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Abstract—In these last few years we are witnessing a change
in the way video games are implemented. Starting from an early
age, where a single developer was sometimes in charge of the
whole creative process, we have moved now toward extremely
large groups with a multi-layered organisation. This increasing
complexity of team organisation, together with a tremendous
growth of projects size, calls for the adoptions of development
approaches leveraging on scalability and distributed computing
environments. Unfortunately, today’s development and execution
environments for games (usually called game engines) are suf-
fering from a number of architectural constraints. As a result,
we strongly believe current engines will not be able to provide
the flexibility and scalability required by game developers of
the next generation. To overcome the above limitations, in this
paper we propose SMASH (Stackless Microkernel Architecture
for SHared environments): an architecture where a game engine
is decomposed in several dynamic and independent software
modules interacting via a microkernel-like message bus. Game
modules can just be inserted, debugged, and removed from a
running engine once its internal messaging protocol is clearly
defined. Moreover, following this approach, game modules can
be dynamically dislocated on multiple machines to obtain a truly
distributed, scalable, and fault-resilient system where adaptation
can be achieved mostly without downtime.

I. INTRODUCTION

In these last years, the way developers implement video
games is undergoing a tremendous change. At the beginning
of video games history, a very small group – or even a
single person – was usually in charge of every aspect of
software production. As a matter of fact, we can see that
many block-buster games for home entertainment in the ’80s
such as Pitfall! [1], Tetris [2], and Prince of Persia [3] carry
the name of a single developer. Today, with the evolution of
the entertainment market and the rise of projects with seven
(or eight) figures budget, this situation is changing. Video
game creation is now a collaborative effort of tens – or even
thousands – of programmers organized in groups and assigned
to specific tasks. Of course, the increasing complexity of team
organisation and the tremendous growth of projects size force
gaming companies to seek development approaches leveraging
on scalability and distributed computing environments. In
order to better allocate competencies and effort and enforce
code and resources reusability, video games are currently
implemented by means of software environments called game
engines.

A game engines, as largely discussed in [4], is usually
organized as a software stack rooted in the operating system
with an increasing level of abstraction layer-by-layer, up to a
point where game mechanics are described. Adopting this kind

of architecture as a development and execution environment
for large scale games may lead to a number of constraints,
as already presented in [5]. To summarize, a video game may
suffer from the following limitations: it may be monolithic,
it may be centralized and difficult to scale upward, and it
may be platform dependent. Despite all the aforementioned
limitations, modern game engines stands to be very good tools
for the trade. Nevertheless, it is legitimate to call into question
how long current engines (re-baptized software stacks) are
likely to provide the flexibility and functionalities required by
game developers in the next generations.

We strongly believe that, in order to adapt to future evolu-
tions, game engines should not just target better performances
and advanced functionalities, but also provide more adaptable
and serviceable internal structures. For this reason we are
proposing here a distributed game engine: SMASH (Stackless
Microkernel Architecture for SHared environments). With
SMASH, a game engine is decomposed in several dynamic
and independent software modules interacting with each other
via a microkernel-like message bus. This way, game modules
can just be inserted, debugged, and removed from a running
engine once its internal messaging protocol is clearly defined.
Moreover, modules can also be dynamically dislocated on
multiple machines in order to achieve a truly distributed,
scalable, and fault-resilient system where adaptation can be
achieved mostly without downtime. By following the SMASH
approach, the development efforts shift from coordinating code
production to coordinating functionalities. With coordination
we mean the global organisation of game modules and features
belonging to the hosting game engine.

The remainder of this paper is organized as follows. In
Sec. II related work on the same topic we address is presented
while in Sec. III background information about game engines
is provided. Section IV provides all details about the SMASH
internal architecture while Sec. V offers a discussion about its
implementation and a demo application. Sec. VI concludes the
paper and proposes future work.

II. RELATED WORK

In the past, a fair number of scientific contributions has
been devoted to the internal data structures of game engines.
Nevertheless, at the time of this writing and to the best of
our knowledge, only a very limited number of papers are
specifically addressing the engine architecture. The majority
of the literature seems to be focused on optimising specific
aspects or services, such as 3D graphics (e.g., [6]) or physics



(e.g., [7], [8]). Issues related to portability and development
have been addressed, among the others, by [9], [10], and [11].
Authors of [9] propose to improve portability by providing
a unifying layer on top of other existing engines. In fact,
they extend each architecture with an additional platform-
independent layer. Authors of [10] focus on development
complexity and propose a solution based on modern model-
driven engineering while in [11] an analysis of the open
source version of the Quake engine is performed with the
purpose to help independent developers contribute to the
project. Other contributions try to improve performances by
creating distributed implementations of existing engines [12]–
[14]. Unfortunately, all of them aim to increase performances
only for specific case studies by applying a distributed system
approach to a specific internal service, such as simulation
pipeline or shared memory.

As it can be observed, none of the papers cited above is
pointing to a completely new architecture. Anyway, we must
also mention that not all existing game engines have been
designed as a library stack. For this, we can mention the
Inform interpreter [15] for the Z-Machine [16]. With Inform,
the algorithmic description of a text adventure is compiled into
a binary package. This binary package is, in turn, executed
by a Z-Machine, which is a software available for many
platforms. Unfortunately, Inform is limited to text-based games
(such as Zork [17]) and has never evolved toward modern
interfaces technology. Nevertheless, we believe that modern
game engines should reconsider Inform and Z-Machine as a
viable approach.

III. BACKGROUND ON GAME ENGINES

Although game engines have been studied and perfected
since mid-’80s, a formal and globally accepted definition is
yet to be found for them. Despite this lack of definition, the
function of a game engine is fairly clear: it exists to abstract
the (sometime platform-dependent) details of doing common
game-related tasks such as rendering, physics, and input
management, so that developers can focus on implementing
game-specific features. A summary of a standard architecture
for modern game engines can be observer in Fig. 1. As it
is easy to see in the picture, the adopted architecture is not
really different from other solutions embraced in non-gaming
environments where a layered abstraction is required. The
lowest layer is an interface to the (sometimes proprietary)
hardware. Going up, the next layers provide first access to
undisclosed APIs, then a degree of platform independency, and
finally game-related services. In game-related services we can
find core services such as memory management and IPC and,
further raising the level of abstraction, libraries whose function
is actually perceivable by the used such as the graphical
interface, the physic simulation, or the audio subsystem.

To achieve their goals, game engines are usually divided
into two parts: a tool suite and a runtime component. The
runtime component assembles together all the internal libraries
required for hardware abstraction and provides services for
game-specific functionalities. A portion of the runtime is
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Fig. 1. Summary of a general game engine architecture.

usually linked inside the game or get distributed along with the
executable. The tool suite is usually a collection of external
programs that can be used to manage all the data feed to the
runtime and to manipulate the runtime itself.

A. Potential Shortcomings of Current Game Engines

As already mentioned in Sec. I, the architectural model
employed by modern game engines may suffer from three
shortcomings. Let’s summarize them briefly.

First, a modern game is often a monolithic piece of software.
Being monolithic means that developers must rebuild/relink
the whole project at every change. For huge repositories a
global rebuild might become a significant bottleneck. Anyway,
even in small projects, global rebuilding requires a clean and
well synchronised source tree together with good coordination
among developers to avoid build breaks.

Second, game functionalities are usually centralized: all
software performing computational activity sits on the same
machine. In particular, online games clients connect to and
depend on a centralized authority (the game server) in charge
for data consistency and to update the system status. Con-
sidering the recent trend in online gaming (see e.g., [18]),
especially with MMOs (Massively Multiplayer Online games)
and MOBAs (Multiplayer Online Battle Arena) ruling the
market, the capability to distribute workload over multiple
nodes is paramount for the stability of a gaming network
infrastructure. Centralized services are usually hard to scale
upward and perform poorly with high workload. In current
implementations, the game itself must be aware of the loca-
tion of a service (on the same machine or elsewhere) and
implement a distributed computation.

Third, every game exposes some degree of platform de-
pendency. Even if an engine claims to be cross-platform and
uses its lower layers to adapt to vendor-specific hardware,
seamless deployment across multiple platforms is not always
possible. This behaviour depends on a number of factors: from
undocumented/proprietary APIs to loss of performances due



to optimisation for a specific hardware. Today, developers are
required to write code that, inside the same engine, behave
– or compile – differently, based on the underlying platform.
As a result, an engine may be technically cross-platform but
developers’ skills and code are likely to be diversified between
different platforms.

IV. THE SMASH ARCHITECTURE

In this section we are going to present the SMASH archi-
tecture in detail.

To devise our architecture we took inspiration from the
word “engine” itself. An engine, as describe by Merriam-
Webster is “a machine for converting any of various forms
of energy into mechanical force and motion”. Then, a game
engine should also set a game in motion rather than being
part of it. Game developers should put energy (data assets) in
an engine and describe the way the machinery should move
(game rules) rather than recombining (relinking) every time
the runtime component with the game rules to obtain a stand-
alone software. This kind of approach sees a game engine
much closer to a runtime environment (see, e.g., Java [19]
and CLI [20]) rather than a library stack. A SMASH engine
is basically an execution environment providing three basic
functionalities: (i) a soft real-time scheduler, (ii) a dynamic
game modules manager, and (iii) a messaging system between
modules. A diagram of the SMASH architecture is reported
in Fig. 2. The proposed solution is designed taking inspiration
from microkernel architectures (such as Amoeba [21] or
QNX [22]) and is conceived to offer a solution to the issues
described in the previous section.

The soft real-time scheduler is in charge to timely call
scheduled functions and make sure the system is evolving
at the right pace. The scheduler will just invoke methods in
scheduled modules but will not take part to the evolution.

The game modules are independent entities providing gam-
ing functionalities. Modules are not required to be game-
specific but may implement general purpose engine services
(such as graphic rendering or physic simulation). The possibil-
ity to swap in and out modules at runtime will allow developers
to modify and extend games with a plug-in approach, down
to a very fine granularity. The resulting games will not be
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Fig. 2. Diagram of the SMASH architecture.

monolithic but a composition of independent and replaceable
modules. New and changed functionalities can be compiled as
standalone entities and then loaded for testing and debugging
in a running environment. Compilation errors in a module
are not going to produce a build break and delay the work
of uninvolved developers. Technology is already available for
a program to load binary code on demand at runtime. All
modern languages feature dynamic class loading; moreover,
dynamic libraries management facilities are already included
in mainstream operating systems. It is technically possible to
compile the object code for a game item (only), have the
engine recognise it, and use the class loader to pull the code
inside to be immediately available inside the game.

The message bus is actually the heart of the our architecture
as it is in charge to implement communication between
modules. Communication between modules is implemented
by means of function calls. This approach is feasible since
all modules will be sharing the same execution environment
and allows to achieve good performances since parameters
marshalling is not required. Each software module will uses
the message bus to call service functions in other modules.
As a matter or fact, these function calls will not be direct:
a generic proxy function will be called on a shared object
belonging to the message bus library. When calling the proxy
function, the caller will specify a target module, a target
function name, and all parameters. The proxy will then build
a specific function call starting from its parameters. In modern
languages, reflection can be used to achieve this goal easily
and in an architecture-independent manner. Using a proxy also
allows to perform additional sanity checks and to verify the
existence of target modules and functions. In the case there is
no target available, the proxy will just discard the call.

Of course, the message bus may not be limited to the local
machine. In fact, a message bus can open a network connection
and link to other buses belonging to remote game engines.
This way, it is quite easy to build a real distributed system.
In order to actually distribute our engine over a network all
we have to do is to extend the proxy function of the message
bus. In this extended proxy function, the destination of the call
will be a target module together with a target engine. If the
target module is not connected to the local bus, parameters
marshalling will be performed and the call is converted in
a message (a MessagePack [23] array) to be sent over the
network. The destination of the network message will be a
remote message bus in charge to decode the request, perform
the (now local) call, and return the result to the caller using a
reply message.

An interesting feature of our architecture is that we can
start multiple instances of a module on different engines.
By replicating the same module around the network we can
implement high availability through fault tolerance. If a node
hosting a module experiences a fault, the other copies will still
be available. Each message bus can keep a list of remotely
available modules and switch to another entry when the target
is unresponsive or round-trip-time increases too much.

The architecture we described so far can also be very



dynamic. The overlay topology can be changed just by ad-
justing message buses’ configuration. Whenever a system is
overloaded and more scalability is required, it is very easy to
start another engine on a new machine, relocate (or duplicate)
some game modules, and link the new engine to the existing
infrastructure. This way, the computational load will shed over
one more node. In particular, this operation can be performed
live, without any downtime.

Finally, we must also point out a couple of issues related
to the infrastructure management. It is very important, to
achieve optimal load balancing and reactivity to faults, to
have a correct topology information (including game modules)
on every node. To keep the addressing system in sync, each
message bus should advertise immediately every change in
its available modules to all connected peers. It is also rea-
sonable to send periodic refresh messages, which can also
work as keep-alive messages for the hosting nodes. With
respect to peer discovery, nodes’ address can be hard coded
in the configurations (suitable for tunnels over the Internet)
or unassisted (especially on local networks) using, e.g., SSDP
(Simple Service Discovery Protocol) [24].

V. IMPLEMENTING SMASH

After defining an architecture, we have to start taking
decisions about which technologies and practical approaches
should be adopted to implement SMASH.

A. Selecting an Language

The first phase is to select a reference language. This is an
important step since the language will potentially decide the
level of adoption of the game engine. Today, the most adopted
object-oriented languages in game engines are C++, followed
by Java, and then C#.

Our final decision was to select C# for a number of reasons.
Java is a good option for a multi-platform standpoint, neverthe-
less it has been discarded mainly because it provides low per-
formances, especially when dealing with garbage collection.
C++ is definitely the most used language in the gaming industry
due to very good performances and its capability to access
low level hardware. Unreal Engine [25] version 4 is regarded
today as the most significant commercial product using C++.
Unfortunately, C++ does not provide reflection natively; this
can make it difficult to provide an efficient proxy functionality
in the message bus. Reflection can be added at user level, but
with a significant performance degradation. Moreover, C++ is
also not providing a runtime class loader. There are third-party
implementations of middlewares to load classes at runtime,
like the one provided by DCOM [26]. Unluckily, DCOM is
a proprietary Microsoft technology and does not bode well
for cross-platform implementation. C#, on the other hand, is
capable of reflection and dynamic class loading. Moreover,
it is quite well established thanks to the Unity [27] engine,
which is currently one of the big players on the market. As
added values, C# has also a gradual learning curve and, thanks
to the CLI [20] intermediate language, can inter-operate with
a number of other object-oriented programming languages.

B. Runtime Performances Analysis

Once we selected a reference language, the second step is to
make sure the underlying execution environment can provide
enough performances to satisfy the requirements of a gaming
application even when calls are mediated by the message bus
proxy. The use of a proxy function will introduce an overhead
on both local and remote calls.

To estimate the proxy overhead, we performed extensive
tests by defining a dummy function accepting two floats as
parameters and returning their sum. The dummy function is
called 10 millions times and the average execution time is
calculated. The host machine is a PC with Intel i5 2410
processor running at 2.3 GHz and 8GB DDR2 Dual Channel
RAM at 667 MHz. The host operating system is a 64 bit
Windows 7 SP1 with .NET version 4.5.1 installed. No other
applications are running during the tests.

The benchmark for our tests has been calculated using
a direct call without any proxy. In such case, the average
execution time is 7.8 nanoseconds.

If we add the proxy to the picture, things get more compli-
cated. The experienced overhead is not just the added time
to perform an additional call but also a management time
introduced by the execution environment. When a software
module is loaded at runtime, the execution environment places
it in a separate container (called domain) sharing the same
address space but with dedicated access privileges. Cross-
domain calls require additional management form the oper-
ating system and the .NET middleware. As a matter of fact,
the average execution time ramps up to 211.4 nanoseconds (27
times the benchmark). Despite the fact that overhead proved to
be considerable, the system is still more than able to provide
a good user interaction.

Execution time is obviously going further up when access-
ing a game module on a remote engine. To add networking
to the picture, we use both TCP and UPD to perform a call
between two modules on the same host. This way, we can
estimate the overhead generated by execution middleware and
operating system. Excluding transmission delay is reasonable
in the evaluation, since the network behaviour will not depend
on the software implementation. With this setup, observed
execution times are 63.1 microseconds using TCP and 56.4
microseconds using UDP. As it can be observed, performances
are around 10,000 times the benchmark and 370 times a
cross-domain call. Nevertheless, we can still run our system
with 15,000 synchronous interactions per second. As a result,
performance loss is sustainable and our architecture seems to
be up to the task.

As already mentioned, the delay introduced by the network
does not depend on the software infrastructure as long as
we use protocols implemented in the operating system. In
a well connected datacenter we may expect an additional
millisecond for each traversed link. Of course this is going
to have a perceivable impact on the overall performances.
Anyway, in a datacenter this transmission delay is expected to
be fairly constant and bounded to a few links. Moreover, we
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are expected to address this from an architectural standpoint:
identifying sets of game services distringuished by similar time
constraints and distributing them accordingly.

C. Prototype’s Software Architecture

As a last step, a smash prototype has been implemented
following the diagram reported in Fig. 3.

As we can see in the picture, there are a number or service
classes: one for every basic function in the engine.

The two main classes are Node and Module. The Node
class is responsible for managing the engine: it instantiates
all other classes and takes care of configuration settings.
Given its function, Node is implemented as a singleton class.
The Module class, on the other hand, is an abstract class
that developers must extend in order to create game custom
modules. Inside this abstract class, all functionalities to register
and de-register from the engine are already provided. Many
instances of classes extending Module can be associated to
the Node singleton. Association is performed through the
ModulesManager class. The ModulesManager is in charge
to load and unload modules in the engine. Modules loading
and unloading has been implemented using the file system.
ModulesManager monitors a specific directory; when a new
package (a “.dll” or a “.exe” file) is added to the directory
ModulesManager will inspect the file content and load all
classes extending Module in a dedicated domain. Vice versa,
when a package file is moved out of the directory, all modules
associated to its domain are unloaded.

Connected to the Node class we also have classes to manage
the other two basic functions: scheduler and message bus.
The SchedulingManager class keeps an high resolution timer
and accepts scheduling requests coming from modules. When
a scheduling is due, the SchedulingManager will notify the
Node singleton which will perform the call. Calls between
modules, as already described, will take place through the
message bus managed by the MessageBusManager class.
When a class extending Module needs to call a function
in another module, it will use the ModuleProxy class as an
intermediary. The ModuleProxy class will relay the request
to the MessageBusManager taking care to determine if the
callee is in a local or remote Module. Based on directions

from the ModuleProxy, MessageBusManager will perform the
call locally or over the network.

All network operations must pass through the NodeNetwork
class. NodeNetwork takes care of managing links to other en-
gines, send and receive call messages, and receive notification
for modules change from other engines. In particular, incoming
call messages are forwarded to the MessageBusManager for
local delivery while remote modules updates are relayed to the
Node singleton in order to update its data structures. These
data structures will be used by MessageBusManager to devise
the address of a remote module. On the other hand, when the
local modules list is changing, the ModulesManager will notify
NodeNetwork through the Node singleton and an update will
be sent to all linked engines.

D. Demo Application

In order to test our SMASH prototype, we implemented
a distributed version of a puzzle game: a simulator for the
Rubik’s Cube.

In this game we are using three PCs; each one is running an
independent copy of the SMASH prototype. The three engines
are linked to each other in a full mesh. On the first PC there is a
main engine, which is in charge to simulate the cube configura-
tion using a dedicated module: (RCSimulator). On the second
PC the engine holds three modules: an InputManager module
to manage commands from the user, an RCConsoleRenderer
module to show the status of the cube using ASCII art (see
Fig. 4), and an RCLogger module for debugging. On the third
PC there is a similar configuration as the second one, but
for the fact that the RCConsoleRenderer is replaced with an
RC3DRenderer, which is drawing the cube using 3D graphics
(see Fig. 5).

On each satellite PC, the InputManager module asks to be
scheduled at a fixed rate by the engine and polls the keyboard
for user input. When input is available, a message with the key
pressed is sent to the RCSimulator module on the first PC. If
the request is correct, the RCSimulator module changes the
status of the Cube and notifies the new color configuration to
all known renderers. As a result, players on the satellite PCs
are playing on the same Rubik’s Cube. Moreover, it is very
easy to upgrade the visual from ASCII to 3D on the second
PC just loading another instance of RC3DRenderer. This new

Fig. 4. Rubik’s cube demo: 2D renderer using ASCII art.



Fig. 5. Rubik’s cube demo: 3D renderer.

instance registers in the local engine and the message bus will
advertise the new module to the rest of the architecture. From
this moment onward, the new 3D renderer will be also updated
from the main engine.

VI. CONCLUSION AND FUTURE WORK

In this paper we put into question the internal structure
of modern game engines as we believe that it is unlikely to
provide the flexibility and functionalities required by game
developers in the next generations. As a possible solution
we propose SMASH: Stackless Microkernel Architecture for
SHared environments. SMASH features a completely dis-
tributed architecture taking inspiration from microkernel op-
erating systems. In SMASH, game modules can be dynam-
ically added and removed while the engine is running. A
prototype implementation is presented using C# in windows
environment. Performance tests hint that the resulting system
is fit to host a soft real-time application such as a video
game. Finally, we are also presenting a demo application: a
distributed multiplayer version of a Rubik’s Cube puzzle. This
application is working nicely and multiple rendering modules
can be applied and changed at runtime.

In the future, we are planning to extend our prototype and
test it in a more complex environment in order to understand
its behaviour over a large scale network. This will be useful
to actually deploy widely distributed games such as the ones
envisioned in [28] and [29].
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