) traffic. In
this paper we propose a solution to this problem, addressed by
deploying a Vegas-like congestion control algorithm at the home
gateway, requiring no client-side modification.

Access Point, Home Network, Online Game, TCP Vegas,
Wireless

I. INTRODUCTION

In no time, the Internet has grown from an interesting dis-
traction into an essential part of our everyday life. Broadband
access technology has grown considerably both for entertain-
ment and for communication, leading to a demand for an
improved networking support able to satisfy the requirements
of heterogeneous traffic flows. A representative example in
this category are TCP-based elastic flows (e.g., download) and
emerging UDP-based real-time ones (e.g., video stream, online
games, etc.).

In this context, the coexistence of elastic and real-time
network traffic presents severe issues particularly affecting the
latter. The main problem derives from the nature of classic
TCP protocols, which are loss-based; continually probing the
shared channel in order to increase the transfer speed until
some loss occurs. This growth phase is succeeded by a slow
down phase, where the flow starts to grow its sending speed
again, and these phases are interleaved in a cyclic fashion.

This modus operandi cause the queues to fill along the
channel, leading to an increase of the per-packet delivery
time [1], [2]. Even if this does not represent a major issue
for elastic applications, it causes a significant decrease of the
quality of service for real-time applications [3]-[5]. Address-
ing this issue, delay-based TCP congestion protocols employ
packet RTT rather than losses to prevent congestion [6]. In
this context, TCP Vegas is the main candidate [8]; continually
monitoring the packet queueing times and shown to lead to a
better quality for UDP services.

However, TCP Vegas cannot be used in a channel shared
by loss-based protocols due to the aggressiveness of the latter
in getting more and more bandwidth until a loss event happens,

thus capturing almost all the available bandwidth from delay-
based flows. The only way to employ TCP Vegas in practice
would be to completely dismiss all loss-based TCP versions,
changing the protocol of every client and server connected to
the Internet. Needless to say, this is not a feasible option.

In this paper, we show how to practically exploit the
benefits of delay-based protocols, intervening only in the user’s
Access Point (AP). As a result of this, elastic applications
achieve high data throughput, while real-time application
maintain a low latency. The AP is enhanced with an algorithm
that automatically limits TCP flows when the channel is near
to the saturation (like TCP Vegas), avoiding long queues and
packet loss while keeping the TCP-based flows at a data rate
level which corresponds to a full utilization of the available
bandwidth.

In Section II we discuss the state of the art relevant to this
domain, while in Section III we present our solution in detail.
Section IV provides an overview of the simulation environment
and comparison settings, while in Section V and Section VI
we discuss the experimentation outcome. Finally, Section VII
concludes this paper.

II. RELATED WORKS

The problem we are addressing is not new and solutions
have been proposed to avoid the latency increase incurred by
TCP New Reno’s congestion control. As already stated above,
the problem resides in the protocol itself, this to say that
one solution would be to switch from the current protocol to
a delay-based one, Vegas-like. Indeed TCP Vegas is able to
detect the congestion in advance using the RTT fluctuation of
the packets. Simply said, it increases the transfer speed when
the delay is under an « threshold and decreases it when the
delay is over 8 (a <f). In this way, it is not necessary to
lose a packet in order to detect congestion, because it can be
detected before it happens. Clearly this also avoids the creation
of bottleneck queues and corresponding queuing delays that
would harm any real-time application [7].

Unfortunately, TCP Vegas flows cannot coexist with loss-
based ones, e.g., generated by TCP New Reno and other classic
real life TCP versions; loss-based flows cause congestion by
their nature, and delay-based ones detect it as an imminent
congestion, slowing down their transfer rate. The result is that
loss-based flows will occupy almost all the channel [9], [10].
This incompatibility with legacy protocols made Vegas hardly
applicable.

Instead, a solution that would not require a modification
of Internet protocols was proposed in [10], [11] and named
Smart Access Point with Low Advertised Window (SAP-
LAW). Basically, this solution leverages on the ability of
the Access Point to monitor all traffic passing through; then,
the advertised window of TCP-based flows are appropriately
modified to bound them to their fair bandwidth share.

The algorithm detects the ongoing UDP traffic, and com-
putes the available bandwidth, as well as the corresponding
appropriate advertised window, for each flow through (1) (three
flows in the example).

(C —UDPtraf fic(t)) » RTT;

maxTC Prate;(t) =
aq + as =+ as
RTT, RTT, RTT;
= ag = = —
g RTTmin’ > avg.RTTmin’ > avg.RTTpmin

ey

This avoids the classic TCP’s congestion window fluctua-
tions, stabilizing it to a computed value. Moreover, the absence
of congestion alleviates delay problems for UDP packets,
allowing the user to enjoy interactive, real-time services while
concurrent elastic applications still achieve high throughputs.

However, this proposal is limited as it requires an a priori
knowledge of the bottleneck capacity and the RTT of each
flow; these parameters may not be always known or correctly
computed or even stable enough to be used in a timely fashion.

Similar in spirit, even it has been proposed in the context
of multi-hop wireless networks, is Gateway Adaptive Pacing
(GAP) [12], [13]. GAP adds an artificial delay between each
packet, based on continuous measurements of the network. In
this way the interarrival time decrease, but so does even the
throughput of TCP flows, thus finding scarce applicability in
the regular one-hop case.

III. VOAP

Our goal is to create a solution that could reach SAP-
LAW’s performance without requiring the a priori information
needed by SAP-LAW. At the same time, we want to avoid
any need for changing the network protocols of the devices
connected to the network (with the only exception of the Ac-
cess Point). The algorithm is designed mainly for the wireless
home scenario, where the main bottleneck is represented by
the wireless component; however it was kept generic, and it
should work even in a more general or wired environment.

Like SAP-LAW, our algorithm is designed to be deployed
on an Access Point, so as to be able to monitor all the network
traffic in real-time. To not use the additional information on
bottleneck capacity and RTTs as done by SAP-LAW, we
have taken inspiration from TCP Vegas’ congestion control
algorithm. From here the name of our algorithm: Vegas over
Access Point (VoAP).

The main idea at the basis of VOAP is to monitor all the
TCP flows that pass through the AP and measure how long
packets remain in its queue before being transmitted over the
wireless channel. When this time is below an « threshold it

means that the channel is quite free, thus allowing the TCP-
based flows to increase their transfer speed without the risk of
causing congestion/queuing delays; instead, when the time is
over the (3 threshold, the channel is saturating, and the TCP
flows’ transmissions should be slowed down as they are not
transmitting at higher rates, they are just building up queues.

The increase of the TCP’s rate is regulated by its own
congestion avoidance protocol, whereas to decrease it we use
the advertised window already present in the header of regular
ACKs. Therefore, any TCP-based flow transmitted in the
considered wireless home, regardless of its congestion window
flavor, will be limited in its regular growth if and only if it is
detected to cause congestion in the AP. This is an appropriate
behavior as to higher transmission rates correspond higher
queuing delay, rather than higher receiving rates. Furthermore,
as our solution can only limit the TCP’s data rate, we do not
have a negative impact on other flows present in the Internet
core. Finally, as VoAP is applied to all and only the TCP-based
flows passing through the considered Access Point, we do not
incur the risk to have an excessive limitation of the congestion
window caused by the aggressive behavior of other congestion
control variants as original TCP Vegas does.

To allow a fast initial growth (slow start) the algorithm is
not applied below a packet threshold of the congestion window
(10 packets) and the flow is left free until it exceeds for the
first time the (threshold; at that point, the algorithm intervenes
enforcing the limitation through appropriate modifications of
the advertised window, thus decreasing the flow speed until
the delay drops under 5.

When the delay stays between « and 3, the advertised
window remains stable, preventing the flow growth, since the
channel is almost saturated. If the channel becomes free, the
delay drops under the « threshold, so the speed is increased
again.

The data are collected for a period of time 7, where
the number of flows and their delays are checked and acted
upon accordingly. Every increment or decrement action is per
unit, so as to avoid excessive fluctuations, thus there can be
at most I/T changes of the advertised window per second.
After this, the timers are reset and the delay sampling restarts.
Furthermore, the time range T is needed to observe whether a
flow is active or not, and split the bandwidth in a fair way; it
is therefore necessary for T to be small enough to not waste
bandwidth on a non-active flow, but also big enough to allow
all active flows to transmit at least one packet.

The detailed flow chart of the algorithm can be seen in the
Figure 1.

IV. SIMULATION

To implement the algorithm we chose the network simu-
lator NS2 [14]. First, it was necessary to understand in which
layer the algorithm should be added, and we decided to imple-
ment it inside the link layer, since it is directly connected to the
FIFO queue of the outgoing packets. The considered scenario
is described in Figure 2, where the W nodes represents remote
servers in the Internet, and node_ represent all the wireless
devices connected to the AP (where VoAP is implemented).
All the wired connections have a 100 Mbps capacity and the
wireless channel is based on IEEE 802.11g.

Fig. 1.

+ ifgdel = max delay on queue

limitedFlow = list with all the flows that must be
limited

AWNDbase = initial Advertised window

.

AWND(i) = Advertised window of the flow i
CWND(i) = Congestion window of the flow i
totalWindow = variable that stores the sum of all
AWNDs

e o o o

Check how many
TCP flows are
active

flow# = number of active flow
« thr1 =first threshold
+ thr2 = second threshold

.

Selectan

ifqdel < thr1
(> active flow i

The interval
has passed?

ifqdel > thr2

Compare ifqdel
with thresholds

thr1 < ifqdel < thr2

Is"i"in the
limitedFlow list &&

Selectan
active flow i

CWND(i)>10
Is"i"in the
limitedFlow
list?
AWND(i) =
AWND(i) + 1
totalWindow = AWND(i) > 2*cwnd
—— totalWindow +
AWND(i)
Remove from AWND(i) = 2*cwnd
limitedFlow and
set AWND() = [€
AWNDbase l
b > totalWindow =
totalWindow + lg——
AWND(i)

There are
other active
flows?

YES YES

There are
other active
flows?

split = totalWindow / flows#
Select an N AWND(i) = N Flag the flow
active flow i 1 (AWND(i) + split) /2 7 as not active

i

Selectan
active flow i

Is "i"in the
limitedFlow
list?

Add "i" to
limitedFlow

v

AWND(i) = CWND(i)

v

AWND(i) =
AWND() - 1

v

totalWindow =
totalWindow +
AWND(i)

There are
other active
flows?

There are
other active
flows?

Flow chart of the VoAP algorithm.

Reset the

YES

YES

A

interval timer

TABLE 1. NETWORK FLOWS
Name From To Type
TCP(1) W(@3) node_(3) Download (FTP)
UDP(0) BS(0) node_(0) Movie Streaming
UDP(11) W(l) node_(1) Game Server to Client
UDP(12) node_(1) W(l) Game Client to Server
UDP(21) W(?2) node_(2) Voice chat Server to Client
UDP(21) node_(2) Ww(Q) Voice chat Client to Server
TABLE II. START/STOP TIMES
Name Start (s) End (s)

TCP(1) 135 250

UDP(0) 0 250

UDP(11) 45 250

UDP(12) 46 250

UDP(21) 90 250

UDP(21) 91 250

w(1)

. e

S
| e

node_(3)

node_(1) \‘J//

node_(2)

Fig. 2. VoAP considered scenario.

To generate trustworthy simulations, we have considered
the flows described in Table I, with the start and end time
described in Table II.

This scenario has been used in all the simulations, except
for those with multiple TCP flows, in which we included other
nodes and additional flows. The network topology is depicted
in Figure 2, where all the wireless nodes are at the same
distance from the AP (10 m).

V. RESULTS

In this section we start by validating our proposal in
presence of single and multiple flows exhibiting different
characteristics. Several aspects of the algorithm are discussed
and contrasted with current state of the art, showing its
performance trend under different performance metrics.

A. One flow

First, we tried to understand the algorithm’s behaviour
compared to the standard TCP New Reno, and to do so we
make use of a single TCP flow in the previously discussed
scenario. The o and S thresholds have been set equal to 5 ms
and 15 ms respectively, and the time range T has been set
equal to 200 ms.

With this configuration, Figure 3 shows how the TCP flow
behaviour goes from the standard sawtooth shape to a smoother
one, with slightly lower peaks but with a higher number of
transferred packets. The lower peaks avoid queuing delays
at the AP, allowing to reach lower overall delays for UDP
packets.

2
Tesutow” out cp1_rosutbw ——

bt o

B
BWMos)

|
‘J‘m AR
{ i
(111 ‘ I
0 0 20 o) o a0 ED

timeisec) timelsec)

o
E) 100

Fig. 3. Bandwidth comparison between New Reno (left) and VoAP (right).

100 100

%

[

Fig. 4. Game packet inter-arrival comparison between New Reno (left) and
VOAP (right).

%

B

2

iterimsac)

Fig. 5. Video jitter comparison between New Reno (left) and VoAP (right).

This is confirmed by Figure 4, where the peaks relative to
the TCP congestion are almost absent. This increased stability
can be further noticed by monitoring the jitter, e.g., of the video
stream one, depicted in Figure 5, where the peaks are reduced
by a factor of 2. In Figure 3 we can also notice that the slow
start phase is not affected by the algorithm, indicating that
the discussed delayed activation of VOAP leads to the desired
result.

All the UDP flows in the considered scenario experienced
a lower delay and jitter as expected, and the benefits for the
TCP flow does not only concern the stability, but also the
amount of transferred data. To better understand the achieved
improvement, we counted the TCP flow’s ACKs: with TCP
New Reno we reached 181 MB of transferred data, whereas
with VoAP we reached 222 MB, leading to an increment of
about 22%.

B. Multiple TCP flows

The algorithm behaviour in a multi-TCP-flow scenario is
fundamental to understand whether the bandwidth is equally
distributed among users sharing the same channel. To this end,
when active TCP flows reach the stable interval between the o
and [thresholds, the sum of the advertised windows indicate
how many packets can be in transit without exceeding the
channels capacity. This information is used to assign a fair
share of bandwidth to every TCP flow.

20 T T T
"out.tep1_result.bw" ——

BW(Mbis)
)
T

n 1 L
o] 50 100 150 200 250
time(sec)

20

T
"out.tcp2_resultbw" ———

BW(Mbs)
3
T

o
| e

L L L
0 50 100 150 200 250
time(sec)

20 T
"out.icp3_result.bw" ——

BW(Mbls)
5
T

0 L 1 L ‘ L
0 50 100 150 200 250
time(sec)

Fig. 6. Bandwidth of 3 TCP flows using VoAP.

In order to avoid excessive fluctuation, the bandwidth share
is computed in a smoothed way, i.e., the average between the
old and the new value at every T. The result can be seen in
Figure 6, where three TCP flows were started in three different
moments in time, this to show how the bandwidth is equally
shared between flows that are already exploiting the wireless
channel and new starting ones.

Obviously, even if the flows started at the same time the
result would have been the same; we also made additional tests
employing five TCP flows, and each one succeed to obtain an
equal share of the bandwidth.

out cp1_resull b

B

i

B

Touticp _Tesutow

JVWWWWWW

‘‘‘‘‘‘‘‘‘‘‘‘

(msec)
s

ntoar(

(msoc)

ntoa(

timelsec) timefsec)

Fig. 7. Comparison between 5=0.010s (left) and £=0.020s (right).

C. Thresholds

In the current version of our algorithm, « and g thresholds
are static values with the higher one corresponding to the
maximum amount of queuing time we are ready to suffer. Their
choice entails a different behaviour of the algorithm, because
« and B denote how short the queue must be, decision that
has an impact on both the UDP packet latency and the TCP
transfer rate. Due to the importance of these variables, we have
tested different values, where the (3 threshold varied between
10 ms and 20 ms.

Adopting a low threshold, the maximum queue time is
reduced, so the UDP packet latency become lower; however,
in this way the TCP flow is penalized, because its advertised
window becomes smaller, leading to a lower throughput.
Employing a high threshold instead, allows the TCP flow to
increment the number of outgoing packet, leading to a higher
bandwidth, penalizing UDP packets that will experience a
higher latency. The comparison between the two instances
can be seen in Figure 7, where the two borderline cases
are measured with the TCP bandwidth and the UDP game
interarrival time.

It is noteworthy to point out that in both the cases, the
latency and the bandwidth are noticeably better than what
is obtained with New Reno. The instance 5-15 ms is a
compromise between the two behaviours, and for this reason
it has been chosen as the default range.

VI. COMPARISON WITH SAP-LAW

Since both SAP-LAW and VoAP use the AP as control
center, we run some trials employing the same network deploy-
ment mentioned before but contrasting the two the approaches.
To this aim, Figure 8 shows how the TCP flows’ bandwidth and
the UDP game’s interarrival time change in the schemes, re-
spectively. The bandwidth is improved by VoAP, both in terms
of quantitative value and stability. The interarrival time results
slightly lower using SAP-LAW; yet its value with VoAP is low
enough to not jeopardize the performance of the application
and, conversely from SAP-LAW, VoAP achieves this result
without the need of prior information about bottleneck capacity
and the flows’ RTT.

‘J Jrw‘«\«MVWver.w MWWM%’W“M‘M
. I . |

ntrar gamet ——

toram(msec)
nteram(msec)
8 8

1 0
time(sec) time(sec)

Fig. 8. Bandwidth (above) and interarrival (below) comparison between
SAP-LAW (left) and VoAP (right).

VII. CONCLUSION

We have presented and discussed a solution, named VoAP,
addressing the coexistence problem between TCP and UDP
flows. Our proposal provides to both kinds of flow the possi-
bility to reach high throughput and low per-packet delay. We
used NS2 to demonstrate the effectiveness of the algorithm
in significantly improving the network performance of het-
erogeneous flows in a realistic wireless home configuration.
The goal has been achieved through the implementation of
a TCP Vegas-inspired algorithm implemented in the Access
Point. Therefore, our solution works in a transparent way for
the user and without the need to modify any client, server or
Internet router. This means that a user that wants to exploit our
solution to improve the network support for his applications
simply has to buy and install our AP or update his AP with
our VoAP software.

Modules and other software useful to implement VoAP in
NS2 are available online [15].

As this work has many interesting application in realis-
tic scenarios, we plan to continue our research in several
directions. For instance, future extension of this work could
include vehicular networks so as to test the adaptability of our
solution when considering highly dynamic nodes frequently
changing the AP they are connected to [16]-[18]. Furthermore,
we would like to devise a distributed version of our solution
able to operate even with mobile nodes connected through
mesh networks [19], [20], or in ad-hoc mode [21], [22], or
even through opportunistic and DTN connectivity [23], [24].

REFERENCES

[1] G. Marfia, M. Roccetti, “TCP At Last: Reconsidering TCP’s Role
for Wireless Entertainment Centers at Home”, IEEE Transactions on
Consumer Electronics 56(4), 2010.

[2] C. E. Palazzi, G. Pau, M. Roccetti, M. Gerla, “In-Home Online Enter-
tainment: Analyzing the Impact of the Wireless Mac-Transport Protocols
Interference”, in Proc. of IEEE International Conference on Wireless
Networks, Communications and Mobile Computing (WIRELESSCOM),
Maui, HI, USA, 2005.

[3] A. Kaiser, D. Maggiorini, N. Achir, K. Boussetta, “On the Objective
Evaluation of Real-Time Networked Games”, in Proc. of GLOBECOM
2009, Honolulu, HI, USA, 2009.

[4] 1. Saldana, M. Suznjevic, L. Sequeira, J. Fernandez-Navajas, M. Matija-
sevic, J. Ruiz-Mas, “The Effect of TCP Variants on the Coexistence of
MMORPG and Best-Effort Traffic”, in Proc. of ICCCN 2012, Munich,
Germany, 2012.

[5] S. Gorlatch, A. Ploss, “Towards a Scalable Real-Time Cyberinfrastructure
for Online Computer Games”, in Proc. of ICPADS 2009, Shenzhen,
China, 2009.

[6] G. Marfia, C. E. Palazzi, G. Pau, M. Gerla, M. Roccetti, “TCP Libra:
Derivation, analysis, and comparison with other RTT-fair TCPs”, Elsevier
Computer Networks 54(14), 2010.

[71 S.H.Low, L. L. Peterson, L. Wang, “Understanding TCP Vegas: a duality
model”, Journal of the ACM (JACM) 49(2), 2002.

[8] H. Choe, S. Low, “Stabilized vegas”, Advances in Communication
Control Networks, 2005.

[9] L. S. Brakmo, L. L. Peterson, “TCP Vegas: End to End Congestion
Avoidance on a Global Internet”, IEEE Journal on Selected Areas in
Communications 13(8), 2002.

[10] C. E. Palazzi, S. Ferretti, M. Roccetti, G. Pau, M. Gerla, “What’s in
That Magic Box? The Home Entertainment Center’s Special Protocol
Potion, Revealed”, IEEE Transactions on Consumer Electronics 52(4),
2006.

[11] C.E. Palazzi, N. Stievano, M. Roccetti, “A Smart Access Point Solution
for Heterogeneous Flows”, in Proc. of the International Conference
on Ultra Modern Telecommunications and Workshops (ICUMT), St.
Petersburg, Russia, 2009.

[12] S. M. El Rakabawy, A. Klemm, C. Lindemann, “Gateway Adaptive
Pacing for TCP Across Multihop Wireless Networks and the Internet”,
in Proc. of ACM International Symposium on Modeling Analysis and
Simulation of Wireless and Mobile Systems (MSWiM’06), Torremolinos,
Spain, 2006.

[13] K. Kim, D. S. Niculescu, S. Hong, “Coexistence of VoIP and TCP in
Wireless Multihop Networks”, IEEE Communications Magazine 47(6),
2009.

[14] The Network Simulator 2,
http://www.isi.edu/nsnam/ns
[15] VoAP [ONLINE].
Available: http://www.math.unipd.it/ cpalazzi/VoAP.html

[16] C. E. Palazzi, S. Ferretti, M. Roccetti, G. Pau, M. Gerla, “How do you
quickly choreograph inter-vehicular communications? A fast vehicle-to-
vehicle multi-hop broadcast algorithm, explained”, in Proc. of the 4th
Annual IEEE Consumer Communications and Networking Conference,
CCNC 2007, Las Vegas, NV, USA, Jan 2007.

[17] C. E. Palazzi, M. Roccetti, S. Ferretti, “An intervehicular communi-
cation architecture for safety and entertainment”, IEEE Transactions on
Intelligent Transportation Systems 11(1), 2010.

[18] G. Marfia, G. Pau, E. De Sena, E. Giordano, M. Gerla, “Evaluating
vehicle network strategies for downtown Portland: Opportunistic in-
frastructure and the importance of realistic mobility models” in Proc.
of the First International MobiSys Workshop on Mobile Opportunistic
Networking (MobiOpp’07), San Juan, Puerto Rico, 2007.

[19] M. Di Felice, K. R. Chowdhury, A. Kassler, L. Bononi, “Adaptive
sensing scheduling and spectrum selection in cognitive wireless mesh
networks”, in Proc. of International Conference on Computer Commu-
nications and Networks, ICCCN, Maui, HI, USA, 2011.

[20] K. R. Chowdhury, M. Di Felice, L. Bononi, K.R. Chowdhury, M.
Di Felice, L. Bononi, “XCHARM: A Routing Protocol for Multi-
channel Wireless Mesh Networks”, in Elsevier Computer Communica-
tions 36(14), 2013.

[21] L. De Giovanni, C. E. Palazzi, “Optimal client-server configuration of
mobile ad-hoc networks”, Electronic Notes in Discrete Mathematics 41,
2013.

[22] M. Gerla, D. Maggiorini, C. E. Palazzi, A. Bujari, “A survey on
interactive games over mobile networks”, Wireless Communications and
Mobile Computing 13(3), 2013.

[23] D. Maggiorini, C. Quadri, L. A. Ripamonti, “Opportunistic mobile
games using public transportation systems: a deployability study”, Mul-
timedia Systems, 2014.

[24] S. Gaito, D. Maggiorini, G. P. Rossi, A. Sala, “Bus switched networks:
An ad hoc mobile platform enabling urban-wide communications”,
Elsevier Ad Hoc Networks 10(6), 2012.

“NS-2” [ONLINE]. Available:

