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Interactive, massive online games are becoming popular and begin to receive the 

attention of researchers. Wireless, mobile gaming represents a particularly interesting 

case because of the proliferation of smart personal devices, the increasing availability of 

high speed wireless access points, and the emergence of vehicular networks and 

applications. With this vision, we propose a holistic solution that enables a top quality 

online gaming experience regardless whether the player is wired, wireless, even riding a 

vehicle. 

 

Main contributions of this work: 

i) synchronization mechanism based on an Internet server overlay that enables scalability, 

fairness, and interactivity; 

ii) elastic (TCP) and real-time (games) coexistence in a wireless access point; 

iii) a fast multi-hop broadcast scheme for efficient game event delivery to players in 

vehicles.  
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CHAPTER 1 

Introduction 
 

The current status of the Internet as a widely utilized tool and the overwhelming 

development of wireless access technology lead us to a future in which the synergy 

between wireless and the Internet will be integral part of our everyday life. Virtual 

libraries, remote-working, video-telephony and voice over IP, traffic control, remote-

medicine, video and music on demand, on-line games, location based resource discovery, 

navigation support, are only a few of the innumerable services that will be ubiquitously 

available [5, 6, 9, 10, 12, 37, 40, 42, 45, 46].  

People will be continuously connected during the whole day, regardless of their 

location and utilizing a plethora of traditional or new devices. Furthermore, connectivity 

will follow the always best connected paradigm so that the connection will seamlessly 

switch from one access technology to another guaranteeing always the best conditions for 

customers (i.e., cost, bandwidth, coverage, personal preferences) [13]. 

We are crossing a technology threshold that will revolutionize every area of our lives. 

It will affect all of our everyday habits and businesses in ways far more pervasive than 

people may imagine. Devices that we use today for a limited range of special purposes 

will become multiple application platforms. Even common objects such as wristwatches, 

cars, PDAs are evolving and their enhancement toward multipurpose tools will accelerate 

as we move forward.  

Wristwatch capabilities will be augmented making it able to communicate, 

download/play music, keep personal/medical information, identify us to our 

car/home/devices, etc. Cars will be elevated from a simple transportation vehicle to an 

office on the move, as well as an information provider and entertainment center. 

Passengers will be allowed to access the Internet, engage in teleconferencing, play 
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distributed videogames, learn location based information as low traffic paths to the 

destination or special offers for hotel reservations [114, 115, 116], participate in ad hoc or 

mesh networks [92], be part of an urban grid [93], etc.  

As a proof for this forthcoming scenario, hot spots are rapidly increasing in number 

providing people with wireless connectivity in almost all the buildings they enter (e.g. 

home, work, cafeteria, etc.) and all the streets they walk and drive in. A large amount of 

static and nomadic users relies today on a wireless access to the Internet to run their 

favorite applications: email, web surfing, P2P file sharing, chatting, and video/audio 

downloading/streaming.  

Mobile and highly mobile users will soon be using both traditional and innovative 

applications. Novel services will be provided whose utility sensibly rises for mobile 

users: location-dependent information, information exchange with people around, mobile 

market, safe driving alert system, urban grid for traffic control, Video/Voice over IP, 

Text/Voice-Chat on the move, and many others that we are still not able to imagine [16, 

22, 23, 47, 82, 113].  
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Figure 1.1: The exponential increase of MMOG subscriptions (1997-2005) [25]. 
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Figure 1.2: MMOG revenue by Region (2003) [25]. 

Houses will not be spared by this wireless revolution. Nowadays, home networking is 

still limited to few PCs and electronic equipments located in different rooms of the house; 

yet the vision for the near future includes many devices networked within a single 

household and connected to the Internet [117]. The domotic philosophy is steadily 

increasing the number of habitations which combine technology and services to improve 

living in the areas of safety, comfort and technical management. Smart houses will be 

endowed with devices, appliances and sensors, communicating through the means of 

wireless technologies and embodying active partners in managing our everyday life.  

The same can be said by cars: they represent the next frontier in mobile 

communication for the forthcoming years. Since they are becoming more and more 

endowed with entertainment technology, it is not hard to foresee a future where 

automobiles will all be capable to connect to the Internet. However, vehicular networking 

needs to face several challenges before becoming a real everyday technology. The highly 

mobile scenario, in fact, affects the functioning of all the applications and traditional 

protocols, worsening the already known problems with wireless connections, and 

requiring the design of novel effective solutions. In this scenario several proxies along the 

road could be endowed with traditional or long range antennas to reach wireless cars 
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participating in the same virtual arena. Clients could also establish ad-hoc communication 

among themselves to create their own gaming network, or just to exploit other cars as 

bridges to the closest, even if not in range, proxy. 

The trend of the market strongly suggests that entertainment applications are going to 

play a major role in these scenarios and, among them, video games are gaining more and 

more attention. In the last decade, in fact, thanks to their impressive progression in 

plunging players into terrifically realistic and capturing virtual worlds, videogames have 

expanded their market with a persistent and accelerating growth (see Fig. 1.1) [24, 25].  

Furthermore, this market is still far from being mature and presents large growth 

margins. In fact, as can be seen in Fig. 1.2, a very large portion of MMOG revenues 

comes exclusively from South Korea (~50 millions of habitants). By projecting this value 

over the whole world and pretending that all the other developed country will eventually 

reach the same percentage of online players on their whole population, we can have a 

clue of the astonishing potentiality which hides behind this market. 

Nowadays, two main reasons above the others attract an increasing number of 

researchers and practitioners toward the MMOG field. The first one is the explosive 

growth of the computer games market, with an increasing trend whose end is still not in 

sight [26]. The second reason is represented by the correlation between problems that 

emerge in developing innovative game experiences and those typical of various other 

conventional research fields in Computer Science and Engineering. Indeed, creating 

enjoyable online games requires the convergence of solutions belonging to extremely 

diverse technical areas. Examples are represented by networking, computer graphics, 

animation, music and sound, multimedia design, Artificial Intelligence (AI), human-

computer interaction, software engineering, virtual environments and distributed 

simulation [27, 28, 29, 30, 31, 32]. 

Massively Multiplayer Online Games (MMOGs) are further extending the boundaries 

of what has been defined “the tenth art” with the possibility of contemporary engaging, in 

the same virtual scenario, millions of players located all over the world. Indeed, one of 

the main elements that determine the success of a game has always been represented by 
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the possibility to engage in multiplayer sessions. Humans are social beings and generally 

consider challenging other humans as funnier than playing alone against an artificial 

intelligence. Nowadays, the boom in the Internet usage has brought the logistic advantage 

of an always available virtual arena where millions of players can contemporary 

participate in electronic multi-user amusements.  

Furthermore, the exploding market of connectable handheld devices, always looking 

for new killer applications, pushes the game industry to propose effective distributed 

game platforms proficient at engaging an unlimited number of contemporary users [33, 

34]. This large and emerging market is driving researchers and practitioners to develop 

novel distributed solutions able to efficiently sustain interactive multiplayer networked 

game sessions over best effort networks such as the Internet [7, 35, 36, 38]. 

1.1 Problem Statement and Thesis Contribution 

In this Thesis we focus on problems that arise in heterogeneous networks that involve 

also wireless users when trying to deploy a highly interactive entertainment system; in 

this context, MMOGs represents an emblematic and challenging example.  

We define the game state in the system as the set of information that univocally 

describes the current configuration of the game. Players perform moves based on their 

perception of the game state. Specifically, their terminals periodically render a projection 

of the game state on screens. Players can hence be aware of the surrounding virtual world 

and influence it by generating game events which includes, but are not limited to, the 

movement of an avatar, hitting/missing a target, changing difficulty level.  

In its simplest version, with no particular techniques employed, Game events are 

propagated from clients to some decision point(s) which utilize(s) them to determine the 

new game state that will be broadcasted. Decision point(s) could be represented by a 

centralized server, or a constellation of mirrored servers, or just other players, depending 

on the underlying architecture (see Section 2.6). Indeed, it is of particular interest to 

discuss potentially efficient game server architectures by analyzing network and 
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computational issues related to the maintenance of a consistent game state in the whole 

game platform.  

 
 

   typedef struct usercmd_s 

   { 

     // Interpolation time on client 

       short lerp_msec; 

     // Duration in ms of command 

       byte msec; 

     // Command view angles. 

       vec3_t viewangles; 

     // intended velocities 

     // Forward velocity. 

       float forwardmove; 

     // Sideways velocity. 

       float sidemove; 

     // Upward velocity. 

       float upmove; 

     // Attack buttons 

       unsigned short buttons; 

     // 

     // Additional fields omitted… 

     // 

   } usercmd_t; 

Figure 1.3: Half-Life message format [171]. 

 

Residential broadband connectivity is currently becoming more and more common. 

Moreover, MMOGs generally utilizes very small packets thus easing the bandwidth 

requirement for this kind of application. As a confirmation, Fig. 1.3 shows the format of 

packets sent from client to server in Half-Life [74, 171]. Fields represent basic 

information that could be contained within few tens of bytes [146]. 

In this context, we intend to provide cutting-edge MMOG experience both to wired 

and wireless users, even when traveling in cars. To this aim, we propose a scalable 



 

7 

system able to support fairness and interactivity even when players are connected through 

the wireless medium. More in detail, in order to ensure optimal performance to players 

we have to split the problem into three sub-parts which requires specific solutions applied 

by different subjects.  

The first sub-part regards the communications and synchronization among game 

servers and represents the portion of the total connectivity that can be handled by the 

MMOG service provider (either directly, or through ISP-domain managers). It is up to 

the MMOG service provider to deploy the ultimate MMOG technology in this portion of 

the game platform. 

The second sub-part, is concerned with the links between game servers and their 

engaged players, thus including also the wireless hops. In a wireless home scenario, this 

portion of the connectivity is out of the control of the MMOG service provider: 

customers decide on their own whether they are going to subscribe cable/DSL 

connectivity, set up a wireless last hop, and/or install a particular Media Center. Yet, it is 

a critical part, as it generally includes the bottleneck of the connection and may include 

large queuing delays.  

Instead, considering an infrastructured vehicular network, the last wireless link, with 

the relative Access Point (AP), may be controlled by the government, or by companies in 

charge of highways’ services, or even by some local commercial store. However, certain 

locations may be poorly covered by APs, thus cars may have to relay on ad-hoc 

connectivity as a only way to communicate. The third sub-part of our system is hence 

represented by the multi-hop ad-hoc networking among traveling vehicles that are 

engaged in the same online game. We call this group of vehicles a gaming car platoon. 

Therefore, to obtain an optimal solution we propose to proceed through successive 

steps and address the three sub-problems independently one from the others. Our 

mechanisms complement each other since their scopes are detached (even if connected, 

especially the first two) and, although they generate the best performance results when 

combined, they produce benefits even if singularly applied. 
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In particular, for the first part we exploit a hybrid architecture combining both the 

advantages of client-server and peer-to-peer paradigms. Our solution deploys over the 

network a constellation of communicating replicated Game State Servers (GSSs), each of 

which locally maintains a redundant version of the game state. Each GSS manages and 

updates its copy of the game state as follows: i) it collects game events coming both from 

its engaged players and from other GSS peers; ii) it forwards to all other GSSs the events 

generated by its connected players; iii) it updates the game state considering the set of 

received game events; iv) it finally delivers the newly updated game state to its connected 

players.  

It goes without saying that, within this scenario, an efficient event synchronization 

scheme among GSSs needs to be employed to guarantee a consistent and responsive 

evolution of the game state. Indeed, one of the key factors in determining the success of 

an online game is represented by the ability to rapidly deliver events among the various 

GSSs. While simpler turn-based games do not have to face this problem, as only one 

player is allowed to perform an action at any given time, the task of providing players 

with responsiveness and real-time interactions is probably the most stringent requirement 

for MMOGs (especially for fast-paced MMOGs). In fact, in case of intense traffic in the 

network or when excessive computational loads are slowing down some GSSs, the game 

delivery activity turns out to be quite complex. As a consequence, the responsiveness of 

the distributed game system may be jeopardized. 

With this in mind, we propose a scheme that takes inspiration from Active Queue 

Management techniques to maintain the game event delivery delays under a human 

perceptivity threshold and uplift the playability degree of MMOGs. Our scheme follows a 

holistic approach aiming at preserving also consistency and fairness. At the basis of our 

scheme lies the idea of exploiting the semantics of the game and, in particular, the notion 

of obsolescence. Simply put, obsolescence entails that during a game session some events 

can lose their significance as time passes, i.e., new actions may make the previous ones 

irrelevant. For example, where there is a rapid succession of movements performed by a 
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single agent in a virtual world, the event representing the last destination supersedes the 

previous ones (obsolete events). 

Obsolescence allows the system to drop those game events that lose their importance 

during the game evolution. Discarding superseded events for processing fresher ones may 

be of great help for delay-affected GSSs. This means that, during the game event 

exchange activity, while responsive GSSs may deliver all game events to provide their 

connected clients with a fluent game state evolution, those GSSs that are experiencing 

loss of interactivity may skip the execution of obsolete events in order to speed up the 

event processing activity, thus gaining interactivity.  

Upholding interactivity may be useful also to the aim of ensuring fairness. In fact, we 

demonstrate how our system is able to take advantage of the reduced transmission time to 

magnify the efficiency of a local lag-type algorithm in ensuring fairness without 

compromising interactivity. This represents a very important result since it contradicts the 

general belief that interactivity and fairness embodies antithetic objectives. 

However, even if our scheme is proficient in maintaining a high degree of 

responsiveness among game servers, still problems may arise at the edges of the 

considered topology, where users in their homes or cars may be engaged in an online 

gaming through an AP (see Fig. 1.4). This represents the aforementioned second part of 

our problem.  

Concurrent traffic may generate queues that build up at the last (or first) link of the 

connection, thus delaying the game event delivery. This problem is worsened in case of 

players relying on wireless connectivity, regardless whether from their homes or while 

traveling in vehicles. The wireless medium, in fact, is naturally prone to be easily shared 

by several contemporary users who may interfere with each other. The applications run in 

this context may vary and we demonstrate as some of these may be particularly harmful 

toward real time traffic (online games but also video-streaming, video-chats, etc.). In 

particular, we show how the very popular TCP-based FTP application for downloading 

files increases queuing delays to such an extent that responsiveness may be completely 

jeopardized. 
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Figure 1.4: Hybrid architecture for distributed game entertainment in heterogeneous scenarios including 

vehicular networking. 

 

To this aim, we propose the use of a smart AP that aims at achieving best performance 

for both elastic and real-time applications [203, 204] by appropriately limiting the 

advertised window for TCP flows. We evaluated the use of this solution both for a 

wireless home environment and for an infrastructured vehicular network. 

Finally, as vehicular networks are still far from being supported by an epidemic set of 

APs specifically deployed to this aim, ad-hoc connectivity represents a fundamental 

resource to have players engaged in online gaming among themselves or to widen the 

coverage of sporadic APs through multi-hop wireless connections. Having players 

located in a group of cars moving in the same direction implies that game message 

exchange among vehicles in the same gaming car platoon will follow a many-to-many 

paradigm. In this context, the best solution to propagate game messages to all other 
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players is clearly that of having them sent in (multi-hop) broadcast over the vehicular 

network; moreover, the longer these broadcast hops, the quicker all the players will be 

reached by each game event. 

Our proposal for this issue is that of utilizing priorities so that when a car sends a 

game event, the farthest car in its transmission range will be the one that will take upon 

itself the task of forwarding it onto the next hop. As a main contribution in this scheme, 

we have designed a transmission range estimator that works in a distributed way, just 

exploiting game message exchange, to have each vehicle aware of how far each game 

message will go and compute its own probability in becoming the next forwarder. 

Summarizing in very few words, the contributions of this Thesis follow.  

1. Synchronization mechanism for a mirrored game server architecture able to 

holistically support scalability, fairness, and interactivity by exploiting the 

semantics of the game. Furthermore, through our mechanism we contradict the 

general belief that interactivity and fairness are antithetic objectives. Instead, with 

the practical example represented by our solution we demonstrate that it is possible 

to improve (also) fairness by aiming at interactivity. 

2. Smart AP able to make elastic (e.g., FTP/TCP) and real-time (e.g., games) flows 

coexist without affecting the performance of one another (i.e., throughput and 

delay). Indeed, it is well known in scientific literature that UDP-based real time 

flows can be harmful toward TCP-based elastic flows as the former may not 

implement any form of congestion control. However, we demonstrate here that even 

the latter can harm the performance of the former as TCP continuously probes the 

channel for more bandwidth, thus eventually generating queues (delays) on the 

connection. The efficacy of our scheme as been evaluated for both a wireless home 

and an infrastructured vehicular network. 

3. Fast multi-hop broadcast scheme that exploits a novel transmission range estimator 

to quickly deliver game events to all players in a certain gaming car platoon. 

Thanks to our estimator, we are able to relax one of the most common, yet 
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unrealistic, assumptions made in scientific papers on this topic: “the transmission 

range is a constant for all vehicles known a priori”. 

1.2 Thesis Outline 

The remaining of this Thesis is organized as illustrated below. 

In Chapter 2 we introduce the reader in the MMOG field by analyzing the most 

important issues in this research area. In particular, we overview key requirements and 

fundamental problems shared with traditional field in computer science, we summarize 

previous work that constitutes helpful background, we propose a model for MMOG 

delays, and we analyze possible system architectures.  

Chapter 3 depicts the general framework that we use to guarantee fast synchronization 

among servers. It introduces the concepts of obsolescence and correlation and explains 

how to use them in combination with queuing management techniques in order to uplift 

the interactivity level of the system. Extensive results are provided to show the benefits 

attainable through our scheme.  

Our proposed synchronization scheme is further refined in Chapter 4 where we show 

how increasing interactivity is not incompatible with aiming at fairness among players. 

On the contrary, the latter could be more easily achieved through the means of the 

former. We present experiments and outcomes that prove our assertion.  

In Chapter 5 we describe the wireless home as an important scenario where MMOGs 

are going to play a major role. In particular, we demonstrate how MMOG performance 

could be affected by concurrent traffic of diverse nature. We then propose and evaluate 

different possible techniques, find in a smarter AP that we designed an efficient and 

effectively deployable solution (named SAP-LAW).  

The infrastructured vehicular scenario is discussed in Chapter 6, where we assess our 

SAP-LAW solution in this context. Both the an urban and the highway contexts are 

evaluated to demonstrate its efficacy in provide efficient coexistence to heterogeneous 

flows even in a highly mobile environment. 
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Chapter 7 discusses the challenging scenario of online gaming over a VANET. 

Through an extensive set of experiments we demonstrate how our transmission range 

estimator factually permits to have vehicles prioritized so as to sensibly reduce the 

number of hops and transmissions, and hence delays, needed to propagate game events to 

all players in the gaming car platoon.  

Finally, Chapter 8 concludes this Thesis. 
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CHAPTER 2 

Background 
 

We present a general introduction to the MMOG research field. In particular, we first 

discuss the major MMOG issues and wrong assumptions generally made by online game 

developers. We then explain fundamental problems that MMOGs share with other 

traditional field in computer science, thus elevating themselves to the rank of scientific 

topic. After this, we propose a model for delays in MMOGs. Finally, we analyze possible 

architecture for online games and survey related work in this area. 

2.1 MMOG Issues 

Several elements contribute to the success of a game: capturing graphics and visual 

effects, original plot, fair difficulty, multiplayer sessions, high interactivity level, etc. 

MMOG is, by definition, a class of games devised to engage a multitude of users, 

contemporary present in the same virtual arena even if physically located far away from 

each other. This scenario could be realized through the Internet; however, the best effort 

nature of the Net poses several challenges before being able to proficiently deploy really 

scalable and interactive game sessions.  

In this sense, a MMOG is subject to similar major issues and fundamental principles 

which emerge when developing a general distributed application [75]. These are well 

summarized by Peter Deutsch’s “Eight Fallacies of Distributed Computing” [130].  

Essentially, developers building a general distributed application (or a MMOG) may 

fall in one or more of the following wrong assumptions generating a system that is 

intrinsically unable to guarantee high performance: 
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1. “The network is reliable”. Errors, losses, and wrong order delivery are common 

issues when utilizing a network to transmit messages. The larger is the scale of our 

MMOG, the higher is the probability that one of these events happens 

contradicting this assumption. Therefore, the application should be able to face 

these issues through mechanisms able to provide reliability without affecting the 

interactivity of the game system. 

2. “Latency is zero”. Depending on the topology of the game network and on its 

conditions, delays may conspicuously increase. Objective delays as perceived by 

players are impacted both by network delays and by processing workload delays. 

At the same time, since MMOG requirements for interactivity and fairness, latency 

is the main issue to address in this kind of application.  

3. “Bandwidth is infinite”. In a LAN scale network game this assumption may still 

hold since the available bandwidth is generally much larger than the required one 

to run a MMOG. On the other hand, when moving to wide area networks, 

congestion due to a very large and unpredictable traffic may generate bottlenecks 

that could invalidate this assumption.  

4. “The network is secure”. Security in a large scale MMOG includes various issues 

that can be shared with traditional distributed systems or even be completely new. 

Authentication, subscription transactions, and cheating represent the most relevant 

among them. 

5. “Topology doesn’t change”. In a LAN, failures can suddenly lead to having 

isolated PCs that cannot anymore communicate among themselves nor, obviously, 

be engaged in a MMOG. Considering the larger scale case of the Internet, failures 

are addressed by the presence of redundant alternatives. Yet, the consequent 

topology change and congestion increase may noticeably impact on the system 

performance.  
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6. “There is one administrator”. MMOGs can be deployed across large geographic 

areas requiring a decentralized control of networking resources. Therefore, 

multiple domains and administrators may be involved in the resource allocation. 

7. “Transport cost is zero”. The exchange of messages among nodes is a 

characteristic that belongs to the nature of a MMOG. These messages have to be 

forwarded through some infrastructure that needs to be provided and therefore 

bought/rented. Moreover, as the involved network spreads across different 

domains, resources among shared infrastructures have to be allocated to support 

the MMOG. Transport costs are hence inflated by providers’ rates. 

8. “The network is homogeneous”. The Internet is heterogeneous in nature and this 

characteristic is going to become even more evident in future. As new wireless and 

mobile technologies are coming into the picture, different network accesses, as 

well as different devices, are offered to players. Moreover, the core of the Internet 

evolves gradually and slowly since the cost and the large number of domains 

involved. Evolution at its edge, instead, proceeds by leaps and bounces, thus 

generating an interoperating mix of components that increases the heterogeneity of 

the infrastructure. 

As a demonstration of the wide diffusion of these wrong assumptions, many games 

have been initially developed to be singularly played on PCs. Since more and more 

houses have became endowed with high speed connectivity such as cable and DSL, game 

vendors started to endow their products with the possibility of playing online with other 

users. However, this feature has been added as an extension of single use designed 

games, thus clearly inheriting the above wrong assumptions. Instead, MMOGs aimed at 

providing an amusing experience to their players have to be designed since the beginning, 

as intended to be played over the Internet and taking into account all the involved 

implications. 
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2.2 Fundamental Problems 

Delving into the Internet, the first video game appears to be a simple Tennis for Two 

created by Higginbotham in 1958 to entertain visitors of the Brookhaven National 

Laboratory, a US nuclear research lab in Upton, New York. Since then, video games have 

evolved from a simple pastime into a real business and an important research field. 

Indeed, certain games simulate, relatively cheaply and safely, situations which could 

be much more expensive or dangerous in the real world. Technical solutions introduced 

by game developers are now employed in medical surgery, military simulations, 

distributed simulations, virtual reality, interactive collaboration, distance learning, e-

commerce and manufacturing systems. In this sense, several works have been presented 

that describe the convergence between game technology and non-game applications.  

For example, interactive storytelling may gain benefits by employing synchronization 

schemes developed for online games [64, 125]. Collaborative applications require 

augmented reality interfaces to support group interaction [210]. Combat video games are 

utilized to enhance strategic, combat, and decision-making skills of military commanders 

[126, 129, 178]. Psychology is requesting for immersive collaborative virtual 

environments to investigate human behaviors and interaction [208, 209], as well as to 

support traumatized patients [121]. Real time video-streaming, voice over IP, and online 

games are all extremely delay sensitive applications that need fast delivery support [40, 

99]. Finally, surgery simulations and video games share a quest for realistic object 

behavior, immediate response to given commands, and high-quality images [128].  

These represent only a few of the innumerable intersections between video games and 

non-game applications. It is hence easy to see how issues emerging with online games 

represent fundamental problems also shared by other traditional fields in computer 

science, and how adapting elements of computer games may enable the creation of 

compelling user experiences in several domains [120].  

Under a networking point of view, distributed multiplayer games are characterized by 

four main requirements which are intrinsically correlated and correspond to major 
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research challenges involved with MMOG, namely: interactivity, consistency, fairness, 

and scalability.  

Interactivity (or responsiveness) refers to the delay between the generation of a game 

event in a node and the time at which other nodes become aware of that event. Therefore, 

it includes both the network latency and the processing time. Having a high level of 

interactivity represents a fundamental quality for a MMOG. In order to assure an 

enjoyable playability to the final user, external stimuli generated by players need to be 

processed under a human-perceptivity threshold. This means that the time elapsed from 

the game event generation at a certain node and its processing time at every other node 

participating in the same game session must maintain a low average value. Unfortunately, 

not only could this be very hard to be accomplished in a best-effort network, but we will 

probably face also a high variance in the delivery time of game packets. Variable 

congestion conditions in Internet could, in fact, result in sudden slow down of the 

perceived game fluency on screen. Moreover, players in the same virtual arena can 

increase in number, even sensibly, with almost no predictability. Some game server may 

thus experience impulsive computational load and loose interactivity. These problems are 

obviously amplified when plunged into a wireless scenario.  

Consistency, on the other hand, regards the contemporary uniformity of the game state 

view in all the nodes belonging to the system. Depending on the features of the game, 

consistency requirements may be absolute or partial. The easiest way to guarantee 

absolute consistency would be that of making the game proceed through discrete 

locksteps [98]. At each step, the system waits until having received all the actions 

generated by the final users; only at this moment a new instance of the game is produced 

and propagated to all the nodes. Having a single move allowed for each player and 

synchronizing all the agents before moving toward the next round, for sure grants 

absolute consistency but, on the other hand, impairs the responsiveness of the system. 

Obtaining both absolute consistency and high interactivity would require the employment 

of almost unlimited network and computation resources (very high bandwidth, very low 
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latencies, very high speed at server to process events). A trade-off between the two 

attributes needs to be found in order to develop a proficient game platform. 

Fairness among users is another major issue in MMOGs. In fact, to ensure a 

rewarding game experience to users, every player needs to posses the same chances of 

winning than any other, regardless of the different network connections. Indeed, we are 

here interested in networking fairness for MMOGs as it represents one of the major issues 

that need to be addressed when developing new online games. In this context, relative 

delays have to be considered as important as absolute ones. Simultaneous game evolution 

with identical speed should be guaranteed as much as possible to all the participants [78]. 

To this aim, introducing appropriate artificial delays before displaying both generated and 

received game events may represent a feasible solution. However, similar to consistency, 

aiming at a full fairness may result in excessively increasing game delays, thus 

jeopardizing interactivity. Indeed, it is generally believed that interactivity and 

fairness/consistency embodies antithetic requirements [104, 105, 127]. 

Scalability regards the capability of the system to provide an efficient support to a 

large community of players. Regarding this point, it should be noticed that the interest of 

companies in online gaming emerges from the huge revenues that may be generated by a 

very elevated number of customers. Besides, humans are social beings which enjoy the 

presence of others in most of their amusement activities (i.e. team sports, movies in 

theatres) and the competition in challenging their skills against real adversaries. 

However, especially in the case of fast-paced MMOG, scalability is sometimes sacrificed 

to maintain a high degree of interactivity. In some cases, in fact, the system could deny 

the MMOG access to some users depending on their experienced delays [179]. These 

delays could have been generated by several factors such as the location of these users 

with respect to the server, the network conditions, and the current computational load of 

the system. Limiting the access to some customers obviously eases the achievement of 

interactivity, consistency, and fairness, but at the cost of a reduced scalability. 
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Figure 2.1: Frame sequence of an Armagetron game session: Cla’s view (left column, blue player) vs Eu’s 

view (right column, green player); evident lag differences generate inconsistencies and unfairness. 
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A well designed game architecture could help in devising a MMOG which possesses 

all the required qualities. The positioning of servers affects network latencies; thereby, 

they should be optimally located to efficiently serve their customers [76]. Moreover, 

every time a new scheme is proposed as a solution for MMOGs, all the four 

aforementioned key factors should be ensured and verified. Generalizing this concept, 

developers should follow a holistic approach when designing a new MMOG, considering 

the whole set of requirements and aiming at the intersection of their solutions. Addressing 

only one requirement, in fact, could produce the unexpected and undesired result of 

jeopardizing the others. 

As a practical example of problems related to (different) delays in online games, we 

present in Fig. 2.1 the frame evolution of an Armagetron game session [211]. The game 

is based on the movie of the same name, released by Disney in 1982. Its rules are simple: 

each player controls a light cycle that leaves a wall behind it wherever the cycle it goes; 

the cycle cannot stop and can turn only at 90 degree angles. The goal of the game is to 

have all the other players crash into some wall while avoiding hitting others' own wall. 

Speed helps players in trapping other players; but the only way to speed up a light cycle 

is to drive very close to a wall. 

In the left column of Fig. 2.1, there are frames as seen by a player, named Cla (blue 

cycle and wall), who connected to a certain game server with a 180 ms of RTT. Instead, 

frames on the right column correspond to the game as seen by a player, named Eu (green 

cycle and wall), who is connected to the same server with a 20 ms of RTT. Frames on the 

same row relates to the same instant of the game action; it is hence very easy to notice the 

inconsistency between the two game state views by simply comparing the position of one 

light cycle with respect to the other. In particular, during the second and third couple of 

frames in the sequence, player Cla believes he won (in frame 2 Cla sees Eu hitting his 

wall), whereas in the last frame he realizes that the server declared Eu as the winner.  

This is a clear sign of inconsistency and unfairness. Player Cla would surely refrain 

from renewing his subscription to the game if he was paying money. Even if the game 
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was for free, player Cla would probably stop playing to avoid the frustration of sure, yet 

undeserved, failing.  

The reason for this inconsistency and unfairness is in the different RTT experienced 

by the two game connections. Basically, server’s view represent the real game evolution, 

whereas Cla and Eu visualize their own information by combining local player’s 

movements with (differently delayed) game server’s updates. As a result, Eu sees the 

game action to evolve in advance with respect to Cla, as the former is much closer to the 

game server than the latter. Furthermore, Eu’s game almost identically corresponds to 

that of the game server, whereas Cla could see on his screen something different from the 

real game evolution. When considering fast paced games as in this case the consequences 

are very frustrating for the unlucky player. 

2.3 Online Games: Related Work 

Here, we present a commented summary of research contributions that have to be 

considered in our scenario. For each of them, we introduce the proposed technique and 

then highlight both the advantages and disadvantages of using it. In particular, we first 

evaluate existing techniques aimed at increasing the responsiveness degree of online 

games. We then analyze solutions proposed to ensure fairness and consistency (solutions 

developed to satisfy the fairness can generally be extended to satisfy consistency too, and 

viceversa). For the sake of completeness, we also provide a panoramic of anti-cheating 

mechanisms analyzing their impact on the other requirements. Finally, we are interested 

in efficiently extending the boundaries of MMOGs also to the wireless domain. 

Therefore, we discuss research about the impact of a wireless link on measured 

performance. 

2.3.1 Responsiveness 

Trying to improve the responsiveness of a distributed game architecture, two main causes 

for delays have to be analyzed: network latencies and computational costs. Several 

research works have already brought contributions to the factual developing of efficient 
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synchronization schemes. Compression and aggregation consider networking having a 

dominant position when dealing with the delays and thus with the playability of a 

MMOG [39].  

More in detail, packet compression tries to speed up transmissions by reducing the 

amount of payload bytes to be transmitted. However, the provided benefits are very 

limited as the size of online game packets is already very small (see Fig. 1.3 and [146]). 

Aggregation, instead, merges packets together in the attempt of reducing the transmission 

overhead. Both compression and aggregation pay the achieved latency benefits with an 

increment in computational costs. Moreover, aggregation can generate further waste of 

time if a transmission is delayed while waiting for having available other events that 

could be aggregated. 

In the attempt of reducing both the traffic load in the network and the computational 

cost to process each game event, interest management techniques rely on the area-of-

interest concept to filter events. Players, in fact, are not impacted by game events 

happening far away from their current virtual position. Therefore, sending all the game 

events to all the players represents a waste of network and computational resources with 

no utility counterpart. Instead, an appropriate multicast based scheme could match every 

packet with the nodes that really need to receive it in order to reduce both the traffic on 

the channel and the processing burden at each node.  

On the other hand, a tradeoff exists between the computation spared at the destination 

by receiving only a limited number of packets and the required one for implementing the 

filtering scheme at the sending GSS. Moreover, interest management techniques could 

further delay packet delivery when applied to games having almost all the game actions 

to be forwarded to the majority of the participants. Finally, area-of-interest techniques do 

not help in reducing latency as there is no correspondence between players’ position in 

the virtual world and their actual location in the real one. In simple words, players 

positioned in the same virtual area-of-interest might be physically located very far from 

each other, thus not gaining any benefits in terms of propagation and queuing delay. 
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Slightly detaching playability from the real responsiveness of the network, optimistic 

algorithms for synchronizing game state at servers can be utilized in order to avoid delay 

perception at destination. In case of high delays in events forwarding between GSSs, in 

fact, an optimistic approach may execute game actions on clients before really knowing if 

ordering would require processing other on-the-way ones first. Game instances are thus 

processed without wasting any time in waiting for other packets that might arrive later. 

On the other hand, this performance gain is paid with some occurrence of temporary 

consistency loss. Standard Time Warp and Breathing Time Warp represent typical 

exemplars of this family of algorithms [52, 53, 105]. Rollback based techniques are 

exploited to reestablish the consistency of the game state but may further impact on the 

responsiveness of the system. 

Based on this concept, a new synchronization mechanism for online games called 

trailing state synchronization was presented by Cronin et al. [59]. According to this 

approach, every GSS locally maintains a fixed number of copies of the game state, each 

of which is kept at a different simulation time. In essence, each copy of the game state is 

associated with a particular execution, and each execution is delayed for a fixed time 

interval. If no inconsistencies are detected, the game proceeds in rendering the copy of 

the game state which is more forward in time; as a result, players perceive the game 

evolution as being very responsive. 

With this trailing state synchronization, inconsistencies are identified by comparing 

the leading state (that optimistically processes game events without any additional delay) 

with the game states of the delayed executions that reorder and then process the received 

game events. If an inconsistency is detected, a rollback is performed by copying the 

(consistent) game state from the delayed execution to the leading execution and then the 

rolled back game events are re-processed in the proper order. It goes without saying that a 

tradeoff relationship exists between the number of game state copies maintained by each 

GSS and the number of game events that need to be re-processed in case of a rollback. 

Moreover, this scheme does not avoid short-term inconsistencies: it just provides a 

mechanism to detect and correct them after they happened. 
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Optimistic algorithms can be employed also at the boundaries of the game platform. 

Clients could, in fact, be equipped with the intelligence required to perform predictions of 

other players’ movements. Obviously, unless utilizing a fully distributed architecture, 

servers have still to validate clients’ predictions. If the prediction results wrong, the 

server(s) will eventually correct the mistake and restore a consistent game state. 

However, a full Round Trip Time (RTT) may elapse between the generation of an 

inconsistency due to wrong prediction and its correction. If this period of time surpasses 

the human perceptivity threshold, players could be annoyed by it. 

In general, prediction techniques rest upon the assumption that a consistent game state 

exists at some point. From this starting point, new actions are predicted and executed on 

clients’ screen. For instance, 50 frames per second represent a typical refreshing rate for 

an online game and correspond to one new game state sent from the server to the client 

every 20ms. Considering a connection of 100ms of RTT, this amounts to 5 game events 

that could be subject to rollback if the server does not confirm the correctness of the 

predictions [171]. 

A tradeoff between the speed of executing game actions and the frequency of short-

term inconsistencies is hence present in this kind of solutions. Moreover, client side 

prediction techniques require that clients and servers share the same predictive code; this 

solution could hence be not applicable on clients equipped with low computational 

resources. Finally, having portions of code shared between all clients and servers gives an 

advantage to malicious players. Cheaters, in fact, could become aware of the next 

expected (and predicted) actions of regular players and modify their behaviors in order to 

obtain the maximum benefits out of it. 

Extrapolation and Interpolation are particular instances of the optimistic approach. 

With extrapolation, the next action and position of a virtual object (even an avatar) are 

predicted by exploiting the current available information (i.e. current position, speed, 

direction). Actions can thus be rendered on the screen before really receiving the related 

game event.  



 

26 

In games where physical rules of the real world are respected, the task of predicting 

events forward in time is made easier. Unfortunately, most of the games available in 

commerce present very poor similarities with real physical laws or ballistic models. 

Indeed, virtual object in games are usually allowed to perform sudden actions featured 

with huge acceleration/deceleration and instantaneous change of direction. These 

unrealistic movements cannot be anticipated by extrapolation and result in 

inconsistencies that affect the player’s perception of the game evolution. Depending on 

the extension of the extrapolated time, these errors can be more or less evident. Therefore 

a tradeoff exists between the impact of these inconsistencies and the augment of 

responsiveness that can be simulated by this scheme. 

Interpolation is another technique that tries to guess the position/action of a virtual 

object at a certain moment without having precise information about it. In particular, 

interpolation uses exact information about two valid positions/actions of an object at two 

different moments to determine how to display the in-between movements of that object.  

When interpolation is employed the constraint for reliability in game event delivery 

can be relaxed. For instance, if some of the movements of an avatar, leading from an 

initial to a final position, are lost, the system is still able to reconstruct the whole 

sequence. However, some critical movements cannot be interpolated without creating 

inconsistencies, thus requiring reliable transmission (see the notion of correlated events in 

Section 3.2). 

2.3.2 Consistency and Fairness 

The simplest way to enforce fairness and consistency in the game is that of proceeding 

through discrete locksteps [98]. Simply stated, the game evolves by marching in step and 

players have to wait their turn before making any action. Every game event is thereby 

reliably received by all the players before any new move could be instantiated. 

Consistency and fairness are hence ensured by the fact that before proceeding to any new 

step, all the nodes in the game platform will share the same identical game state view. 

Unfortunately, this scheme is affected by some important drawbacks. The most 

relevant one is the fact that locksteps cannot be used for interactive games since updates 
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are displayed on screens only after having received game events from all the players. 

This requires reliable transmission of game events and may sometimes require many 

seconds, thus making the game proceed very slowly. Moreover, if one node in the system 

fails, then all the others could wait indefinitely before receiving updates from that node 

and impeding any progress in the game evolution.  

In [71, 105, 131], Mauve et al. presented an optimistic approach for the consistency 

control in networked multiplayer games. Their approach utilizes the local lag control 

mechanism combined with a modified Time Warp (executed only when necessary) in the 

attempt of solving the trade-off relationship existing between responsiveness and 

consistency.  

In particular, Mauve et al. devised a synchronization approach based on the idea of 

intentionally decreasing the responsiveness of the application in order to eliminate short-

term inconsistencies. Exploiting a local lag approach, game events are delayed for a 

certain amount of time before being executed by clients. This additional delay permits the 

reordering of the received events in order to minimize inconsistencies. However, the 

presence of this delay is not always sufficient to prevent short-term inconsistencies as 

game events might still arrive late due to jitter or packet loss in the network. 

In [137], Li et al. presented a continuous consistency control mechanism for 

supporting networked multiplayer games. Similar to [105], this approach rests on the idea 

that game events should not be considered as discrete updates of the game state, but 

rather as continuous actions in the game world. In this context, the authors proposed a 

relaxed time-dependent consistency control scheme which gradually synchronizes the 

nodes in the system and ensures that the possible discrepancy among game states stored 

at each node never exceeds a predefined threshold. 

As it is evident, this scheme does not avoid short-term inconsistency. Rather, it deals 

with them after a certain period of time to avoid that the divergence among the various 

game state views does not become excessive. However, players’ gaming experience 

could still result affected. 
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Other approaches simply assume that delaying the game event processing activity for 

a predetermined amount of time may be sufficient to guarantee a uniform evolution of the 

game state at different nodes without any need to resort to rollback. Following this idea, 

Diot and Gautier depicted in [132] a synchronization mechanism which embodies an 

optimistic version of the well known conservative bucket synchronization algorithm.  

Their approach assumes that there exists a processing deadline (which defines a time 

bucket) and that a correct evolution of the game requires that all game events are received 

prior to this deadline. In essence, the idea behind this scheme is that of ordering and 

processing game events at the end of the time bucket. If some game events are not 

received before the time bucket expiration, dead reckoning techniques are exploited to 

compensate event losses [134, 135]. A similar approach was presented also in [133]; in 

both cases, the main drawback is that dead reckoning does not ensure the full consistency 

of the distributed game state.  

Short-term inconsistencies may still arise if the bucket size is set excessively small 

but, on the other hand, using large buckets may induce severe responsiveness 

degradation. Further, a complex problem is that of fitting the bucket size with the 

unstable condition of the Internet where large and variable jitter values may be 

experienced. 

Fairness among users is a very important issue in online games. Every player has to 

possess the same chances of winning than any other. To this aim, it is fundamental that 

delays impact on all participants in equal measure. Fairness could be enforced by 

compensating latency differences among players with an appropriate queuing of game 

events at each client before presenting them onto the screen [54, 78, 94, 104, 105]. This 

artificial injection of an appropriate amount of delay is usually referred to as Local Lag 

technique.  

In essence, this scheme normalizes the game state so as to have all the players 

virtually brought back at the time when a certain game event was generated. 

Unfortunately, pure Local Lag algorithm does not solve the tradeoff between interactivity 

and fairness anticipated in Section 2.2.. Lags, in fact, can be inflated only up to the delay 



 

29 

perceptivity threshold; otherwise all the players will be affected by excessive delays 

which jeopardize the interactivity degree of the whole game platform.  

Finally, aiming at ensuring consistency, Knutsson et al. propose in [136] the use of 

coordinators to solve update conflicts that may occur in a peer-to-peer architecture. In 

particular, they split the game state management into different classes handled by 

different coordinators within a group of interested peers. Aiming at guaranteeing fault 

tolerance, they also propose the use of a primary-backup protocol to address possible fail-

stop failures of coordinators. However, several issues arise in this context such as, 

coordinator election, fairness maintenance among different kind of nodes, authentication, 

and cheating avoidance from malicious intruders that become coordinators.  

2.3.3 Cheating 

A deep analysis on cheating and proposed solutions is out of the scope of this Thesis. 

Nonetheless, for the sake of completeness we provide a short panoramic of work on this 

topic. Moreover, research in this area generally proposes protocols which also include 

solutions aimed at sustaining other key requirements such as interactivity, consistency, 

and fairness. Conversely, none of the schemes reviewed till now proposes any cheat-

proof mechanism. 

A general taxonomy of cheating in online games can be found in [169]. A more 

detailed one, adopting a classification based on networking layers and then further 

categorizing the protocol level cheats class, is presented in [167]. In [167], the authors 

also present NEO, a low-latency event ordering protocol for a distributed architecture. 

Designed to improve the responsiveness of the game while preventing protocol level 

cheats, NEO takes inspiration from bucket synchronization and divides the time into 

equal intervals called rounds. Within these rounds, players send encrypted updates to 

each other and, in the following round, players send key to decrypt the updates sent. After 

this, a voting mechanism is employed to achieve majority based consistency and 

responsiveness.  

Specifically, every new game state update is accepted by players only if a majority of 

them has received it on time. Consistency is hence maintained through a distributed 
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voting system which collects positive votes from players who have received the game 

state update in time, and negative votes from delay affected players. In order to avoid 

interactivity loss, NEO does not wait for receiving all the votes. The relationship between 

game progression and communication reliability is weakened, any non-received votes at 

the end of the round are considered abstentions, and only the receiving of a majority of 

votes is required to consider the election as valid. 

Therefore, NEO does not guarantee continuous global consistency or interactivity. 

Rather, its aim is that of ensuring these properties for a majority of players, and utilizing 

dead reckoning techniques in order to adjust the game state view for the rest of them (a 

minority). Obviously, depending on the definitions of majority and minority a different 

tradeoff can be found for interactivity and consistency. However, the length of a round is 

limited by the maximum latency acceptable to still consider the system as responsive, and 

no effort is devoted to facilitate a more efficient solution for this tradeoff by effectively 

decreasing the delays caused by traffic conditions. On the contrary, a bucket 

synchronization mechanism which also requires multiple rounds in order to send updates, 

encrypt them, and voting for determining their consistency, definitely affects the 

responsiveness of the system, and is therefore not well suited for highly interactive 

games. 

An extreme solution for the protocol level cheats makes use of the aforementioned 

concept of locksteps. In particular, Baughman and Levine design in [168] a protocol that 

forces players to reveal their moves before actually performing them and, most important, 

before receiving any plain-text move from any other player. Thereby, this scheme 

prevents anyone from performing late changes of their moves based on the knowledge 

about other players’ actions.  

Two steps characterize this protocol. First, each player has to communicate her/his 

next move utilizing an encrypted message; the move is hence committed even if not 

revealed ahead of time. Finally, each player sends her/his move in clear. The authors also 

propose the utilization of area-of-interest techniques to reduce the overhead in the system 

caused by the reliable transport of commitment messages. Nonetheless, any lockstep 
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based mechanism leaves unresolved several problems and, among the others the most 

critical one is the lack of responsiveness. 

Another method based on locksteps is presented in [170]. In this work, Chen and 

Maheswaran developed a mechanism for P2P architecture composed by two protocols: 

the first one aimed at ensuring fairness among all players regardless of their latencies, 

and the second one able to prevent certain types of time-cheats.  

The fairness ensuring protocol makes use of specific nodes called pulser, and of 

network sensors. The former are elected nodes which periodically broadcast game state 

updates (pulses), while the latter detect the current status of the network and adapt the 

pulses sending rate in order to meet the fairness requirement.  

Pulsers are also used to implement encryption on game messages in order to avoid 

time-cheats. In particular, they forward encrypted messages at a pace which corresponds 

to that one achieved by the slowest player. The authors demonstrate how this is sufficient 

to prevent faster players from maliciously peek into the future with respect to slower 

players. 

Unfortunately this scheme presents several lacks. First, there is no real guarantee 

about the fine precision of the estimated network conditions; this is particularly true in 

the case where nodes are dispersed and sensors are not in close proximity of each of 

them. Second, this scheme works only if the whole structure (i.e., sensors and pulsars) 

can be adequately distributed over the Internet. Indeed, providing efficient clusterization 

of the nodes with respect to the sensors and the pulsers remains an open problem for this 

scheme. Finally, the anti-cheating mechanism only addresses time-cheats, while many 

other possible ways to gain unfair advantages have not been treated. 

2.4 Wireless Scenarios 

We are witnessing a continuous proliferation of access point all around us; through cell 

phones, smart devices, and laptops the communication world has become nomadic and 

mobile, even at vehicular speeds. This popularity created an everyday life style for people 
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that cannot anymore renounce to their connectivity freedom and are, instead, asking for 

more: more mobility, more contents and services, more bandwidth, etc. 

In this section, we discuss WLANs through its functionalities, scenarios, applications, 

protocols, and problems. 

2.4.1 Infrastructure vs Ad-hoc 

Wireless networks can be divided into two main classes depending on whether they use 

fixed infrastructures or not. Infrastructured wireless networks extends the Internet over 

the wireless domain. Wireless nodes connect to an AP to have access to all Internet 

services and each AP offers to all engaged wireless nodes the same functionalities. A 

mobile node could move out of the transmission range of an AP, thus losing its 

connectivity to the Internet. In this case, if another AP is available in the new location, 

the node might connect to Internet again through the new AP; however, in the mean time, 

the wireless node has probably lost its ongoing sessions. This problem can be solved 

through a smooth handoff that seamless transfers the connectivity from the old to the new 

AP before disconnection take place. A well known protocol to perform this task is 

represented by Mobile IP that transfers packets from the old AP to the new way through 

routing triangulation [195].  

Ad-hoc networks are composed by several nodes with wireless connectivity 

capabilities that connect one another to establish communications without the need of any 

AP. Every node in the network is able to communicate with any other node in its 

transmission range. Transmissions can happen both directly between two end hosts that 

are close to each other, or through multi-hop when a node needs to send a message to 

another node that is out of its range. Ad-hoc networks can be composed by static nodes 

but the most challenging case is clearly when nodes move: they are also known as Mobile 

Ad-hoc Networks (MANETs). Ad-hoc networks have received the attention of 

researchers and practitioners since their high deployment flexibility, low cost, and 

robustness, which make them perfectly suitable for a whole plethora of scenarios where 

the infrastructure is missing, e.g., away from towns, in areas hit by a major disaster or 

just not covered by APs, in military battlefields.  
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Currently, a hot research topic is represented by Vehicular Ad-hoc Networks 

(VANETs) because of the challenges involved in having communicating nodes traveling 

at very high speed. Indeed, traveling vehicles could easily find themselves in a situation 

with no AP along their road. Yet, several useful applications could be run over an ad-hoc 

network connectivity: safe driving, text/audio/video chats or online gaming among 

passengers sit in vehicles within a certain geographical area, peer-to-peer file sharing, etc. 

Depending on the application, two possible transmission models have to be considered: 

the pull model and the push model. With the former nodes (vehicles) explicitly asks to 

receive certain data from another node, whereas with the latter messages are proactively 

broadcast to every node in a certain area of interest. Both models can also involve multi-

hop in their transmissions. Since the shared nature of the wireless channel, 

communications involving several nodes in the same VANET (e.g., online games) are 

clearly more efficient if performed through broadcasting (i.e., pull model) instead of 

sending as many messages as the number of recipients.  

Focusing on the two main scenarios we are interested in, handoffs are not very 

frequent in a home environment, where a single AP is generally enough to provide 

connectivity to every room; instead, they represent a critical issue in a vehicular network 

as cars’ high mobility make them stay in the coverage area of each AP for a very limited 

time (even just few seconds). Moreover, ad-hoc networking is rarely utilized in a home 

scenario where an AP is generally available, whereas it can often represent the only 

connectivity option with vehicular scenarios, especially as long as very few APs are 

available along roads. 

2.4.2 Elastic vs Real-time Applications 

Elastic applications have been the earliest in appearing on the Internet scene, they still 

represents the majority of Internet traffic and are naturally going to play a major role 

even in future vehicular networks. Prominent examples are the email (SMTP), the World 

Wide Web (HTTP), and file downloading (FTP). These applications do not require any 

specific minimal amount of bandwidth to work, yet, they try to utilize as much bandwidth 

as possible and the more the bandwidth available is, the better they perform. 
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Wireless environments generally affects elastic applications. Indeed, disconnections 

and error losses are very badly tolerated by these applications and can cause sever 

performance degradation. At the same time, delays are not of crucial importance, 

especially when considering the single packet delivery. 

Real-time applications are becoming more and more popular among users; think for 

instance to Skype and World of Warcraft phenomena or, more in general, to video 

streaming, IP-telephony, teleconferencing, online gaming, interactive IP-radio/TV, and e-

learning. The utilization of these services is growing everyday thanks to their entertaining 

nature. 

Regardless of whether they are utilized through a traditional client-server architecture 

or through a P2P paradigm, the main requirement for these interactive applications is 

embodied by their little tolerance to delays [76]. On the other hand, sporadic losses do 

not affect their performances. The bandwidth required by real time applications is higher 

for rich-media applications such as high quality movie streaming, however, most of 

interactive applications, and online gaming is among these, only require a continuous 

availability of a certain (little) amount of bandwidth to guarantee a continuous flow of 

data. 

2.4.3 Transport Layer Protocols 

The success of the Internet is based on several factors; among these, one of the most 

important is the ability to provide a reliable medium for information exchange and file 

downloading. In particular, traffic control functionalities for the most common 

applications (i.e., FTP, HTTP, SMTP, Telnet) are provided by the Transmission Control 

Protocol (TCP). TCP was initially designed to provide an end-to-end, connection-

oriented, and reliable service in the ARPANET [138], and later, in the Internet. TCP 

addresses two major issues: reliability and congestion control [139]. To achieve the 

second goal, TCP adapts the sending rate to avoid network overflow or falling into 

service starvation. TCP congestion control has been studied by the research community 

for the last 25 years, leading to several TCP variants with and without the explicit 

intervention of the network layer (a survey can be found in [140]).  
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The most popular version, TCP New Reno, implements a congestion control 

algorithm, known as the AIMD (Additive Increase, Multiplicative Decrease) algorithm. 

In this context, the sending window utilized by the sender represents the number of 

packets that the sender can send towards the destination without having yet received any 

acknowledgment about their delivery from the receiver. Indeed, for every packet 

received, the receiver sends back to the sender an acknowledgment (ack) that identifies 

the next packet expected and implying that all the precedent packets in the sequence 

where successfully delivered. Acks (and Time Outs [139]) are also used to determine 

packet losses and to communicate the advertised window back to the sender. The 

advertised window provides the sender with a limit to the maximum transmissible 

sending rate. The final sending window, in fact, is the minimum between the advertised 

window and a variable named congestion window. 

The very basic concept of the congestion control scheme can be summarized as 

follows:  

• The number of packets sent out without having yet received back their 

corresponding acks cannot be higher than the current sending window. 

• For each successfully delivered packet, a new one is sent. 

• When a whole congestion window of packets has been successfully delivered, the 

congestion window value is increased by 1. 

• When a packet loss is detected the TCP sender assumes congestion on the path to 

the receiver and decreases its congestion window by half (or to 1 if a Time Out 

occurred). 

This scheme has been developed following the end-to-end paradigm by which the two 

involved end nodes do not have any explicit information about the links connecting them. 

In essence, the Internet is seen as a black box whose contents remain unknown and all the 

intelligence is left at the edge. Sender and receiver are unaware of the available 

bandwidth on the links among them and of the possible presence of other flows along the 
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same path. The sender has hence to continuously probe the channel to make use of 

bandwidth that might be available and to back off when congestion is detected. 

The User Datagram Protocol [147] offers a lighter service: it just takes messages from 

the application layer and sends them toward destination with no guarantee that messages 

are actually going to be delivered and in which order. Indeed, UDP has no 

retransmission, flow control, and congestion control. At the same time, its simplicity of 

use ensures a reduced overhead; furthermore, the fact that no connection needs to be 

established makes it faster than TCP. These reasons make UDP ideal for real time 

applications or streams that need a constant amount of minimal bandwidth at their 

disposal to work properly. 

It is hence evident that elastic applications are well matched with TCP, whereas real 

time ones are usually supported by UDP. Indeed, UDP is usually employed by 

applications characterized by stringent real-time constraints and that can tolerate sporadic 

packet losses (i.e., audio/video streaming, online games). The lack of congestion control 

functionalities of UDP had lead the scientific community to wisely consider UDP as 

unfair toward TCP. Indeed, citing from [198]: “Although commonly done today, running 

multimedia applications over UDP is controversial to say the least. […] the lack of 

congestion control in UDP can result in high loss rates between a UDP sender and 

receiver, and the crowding out of TCP sessions - a potentially serious problem.” 

Even if this is true when the available bandwidth is very scarce, the broadband 

connectivity offered today may overturn this situation [157, 166, 203, 204]. 

Larger and larger bandwidths are offered even to home consumers so that the traffic 

generated by UDP-based applications can be accommodated. Yet, a problem emerges 

when real-time applications (UDP-based) coexist with downloading ones (TCP-based) on 

a wireless channel, causing the former to experience a scattered flow progression. 

Major causes for this problem can be found in the TCP’s congestion control 

functionality. In particular, TCP continuously probes for higher transfer rates, also 

queuing packets on the buffer associated with the bottleneck of the connection. If one 

considers that the same wireless connection might be shared by several devices and 
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applications thus increasing the congestion level and queue lengths, it is even more 

evident how packets can be delayed in queue, jeopardizing requirements of real-time 

applications.  

This negative situation is further worsened by the following three factors due to the 

wireless nature of the link. First, the wireless medium allows the transmission of only one 

packet at a time and is not full-duplex as wired links. Packets have hence to wait their 

turns to be transmitted. Second, as interference, errors, fading, and mobility may cause 

packet loss, the IEEE 802.11 MAC layer reacts through local retransmissions (4 at most, 

[22]) which, in turn, cause subsequent packets to wait in queue until the preceding ones 

or their retransmissions eventually reach the receiver. Last but not least, the back-off 

mechanism of the IEEE 802.11 introduces an increasing amount of time before 

attempting again a transmission [102]. 

2.4.4 Performance Evaluation over Wireless Links 

In recent years, many researchers have focused their studies on the problems encountered 

in a wireless environment [15, 56]. We try to limit the scope of our survey to those works 

that are related to problems we are trying to address in this Thesis and to the solutions we 

propose and evaluate in Chapter 5. 

Focusing on MAC layer retransmissions, TCP and UDP flows have been tested by 

Nam et al over a IEEE 802.11 wireless link when different signal levels were present. 

They showed that without retransmissions implemented at the link layer, loss rates 

become unacceptable for any application [3]. The claim that MAC layer retransmissions 

improve TCP performance was confirmed also by Xylomenos and Polyzos, who 

experimented TCP and UDP on a WLAN and analyzed their behavior with different 

interfaces and bidirectional TCP traffic [4].  

Said that, we may ask ourselves whether the current number of MAC layer 

retransmissions represents the optimal choice to support both TCP-based traffic and real 

time applications. Indeed, a high number of repeated retransmissions could still be not 

enough to prevent TCP from experiencing timeouts and retransmitting the same data as 

the MAC layer. At the same time, MAC retransmissions can be wasteful and potentially 
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harmful for time-sensitive applications, such as real time video/audio or online games 

over UDP [166]. 

It should be said that a vast collection of research papers focusing on 802.11 could be 

found by delving into the Internet. They present analysis, problems, and solutions. 

Nonetheless, the vast majority of them provides results that focus on a throughput/losses 

point of view [57, 172, 173, 174, 176, 177], while the performance of real time 

applications depends on the measured per packet delay and jitter [58]. Even if some 

recent works present delay measurements for real time applications over IEEE 802.11, a 

deep analysis of this issue with respect to MMOG is still missing, as well as efficient 

solutions aimed at reducing queuing delay over wireless links [166, 175]. 

2.4.5 MAC Layer Protocols: the IEEE 802.11 Family 

As the availability of digital entertainment devices increases rapidly, the need for 

interconnecting them is felt as ever more urgent, as well as the necessity to extend the 

reach of entertainment centers to the wireless domain. In the today’s market, IEEE 

802.11 based wireless LANs are de facto emerging as the candidate to lead the mobile 

revolution providing wireless connectivity and advanced functionalities in terms of 

flexibility, security and throughput to support entertainment applications ranging from 

networked games to in-house digital audio/video distribution and live conferencing etc. 

[141]. In this context, technical standards are currently being defined that address both 

the methods of wired/wireless interconnection and the means to guarantee a full 

interoperability between digital entertainment appliances. Yet not much work has been 

done in the direction of understanding how can the Internet native language (i.e. the 

TCP/IP protocol) take over this complex scenario for efficiently delivering digital 

contents to entertainment devices, and which is the impact of diverse MAC layer settings 

over the Internet native transport protocols (e.g. TCP, UDP) during the distribution of in-

house entertainment.  

The MAC layer is positioned at a low level in the OSI model [186]. Its classic 

implementation for mobile networks is represented by the family of IEEE 802.11 family 
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of standards, whose specifications also includes the physical layer. All of IEEE 802.11 

versions can work both in infrastructure and in ad-hoc mode. 

Recalling its main characteristics, the IEEE 802.11 MAC layer protocol attempts to 

face the packet loss problem by implementing its own retransmission scheme [142]. In 

particular, lost packets are retransmitted after a certain period of time without having 

received any corresponding ack. Successive retransmissions for the same packet are 

repeated up to a maximum number of time, which is by default set to 4 in the standard 

IEEE 802.11, or until receiving a successful ack. A backoff mechanism determines the 

retransmission timeouts. This scheme hides wireless error losses from the TCP’s 

congestion control mechanism, thus avoiding deleterious multiple reductions of the data 

sending window. On the other hand, local retransmissions affect packet delivery delay by 

increasing its variability and thereby affecting time-constrained applications such as 

audio or video-stream. 

Focusing on the various versions, the IEEE 802.11b represents the first one in the 

802.11 family that had an epidemic diffusion. It implements a CSMA/CA mechanism to 

handle the channel contention and has a nominal bandwidth of 11 Mbps and a factual one 

of circa 5 Mbps. The utilized channel frequency is the 2.4 GHz, which is prone to a lot of 

interference from microwave ovens, cell phones, Bluetooth devices, etc.  

The IEEE 802.11a and IEEE 802.11g protocols have been developed to increase the 

bandwidth available over wireless connections and offer a nominal speed of 54 Mbps, 

which corresponds to about 20 Mbps of factual bandwidth [174, 205]. The former utilizes 

the 5 GHz reserved frequency and has the possibility to reduce interference through the 

use of 12 non-overlapping channels, whereas the latter exploits the traditional 2.4 GHz 

frequency and is hence fully compatible with the IEEE 802.11b. Since its high speed, its 

ability to coexist with legacy IEEE 802.11b WLANs, and its low cost, the IEEE 802.11g 

is rapidly becoming very popular in homes, offices, educational institutions, and public 

hot spots. 

Aimed at providing Quality of Service (QoS) capabilities to WLANs, the IEEE 

802.11e has been proposed [102]. Its design allows do discriminate among different kind 
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of flows, assigning priorities through different parameter settings. In particular, flows 

with different priorities are enqueued into different buffers to which corresponds different 

contention times. As a result, packets belonging to high priority traffic will have higher 

chances to be transmitted first with respect to low priority ones. Yet, it is not clear how 

the AP will be able to classify the incoming traffic; probably, the sender will have to 

mark each of its packets or flows with a priority level. Unfortunately, this would imply 

the modification of all senders’ operability or applications, thus strongly affecting the 

actual deployment of this protocol. 

The increasing request for higher and higher bandwidth has pushed the IEEE in 

developing the IEEE 802.11n standard that promises a theoretical speed around 

250 Mbps and a factual one around 100 Mbps. Moreover, the IEEE 802.11n will also be 

able to utilize MIMO (multiple-in, multiple-out) directional antennas thus spatially 

increasing the available bandwidth. In January 2007, the IEEE 802.11 working group has 

approved Draft 2.0. 

The IEEE 802.11p is also known as WAVE (Wireless Ability in Vehicular 

Environments) and represents the standard specifically designed to provide wireless 

connectivity to driving vehicles. Initially designed for Intelligent Transportation System 

(ITS) applications, it is know object of studies for being utilized for several other 

purposes that includes both traditional Internet services and novel applications. Even if 

the IEEE 802.11p protocol is still just a draft, some of its future features are assumed to 

be known. In particular, it will make use of the reserved 5.9 GHz frequency to limit 

interferences and will support the American DSRC (Dedicated Short Range 

Communication) standard for interconnecting vehicles among themselves and with the 

infrastructure on the curb [187]. Other promised features of IEEE 802.11p are its ability 

to transmit even at very long distances (up to 1000 m) and very high vehicular speeds (at 

200 Km/h it should transmit up to 6 Mps at 300 m), which make it very appealing for any 

kind of application, from those related to increase traffic safety to entertainment ones. 

Many other protocols, even if less popular, than those just discussed compose the 

family of IEEE 802.11 standards; a comprehensive list can be found in [186]. Since in 
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this work we are mainly interested in realistic home and vehicular wireless scenarios, we 

focus our attention on IEEE 802.11g and IEEE 802.11p protocols. 

2.4.6 Broadcast in a VANET 

Sending online games among (many) players in a VANET amounts to propagate game 

events over a wireless channel, through multi-hops, where the recipients can be many 

even within the same transmission range. This clearly corresponds to the pull model and 

is hence more efficiently resolved through (multi-hop) broadcast, rather than resorting to 

many resource-consuming unicast transmissions. Therefore, one of the problems we 

address in this thesis regards fast broadcasting of a message to all cars in a given strip-

shaped area-of-interest [191]. 

Experts report that principal reasons behind a slow broadcast delivery are due to a 

non-optimal number of hops experienced by a message to cover all the involved cars and, 

more in general, to an excessive number of vehicles that try to simultaneously forward 

the message [189, 190, 191, 192]. To tackle this problem a theoretically optimal 

broadcast algorithm has been recently proposed which propagates messages to cars 

making use of the notion of Minimum Connected Dominating Set [193]. This leads to 

great practical difficulties in the implementation of such algorithm as it would require a 

complete and continuously updated knowledge of the network topology. For instance, in 

an attempt to implement this algorithm with n cars, its authors have developed a scheme 

employing as many as O(n log n) control messages [194]. It goes without saying that this 

is not a scalable solution. 

Addressing the fast-delivery broadcast problem from a more practical standpoint, 

various 802.11-based solutions have been proposed. For example, [191] proposes a 

backoff mechanism that reduces the frequency of message retransmissions when 

congestion is causing collisions. In [190], instead, as soon as a car receives a broadcast 

message from a following vehicle along a strip, it refrains from forwarding it as the 

reception of this message is a clear confirmation that subsequent cars have already 

received it. Unfortunately, both these two schemes do not consider a very important 
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factor in determining the final propagation delay of a message: the number of hops a 

broadcasted message traverses before covering its whole area-of-interest. 

In [192], hops’ minimization is achieved by individuating the farthest car within the 

source’s backward transmission range, which has to forward the message. To this aim, 

jamming signals are emitted by each car with a duration that is directly proportional to 

the distance between the considered car and the message’s source. The car with the 

longest jamming signal is clearly the farthest car from the source. Even if this guarantees 

a minimum number of hops to cover the whole area-of-interest, the time wasted to 

determine the next forwarder through jamming signals could make this scheme not 

suitable for a tight time delay scenario as the one we are considering. 

A final scheme trying to statistically achieve a minimum number of hops when 

propagating a broadcasted message is discussed in [189]. In particular, different 

contention windows are here assigned to each car. The contention window represents the 

maximum number of time slots a car waits before taking upon itself the task of 

propagating the broadcasted message: each car randomly select a waiting time within its 

contention window. In [189], the authors propose that nodes set their respective 

contention windows with an inverse proportion of the distance from the sender. With this 

scheme, no control traffic is generated that causes useless overhead. Yet, it is assumed 

that there is a unique and constant transmission range for all cars in every moment; this is 

obviously not realistic in a VANET since its high and fast mobility. 

Moreover, all discussed schemes only discuss the case where few messages are 

sporadically sent to other cars around; none of them considered the possibility to have 

many messages continuously generated by many cars in the same VANET.  

2.5 System Model 

Aimed at providing a holistic solution for MMOGs and being aware of related works, we 

can now analytically study the four main requirements seen in Section 2.2 and the 

tradeoff relationship existing among them. 
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Every class of game is featured by a peculiar (and fixed) Game Interactivity Threshold 

(GIT) that represents the maximum delay endurable before visualizing a game event on 

players’ screens if one wishes to preserve interactivity. The typical GIT for fast paced 

games (i.e. vehicle racing, first person shooter) corresponds to 150-200 ms but this value 

can be increased up to seconds in case of slow paced games (i.e. strategic, role play 

game) [77, 78, 80, 106, 107]. 

If we call )e(gt  the generation time of event e and 
)e(v

it  the visualization time of the 

same event at player i, then interactivity is preserved at i during the delivery of e when 

the following condition is satisfied:  

 

 .GITtt )e(g)e(v
i ≤−  (2.1) 

Both consistency and fairness regards having the same game state contemporary 

viewed in all the nodes of the system. Therefore, the same class of techniques is generally 

used to achieve each of them (or both). The easiest way to guarantee consistency and 

fairness is to make the game proceeding through discrete locksteps. Unfortunately, as 

discussed in Section 2.3.2, this scheme cannot be applied to interactive games. 

To ensure fairness (and consistency) in continuously evolving games several studies 

propose schemes based on the introduction of artificial delays in order to contemporary 

visualize game events on all the players’ screens (i.e., local lag schemes) [54, 78, 94, 104, 

105].  

With local lag, game advancements are delayed for a sufficient amount of time in 

order to guarantee that all the clients in the system process and perceive the generated 

game events at the same time and in the same order. Indeed, since the generation time of 

each event is unique and considering CC, the set of clients, we can say that we have 

event-related fairness [109] for event e if condition (2.2) is satisfied, simply stated, if 

there is a unique )e(vt  value for all the players: 

 

 .CCitt )e(v)e(v
i ∈∀=  (2.2) 
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Since a single game event experiences different overall delays (OD) in its paths from 

the source to all the diverse destinations, different amounts of artificial delay δ should be 

added in order to contemporary visualize the same event e on all the players’ screens and 

hence to satisfy the following condition: 

 

 .CCit)e()e(ODt )e(v
ii

)e(g ∈∀=++ δ  (2.3) 

A possible value typically chosen for the unique )e(vt  is represented by the highest OD 

in transmitting events amongst nodes. When the highest OD is greater than GIT, 

however, fairness is preserved at the cost of jeopardizing interactivity for all the players. 

Conversely, if we use GIT as an upper bound to )e(vt , then we can guarantee interactivity 

but not fairness.  

Consequently, in order to maximize the possibility to obtain both interactivity and 

fairness )e(vt  should be set as 

 

 .GITtt )e(g)e(v +=  (2.4) 

The ODi(e) experienced by an event e when it finally reaches client i is composed by 

several delay components, respectively: physical latency li(e), queuing time qi(e) on 

nodes along the path, and processing time pi(e). Therefore, ODi(e) can be written as 

 

 ).e(p)e(q)e(l)e(OD iiii ++=  (2.5) 

Even when the network latency would allow having values of OD, and hence also of 
)e(vt , lower than GIT, a large number of players generating a huge amount of traffic may 

raise the value of the other two components (i.e., qi(e) and pi(e)), thus leading us again to 

the crossroad between fairness and interactivity. 

To conclude, the efficiency and applicability of popular delayed-based algorithms 

such as local lag strongly depend on the network conditions and on the interactivity 

degree required by the game. Yet, guaranteeing both interactivity and full fairness 

through local lag can sometimes be achieved only at the cost of limiting the scalability of 
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the game by bounding the number of contemporary participants and the geographical 

extension of the target player market. 

It hence becomes evident how MMOGs require the use of architectural solutions and 

algorithms able to reduce the delay components in (2.5) in order to find the most efficient 

tradeoff among interactivity, consistency, fairness, and scalability. 

2.6 Architectures 

Typically, network architectures supporting MMOGs can be distinguished based on three 

main categories as depicted by Fig. 2.2: centralized client-server, fully distributed, and 

mirrored game server.  

In the centralized client-server architecture, we have a single authoritative point which 

is responsible to run the main logic of the game. We report here only a few of its tasks: 

execute players’ commands, enforce consistency, send back to the client the new game 

state update, etc. Clients have only to receive the new game state update, render it on the 

screen, and forward player’s commands. The single authoritative point is usually 

represented by a single server; however, a cluster of computers could be utilized as well 

in order to increase the performance of the system [97]. 

The centralized client-server architecture represents the simplest solution for 

authentication procedures, security issues, and consistency maintenance [35, 95, 96, 97]. 

Moreover, assuming to have N simultaneous players, the generated messages are in the 

order of O(N). On the other hand, the unique bottleneck limits the efficiency and 

scalability of this solution.  

Fully distributed architectures are well represented by the peer-to-peer paradigm. In 

this case, all the involved nodes share the same intelligence and are responsible for 

running the whole logic of the system. In this case, in fact, each client has to 

autonomously update the game state view based on its player’s commands and on game 

actions received from other players. This obviously requires terminals endowed with 

higher computational capabilities. 
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Figure 2.2: Online game architectures. 
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The main advantage in employing a fully distributed architecture is that of spreading 

the traffic load among many nodes thus generating a more scalable and failure resilient 

system [94, 112]. However, identical copies of the current game state need to be stored at 

each node. This requires some complex coordination scheme among peers; in fact, this 

scheme has to be distributed over the set of involved nodes and has to be able to 

guarantee the coherence of all game state views. Moreover, with fully distributed 

architecture, multicast should be employed to reduce the bandwidth requirements, but 

multicast technology is neither generally available nor mature enough for the specific 

application we are considering here. The exchanged messages could hence raise to the 

order of O(N2). Finally, authentication, cheating, and general consensus among all the 

peers are harder to be addressed than when a centralized architecture is employed. 

Mirrored game server architectures represent a hybrid solution which efficiently 

embraces all the positive aspects of both centralized client-server and fully distributed 

architectures [59]. Based on this approach, GSSs are interconnected in a peer-to-peer 

fashion over the Internet and contain replicas of the same game state view. Players 

communicate with their closest GSS through the client-server paradigm. Each GSS 

gathers all the game events of its engaged players, updates the game state and regularly 

forwards it to all its players and GSS peers.  

The presence of multiple high performance GSSs helps in distributing the traffic over 

the system and reduces the processing burden at each node [112]. Moreover, having each 

player connected to a close GSS reduces the impact of the player-dependent access 

technology (e.g., dial-up, cable, DSL) on the total delay experienced [110]. In this case, 

in fact, the communication among players results mainly deployed over links physically 

connecting GSSs, which can exploit the fastest available technology (e.g., optical fibers) 

to reduce latency. As a result, this architecture helps one in finding better solutions for 

the tradeoff among interactivity, consistency, fairness and scalability. 

Other advantages in employing mirrored game server architecture are the absence of a 

single point of failure, the networking complexity maintained at server side, and the 

possibility to easily implement authentication procedures. Even if synchronization is still 
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required to ensure the global consistency of the game state held by the various servers, 

this requirement is made easier with respect to fully distributed architectures thanks to the 

lower number of involved nodes. Assuming to have N players and M GSSs, for example, 

the generated game messages amount to O(N+M), which is again O(N) unless 

considering the unlikely case of having more servers than players. 
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CHAPTER 3 

Fast Synchronization Framework 
 

3.1 Proposed Architecture 

Since the analysis of advantages and disadvantages about the various possibilities 

illustrated in Section 2.6, mirrored game server emerges as the most appropriate 

architecture in order to efficiently manage large-scale distributed games. Indeed, this 

architecture embodies the advantages of both client-server and fully distributed 

paradigms and, in particular, it preserves the two most important features required by a 

MMOG architecture: scalability and controllability. The former is required to allow a 

multitude of players to engage in the same virtual arena. The latter regards the possibility 

to control the access to the game, avoid cheating, and have a centralized core where new 

techniques could be easily deployed to improve performance. Indeed, based on this 

architecture, we have devised an efficient synchronization scheme among GSSs able to 

enforce a high interactivity degree while guaranteeing a uniform view of the current 

game state.  

Moreover, in Chapter 4 we will demonstrate how to exploit this architecture and our 

synchronization scheme to achieve also fairness, while in Chapter 5 and Chapter 6 we 

will focus on preserving interactivity and fairness also in the last hop of the connection. 

We will show how to enhance the mirrored game server architecture to make it able to 

sustain MMOG applications regardless of the connectivity type exploited on the client-

server link.  
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3.2 Obsolescence and Correlation: Maintaining Responsiveness and 

Consistency 

Absolute Consistency can be attained through the employment of a totally ordered event 

delivery scheme [60, 61]. On the other hand, this would imply an increment of the 

complexity and of the total delay experienced by the system. Waiting for the next in order 

action to be processed, while having other events ready in queue, may sensibly slow 

down the evolution of the game thus jeopardizing responsiveness.  

Exploiting the semantics of the game can be put to good use to relax the total order 

delivery requirement and augment responsiveness [63, 64]. Some events, in fact, can lose 

their significance as time passes: new actions could make irrelevant previous ones. For 

example, player’s movements are generally represented by final absolute position and, in 

case of rapid succession of movements of a single agent, the event representing its last 

destination makes obsolete the older ones.  

Obsolescence can thus be defined as the relation between two received events e1 and 

e2, generated at different times t(e1) < t(e2), by which the existence of event e2 diminishes 

the importance of processing also event e1, without affecting consistency (see Fig. 3.1-a). 

Dropping obsolete events before processing them clearly reduces computation at GSSs 

and speeds up the execution of fresher events.  

To define as obsolete a game event, we have to be sure that consistency would not be 

weakened. To this aim, we have also to take into account the notion of correlation. Two 

events, say e1 and ec, are correlated if the final game state depends on their execution 

order. Correlation has to be taken into account to determine the obsolescence of an event. 

As depicted in Fig. 3.1-b, it might be the case when e2 would make obsolete a previous 

event e1 but a further event ec (correlated to e1), temporary interleaved between e1 and e2, 

rescinds this relationship of obsolescence. However, they are the only events that really 

need to be reliably delivered to all destined GSSs and in the same order as they were 

generated.  
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Figure 3.1: Examples of obsolescence and correlation  

(a) Event e2 makes obsolete e1; (b) Event ec is correlated to e1 and rescinds the obsolescence of e1. 

 

Total order delivery requirement can thus be relaxed in case of non-correlated game 

events. Their semantic independence, in fact, allows different GSSs to process them in 

diverse orders without affecting consistency. This means that non-correlated game events 

can be processed as soon as they are received without wasting any time in waiting 

preceding ones, thus augmenting responsiveness; missing game events can be 

interpolated and rendered on players’ screens. Interested readers may find a deeper 

analysis on obsolescence and correlation in [63, 64]. 

On the other hand, our experiences with online games over a best effort network lead 

us to claim that there exist cases where even dropping all the obsolete events in a game is 
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not enough to ensure an adequate interactivity degree. This is particularly true for a class 

of games that requires frenetic, and often redundant, players’ actions. This class of games 

is widely recognized in the gaming community as fast-paced (or fast and furious) games: 

shoot/beat’em up games represent typical exemplars. For this class of games, even 

discarding some non-obsolete events may be preferred to compromise responsiveness and 

consequently users’ perceived playability. Discarding some non obsolete event may 

generate some sporadic inconsistencies in the game state; nonetheless, we deem that 

partial consistency for a small amount of time becomes acceptable for the specific class 

of fast and furious online games. In this scenario, in fact, the necessity of a very high 

interactivity degree emerges as overwhelming even on the full-consistency requirement. 

3.3 Interactivity Restoring Mechanism 

Exploiting the notions of obsolescence and correlation, Ferretti and Roccetti propose a 

mechanism to restore interactivity in mirrored game server architecture [63]. The player’s 

actions are collected by the closer GSS, transformed into events and finally forwarded to 

other GSSs in order to maintain a global identical view of the game state. Events are 

marked at their creation with a generation timestamp and then sent to destination: they 

are hence orderable. Obviously, a global concept of time has to be maintained by all the 

GSSs. Different solutions proposed in literature can synchronize the clocks at each GSS 

[65, 66, 67]. Alternatively, this can also be obtained by exploiting some new 

technological synchronization device such as GPS.  

Since UDP is used as the transmission protocol, missing packets are handled at the 

application level. Game state updates transmitted by GSSs, in fact, are identified by 

sequence number. By the means of NACK (Negative ACKnowledgment) packets it is 

possible to determine which ones are missing and decide whether to retransmit them or 

not. 

Each receiving GSS considers the arrival time of the event and measures the 

difference elapsed since its generation; the resulting value is named Game Time 

Difference (GTD). The GTD of the event is then compared with the predefined constant 
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GIT  and normal delivery operations are performed until the former value is lower than 

the latter. When the GTD value exceeds the GIT, the GSS turns on a stabilization 

mechanism which exploits the obsolescence notion to drop useless events so as to bring 

the GTD back within the GIT. Moreover, messages are sent to the connected GSSs in 

order to make them aware of the witnessed lack of responsiveness. These GSSs can thus 

avoid to forward obsolete and missing events to the non interactive GSS thus helping in 

restoring faster  

3.4 RED/RIO Techniques 

Random Early Detection (RED) algorithm is an active congestion avoidance mechanism 

enforced at routers [68]. Traditional queue management employs simple “tail drop” 

schemes that drop packets only when the queue overflows. Conversely, RED algorithm 

randomly performs early packet discards to notify sources about the incipient congestion. 

In this way, a single loss experienced by a sender smoothly decreases the entire 

congestion level of the network and keeps the average queue size at a low level. The 

rationale lies in the gained capability of better accommodating occasional bursts of 

packets and avoiding situations in which several connections simultaneously decrease 

their sending rate. Summarizing, RED avoids severe congestion and maintains a stable 

traffic level in place of dealing with congestion after already occurred. 

Every time the router receives a packet, the RED algorithm calculates the new average 

queue size and the probability to discard the packet. The computing method utilizes a 

uniform random variable, which has been proven to be more adequate to this aim than a 

geometric random variable. In fact, a uniformly distributed discarding function avoids 

global synchronization thus attaining an unwavering course of transmissions. The 

dropping probability is bounded by two thresholds of the queue size: min and max. 

Within this interval, the probability to drop a packet increases from 0 to a maximum 

discarding probability (Pmax). Under min, no packet is dropped and beyond max all 

packets are discarded. 
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RIO (RED with In and Out) scheme is an enhanced version of RED mechanism able 

to discriminate between two different classes of traffic, non-prioritized (Out) and 

prioritized (In), and calculates two distinct dropping probabilities [70]. The two dropping 

functions work independently and are featured with specific boundaries and slopes. They 

hence permit to discard packets utilizing different probabilities and congestion levels 

depending on the packets’ traffic class. 

3.5 Enhancing Interactivity with RED/RIO Techniques 

Taking inspiration from the RED approach in case of incipient congestion in best effort 

networks, we have recently enhanced the aforementioned Interactivity Restoring 

mechanism with the Interactivity-Loss Avoidance (ILA) approach [62]. The main 

innovation is the capability to preempt responsiveness disruption instead of restoring it 

after having already lost playability. To this aim, the system discards some packets when 

the responsiveness among GSSs descends significantly. In practice, ILA replaces the 

basic binary dropping mechanism for obsolete events (OFF when interactivity is present 

and ON when interactivity is lost) with a continuously-working proactive mechanism that 

drops obsolete events with a probability that depends on the level of responsiveness of 

the system. 

Even if, similarly to RED, ILA utilizes a uniformly distributed dropping function, the 

parameter taken under control is the average GTD instead of the average queue size. 

Upon each packet arrival, in fact, each GSS determines the GTD of the arrived event, 

namely sample_GTD, and feeds a low pass filter to compute the updated average GTD, 

namely avg_GTD. When avg_GTD exceeds a certain threshold, the GSS drops obsolete 

events with a certain probability p, without processing them. If avg_GTD exceeds a 

subsequent limit, p is set equal to 1, and all obsolete events waiting for being processed 

are discarded. 

Obviously, if the low interactivity degree perceived by some GSSs is not affecting 

other GSSs, the latter can process and forward to their clients even those packets 

discarded by the formers. Indeed, since obsolete events are actions that can be considered 



 

55 

non-critical for the game evolution, there is no unfairness generated by processing them 

only in some GSSs. On the other hand, not processing those events in highly interactive 

GSSs would represent an unjustified limitation, even if light, to the number of events 

visualized at some player’s side. For instance, an intermediate movement of a game 

character, when the final position is further ahead and no shooting nor other hazards 

could harm it, could receive different treatments: it can be dropped by some GSSs to 

preserve interactivity, or can as well be processed by other GSSs for the sake of a 

complete and fluent game visualization on the screens of their clients without relying on 

imprecise and computationally expensive interpolations. 

To ensure an adequate playability degree even to the class of fast and furious games 

we have then further enhanced our ILA scheme. For this class of games, in fact, the core 

attractiveness for players emerges from a feverish, sometimes even chaotic, action 

sequence of user’s actions. We have hence enhanced our ILA scheme with features 

derived from the integration of a RIO-like algorithm in place of the RED-like one [69]. 

The additional dropping probability provides the possibility to discard even non-obsolete 

game events when dropping all the obsolete ones is not yet sufficient to maintain an 

adequate level of responsiveness. The two discarding functions are featured with specific 

parameters; they work independently one from the other and take action in sequence with 

the increasing of the game event GTDs at the GSSs. 

Dropping non-obsolete events can be done without consequences only for a category 

of games where little inconsistencies are not highly deleterious for the aim of the game 

and for player’s fun (e.g., fast-paced games). Even in this case, if the number of dropped 

non-obsolete events becomes significant, a consistency restoring mechanism may be 

required to re-establish a coherent game state view among all GSSs [71]. For the sake of 

clarity, from here on we are going to call ILA-RED the ILA version that discards only 

obsolete events, while ILA-RIO represents the version with two discarding functions. If 

referring to both the algorithm with no distinction we just use the word ILA. 

In Fig. 3.2 we depict the two discarding functions of ILA-RIO. Three parameters (and 

three phases) characterize each of the twin algorithms: mino, maxo and Pmaxo, for 
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obsolete events, and minv, maxv and Pmaxv for valid (i.e., non obsolete) ones. In the 

graph, the y-axis represents the dropping probability corresponding to the avg_GTD 

indicated by the x-axis. Focusing on obsolete events, for values of avg_GTD in [0, mino) 

the mechanism performs normal operations, with no packet drops, while in [mino, maxo) 

obsolete packets are discarded with a computed probability, and finally in [maxo, ∞) all 

obsolete packets are thrown away. The intervals [0, minv), [minv, maxv), and [maxv, ∞) 

define the corresponding phases for valid events. The dropping probabilities are 

computed as a function of avg_GTD and of Pmaxo or Pmaxv, respectively. Persistent 

situations of low interactivity degree result in high avg_GTD and hence in high 

discarding probabilities. High dropping probability values (for Pmaxo or Pmaxv) will 

make the GSS discarding events without processing nor forwarding them, thus helping in 

restoring an adequate level of time interaction between servers. 

Since valid events are strictly linked to consistency, the possibility to discard them 

should be taken into account only as last resort, in case of heavy disruption of 

responsiveness. For this reason, ILA-RIO starts dropping obsolete packets much earlier 

than valid ones. In addition, the algorithm throws away all the obsolete packets before 

considering any dropping probability on valid events; simply stated: maxo is smaller than 

minv. Finally, diverse aggressiveness in dropping packets, depending on their class, can 

be decided by adjusting the values of Pmaxo and Pmaxv. 

In essence, the algorithm repeats a block of operations (listed in Fig. 3.3) each time a 

new event arrives at the considered GSS. In particular, the GTD of the game event is 

calculated (sample_GTD, line 1) as the difference between the generation time at the 

sending GSS and its delivery time to the considered receiving GSS. The scheme feeds a 

low pass filter with the just calculated sample_GTD in order to update the average of the 

GTDs (avg_GTD, line 2): 

 

 avg_GTD = avg_GTD + w*(sample_GTD - avg_GTD). (3.1) 
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Figure 3.2:Discarding probability functions for ILA-RIO. 

 
 

0]  for each event_packet arrival { 

1]    determine the sample_GTD 

2]    calculate the new average delay avg_GTD 

3]    if (mino ≤ avg_GTD < maxo) then 

4]      calculate the probability Po of dropping an obsolete event 

5]      determine if ONE obsolete event has to be discarded 

6]    else if (maxo ≤ avg_GTD) then 

7]      drop ALL obsolete events 

8]      if (minv ≤ avg_GTD < maxv) then 

9]        calculate the probability Pv of dropping a valid event  

10]      determine if ONE valid event has to be discarded 

11]     else if (maxv ≤ avg_GTD) then 

12]       drop ALL valid events 

13]     endif 

14]   endif 

15] endfor 

Figure 3.3: ILA-RIO algorithm. 
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In (3.1), w is a sensitivity coefficient, with values comprised in (0, 1], that determines 

how closely the trajectory of the average follows the movements of the samples. Higher 

values of w correspond to heavier relative weights of the last sample in the current 

average. 

While avg_GTD lies below mino, the process stays in phase 0 and no particular 

operation is performed. Conversely, when avg_GTD is comprised between mino and 

maxo, then the scheme is in phase 1 and lines 4-5 are executed. Basically, a dropping 

probability Po is computed as a fraction of Pmaxo in order to establish whether an 

obsolete event must be discarded; this fraction linearly corresponds to the position of 

avg_GTD in the interval [mino, maxo). 
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Analogously, when avg_GTD is comprised between minv and maxv, then the scheme 

lies in phase 3 and lines 9-10 are executed. The probability Pv to discard a valid event is 

then calculated as a fraction of Pmaxv depending on the position of avg_GTD in the 

interval [minv, maxv). 
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If the algorithm stays in phase 1 or 3 the corresponding dropping probability increases 

until an event is discarded. In particular, two couple of constants, L1 and L2 for Po, H1 

and H2 for Pv, are defined as shown in (3.4), (3.5), (3.6), and (3.7), respectively. 
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Utilizing these constants to rewrite (3.2) and (3.3), we obtain (3.8) and (3.9) which are 

employed respectively in line (4) and (9) of the ILA-RIO algorithm. 

 

 L2avg_GTDL1P −×=o  (3.8) 

 

 H2avg_GTDH1P −×=v  (3.9) 

 

So far, the two probability functions result in geometric random variable distributions 

of the drops, while it would be desirable to discard events at fairly regular intervals. This 

can be obtained by applying an incrementing counter to augment, at each iteration, the 

weight of the considered discarding probability; as result, we generate a uniform 

distribution of the dropping dispersion, which makes the ILA scheme more resilient to 

temporary bursty periods [68]. To this aim, when the algorithm is in phase 1 or 3, Po or Pv 

is compared with a number which is randomly generated within the interval [0, 1). If we 

call Ro and Rv, the two random numbers, we can see from (3.10) and (3.11) how they are 

used to take into account the number of iterations elapsed since the last drop to increment 

the discarding probability. Basically, in phase 1 an obsolete event is dropped (line 5) if 

 

 )PR(counter ooo ≥ . (3.10) 
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Analogously, in phase 3 a valid event is dropped (line 10) if 

 

 )PR(counter vvv ≥ . (3.11) 

 

The variables countero and Ro are reinitialized to respectively 0 and a new random 

value each time the algorithm enters phase 1, or some obsolete packet is discarded. 

Analogously, variables counterv, and Rv are reinitialized each time the algorithm drops a 

valid packet. Conversely, if the scheme is respectively in phase 1 or 3, the two dropping 

probabilities, Po and Pv, are recomputed every new event arrival. Moreover, countero and 

counterv are incremented by 1 every time ILA-RIO stays in phase 1 or phase 3, 

respectively, without dropping any game event. 

Considering the remaining of the algorithm, if avg_GTD grows beyond maxo, the 

scheme enters in phase 2 and all obsolete packets have to be discarded in the attempt of 

re-establishing interactivity (line 7). Moreover if the value of avg_GTD surpasses even 

maxv, all the events, with no distinction between obsolete or valid, are dropped (line 12). 

At this point, in fact, the extremely jeopardized responsiveness conditions suggest 

resetting and reinitializing the game session. 

Finally, it is easy to notice that ILA-RED can be considered a particular instance of 

ILA-RIO. In fact, if we set to 0 the probability of dropping a non obsolete event, or to ∞ 

the GTD value at which it takes action, then the two schemes behave identically. Simply 

stated, a chart representing ILA-RED behavior, equivalent to that one presented in Fig. 

3.2, would contain just phase 0, phase 1 and phase 2, respectively contained in the 

intervals [0, mino), [mino, maxo) and [maxo, ∞). Analogously, the algorithm for ILA-RED 

can be obtained by simply eliminating lines 8-13 from Fig. 3.3. 

3.6 Optimistic Obsolescence-based Synchronization Scheme 

Whereas ILA schemes are based on a conservative approach, the Optimistic 

Obsolescence-based Synchronization (OOS) scheme differs from the previous ones as it 

follows the optimistic paradigm [181]. Still, OOS processes events based on a correlation 
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order thus guaranteeing the final consistency of the game state evolution at all GSSs 

[184]. However, this consistency is not continuously preserved; rather, it is restored 

through employing the well known Time Warp algorithm [52, 53].  

Simply stated, as soon as an event ei, coming from a GSS p, is received at any GSS q, 

a check is executed to detect whether ei is obsolete. In the positive case, it is simply 

discarded. Otherwise, another check is executed to verify whether there exist other 

already processed events ej (correlated to ei) with a generation time larger than )( i
p

g eT . 

For each event ej meeting this condition, the system invokes a rollback procedure which 

is based on the standard incremental state saving technique [181]. It may be the case that 

some of these events ej may become obsolete due to the reprocessing activity triggered by 

the rollback procedure. Needless to say, these events are dropped as soon as they are 

recognized as obsolete.  

This scheme guarantees that game state consistency is preserved. 

 

 

Figure 3.4: OOS algorithm. 
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The OOS algorithm is reported in Fig. 3.4, which lists all the actions accomplished by 

a given GSS when a new game event is received. First, the GSS verifies if ei may be 

already identified as obsolete (line 2). In this case, ei is dropped (line 3). Otherwise, a 

check is carried out to control whether any game events ej, correlated to ei and generated 

after ei, have already been processed (lines 5-6). If this check succeeds, then a rollback 

procedure is performed where all these events ej are rolled back (line 7). At this point, ei 

is processed (line 8), followed by the execution of all those rolled back events which are 

not obsolete (lines 9-12). Obsolete events are discarded during the rollback (lines 10-11). 

If the check fails, thus implying that no rollback procedure is needed, then ei is directly 

processed (line 14). 

It is worth mentioning that our OOS scheme is devised to reduce the amount of 

rollbacks executed during the game processing activity with respect to. Time Warp. 

Indeed, a rollback is performed only when receiving a late event that cannot be 

considered as obsolete. Instead, if obsolete, the event is dropped without invoking the 

rollback procedure. Moreover, a rollback is needed only if correlated events have been 

processed out of order and, even in this case, only non-obsolete events are reprocessed. In 

essence, our scheme has the positive effect of reducing the computational burden 

typically required to maintain the game state consistency. 

It is also worth noticing that when an optimistic scheme is employed to synchronize 

GSSs, processed game events can be transmitted to players only when those events are no 

longer subject to possible rollback. In other words, the rollback strategy should not affect 

the game evolution as seen by players; otherwise, users could have the undesired 

perception of characters that, for example, jump from incorrect positions to correct ones, 

or come back to life when they have already been shown as killed. 

In point of this fact, other proposals that refer to optimistic synchronization schemes 

for networked multiplayer games [59, 182] do not seem to take into consideration this 

problem. In essence, events are forwarded to players without any control on the stability 

of the rendered game state. Therefore, when a rollback occurs, the corresponding 

reprocessing is perceived by connected players as well.  
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We have a different position here. We claim that stalling renderings at player’s side 

should be avoided even when an OOS strategy is employed. This may be achieved by 

notifying players only with a stable game state. While this approach slightly increases the 

amount of time spent by game events at the server side, the final degree of responsiveness 

can still be improved thanks to an obsolescence-based discarding mechanism as in our 

case. This claim is confirmed by results provided. 

We conclude this section by mentioning that our OOS strategy has been implemented 

by exploiting a receiver-initiated communication protocol that utilizes NACKs (Negative 

ACKnowledgments) to provide the delivery guarantee only for non-obsolete events 

[180]. It is well known that TCP-based synchronization protocols have to be avoided at 

all costs while developing distributed games [183]. The motivation is that much of TCP’s 

behavior, such as congestion control and retransmissions, is detrimental to meeting the 

MMOGs real-time constraint. Our approach, instead, exploits UDP to transmit events 

among GSSs. Moreover, since we are concerned with the reliable delivery of non-

obsolete events only, as soon as a receiving GSS detects that a non-obsolete event ei is 

missing (through sequence number), a NACK is sent back to the sending GSS. Upon 

receiving a NACK, the sending GSS either retransmits ei or transmits the most recently 

generated event ej that has made ei obsolete. 

3.7 Simulation Results 

We present here the most relevant simulative results among those we obtained.  

In particular we compare the different schemes by showing the outcomes of 

simulations having the AIDT parameter set to 30ms, 45ms, and 60ms, respectively. 

Having a low AIDT corresponds to a higher frequency in game event transmissions at 

each server and therefore in a higher congestion and computational workload.  

3.7.1 Simulation Assessment  

To evaluate our event processing strategy, we have created a mathematical model 

simulating a general Mirrored Game Server architecture comprising various GSSs 
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connected via diverse links over the Internet. As said, we assume that the events 

generated in the system can be totally ordered by exploiting a global notion of time.  
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Figure 3.5: The adopted configuration. 

 

Table 3.1: Sending GSSs involved in the simulations 

Number of  

Sending GSSs 
Corresponding GSSs employed 

4  GSS1, GSS2, GSS3, GSS4 

5 GSS1, GSS2, GSS3, GSS4, GSS5 

6 GSS1, GSS2, GSS3 GSS4, GSS5, GSS6  

7 GSS1, GSS2, GSS3 GSS4, GSS5, GSS6, GSS7 

 

Different numbers of GSSs have been simulated in our scenario. In order to permit a 

deeper analysis of the dynamics related to game event traffic and processing, simulations 

have focused on the packet receiving aspect of a single GSS, while the other GSSs are 

involved as game event transmitters. Fig. 3.5 depicts the adopted configuration of the 

network and shows the values assigned to the simulation parameters. GSS0 is the 
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receiving GSS and the others are the sending GSSs. We carried out several simulation 

experiments (30) with a number of sending servers varying in the range from four to 

seven. The involved GSSs, for each different configuration, are listed in Table 3.1.  

We have been inspired by the scientific literature on MMOGs to set the values of the 

network latencies among the GSSs [72]. Specifically, GTDs follow a lognormal 

distribution having the average and standard deviation values as shown in Fig. 3.5. If 

each client connects to the “nearest” GSS to bound the impact of the client-server latency 

on the total delay experienced by the game events, we can assume to have the client-

server latency portion already comprised in the network latency values mentioned above. 

Finally, the event generation rate at each GSS and the average event size (200 Bytes) 

have been chosen as inspired by the games literature and varies from a normal traffic 

situation to an intensely loaded one [73].  

We define as Average Inter-Departure Time (AIDT) the time that elapses, in average, 

between two subsequent game packet departures at a single server. The AIDT values 

have been used to generate the lognormal distribution of the event departures from each 

involved server. Various simulations have been run having the AIDT parameter set to 

30ms, 45ms or 60ms. The standard deviation was always equal to 10ms. The chosen 

AIDT values produce an amount of events as those typically generated by from 5 to tens 

of players for each given GSS. Based on these values, we have generated three diverse 

trace files containing 1000 events for each GSS. Each trace file also included the 

information needed to identify (correlated and) obsolete events. Where not differently 

stated, we have set to 90% the probability that an event makes obsolete preceding ones. 

This represents a realistic scenario for a vast plethora of possible games where critical 

(correlated) game events that cannot become obsolete have to be considered only 

sporadically, such as during collisions or shots, and may represent even less than the 10% 

of the whole set of game events.  

As a confirmation of this claim, an extensive study of players’ behavior on Quake 3 is 

presented in [76]. In that paper, a measure of the average number of kill actions per 

minute as a function of the median ping time between client and server is reported. Using 
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those measures we can provide a numerical explanation that demonstrates how 10% of 

correlated events and 90% of obsolescence probability may represent a realistic scenario 

for interactive MMOGs [81].  

Specifically, in [76] it is shown that when the 80% of players is located within 180ms 

of range from the server, the average of kill actions per minute varies in the interval from 

1.60 to 3.25. Considering the median of this interval (2.425) we obtain 0.04 kill events 

per second. With an AIDT of 60ms at client side [73, 77], 16.67 game events are 

generated every second. Therefore, the resulting percentage of kill events over the whole 

set of game actions amounts to just 0.24%. Pessimistically assuming that a kill event can 

be issued only after an average number of 40 correlated actions (e.g., various shots, 

movements of the character into the location where it will be shot or out of the position 

where it would have been shot) we get 9.6% of critical events. Therefore, 10% of 

correlated events and 90% of obsolescence probability represent a realistic configuration 

for online games simulations.  

Since real commercial games employ UDP as the transport protocol, we have adopted 

it too for our simulations [75]. Moreover, to circumvent the problems deriving from 

UDP’s unreliability, we have implemented an application level retransmission scheme 

based on NACKs (Negative ACKnowledgments).  

Our set of simulations can be subdivided into three main parts. First, we consider 

schemes that continuously fully preserves the game’s consistency. In this context, we 

demonstrate the efficacy of obsolescence-based schemes by comparing the outcomes of 

our proposed ILA-RED scheme with the ON-OFF mechanism (Interactivity Restoring as 

reviewed in Section 3.3) and the traditional OFF approach (having no discrimination of 

obsolete packets and no event discarding nor other algorithms to restore interactivity). 

Then, assuming a scenario involving a frenetically paced game where we can relax the 

consistency requirement, we evaluated ILA-RIO. Finally, aimed at assessing the 

potentiality of optimistic schemes coupled with obsolescence-based discarding 

mechanism, we compare OOS with OFF, ON-OFF, ILA-RED, and the traditional Time 

Warp (TW) scheme. 
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As to the algorithm, we have chosen to set w=1/8 in (3.1) in the attempt to make the 

algorithm able to filter out sporadic high GTDs, while being able to promptly react to a 

persistent decline of responsiveness. In the ILA-RED case, we have set parameters as 

follows: mino = 50ms, maxo = 150ms (equivalent to the GIT for the ON-OFF scheme) 

and Pmaxo = 0.2. Parameters in ILA-RIO were chosen as mino = 50ms, maxo = 100ms, 

Pmaxo = 0.2, minv = 150 ms (equivalent to the GIT for the ON-OFF scheme), maxv = 225 

ms and Pmaxv = 0.3. 

Choosing appropriate values for the above cited parameters is an important part of 

implementing ILA algorithm. The various phases, in fact, should take place in precise 

situations experienced by the game platform. In particular, phase 1 have to be activated 

when the delay between the generation of a player’s action and its execution on the 

screens provides the first perceivable symptoms of responsiveness degradation. Since 

phase 2 corresponds to dropping all the obsolete events, it should take action when the 

lag becomes annoying and low-performance determining for players. In case of fast 

paced games, the parameter of these two phases should be chosen in a further 

conservative way, in order to anticipate the triggering times for the discarding functions. 

Phase 3 represents the last resort to restore responsiveness in the system, whilst still 

having latencies that can be temporary tolerated by players. Finally, since entering in 

phase 4 amounts to reinitialize the game session, its entering threshold have to be chosen 

as the higher latency value at which users still can compensate the poor playing 

conditions by anticipating their moves. 

The various thresholds should be hence set differently depending on the played game 

or at list on the belonging game class (e.g. adventures, shoot/beat’em up, car racing, etc.). 

However, as rationale for our chosen values, scientific literature declares that a delay of 

50 ms is not perceived at all by players while at 150 ms (i.e., our GIT parameters) 

player’s performance results disturbed by the lag. Finally, 225 ms of delay could 

represent an upper bound for playable interaction [76, 77, 78, 79]. These limits hold for 

games like vehicle racing, first person shooters and fast shoot/beat’em-up, but can be 

augmented in case of strategic games (e.g. Starcraft, Age of Empire, etc.) [80].  
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The interactivity benefits attained by obsolete event discarding schemes can be 

analyzed in terms of delays experienced by game events before being processed. 

Therefore, we have compared the responsiveness of considered schemes, exploiting the 

following metrics: i) the number of events having a GTD larger than the GIT; ii) the 

cumulative function of the GTD values; iii) the average of the GTD values, their standard 

deviation, the minimum and maximum values. 

The fluency of the game evolution on players’ screens passes through having just a 

very limited number of discarded game events. We have hence compared the obsolete 

event discarding schemes by measuring: i) the number of obsolete events dropped; ii) the 

number of times all the pending obsolete events have to be discarded; iii) the average 

number of subsequent game events with GTD over GIT; iv) the total number of bursts of 

game events with GTD over GIT. 

Finally, some results about ILA-RIO and OOS have reported by comparing them 

against ON-OFF and OFF mechanisms, and against regular Time Warp, respectively.  

3.7.2 Obsolescence-Based Scheme vs Traditional One 

As predicted, the two obsolescence-based discarding mechanisms outperform the 

traditional one, especially with high traffic load at the servers. In fact, Fig. 3.6 compares, 

for ILA-RED, ON-OFF and OFF schemes, the percentage of events arrived at GSS0 with 

a GTD value larger than the GIT. This also represents the percentage of events that 

cannot be considered interactive.  

The cumulative function of the GTDs (Fig. 3.7) represents another tool proficient in 

evaluating the efficacy of ILA-RED and ON-OFF schemes. Indeed, the more the line is 

concentrated in the left side of the chart, the higher is the percentage of events having a 

GTD lower than a certain threshold. In particular, Fig. 3.7 depicts the cumulative function 

of the GTDs in a scenario considering seven sending GSSs, each one sending events to 

the receiving GSS0 with an AIDT of 30 ms. In this configuration, ILA-RED has 93.86% 

of events with a GTD less or equal than the GIT of 150 ms, ON-OFF hits the 89.40%, and 

OFF reaches only the 49.94%. 
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Figure 3.6: Percentage of events with GTD over 

GIT; AIDT = 30ms. 
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Figure 3.7: Cumulative function of the GTDs in a 

scenario with 7 GSSs; AIDT = 30ms. 

 

Table 3.2: Maxi, min, average and standard deviation of the GTDs (ms); AIDT = 30ms. 

4 GSSs 5 GSSs 6 GSSs 7 GSSs 
 

OFF 
ON-

OFF 

ILA-

RED 
OFF 

ON-

OFF 

ILA-

RED 
OFF 

ON-

OFF 

ILA-

RED 
OFF 

ON-

OFF 

ILA-

RED 

MAX 324 324 325 325 324 277 318 319 278 345 345 300 

MIN 88 88 86 88 88 88 87 88 88 93 93 93 

AVG 142 116 111 153 120 115 148 119 114 170 130 124 

ST.DEV 52 30 20 53 32 19 50 28 18 56 32 19 

 

These results are coherent with the values of the average and the standard deviation of 

the GTDs considering all the events transmitted. Table 3.2 shows sensible reductions in 

the values of both these metrics when ILA-RED or ON-OFF are implemented. Moreover, 

the two obsolescence-based discarding schemes result more resilient to an increased 

event generation activity within our mirrored game server architecture. This is evident if 

the case of seven sending GSSs is compared with the one employing only four sending 

GSSs. In this case, the average of the GTDs decreases from 19.72% (OFF) to 12.07% 

(ON-OFF) and 11.71% (ILA-RED). 
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3.7.3 ILA-RED vs ON-OFF: a Comparative Evaluation  

The proactive mechanism implemented by ILA-RED does not just slightly improve the 

already good performance achieved by the ON-OFF scheme. Indeed, Table 3.2 also 

shows that the standard deviation of the GTDs attained employing ILA-RED is always 

sensibly smaller than the one obtained utilizing ON-OFF.  The game actions flow more 

homogeneously on the screen thus providing a more pleasant game experience for the 

user.  

Not only obtains ILA-RED a slightly better interaction level with respect to ON-OFF, 

but the total number of discarded events to attain this positive result is definitively lower. 

Again, with the AIDT parameter equal to 30ms at each GSS, we can analyze the behavior 

of the compared synchronization schemes in the challenging situation of a stressed game 

platform. To this aim, Fig. 3.8 shows that the results in Fig 3.6 and Table 3.2 are obtained 

by ILA-RED at the cost of circa only 40% of the obsolete events dropped by ON-OFF. In 

essence, by anticipating some event drops, ILA-RED preempts the loss of an acceptable 

interactivity degree and smoothes the experienced GTDs.  

Discarding too many obsolete events can result in sudden jumps and temporary 

interruptions of the images/video flow on the player’s screen. Even interpolation 

experiences an increasing number of errors when gaps are too wide and the consequent 

jerky rendering could be very annoying for customers. Drops should hence be avoided 

whenever possible. Since ILA-RED needs less pervasive interventions to be effective, we 

can say that even if both schemes ensure responsiveness and consistency, ILA-RED 

outperforms ON-OFF and founds an efficient tradeoff between the percentage of obsolete 

events to be discarded and a fluent visual progression of the game. 

The positive effects gained by the probabilistic preemptive discarding mechanism are 

further highlighted by Fig. 3.9. The columns in the picture correspond to the number of 

times the employed scheme resorts to dropping obsolete events to restore the disrupted 

responsiveness. As it is evident from the great difference between the columns, the 

preventive probabilistic drop of some game events in phase 1 strongly reduces the 

number of times ILA-RED needs to discard all the obsolete packets.  
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Figure 3.8: Percentage of discarded events;  

AIDT = 30ms. 
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Figure 3.9: # of activations of phase ON and 

phase 2 for ON-OFF and ILA respectively; AIDT 

= 30ms. 

 

 

Figure 3.10: Average size of non-interactive bursts; AIDT = 30ms. 
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provide insight along this direction. In particular, Fig 3.10 shows the average number of 

consecutive game events with an instantaneous GTD value larger than GIT. Fig. 3.11, 

instead, shows the total number of non-interactive bursts obtained during our simulations. 
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almost equal average size of bursts of non-interactive events, the former allows only a 

reduced number of these bursts, thus confirming the benefits announced by Fig 3.8. 

 

 

Figure 3.11: Total Number of bursts of non-interactive events; AIDT = 30ms.  
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Figure 3.12: Percentage of discarded events;  

AIDT = 45ms. 
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Figure 3.13: Percentage of discarded events; 

 AIDT = 60ms. 
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intense, while the two synchronization mechanisms behave the same when plunged into a 

low stress environment. Simply stated, our hypothesis is that the larger the AIDT value, 

the more ILA-RED and ON-OFF become equivalent in terms of the number of dropped 

events required to maintain a proper interactivity degree. We intend to find the breakeven 

point in the performance curves between ILA-RED and ON-OFF. To this aim, we have 

run additional simulations with the lognormal distribution of the departing game packets 

from each server generated with the AIDT value equal to: respectively, 45ms and 60ms. 

 

Table 3.3: Max, min, average and standard deviation of the GTDs (ms); AIDT = 45ms. 

4 GSSs 5 GSSs 6 GSSs 7 GSSs 
 

OFF 
ON-

OFF 

ILA-

RED 
OFF 

ON-

OFF 

ILA-

RED 
OFF 

ON-

OFF 

ILA-

RED 
OFF 

ON-

OFF 

ILA-

RED 

MAX 331 331 331 331 332 331 315 315 281 338 331 332 

MIN 87 87 87 87 87 87 89 89 89 91 91 91 

AVG 139 120 120 148 128 125 145 128 125 164 139 135 

ST.DEV 45 24 22 46 27 22 43 27 20 49 27 21 

 

Table 3.4: Max, min, average and standard deviation of the GTDs (ms); AIDT = 60ms. 

4 GSSs 5 GSSs 6 GSSs 7 GSSs  
OFF ON-

OFF 

ILA-

RED 

OFF ON-

OFF 

ILA-

RED 

OFF ON-

OFF 

ILA-

RED 

OFF ON-

OFF 

ILA-

RED 

MAX 328 326 326 328 325 325 319 286 286 340 328 325 

MIN 88 88 88 88 88 88 87 87 86 92 91 90 

AVG 144 133 133 154 142 142 153 142 142 169 155 154 

ST.DEV 42 29 29 41 29 28 40 29 29 42 27 27 

 

With this greater AIDT value both the links and the GSSs result less congested. As a 

result, the difference in the number of discarded game events between ILA-RED and ON-

OFF progressively diminishes (see Fig. 3.12 and Fig. 3.13). With AIDT = 60ms, the 

number of discarded events is almost the same for the two synchronization schemes. At 

this point, however, also the large advantage against the OFF scheme has been sensibly 
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reduced (see Fig. 3.14 and Fig. 3.15); despite of this, better average and standard 

deviation of the GTDs still persist (see Table 3.3 and Table 3.4). 

This phenomenon has two clear explanations. First, having lower game event 

generation rates decreases both the latencies in the network and the queuing time at the 

receiving GSS, thus naturally improving the interactivity degree yet without any external 

intervention. Second, we have to remind that both ILA-RED and ON-OFF schemes rely 

on discarding obsolete events when the interactivity level decreases, without wasting time 

in processing them. Consequently, to be effective, these schemes require to have 

droppable obsolete events queued at the receiving GSS while the server is impacted by 

processing delays; this engulfment of events waiting for being processed is more likely to 

happen with lower AIDT values. 

 

3.7.5 ILA-RIO Evaluation 

We present some preliminary results related to the use of the ILA-RIO scheme to ensure 

high responsiveness even with fast paced games. In particular, Fig. 3.16 and Fig. 3.17 

refer to specific event trace configurations, respectively utilizing different probabilities of 

obsolescence among events. 

As observable (Fig. 3.16-a, Fig. 3.17-a), in both configurations the obsolescence-based 

schemes outperform again the traditional OFF method in terms of GTDs. Moreover, ILA-

RIO further diminishes the number of events that are featured with a GTD larger than the 

predetermined GIT w.r.t. ON-OFF. The game evolution fluency results improved as well 

since ILA-RIO greatly reduces the amount of dropped events required (Fig. 3.17-b). This 

difference disappears in Fig. 3.16-b; having a smaller probability of obsolescence (50%), 

in fact, reduces the number of available obsolescent packet that could, in case, be 

discarded. Thereby, both for ILA-RIO and for ON-OFF, even discarding all the obsolete 

queued events could still not be sufficient to promptly restore the required high 

interactivity degree with the considered intense traffic load. Indeed, this is exactly the 

case when dropping even valid events may become acceptable for fast paced games. 
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Figure 3.14: Percentage of events with GTD over 

GIT; AIDT = 45ms 
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Figure 3.15: Percentage of events with GTD 

over GIT; AIDT = 60ms. 

 

Finally, we evaluated the amount of valid game events dropped by our ILA-RIO 

approach. Table 3.5 reports the percentage of obsolete and valid events that are discarded, 

depending on the event trace. As expected, the amount of dropped valid game events 

diminishes as the percentage of obsolete ones becomes greater. This tendency is due to 

the fact that if an adequate number of obsolete events are available during the events 

exchange activity, then our scheme can exploit the drop of all these (obsolete) events to 

restore responsiveness when entering phase 2, with no need of resorting to valid ones.  

 

(a)   

Prob. of Obsolescence = 50%

0

10

20

30

40

50

60

%
 G

TD
 o

ve
r G

IT

OFF ON-OFF ILA-RIO

Prob. of Obsolescence = 50%

0

2

4

6

8

10

12

%
 D

ro
pp

ed
 E

ve
nt

s

ON-OFF ILA-RIO
   (b) 

Figure 3.16: Probability of obsolescence = 50%;  

(a) Event percentage having GTD > GIT; (b) Percentage of discarded events. 
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Figure 3.17: Probability of obsolescence = 90%;  

(a) Event percentage having GTD > GIT; (b) Percentage of discarded events. 

 

Table 3.5: Percentage of obsolete and valid discarded events in ILA-RIO. 

Obsolescence Prob. 50% 90% 

Obsolete 9,46% 13,64% 

Valid 0,16% 0% 

 

3.7.6 Optimistic Obsolescence-based Synchronization: Simulation  

To assess benefits on the provided interactivity degree attainable through the OOS 

approach, we compare it with OFF, ON-OFF, ILA-RED, and TW. In particular, we 

measure the percentage of game events arrived at GSS0 with a GTD value larger than 

GIT. To fully appreciate the results, we have to keep in mind that our experimental 

analysis also includes the computational cost paid for checking obsolescence and 

correlation, and to perform rollbacks when necessary. In particular, Fig. 3.18 – 3.21 

report the average percentage of GDTs above GIT, depending on the number of involved 

GSSs, as a function of the non-correlation probability. According to all experimental 

configurations, OOS outperforms the other schemes regardless of the number of sending 
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GSSs. It is also worth noticing that OFF and TW curves lie horizontal, as they do not 

implement any mechanism related to obsolescence and correlation.  
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Figure 3.18: Percentage of events with GTD over 

GIT; 4 GSSs 

Number of GSSs = 5 - AIDT = 45 msec
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Figure 3.19: Percentage of events with GTD over 

GIT; 5 GSSs 

Number of GSSs = 6 - AIDT = 45 msec
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Figure 3.20: Percentage of events with GTD over 

GIT; 6 GSSs 

Number of GSSs = 7 - AIDT = 45 msec
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Figure 3.21: Percentage of events with GTD over 

GIT; 7 GSSs 

 

Focusing on the amount of obsolete events that are dropped to maintain the 

interactivity degree within an acceptable value Fig. 3.22 – 3.25 shows how OOS reduces 

the number of discarded events in all the simulated configurations with respect to all the 

other schemes. This effect is derived from the fact that OOS’s strategy accelerates fresher 

event processing, thus diminishing the possibility for an event to become obsolete. 
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Needless to say, only schemes that are able to drop obsolete events are considered here in 

these figures. 
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Figure 3.22: Percentage of dropped events; 4 GSSs 
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Figure 3.23: Percentage of dropped events; 5 GSSs 

Number of GSSs = 6 - AIDT = 45 msec
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Figure 3.24: Percentage of dropped events; 6 GSSs 

Number of GSSs = 7 - AIDT = 45 msec
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Figure 3.25: Percentage of dropped events; 7 GSSs 

 

We measured the number of rollbacks needed to maintain the consistency of the game 

state by comparing the two considered optimistic synchronization algorithms: TW and 

OOS. Since a reduced number of rollbacks implies a higher interactivity degree, this 

represents a fundamental metric. Needless to say, OFF, ON-OFF, and ILA-RED never 

performs (nor need to) rollbacks as they are conservative schemes.  

In Fig. 3.26 – 3.29 we show the rollback ratio for TW and OOS. In simpler words, we 

measure the total number of rollbacks in the system over the total number of generated 
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events for various non-correlation probabilities. Each chart refers to a different scenario 

with a different number of sending GSSs. It is worth noticing that the TW curves lie 

horizontally, as standard TW does not gain benefits from obsolescence and correlation. 

Moreover, in all the considered configurations, OOS is able to outperform TW since it 

avoids to trigger the rollback procedure for obsolete events. 
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Figure 3.26: Rollback ratio; 4 GSSs 
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Figure 3.27: Rollback ratio; 5 GSSs 
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Figure 3.28: Rollback ratio; 6 GSSs 

Number of GSSs = 7 - AIDT = 45 msec
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Figure 3.29: Rollback ratio; 7 GSSs 

 

Finally, Fig. 3.30 – 3.33 report the average number of re-processed events within a 

single rollback. In general, OOS reduces this value with respect to TW since it avoids the 

re-execution of those events that become obsolete during the evolution of the game (and 

during the rollback). 
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Figure 3.30: Number of events re-processed per 

rollback; 4 GSSs 
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Figure 3.31: Number of events re-processed per 

rollback; 5 GSSs 
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Figure 3.32: Number of events re-processed per 

rollback; 6 GSSs 
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Figure 3.33: Number of events re-processed per 

rollback; 7 GSSs 

 

3.8 Real Experiment Results 

In previous sections, we presented results from an extensive set of simulations that has 

been run to demonstrate the efficacy of discarding obsolescence game events to preserve 

interactivity. Instead, in this section, we report on real testbed experiments that have been 

run by Ferretti et al. to compare one of the schemes utilizing the obsolescence notion 

against a traditional one, in a real context [185]. 



 

81 

3.8.1 Experiment Assessment 

The testbed was composed by three GSSs embodying a mirrored game architecture. One 

of them was placed in Bologna, Italy, another one in Cesena, Italy, and the third one was 

in Los Angeles. Average latencies for the two GSSs in Italy were in the order of 4 ms, 

whereas latencies from each of the GSSs in Italy and the one in California were in the 

order of 95 ms. Each server was made able to utilize the OOS scheme or the traditional 

TW. A periodic physical clock synchronization was taking care of maintaining the three 

servers on the same time evolution and minimize clocks’ drift. 

Clients connected to GSSs were emulated with an event generation rate following a 

lognormal distribution, as inspired by literature on games, and varying from a normal 

traffic situation to an intensively loaded one [73, 77]. Specifically, the AIDT was varying 

from 30 ms (intense game traffic) to 45 ms (moderate game traffic), with 10 ms of 

standard deviation. Each GSSs had 10 emulated clients connected which, following the 

approximation suggested in [146], generates an average game event size equal to 

200 Bytes. 

The probability that a given event is non-correlated to other events was varying from 

50% to 90%  [81]. A higher non-correlation probability entails a higher probability that a 

new event makes obsolete previous ones generated by the same players. 

3.8.2 Optimistic Obsolescence-based Synchronization: Testbed 

As for the simulative evaluations, even in this case, interesting metrics to evaluate the 

efficacy of compared schemes in supporting online gaming are: i) the amount of game 

events with a GTD higher than the GIT; ii) the number of time the rollback procedure has 

being activated; and iii) the amount of obsolete events which are dropped by the OOS 

scheme. 

Indeed, Fig. 3.34 and Fig. 3.35 report the average amount of events that experienced a 

GTD value higher than the GIT, for 30 ms and 45 ms of AIDT, respectively. It is evident 

that the OOS scheme performs better than Time Warp, ensuring a higher interactivity 

degree in all the considered settings. 
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This happens thanks to OOS’ discarding mechanism. Indeed, Fig. 3.36 and Fig. 3.37 

show the average percentage of obsolete events dropped at each GSS, with AIDT = 30 

ms and AIDT = 45 ms, respectively. As expected, the GSS located in Los Angeles drops 

a higher amount of game events, as it is affected by higher network latencies, being very 

far from both the other two GSSs, whereas GSSs in Italy are, at least, very close one 

another. It is worth noticing that in both charts, the number of dropped events initially 

grows with the percentage of non-correlation. This happens because the more the number 

of available events that become obsolete, the more each GSS is able to drop obsolete 

events to augment interactivity. Surprisingly, once surpassed a given percentage of non-

correlation probability, the number of dropped events decreases considerably. This is 

probably due to the fact that, with a high non-correlation (i.e., higher obsolescence) 

probability, OOS is able to anticipate the loss of interactivity; thus, game events are 

typically processed before they could become obsolete. Obviously, performances are 

better with a higher AIDT, since a slower pace of game event generation results in less 

transmissions and processing, and hence less causes for interactivity loss.  

A comparison among the average rollback ratios achieved by the two compared 

schemes is reported in Fig. 3.38 and Fig. 3.39. Specifically, values are computed dividing 

the total number of rollbacks over the total number of generated events. Since obsolete 

events are dropped during the event notification activity, the number rollbacks required 

by OOS is inferior to that of Time Warp. Yet, both optimistic schemes have to frequently 

resort to rollbacks even at high non-correlation probability.  

Finally, these results confirm those obtained thought the use of simulations, thus 

confirming the efficacy of resorting to obsolescence-based discarding mechanism to 

improve interactive gaming experiences. 
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Figure 3.34: Percentage of events with GTD over 

GIT; AIDT = 30 ms 

 
Figure 3.35: Percentage of events with GTD over 

GIT; AIDT = 45 ms 

 
Figure 3.36: Percentage of dropped events;  

AIDT = 30 ms 

 
Figure 3.37: Percentage of dropped events; 

AIDT = 45 ms 

 
Figure 3.38: Rollback ratio; AIDT = 30 ms 

 
Figure 3.39: Rollback ratio; AIDT = 45 ms 
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CHAPTER 4 

To Seek the Fairness by Way of Interactivity 
 

Christopher Columbus’s aim, when he sailed for finding Catai (ancient China) lands 

across the Atlantic Ocean, is perfectly described by the famous claim credited to him: 

“Buscar el Levante por el Poniente”, to seek the East by way of the West. We humbly 

take inspiration from his genius to synthesize our work in the title of this Chapter. The 

analogy is represented by the fact that the scheme we propose facilitates fairness by 

aiming at increasing the interactivity degree in MMOGs. 

We demonstrate how it is possible to take advantage of a reduced transmission time to 

magnify the efficiency of a local lag-type algorithm in ensuring fairness. This represents 

a very important result since it contradicts the general belief that either interactivity or 

fairness has to be sacrificed to achieve the other. 

4.1 Exploiting Local Lag Techniques 

As shortly discussed in Section 2.3.2, Local Lag and other similar algorithms have been 

proposed to ensure fairness (and consistency) among players in MMOGs [54, 78, 94, 

104, 105]. The idea behind this kind of approach amounts to introducing artificial delays 

in the display of both generated and received game events. These delays are appropriately 

chosen for each client and depend on their subjective client-server latencies. The aim is 

that of having each game event simultaneously displayed, after a total amount of time 

since its creation, on all the players’ screens. 

Not only does this help in maintaining fairness and consistency, it could also augment 

the playability of the game. Up to a certain level of injected delay, in fact, players could 

be more comfortable with a higher but fixed delay than with smaller but variable ones 
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[78]. In the former case, in fact, a player can adapt her/his actions and reaction times to 

consider also this fixed delay and achieve higher performance than in the latter situation. 

For instance, car race players will learn how to constantly anticipate the steering when in 

proximity of a curve; first person shooter players will learn how to aim a little bit ahead 

of their adversary’s position with respect to their moving direction; etc. 

Lag compensation can thus be proficiently employed to ameliorate the negative effects 

of latency on MMOGs. However, the amount of time used as a parameter for local lag 

generally corresponds to the longest transmission latency experienced by the most 

unlucky player of the game. In practice, this kind of approach increases game delays and 

may jeopardize interactivity as in some case the unlucky client may be connected very far 

away from its server and/or through a slow connection. 

Consequently, the efficiency and applicability of the local lag approach strongly 

depend on the network conditions and on the interactivity degree required by the game. 

Indeed, especially in the case of a highly interactive MMOG, servers should be optimally 

located to efficiently serve a large number of customers [76]. Yet, guaranteeing both 

interactivity and full fairness through local lag can sometimes be achieved only at the 

cost of impeding the access to some users whose connectivity is irremediably affected by 

large network delays.  

A tradeoff relationship thus exists among scalability (especially in terms of 

geographical dispersion of the players), interactivity, and fairness. According to this, 

interactivity and fairness are traditionally seen as incompatible requirements in MMOGs. 

Conversely, we claim now that upholding interactivity may be useful also to the aim of 

ensuring fairness. To demonstrate this, we have developed a novel mechanism named 

Fairness and Interactivity Loss Avoidance (FILA) [164, 165]. Our scheme can be divided 

into two complementary sub-components. The first one exploits the semantics of the 

game to drop superseded events and speed up the delivery of game events as seen in 

Chapter 3. The second one takes advantage of this reduced transmission time to magnify 

the efficiency of a local lag-type algorithm in ensuring fairness without compromising 

interactivity. 
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4.2 Achieving Fairness through Interactivity 

FILA can be thought of as comprised of two complementary parts. The first one, 

enforced among GSSs, takes substantial inspiration from the aforementioned ILA-RED 

scheme to speed up the delivery of “fresh” game events by dropping some events which 

have become obsolete. The second part takes advantage of this reduced transmission time 

to magnify the efficiency of a local lag-type of algorithm to ensure fairness. FILA utilizes 

(2.4) to determine the visualization time of a game event, thus providing fairness without 

compromising interactivity.  

To calculate the appropriate δ in (2.3), the OD should be determined for each player. 

For this reason, game events are marked at their creation with a generation timestamp and 

then sent to the destination: hence, they are orderable. Obviously, a global concept of 

time has to be maintained in the system. This can be achieved through a variety of 

solutions that enable the synchronization of GSSs’ physical clocks [67, 111], or by 

employing new technological synchronization devices such as GPS. Thanks to this, GSSs 

are able to monitor the ODs of their engaged players and make them available for the 

FILA algorithm.  

More in detail, the first part of FILA drops queued obsolete game events with a certain 

probability Pd when the average OD, namely avgOD, value increases putting at risk the 

interactivity of the system. The discarding probability Pd is directly proportional to 

avgOD and dependent on a constant Pmax. Instead, the value for avgOD, at iteration n, is 

computed through the low-pass filter showed in (4.1), where w is a parameter that 

determines how close the average follows the sample trend: 

 

 ).avgODsample(wavgODavgOD 1nn1nn −− −×+=  (4.1) 

 

More in detail, with FILA, all the game events are regularly processed and forwarded 

while avgOD is smaller than an alert threshold named tmin. When avgOD exceeds tmin, 

the GSSs drop obsolete events with probability Pd, with neither processing nor 
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forwarding them. Finally, if avgOD exceeds the subsequent tmax (>tmin) threshold, then 

Pd is set equal to 1 and all obsolete events waiting for being processed are discarded.  

This stabilization mechanism succeeds is reducing ODi(e) by impacting on qi(e). In 

fact, the time spent in queue by a certain event is diminished by the spared processing 

time of preceding obsolete events which have been dropped with neither processing nor 

forwarding them. Moreover, since only obsolete events are discarded, FILA fully 

maintains consistency in the game evolution [62, 109]. 

To explain FILA more in detail we use the clarifying help of Fig 4.1 which provides 

the graphical definitions for some terms utilized in our explanation: OD, GTD, and LHD 

(Last Hop Delay). 

 

 

IInntteerrnneett  

GSS GSS 

game event sent between players 

GTD LHD 

OD 

player player 

 

Figure 4.1: Delay definitions. 

 

First of all, it should be noticed that FILA performs its operations on the GSSs. This 

choice helps us in maintaining a simpler control of the exploited game platform. Under 

that circumstance, however, for each event e, GSSs can compute GTD(e) but not LHD(e). 

An estimation of LHD(e) is necessary in order to compute OD and utilize it in our 

algorithm. For this reason, each GSS continuously monitors the latencies to each of its 

engaged players and maintains a variable named λGSS. The value of this variable 
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represents the maximum among the latencies from the considered GSS to each of its 

connected clients (this set of clients is named C_GSS) and is calculated as follows: 

 

 
}.LHD{max iGSS_CiGSS ∈

=λ
 (4.2) 

However, we cannot let some irremediably delay-affected client to excessively impact 

on the calculations performed by our scheme. Utilizing, in FILA, the excessively high 

λGSS generated by some player connected very far away from the GSS, in fact, would 

result in very high sample (and avgOD) values with respect to GIT. In this case, FILA 

would increase the aggressiveness of its discarding function as perceived by all the 

players with no positive results: the “unlucky” player will still not be able to receive 

game events with delays below the interactivity threshold. For this reason, we need to 

consider a Delay Upper Bound (DUB) in order to limit the impact of “unlucky” players 

on its algorithm. To this aim, (4.3) provides the formula for a fundamental parameter 

utilized by FILA to handle the impact of LHD(e) on its algorithm: 

 

 
}.DUB,{min GSSλσ =

 (4.3) 

The usage of this parameter depends on the employed version of our scheme; to 

determine DUB we rely on a heuristic that dynamically computes its value based on the 

general network condition during the game. Its formula is as follows: 

 

 }.GTD{maxGITDUB −=  (4.4) 

where max{GTD} represents the largest among the GTDs experienced over all the 

connections between each GSS and the players engaged by the other GSSs. 

To compute DUB, each GSS has hence to periodically determine the GTD that 

features in average the slowest of its connections with players engaged by the other 

servers. Then, this value has to be communicated back to all the other peers in order to 

allow a global knowledge of the worst GTD endured by each GSS. Finally, the highest 
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among these maximum GTDs can be univocally determined by each of the GSSs and 

used to determine the global DUB in the system as shown in (4.4). 

The second part of FILA is simply in charge of equalizing the delay differences 

among players with a local lag-type scheme that appropriately computes the δ value 

shown in (2.3) so as to satisfy (2.4) whenever possible. We are going now to empirically 

demonstrate how the combination of phase one and two is effective in ensuring fairness 

and interactivity while allowing a scalable number of contemporary players. 

We compare the regular local lag (LL) mechanism against FILA. In particular, LL 

embodies the traditional local lag scheme with no discarding mechanism for obsolete 

events. Even in this case, however, as for all the other compared protocols, the algorithm 

is not allowed to introduce artificial delays if this would result in jeopardizing 

interactivity (i.e. )e(vt  cannot be set greater than )e(gt  + GIT).  

Focusing on FILA, we have set tmax = GIT and tmin < tmax. Moreover, the estimation 

of the LHDi(e) is performed through (4.2) and (4.3) and utilized to calculate the new 

sample upon every new event arrival as follows: 

 

 .)e(GTD)e(sample σ+=  (4.5) 

 

4.3 Simulation Assessment 

It is well known that MMOG service providers should appropriately position their game 

servers in such a way that their target player market would be located within a circle 

having 150-180ms of latency diameter [76]. Following this rule and aimed at creating a 

configuration able to factually support a highly interactive MMOG, we have simulated a 

constellation of five GSSs deployed across U.S.A. by choosing optimal market locations.  

Clients are supposed to be distributed all over the North American continent and 

connected through various access technologies that provide them with different access 

delays. We have focused our attention on the event receiving aspect of a single GSS 
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(GSS0), pretending that the other GSSs are sending events to it (without any loss of 

generality). 
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Figure 4.2: Game servers deployment. 

 

Inspired by literature [77], the GTD values were chosen based on a lognormal 

distribution whose approximate average was obtained by means of repeated runs of the 

ping application. More in detail, game events coming from clients connected to the 

sending GSSs (i.e. GSS1–GSS4) and traveling towards GSS0 experience average latencies 

as reported in Fig. 4.2, with a standard deviation of 10ms. Further, several scenarios were 

considered where the values of }LHD{max iGSS_Ci∈
 were chosen for each GSS within the 
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following set {25ms, 50ms, 75ms, 100ms, 125ms, 150ms}. This choice is justified by the 

consideration that clients should be located within a circle having a maximum latency 

diameter of 150ms. We assumed to have 10 clients connected to each GSS, engaged in a 

fast-paced game, and generating a new action every 300ms in average. This results in a 

flow of game events having 30ms of inter-departing time. Finally, the average game 

event size (200 Bytes) was inspired by literature about games as well [17]. 
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Figure 4.3: Interactivity and fairness improvement (left) and dropped events (right) with GIT=150ms and 

AIDT=30ms. 
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Figure 4.4: Interactivity and fairness improvement (left) and dropped events (right) with GIT=200ms and 

AIDT=30ms. 
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Focusing on the parameters in the FILA algorithm, we have set w = 1/8 for all the 

simulations. The alert threshold tmin was equal to GIT – 100ms and the probability that 

an event makes obsolete preceding ones was set to 90%. This represents a realistic 

scenario for a vast plethora of possible games (e.g. adventure, strategic, vehicle race, 

flight simulator, etc.), where most of the events are just independent movements. 
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Figure 4.5: Interactivity and fairness improvement (left) and dropped events (right) with GIT=250ms and 

AIDT=30ms. 
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Figure 4.6: Interactivity and fairness improvement (left) and dropped events (right) with GIT=300ms and 

AIDT=30ms. 
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Each experiment was identically replicated to compare the outcomes of FILA against 

the regular LL algorithm. In [104], Zander et al. demonstrated that there is a statistically 

significant difference between the mean kill rates of player groups which are affected 

from diverse client-server latencies. In essence, lower latencies results in higher mean kill 

rates and thus in unfairness. Coherently, we have chosen to evaluate as a performance 

parameter the percentage of events that were delivered by GSS0 to all of its players in 

time to be contemporary visualized before the GIT expiration. We are hence considering 

the achievement of per-event interactivity and fairness. 

4.4 Results 

In this section, we demonstrate through results how FILA is able to ensure a higher 

interactivity and fairness degree if compared to the traditional LL scheme. Moreover, we 

provide a scalability evaluation of the two mechanisms showing how FILA improves its 

performance in situation with intense traffic and outperforms regular LL. 

 

4.4.1 Interactivity and Fairness 

Fig. 4.3 – 4.6 show, respectively, four different sets of experiments, obtained varying the 

GIT from 150 ms to 300 ms. Each set was comprised of six different experiments and 

each experiment consisted in the transmission of about 4000 game events which 

experienced, in the worst case, a maximal overall latency whose value is reported on the 

x-axis of each provided chart. The maximal overall latency represents the largest average 

latency experienced on the connection between any two players in the system. 

The leftmost graphs of Fig. 4.3 – 4.6 show the percentage of game events that GSS0 

was able to deliver to all of its engaged players in time to be simultaneously delivered 

with an OL lower than GIT. It hence represents the amount of events which satisfied 

condition (2.2) and were thus fairly processed by all the clients. 
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Figure 4.7: Interactivity and fairness improvement (left) and dropped events (right) with GIT=150ms and 

AIDT=20ms. 
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Figure 4.8: Interactivity and fairness improvement (left) and dropped events (right) with GIT=200ms and 

AIDT=20ms. 

As can be seen from these graphs, having a higher GIT improves the efficacy of both 

the evaluated schemes since larger local lags can be utilized. However, regular LL 

algorithm experiences a premature performance decrease when the maximal overall 

latency increases even if it is still far from the GIT. Instead, FILA ensures a good fairness 

degree for a larger set of overall latencies.  
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Results turn out to be even better if we focus only on those cases where the overall 

latency is not irremediably high with respect to GIT. Considering the configurations 

when the maximal overall latency is lower than GIT by 35 ms or more, we find that FILA 

always guarantees more than 86% of fairly delivered game events with less than 15% of 

dropped events. 
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Figure 4.9: Interactivity and fairness improvement (left) and dropped events (right) with GIT=250ms and 

AIDT=20ms. 
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Figure 4.10: Interactivity and fairness improvement (left) and dropped events (right) with GIT=300ms and 

AIDT=20ms. 
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Obviously, in those configurations where the maximal overall latency is close to (or 

surpasses) GIT, both schemes cannot overwhelm network conditions, thus achieving poor 

fairness (and interactivity). Even in this case, however, FILA behaves better than the 

regular LL algorithm.  

FILA pays these better results with the drops of some obsolete events. Specifically, the 

rightmost charts of Fig. 4.3 – 4.6 reveal the percentage of game events which were 

discarded by FILA. In all the considered cases, less than 20% of the game events were 

dropped and these events were exclusively obsolete ones. 

4.4.2 About Scalability 

In order to test the scalability of FILA and LL, we have decreased the AIDT to generate 

scenarios with a higher level of game traffic in the network. In particular, Fig. 4.7 – 4.10 

refer to configurations with 20 ms of AIDT, while Fig. 4.11 – 4.14 correspond to the 

cases where AIDT is equal to 10 ms. Again, in each figure we present the outcomes for 

four different GIT values: 150 ms, 200 ms, 250 ms, and 300 ms, respectively. The 

leftmost charts show the percentage of game events that were fairly and interactively 

delivered to all the clients engaged by GSS0. Instead, the rightmost ones reveal the 

percentage of game events which were discarded by FILA. 

As one can expect, the higher the game traffic, the lower the interactivity and fairness 

degree provided by LL. On the contrary, not only is FILA able to manage higher traffic, 

but its performance actually improves when the AIDT decreases. This surprising result 

has a simple explanation. Higher rates in game event transmissions result in larger queues 

at GSSs; these queues contain packets that have not yet been processed. This represenst 

an insurmountable problem for LL since qi(e) increases for all clients putting at risk the 

performance of the system without having any countermeasures. With FILA, instead, a 

larger queue of game events at a certain GSS represents also a resource. In fact, obsolete 

game events in queue can be discarded, thus reducing the qi(e) that a subsequent event e 

will experience in its traveling towards the various clients i. 
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Figure 4.11: Interactivity and fairness improvement (left) and dropped events (right) with GIT=150ms and 

AIDT=10ms. 
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Figure 4.12: Interactivity and fairness improvement (left) and dropped events (right) with GIT=200ms and 

AIDT=10ms. 

 

As a proof for our rationale, we can notice that the number of obsolete game events 

dropped by FILA increases when decreasing the AIDT. This is caused by higher avgOD 

values due to the increased traffic, but is also possible thanks to the presence of more 

game events in queue that FILA can exploit to drop obsolete ones. 
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Finally, analogously to the scenario with 30ms of AIDT, even when the AIDT is set 

equal to 20ms or 10ms, the percentage of discarded game events remains still reasonably 

small. 
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Figure 4.13: Interactivity and fairness improvement (left) and dropped events (right) with GIT=250ms and 

AIDT=10ms. 
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Figure 4.14: Interactivity and fairness improvement (left) and dropped events (right) with GIT=300ms and 

AIDT=10ms. 
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CHAPTER 5 

Wireless Home Scenario 
 

The market is currently heading toward houses where all the devices (e.g., computers, 

televisions, phones, intelligent appliances, etc.) will be wirelessly connected to the home 

network and possibly controlled by a single hub. This convergence point might be 

represented by the media center which will expand its features becoming, within few 

years, the engine of the home network and control the whole home connectivity. 

In this context, take, for example, a mid-class American household where a family of 

four people lives: two teenage kids and the hardworking parents. Each family member 

presumably owns several networked personal portable devices such as PDAs, MP3 

players, game consoles and digital cameras; all these being also connected to the home 

network.  

Based on the market trends, we consider that all those devices are wirelessly 

connected to a media center that controls the in-house media distribution and provides 

access to the Internet as well as to the cable television and companies providing external 

services (e.g., the alarm company).  

Moreover, we also assume that several family members will be accessing the 

household network at the same time according to their work or leisure needs. In 

particular, for the sake of our study, we consider the following family scenario:  

i) one teenager is watching a movie, streaming it from the media entertainment 

center;  

ii) the other one is playing with his latest MMOG against a crowd of buddies across 

the Internet;  

iii) the father is having a conversation through an IP based video-chat;  
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iv) the mother is downloading the last U2 greatest hit compilation from the Apple 

iTunes music store.  

In the above everyday life picture it is worth noticing that each of the aforementioned 

employed applications features different requirements in terms of network performance, 

as well as suffer from very specific problems all due to the best effort nature of the 

Internet transport protocols. 

These are as follows: 

• Video-Streaming. Streaming applications are affected by the jitter phenomenon 

while are resilient to some packet loss; a network designed mainly for video-

streaming should minimize the jitter. Buffering techniques can be applied to 

minimize the impact of variable network conditions. 

• Video-Chat and Massive Multiplayer Online Games. Both this applications 

require a high degree of interactivity, they greatly suffer from delays and packet 

jitter while may tolerate some packet loss, as we have seen for the case of 

superseded events. 

• iTunes Music download. A music download activity is typically performed using 

TCP, hence this type of application is resilient to jitter and delays but decreases 

the sending rate in presence of losses: it hence does not tolerate any error losses 

(losses that do not depend from congestion). 

5.1 Queuing Delay 

As represented by (2.5), several delay components determine the final delivery time of 

each game events and a significant one is represented by queuing time. Queues are built 

up along the path from sender to receiver when the arriving rate of events at a certain 

node is superior to the serving rate featuring that node. For instance, there could be 

routers along the path that receives more packets per unit time than the transmitting rate 

available on the outgoing link on which those packets have to be forwarded. Another 
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example is represented by Game servers that receive more game events per unit time than 

the rate at which they are capable of processing them. 

However, as recently demonstrated by measurements on a real OC48 link, the capacity 

of the Internet is generally larger than the aggregate bandwidth utilized by transiting 

flows [156]. Moreover, more and more providers are offering today guaranteed high 

speed connectivity to home customers [150, 151, 152, 153, 154, 155]. In essence, tools 

are offered to customers to verify that their connection is actually able to support as much 

traffic as the declared bandwidth. This implies that the bottleneck of the connection is 

generally located at the edge of the path connecting sender and receiver. 

Focusing on MMOG deployment, we can further support this assumption. In fact, 

revenues for MMOG providers come from the subscription payments of many satisfied 

customers. Therefore, every commercial MMOG is generally supported by adequate 

resources in terms of connectivity speed among, number and capability of their servers 

[97]. Moreover, we have just demonstrated in Chapter 3 and Chapter 4 how efficient 

synchronization policies among GSS can be put to good use to improve interactivity and 

fairness degree. 

However, even when the game network platform is able to bring game events to our 

house with delivery times within the GIT, still problems may arise in the last hop, which 

represents the bottleneck in terms of the available capacity for the connection. In fact, it 

might be the case when the Access Point (AP) receives packets at higher rates that it can 

forward them to destination. This can happen for several reasons as, for instance, the fact 

that the wireless medium allows the transmission of only one packet at a time and is not 

full-duplex as wired links.  

Moreover, interference, errors, fading, and mobility may cause packet losses which are 

handled by the MAC protocol through local retransmissions. These local retransmissions 

hide error losses to the TCP and are useful to increment the reliability of the connection. 

Without them, the TCP would misinterpret error losses as congestion evidences and 

reduce its sending rate decreasing its performance. On the other hand, retransmissions 

follows the well known back off mechanism by which an increasing amount of time is 
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utilized to determine whether a packet has been lost and hence retransmit it. The 802.11 

MAC protocol performs up to seven retransmissions of short packets (i.e., RTS/CTS, 

acks) and four retransmissions of long packets (i.e., data packets) [142]. This means that 

following packets have to wait in queue until the preceding one or one of its 

retransmissions finally reaches the receiver and the corresponding ack is successfully sent 

back.  

Finally, the same wireless connection might be shared by several devices and 

applications that increase the congestion level causing queuing. As it is well known, TCP 

connections have an aggressive behavior and continuously probe the channel for more 

bandwidth until queues are fully utilized and overflowed. In presence of persistent TCP 

connections it is hence very likely to happen that queues are steadily fully utilized, thus 

periodically slowing down the delivery time of each packet, and deteriorating the 

performance of time-sensitive applications such as MMOGs. 

At the same time large buffers helps TCP-based flows in keeping a high sending rate. 

This happens for several reasons but the most important ones are: i) the link successive to 

the buffer remains fully utilized for longer periods of time since there are (almost) always 

packets in queue, ready to be sent as soon as possible, and ii) traffic bursts can be more 

easily accommodated thus reducing packet losses and maintaining higher sending rates 

for longer periods of time. In essence, a tradeoff relationship exists among the per-packet 

delay and the total goodput achieved. The solution for this tradeoff depends on the queue 

size and on its utilization. 

As we demonstrate in Section 5.4.1, delay increments caused by TCP-based traffic 

could hit also tens of milliseconds, which represent a huge waste of time when trying to 

deliver game events within a GIT of 150ms. 

5.2 Proposed Solutions 

To solve the aforementioned problem we propose different possible solutions. In 

particular, we may divide them into two main classes depending on the correspondent 
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networking layer where they are implemented: transport layer solutions and MAC layer 

solutions. 

The former mainly regards exploiting some of the existing features of regular TCP or 

employing an alternative TCP version. The solutions belonging to this class does not 

necessary rely on the fact that the last link will be a wireless one. The latter, instead, 

involves modifications of the 802.11 MAC layer and thereby it is specifically intended 

for the wireless media [166]. 

For all the proposed solutions we investigate both their efficiency and factual 

deployability to expose pros and cons and conclude with a winner. 

5.2.1 IEEE 802.11 Parameters Setting 

The first proposal regards the utilization of more appropriate setting for parameters of the 

IEEE 802.11 MAC protocol. Parameters such as maximum number of retransmissions 

and buffer size were, in fact, decided in a period when the TCP-based traffic was largely 

predominant in the Internet. The main concerns for designers were hence reliability and 

high throughputs.  

Nowadays, UDP-based real time applications are becoming more and more popular 

hence demanding for low delays in packet delivery. This kind of applications are resilient 

to some packet loss whilst cannot tolerate delays in packets delivery. For this reason, it is 

preferable to drop a packet than to waist time in retransmissions. 

This obviously contradicts the initial assumption that reliability is the most important 

issue over wireless links. Therefore, 802.11 parameters should be modified to make it 

more sensitive towards real-time application needs. In particular, the number of local 

retransmissions could be diminished in order to find an efficient solution between 

reliability and low delays in packet delivery. 

In the same way, large buffer sizes at the AP help TCP connection to maintain large 

sending rate for longer periods and diminish the impact of burst traffic. On the other 

hand, to a larger buffer corresponds a longer queuing time experienced when the buffer is 

full, thus jeopardizing the performance achieved by time-sensitive applications. By 
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adjusting the buffer size to an appropriate value we can again try to find an optimal 

compromise between the needs of TCP-based applications and real-time applications. 

5.2.2 TCP Vegas 

TCP Vegas embodies one of the most cited alternatives to regular TCP New Reno in 

scientific papers. Its main point of interest is represented by the fact that TCP Vegas tries 

to avoid congestion instead of blindly increase its sending window until a packet loss 

occurs; it hence perfectly fits our needs for low buffer utilization. 

 

 

Figure 5.1: Pseudocode of TCP Vegas congestion control. 

 

Indeed, while TCP New Reno utilizes packet loss to determine network congestion, 

TCP Vegas is sensitive to end-to-end queuing delay. With TCP Vegas the sender 

monitors the difference between its expected rate and the actually achieved one. The 

difference is compared to a couple of parameters, namely α and β, to determine whether 

the congestion window has to be incremented or decremented (by 1) in the next RTT 

[143, 144]. The parameter α and β determine the amount of buffer each flow is permitted 

to occupy. 

More in detail, each TCP Vegas source estimates the number of its own packets in the 

buffer by monitoring the RTT. It then accordingly adjusts its congestion window to 

maintain its estimated rate between the two predetermined parameters α and β. If the 

difference between the expected rate and the achieved one is smaller than α, then the 

congestion window is increased by 1. If this difference surpasses β, the congestion 

 
  for every RTT 
  { 
      if (cwnd/RTTmin – cwnd/RTT) < α   then cwnd++  
      if (cwnd/RTTmin – cwnd/RTT) > β   then cwnd--  
  } 
   
  for every loss 
      cwnd := cwnd/2 
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window is decremented by 1. Finally, if the difference is comprised between α and β then 

the sender rate is in its stability region and no particular operation is performed.  

The pseudocode of the congestion avoidance algorithm of TCP Vegas is reported in 

Fig. 5.1 where cwnd is the congestion window. The pseudocode also shows that, in case 

of a packet loss, the congestion window is halved. 

If the buffer at the bottleneck is large enough then TCP Vegas reaches equilibrium. In 

this case, TCP Vegas flows should experience zero packet losses, a stable congestion 

window, and a queue which is proportional to the number of TCP Vegas flows present. 

Otherwise, it oscillates like TCP New Reno flows. Finally, TCP Vegas has been proven 

to fairly share the link with other TCP Vegas flows but it behaves too conservatively in 

presence of regular TCP flows (i.e., New Reno, Sack). Regular TCP, in fact, fully 

exploits the available buffer space and TCP Vegas interprets the consequent RTT trend as 

an indicator of excessive congestion, thus progressively reducing its sending rate to very 

low values [148, 196].  

TCP Vegas represents a very appealing transport protocol with interesting features 

such as the possibility to have some control on the amount of buffer utilized. This, in fact, 

results a fundamental property when having to efficiently deal with contemporary real 

time traffic. On the other hand, the dramatic efficiency decrease experienced when 

competing with regular TCP traffic makes unfeasible its factual deployment. 

5.2.3 Limited Advertised Window 

We are aiming at finding the best solution to the tradeoff relationship existing between 

TCP throughput and real time application delays. Moreover, the two types of traffic 

should be able to coexist without interfering each other and the employed solution should 

be easily and factually deployable. 

Starting from the last point, i.e. the deployability, it is evident how a technique that 

would exploit existing features of the already utilized protocols could be easily 

implemented in a real scenario. Moreover, we deem that an optimal tradeoff between 

throughput and low delays could be achieved by maintaining the sending rate of the TCP 
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flows high enough to efficiently utilize the available bandwidth but, at the same time, 

limited in its growth so as to not utilize buffers.  

 

time

cwnd

pipe size
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regular cwnd

time
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pipe size
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Figure 5.2: Comparison between regular and limited sending windows. 

 

In this way, in fact, the throughput is maximized by the absence of packet losses 

which would halve the congestion window, while the delay is minimized by the absence 

of queues.  

To better understand how limiting the congestion window could guarantee the same or 

even a higher throughput with respect to utilizing regular TCP, we show in Fig. 5.2 a 

typical saw tooth shaped sending window of a regular TCP and overlap it with a limited 

one. As it is evident, the latter is more stable since it does not use the buffer at the 

bottleneck link and consequently experiences no losses. The minus signs in the chart 

represent situations in which the regular congestion windows provides TCP with a 

sending rate which is inferior to that guaranteed by the limited congestion window, while 

the plus signs represent the inverse situation (generally accompanied by having packets 

queuing on the buffer corresponding to the bottleneck link). If the upper bound for the 

congestion window is appropriately chosen, the balance between the plus and minus 

signs will guarantee to the limited congestion window an equal or even superior final 

throughput with respect to the regular congestion window, whilst avoiding queuing 

delays.  
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To achieve this desirable result we need first to address two important issues: how to 

determine an appropriate upper bound and how to apply it in practice to the sending 

window. 

Regarding the first point, the most appropriate formula can be derived from the two 

main goals we want to achieve: i) full utilization of the available bandwidth and ii) no 

queue delays. Real time traffic generally exploits UDP and this transport protocol has no 

congestion control mechanism. Some smart applications, however, implements some sort 

of congestion control at the application layer [158, 159]. In any case, to avoid queue 

delays, the aggregate bandwidth utilized by TCP flows cannot exceed the total capacity 

of the bottleneck link diminished by the portion of the channel occupied by the 

concurrent real time traffic.  

In essence, the maximum sending rate for each TCP flows at time t, namely 

TCPubrate(t), is represented by: 

 

  
)t(TCPflows#

))t(UDPtrafficC()t(TCPubrate −
=  (5.1) 

 

where UDPtraffic(t) represents the amount of bandwidth occupied by UDP-based traffic 

at time t, #TCPflows(t) is the concurrent number of TCP flows, and C corresponds to the 

capacity of the bottleneck link. 

The second issue we need to address is how to practically employ this formula in order 

to have it working in a real scenario. This means i) determining an effectively deployable 

way to utilize it with the current state of the art of the Internet, ii) identifying the location 

for its implementation, and iii) proposing a method to compute the value of the various 

variables. 

To solve the first issue, we have to limit the required scope of intervention since 

modifying the whole Internet in order to run our scheme would obviously not be a 

feasible option. Moreover, it would definitely be better if we could make good use of 

some feature already present in the regular TCP. For this reason we propose to exploit the 

existing advertised window to limit the TCP sending rate. In fact, the actual sending 
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window is determined as the minimum between the congestion window and the 

advertised window. The advertised window perfectly embodies an upper bound to the 

congestion window and is already implemented in all TCP versions. By appropriately 

modifying it, we can achieve both efficiency and low delays. 

The advertised window is generally determined at the receiver; however, this could 

not represent the most suitable place for the modification we need to perform. Indeed, to 

determine the most appropriate value for the advertised window, we need a 

comprehensive knowledge about all the flows that are transiting through the bottleneck 

(i.e., the last hop links). Since all the flows have to pass through the AP, this represents 

the node where we could be able to implement our scheme. The AP may also coincide 

with the Media Center in a wireless home and the mechanism can take advantage of this. 

In particular, by spoofing the transiting traffic at the AP and/or utilizing the information 

hold by the Media Center, we can obtain all the information required. In any commercial 

Operating System it is possible to know which kind of connection is in use and which its 

nominal speed is just by looking at the status of the network interface. Through spoofing 

the channel or exploiting information known at the Media Center we can also infer the 

number of active TCP connections and the aggregate amount of current UDP traffic. The 

AP can hence easily compute the best TCPubrate(t) utilizing (5.1) and modify the 

advertised window included on the transiting acks accordingly. 

 

 
Figure 5.3: Simulated topology. 
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Table 5.1: Simulation configuration of the wired links. 

Node 1 Node 2 Physical Latency Link Capacity Queue Size 

W1 W0 10ms 100Mbps 140pkts 

W2 W0 20ms 100Mbps 140pkts 

W3 W0 30ms 100Mbps 140pkts 

W0 AP 10ms 100Mbps 140pkts 

 

5.3 Simulation Assessment 

In order to analyze in depth our scenario, we have utilized the well known NS-2 network 

simulator (version ns-2.28) [1]. Our adopted configuration of the nodes and links can be 

easily visualized by the means of Fig. 5.3. In particular, the house environment is 

represented by four mobile nodes named N1, N2, N3 and N4, and the Media-Center that 

incorporates also the AP. The MAC layer parameters have been set accordingly to the 

IEEE802.11g standard. The simulation outcomes showed us that we were able to reach a 

maximum achievable bandwidth of circa 20 Mbps. This represents a reasonable value 

over the declared 54 Mbps even in the real world [174].  

Focusing on the wired links, their one-way delays and capacities have been configured 

as listed in Table 5.1, while their queue sizes have been set equal to 140 packets. This 

value comes out by multiplying the longest RTT with the smallest link capacity on the 

path (i.e. the bottleneck) which is represented by the 20Mbps effectively available over 

the wireless link.  

As shown in Table 5.2 and Fig 5.4, several kinds of applications have been run over 

this network topology. In order to uplift the trustworthiness degree of the simulations, we 

have exploited real trace files for the video-stream and for the video-chat. Specifically, 

adopted trace files correspond respectively to high quality MPEG4 Star Wars IV for the 

movie, and two VBR H.263 Lecture Room-Cam for the video-chat, as can be found in 

[145].  
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Figure 5.4: In-home wireless scenario.  

 

Table 5.2: Simulated application flows. 

From To Flow Type Transp. Prot. Start End 

AP N0 Video-Stream UDP 0s 180s 

W1 N1 Online Game UDP 45s 180s 

N1 W1 Online Game UDP 46s 180s 

W2 N2 Video-Chat UDP 90s 180s 

N2 W2 Video-Chat UDP 91s 180s 

W3 N3 FTP TCP 135s 180s 

 

The parameters characterizing the game-generated traffic have been chosen following 

the directions provided by scientific literature in this field. Indeed, we can assume that the 

user in the house is engaged in one of the very popular first person shooter games, e.g. 

Quake Counter Strike, with other ~25 players, geographically away from each other and 

connected through the Internet. Hence, to model the traffic generated by this kind of 

MMOG (packet size and interarrival time), we can use some of the approximations 

suggested in [146], which are based on real game platform measurements.  

In particular, in our simulation game events have been generated at client side every 

60ms; while the server was transmitting game state updates every 50ms toward the client. 
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Moreover, packet size has been set to 42Bytes and 200Bytes, respectively for client and 

server generated game packets. 

Simulation experiments have been replicated to examine the effects generated by 

differently setting some of the parameters involved in the scenario. Table 5.3 lists all the 

variable parameters in the simulations; each combination of their possible values has 

been simulated. In particular we have tried several values for long packet retransmissions 

going from the regular 4 down to 1. The distance between the AP and the mobile device 

was either 5 or 10m which represent two realistic values for a normal house. The buffer 

size at the AP was set either equal to 50 or to 100 packets, as these are the two most 

common values in commerce.  

In particular, it is worth to conclude this discussion by mentioning our experimental 

choices with respect to the Shadowing Model, which is a realistic and widely utilized 

signal fading model available in NS-2. We followed the directions provided by the 

official NS-2 manual to represent a home environment partitioned into several rooms. 

Specifically, in our simulations, the path loss exponent of the Shadowing Model was 

always set equal to 4, while the shadowing deviation had alternatively the value of 7 and 

9. Transmitted signal attenuation grows with the increase of these parameters; we hence 

expect to face higher percentage of packet losses over the wireless media when setting 

the shadowing deviation to 9. 

However, where not differently stated, simulations were run utilizing some realistic 

default values for the simulative parameters listed in Table 5.3. In particular, we had:  

• buffer size at the AP = 100 packets; 

• distance between the AP and the mobile device = 10m; 

• max number of MAC retransmissions for long packets = 4; 

• shadowing deviation of the shadowing model = 7. 
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5.4 Experimental Results 

We present here the most relevant results from the extensive set of simulations we have 

run. In particular, we first demonstrate how concurrent TCP-based traffic can affect the 

performance of real time applications. We then compare the outcome with those of our 

proposed solutions. 

5.4.1 FTP Impact on Real-Time Entertainment Applications 

We have intentionally started the various application flows one after the other in order to 

notice the progressive impact of the successively incoming and overlapping traffic on the 

preexisting ones. In particular, we expect to witness increasing delays and jitter in the 

arrival time of packets as we augment the traffic level.  

However, the bandwidth requirement of the first starting applications in our scenario is 

well below the effectively available capacity of the IEEE802.11g wireless media. We 

have to wait until the FTP flow takes action, quickly saturating the channel and the 

queues along the path with its packets, before being able to clearly detect significant 

variations in the delays and jitter experienced by the various real time flows. This 

phenomenon is evident in Fig. 5.5 and Fig 5.6 where the mobile device was located at 

10 m from a standard IEEE 802.11g AP.  

 

Table 5.3: Changing parameters in the simulated configurations. 

Parameter Values Comment 

MAC data retransmissions 1, 2, 3, 4 default value = 4 

shadowing deviation 7, 9 medium, high 

user-AP distance (m) 5, 10 same room, different room 

MAC queue size (pkts) 50, 100 common default values 
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Figure 5.5: Example of online gaming interarrival delays. 
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Figure 5.6: Example of online gaming jitter. 

 



 

115 

 

Figure 5.7: FTP total throughput with different user-AP distances; 

 shadowing deviation = 9, MAC queue size = 50pkts. 

 

 

Figure 5.8: FTP total throughput with different shadowing deviation values;  

user-AP distance = 10m, MAC queue size = 50pkts. 
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5.4.2 Shadowing and Distance Impact to TCP Throughput 

The distance between the AP and the mobile device represents an important factor in 

determining the transmission quality, especially in a partitioned environment as a house. 

In fact, Fig. 5.7 shows that, positioning the mobile device at a distance of 5 m from the 

AP, the maximum throughput achievable by the FTP application is already obtained 

when utilizing only two retransmissions at the MAC layer. The quality of the 

transmission signal also depends on the impediments that it may encounter along its path 

between the AP and the mobile device.  

We compare now a house environment constituted by medium level partitions 

(parameter set to 7), with another one having more unfavorable partitions to wireless 

transmissions (parameter set to 9). Fig. 5.8 confirms our expectations by showing the 

throughput gain achievable in the first case. However, Fig. 5.8 also reports a case where 

having just two retransmissions at the MAC layer produces a higher total throughput than 

utilizing a greater number.  

This apparent paradox has instead a rational explanation. First, we should remember 

that IEEE802.11 has a limited buffer for transmissions and retransmissions. Second, the 

game and the video-chat applications generate some reverse traffic that shares path and 

networking resources with the acknowledgment (ack) packets generated by TCP as 

transport protocol under the FTP application. When the channel is fully utilized, some 

acks get lost and may cause timeouts.  

As a confirmation of this, Fig. 5.9 and Fig. 5.10 refer to the same configuration of 

Fig. 5.8 and present the congestion window, the slow start threshold and the bandwidth 

delay product of the underlying TCP flow when the maximum number of retransmissions 

at the MAC layer was set equal to 2 and 3, respectively. The two charts show a higher 

frequency of timeouts when a higher number of retransmissions at the MAC layer helps 

the traffic to reach a higher level. 
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Figure 5.9: Example of TCP congestion window; max MAC retransmissions = 2. 
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Figure 5.10: Example of TCP congestion window; max MAC retransmissions = 3. 
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Figure 5.11: FTP total throughput with different MAC queue sizes;  

user-AP distance = 10m, shadowing deviation = 9. 

 

 

Figure 5.12: FTP total throughput with different MAC queue sizes;  

user-AP distance = 5m, shadowing deviation = 9. 
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Table 5.4: Gaming flow jitter statistics; max MAC retransmissions = 4, shadowing deviation = 9. 

CONSIDERED PERIOD = [0 – 180]s 

Jitter 50 pkts 100 pkts 

maximum (ms) 33.740 108.36 

average (ms) 1.306 2.041 

variance 7.360 22.079 

pkts received 2658 2658 

CONSIDERED PERIOD = [135 – 180]s 

Jitter 50 pkts 100 pkts 

maximum (ms) 33.740 108.36 

average (ms) 3.056 5.229 

variance 16.665 49.470 

pkts received 899 899 

 

Table 5.5: Gaming flow jitter statistics; max MAC retransmissions = 3, shadowing deviation = 9. 

CONSIDERED PERIOD = [0 – 180]s 

Jitter 50 pkts 100 pkts 

maximum (ms) 31.091 44.632 

average (ms) 1.045 1.566 

variance 4.833 11.034 

pkts received 2654 2655 

CONSIDERED PERIOD = [135 – 180]s 

Jitter 50 pkts 100 pkts 

maximum (ms) 31.091 44.632 

average (ms) 2.292 3.835 

variance 11.502 24.431 

pkts received 896 897 

 

5.4.3 Appropriately Setting MAC Layer Parameters 

Finally we intend to highlight the impact of having different queue sizes and maximum 

number of retransmissions at the MAC layer on the performance of the various types of 
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traffic present in our considered scenario. Starting with the first parameter, Fig. 5.11 and 

Fig. 5.12 confirm that having larger queue size helps TCP in achieving higher 

throughputs. However, there is no difference in the achieved throughput when wireless 

losses, not recovered via MAC retransmissions, are frequent enough to keep the TCP 

transmission rates low and hence never have the possibility to utilize more than 50 queue 

slots.  

On the other hand, having large queues along the path may augment the total delay 

time experienced by packets. In fact, each packet waits in queue for a time which 

proportionally grows with the number of anterior packets already present in the same 

queue at its arrival. In case of intense traffic, queues tend to be congested and hence 

queuing delays may become a significant component of the global delays experienced by 

each packet. At the same time, having larger queue size on a link also spreads the range 

of possible queuing delays that packets may experience while traveling on that link 

(depending on the filling level of the queue). The resulting jitter strongly impact on the 

un performance achieved by real time applications and, in particular, by highly 

interactive applications as video-chats and MMOGs. Statistics of the aforementioned 

game flow jitter permit a clearer understanding of the performance disparity generated by 

diverse queue sizes. In particular, the upper part of Table 5.4 refers to the whole 

simulated duration of the MMOG application, while the rest of it considers only the 

period when the FTP application is running (from second 135 to second 180).  

In any case, the worst jitter is experienced when queues are steadily filled up by the 

FTP flow. To limit this problem we should find a way to barter part of the FTP 

throughput with lower queuing delays. This can be attained also by simply reducing the 

maximum number of retransmission at the MAC layer as it is evident by comparing 

Table 5.5 with Table 5.4  
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Figure 5.13: TCP congestion window; MAC max retransmissions = 4, buffer size = 50 packets. 

 

 40

 42

 44

 46

 48

 50

 52

 54

 56

 58

 60

 40  60  80  100  120  140  160  180

in
te

ra
rr

(m
se

c)

time(sec)

"interarr_game11"

 

Figure 5.14: Online game interarrival time; MAC max retransmissions = 4, buffer size = 50 packets. 
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Figure 5.15: Online game jitter; MAC max retransmissions = 4, buffer size = 50 packets. 

 

Even better jitter average and variance can be gained further diminishing the 

maximum number of MAC retransmission to 2. However, we advice against this choice, 

unless placing the device hosting the FTP application closer to the AP or in a house with 

a better shadowing deviation of the transmitted signal. Otherwise, the FTP throughput 

descends significantly as can be observed in Fig. 5.7, Fig. 5.8, Fig. 5.11, and Fig. 5.12.  

Summarizing, we can say that a more appropriate configuration of the IEEE802.11g 

than the traditional one would probably make use of a maximum number of 3 

retransmissions, thus guaranteeing a high FTP throughput whilst maintaining a low per-

packet delay and jitter. Moreover, when a unique queue is maintained for all the traffic 

flows, a small size (50 packets) should be preferred.  

In particular, for a scenario where the shadowing deviation is set to 7 and we have 

10m of distance between the AP and the mobile device, this configuration of the MAC 

layer parameters allows a TCP goodput of 55371 packets during the 45 seconds when the 
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FTP application was running. The corresponding congestion window, slow start threshold 

and bandwidth-RTT product is shown in Fig. 5.13. The interarrival packet time and the 

jitter for the online game flow traveling from the server to the client are reported in 

Fig. 5.14 and Fig. 5.15, respectively. 

5.4.4 Utilizing TCP Vegas in Place of TCP New Reno 

The ability of TCP Vegas in detecting queues and anticipating their further growth is 

evident in Fig. 5.16, which shows the congestion window when parameters are set as 

follows: α = 1, β = 3, γ = 2. This parameter setting corresponds to utilize a very small 

amount of buffer at the bottleneck. Consequently, both the queuing time and the achieved 

goodput will be reduced. The congestion window, in fact, results evidently limited by 

TCP Vegas algorithm and reaches very low values. The final goodput is obviously 

affected as well: 43950 packets acknowledged in 45 s instead of 46580 and 54137 

packets for a buffer size of 50 and 100 packets, respectively, for the regular configuration 

with TCP New Reno (as seen in Fig. 5.11).  
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Figure 5.16: TCP Vegas congestion window; α = 1, β = 3, γ = 2. 
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Figure 5.17: Online game interarrival time with concurrent TCP Vegas; α = 1, β = 3, γ = 2. 
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Figure 5.18: Online game jitter with concurrent TCP Vegas; α = 1, β = 3, γ = 2. 
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Figure 5.19: Online game interarrival time with concurrent TCP Vegas: α = 5, β = 10, γ = 8. 
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Figure 5.20: Online game jitter with concurrent TCP Vegas; α = 5, β = 10, γ = 8. 
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Figure 5.21: TCP Vegas congestion window; α = 1, β = 3, γ = 2. 

 

On the other hand, having no packets in queue helps real time traffic in reducing its 

per-packet delay. In particular, in Fig. 5.17 and Fig. 5.18 we show the packet interarrival 

time and the jitter for the online game flow going from the server to the client. The 

tremendous reduction for these values results evident from the charts: the jitter, for 

instance, never reaches 4.5 ms.  

With different values of its parameters, TCP Vegas becomes able to make use of more 

buffer space at the AP. This results in higher delays but, at the same time, higher 

goodputs. Indeed, the tradeoff relationship between the per-packet delay and the total 

goodput highlighted in Section 5.1 is perfectly embodied in TCP Vegas parameters. By 

setting the queue target size, those parameters could be seen as knobs able to move that 

tradeoff towards one direction or the other. As an example, if we set α = 5, β = 10, and γ 

= 8, then the total goodput raises to 59999 packets acknowledged in 45s. On the other 

hand, the packet interarrival time and the jitter for the online game flow going from the 

server to the client result increased as shown by Fig. 5.19 and Fig. 5.20. 
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Figure 5.22: Online game interarrival time with concurrent TCP Vegas: α = 3, β = 7, γ = 5. 
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Figure 5.23: Online game jitter with concurrent TCP Vegas; α = 3, β = 7, γ = 5. 
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The best tradeoff between goodput and real-time traffic jitter could be obtained for this 

configuration by using α = 3, β = 7, and γ = 5. For this set of parameters, in fact, the 

achieved goodput is still high: 57171. At the same time, the interarrival time and the jitter 

of real time traffic achieves very good results. Specifically, we can see the trend of the 

congestion window in Fig. 5.21, while the interarrival time and the jitter of online game 

packets going from the server to the client is depicted in Fig. 5.22 and Fig. 5.23, 

respectively. 

Unfortunately, TCP Vegas suffers from three main drawbacks which are well known 

in the scientific community. First, setting its parameters is not a trivial task and depends 

on many factors such as the buffer size at the bottleneck and the number of flows sharing 

that link. In particular, the last factor continuously changes and it is not possible to 

continuously adapt α, β, and γ. Second, TCP Vegas has been shown to be unstable since 

the contemporary presence of two poles [160]. Third, TCP Vegas behaves very poorly in 

terms of throughput when competing with the traditional TCP New Reno and TCP Sack 

(which support the large majority of the data flows in the current Internet) [148]. In 

presence of congestion, in fact, queues will be fully exploited by traditional TCP, while 

TCP Vegas will shrink its congestion window as it will sense continuous queue 

utilization.  

Since these problems and, in particular, the last one, TCP Vegas is not factually 

deployable in the Internet. We need hence to find an alternative solution that could be 

practically employed. 

5.4.5 Limiting TCP’s Advertised Window 

The link capacity actually achieved by a wireless connection is usually less than half of 

the nominal one. From tests run in our lab with a real 802.11b antenna we were able to 

get only a maximum of about 5Mbps over a nominal rate of 11Mbps. However this was 

the result of a tuning of the connectivity obtained by choosing the best positioning for the 

AP and the mobile device. Under regular circumstances, the factual transmission rate 

would be even less than that. We obtained coherent results also by simulating an 802.11b 

link on NS-2. 
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We have then simulated an 802.11g link on NS-2 and measured a maximum 

effectively achievable transmission rate of circa 20Mbps. We have enhanced our scenario 

by enabling the AP to modify the advertised window of returning acks accordingly with 

the bandwidth left available by the UDP-based flows as determined in (5.1). In particular, 

the average UDP-based aggregate traffic was computed through a simple low-pass filter 

and the new advertised window was determined every 200ms. 

In this configuration, various values for the parameter C in (5.1) have been tested and 

results are reported in Fig. 5.24. In this chart, we can see the average, the standard 

deviation and the maximum value for the delays experienced by the gaming application 

in its flows directed from the server to the client. Moreover, it also contains the 

throughput trend of the concurrent TCP flow. We do not report here the equivalent charts 

corresponding to all the other real time traffic flows since their results are coherent with 

those presented in Fig. 5.24 and do not need further explanation. 

As clearly shown, both the average and the standard deviation of the online game flow 

increase when we utilize higher values for C. This is obviously due to the fact that higher 

C values decrease the resilience to TCP bursts thus leading to some queuing at the AP. 

However, both the average and the standard deviation are very low for all C values and 

we could have the wrong impression that the online game flow always experience good 

performance. Unfortunately, this is not true as can be noticed by looking at the curve 

representing the maximum delay value experienced by packets traveling through the AP. 

Finally, Fig. 5.24 also demonstrates how the throughput decreases when C is set too 

low. Instead, if C is set higher than the maximum achievable throughput on the channel 

(in this case, 20 Mbps), then the sender will be allowed to send more packets than those 

bearable by the bottleneck link causing queuing delays. Moreover, at a certain point, 

some packets will overflow the buffer and the consequent packet loss will cause the 

reduction of the sending window and average throughput. 
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Figure 5.24: Statistical values when employing limited advertised window. 
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Figure 5.25: TCP behavior with limited advertised window and C = 18Mbps. 
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Figure 5.26: Online game interarrival time with concurrent TCP, limited advertised window, C = 18Mbps. 
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Figure 5.27: Online game jitter with concurrent TCP, limited advertised window, C = 18Mbps. 
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Setting C as 18Mbps (i.e., the 90% of the maximum achievable bandwidth) seems to 

be an appropriate choice able to guarantee both low queuing delays and high TCP 

efficiency. The advertised window exploited by the TCP flow is evident in Fig. 5.25, 

which also reports the congestion window, the slow start threshold, and the bandwidth-

RTT. We have to keep in mind that the TCP flow starts at second 135 of the simulation 

time and that the actual sending window is determined as the minimum between the 

advertised window and the congestion window. Said that, we can appreciate from the 

chart how the AP is able to keep track of the concurrent real time traffic and determine 

the most appropriate advertised window. In particular, for this configuration, the final 

goodput in terms of acknowledged packets over 45 s hits 58677, while the interarrival 

time and the jitter experienced by online game packets are maintained low as 

demonstrated by Fig. 5.26 and Fig. 5.27, respectively. 

Another interesting outcome shown by Fig. 5.25 is the proximity of the advertised 

window curve and the bandwidth-RTT product ones. The advertised window is prudently 

set close to the bandwidth-RTT product (i.e., the link pipe size) minus the aggregate UDP 

based traffic, and this difference also represents an estimate of the amount of real time 

traffic present on the channel. We have to remind that the real time traffic was simulated 

considering three simultaneously running applications of various type and exploiting real 

traffic traces. As it is evident from the chart, the difference between the two curves is 

relatively small if compared to the whole channel capacity thus demonstrating that real 

time applications generally do not have to face bandwidth shortage in an 802.11g 

wireless home, whilst they still have to deal with high and variable delays. 

5.4.6 Summarizing Results 

In order to compare the various proposed scheme we have summarized in Fig. 5.28 

statistical results obtained by: i) utilizing regular TCP New Reno on a standard IEEE 

802.11g MAC configuration (Regular) ii) appropriately setting the MAC layer 

parameters (MAC-Setting), iii) utilizing TCP Vegas in place of regular TCP (TCP-
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Vegas), and iv) Smart Access Point with Limited Advertised Window (SAP-LAW) 

implemented at the AP.  

Specifically, the MAC layer parameters for MAC-Setting were set with a maximum 

number of retransmissions equal to 3 and a buffer size of 50 packets at the AP. Instead, 

TCP Vegas was configured with α = 3, β = 7, γ = 5 and SAP-LAW considered C =  18. 

The compared statistical parameters are the average, the standard deviation and the 

maximum value of jitter experienced by online game packets entering the house (thus 

going from the server to the client) via the AP. Results obtained from the other real time 

applications running in the simulated scenario (i.e. video-stream and video-chat) are 

coherent with the showed ones; we hence skip to present their charts. Rather, we also 

show the average throughput achieved by the concurrent TCP connection. 

 

0
5

10
15
20
25
30
35
40
45

avg(ms) st_dev(ms) max(ms) thr(Mbps)

Statistical Parameters

Va
lu

es

Regular MAC-Setting TCP-Vegas TCP-LAW
 

Figure 5.28: Statistical values for the various schemes. 

As it is evident, employing TCP Vegas to support FTP traffic is the solution that 

would guarantee the best performance both in terms of lowest per packet delay and 

highest throughput. However, as anticipated in Section 5.2.2, TCP Vegas cannot be 

actually deployed in the Internet since it is not able to efficiently coexist with regular 

TCP flows [148].  
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Conversely, SAP-LAW could be easily implemented as it only requires the presence 

of slightly “smarter” APs. The modifications to the AP are very limited thus minimally 

impacting on their cost and, at the same time, our scheme can perfectly coexist with the 

current Internet and its employed protocols. Considering this and the remarkable results 

achieved, SAP-LAW represents the optimal candidate for enhancing wireless home 

scenarios. 
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CHAPTER 6 

Infrastructured Vehicular Scenario 
 

Wireless vehicular networks are soon going to be a reality, thanks to the factual interest 

shown by many Governments and to the market responsiveness when some new 

technology, both for work and entertainment, is offered today on cars. This suggest that 

in future we may have city streets and highways mostly covered by a web of APs 

specifically developed to provide connectivity between passengers in vehicles and the 

Internet.  

Applications run by users will be both regular ones that are every day already utilized 

from home/office PCs (e.g., email, web-surfing, chatting, online gaming, video 

streaming) and new ones specifically designed for the vehicular context (e.g., traffic 

safety, driving directions, location based data collection, parking lot payment).  

Clearly, such a scenario presents many novel issues that deserves scientific 

investigation. As our aim is that of supporting online gaming even for passengers 

traveling in cars, we are interested in evaluating how this scenario affects the 

performance of the considered application. Similar to the wireless home scenario 

presented in the previous chapter, we investigate the coexistence between elastic and 

real-time applications in infrastructured vehicular networks. We demonstrate how even in 

this challenging scenario, SAP-LAW represent a valid solution to find the best tradeoff 

solution between the throughput achieved by elastic applications and the per-packet delay 

of real-time ones. 
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6.1 Simulation Assessment 

We tested SAP-LAW through the NS-2 simulator in two different vehicular scenarios: 

urban and highway [122]. In both cases we collected results for a vehicle that was 

transiting under four AP, one after the other. The scenario was made more realistic by 

having other heterogeneous traffic sharing each considered AP. Results were collected 

both for the mobile node and for the other nodes that generate traffic in the network. 

More in detail, both in urban and highway configurations we considered a portion of 

road comprising four APs (AP0, AP1, AP2, AP3), seven wired nodes (W0, W1, …, W7), 

and seven wireless ones (N0, N1, …, N7). Among the wireless nodes, N0 is the one we 

monitored while it was driving under the various APs. For a comprehensive description 

of the simulative configurations, Fig. 6.1 shows the network topology for the urban 

scenario, whereas Fig. 6.2 regards the highway one. The former simulates a block or a 

group of blocks, with 1000 m between consecutive corners, around which a car is 

traveling. Instead, the latter corresponds to a strip-shaped highway with APs placed every 

1000 m. 

For both topologies, wired links have a 100 Mbps capacity, wireless ones have a 

variable capacity (depending on channel interferences) of circa 19 Mbps, all wired links 

directly connecting two APs have a 1 ms of propagation delay (they are only 1000 m far 

from each other), whereas all other wired links have a propagation delay of 20 ms. 

Buffers in the wired connections are set equal to 70 packets, which corresponds to the 

pipe size, i.e. the bandwidth-RTT product. The TCP’s advertised window was initially set 

to a very high value, 550 packets and stays there when regular TCP New Reno and AP 

are employed, whereas SAP-LAW dynamically and continuously set it to a value that 

corresponds to the maximum share of the bandwidth available for each TCP session. 

The vehicular wireless standard, the IEEE 802.11p, is still only a draft. It is hence not 

possible to create a NS-2 module that exactly replicates it. Therefore, as already done by 

other researchers [114, 190, 191], we have modified the IEEE 802.11 module available 

for NS-2 to behave following IEEE 802.11p’s specifications. In particular, the maximum 

(factually) achievable bandwidth was around 20 Mbps and the transmission range was 
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extended to reach up to 750 m. MAC layer buffers on the APs are set as equal to 

1000 packets as this is one of the most common value in off-the-shelf APs. 

In the simulates scenarios, wireless nodes continuously transmit and/or receive data 

through certain APs; the distance between these wireless nodes and their engaged APs is 

100 m. We preferred to have fixed wireless nodes connected to the various APs so as to 

have them continuously utilized by a predetermined background traffic. This allowed us 

to better appreciate the characteristics of SAP-LAW with respect to employing regular 

protocols and APs. Simulated flows are described in Table 6.1. 

Simultaneously, a mobile node (N0) is traveling along the road passing by the 

coverage area of each of the APs. In the urban scenario N0 has a speed of 14 m/s (about 

50 Km/s and 32 Mph), whereas in the highway scenario its speed is 33 m/s (about 

120 Km/s and 75 Mph). When N0 moves into the coverage area of a new AP, it connects 

with the new antenna and continues its operations through Mobile IP’s packet redirection. 

Needless to say, when SAP-LAW is employed, the new traffic conditions experienced on 

the considered AP will be taken into account by the algorithm. In different simulations, 

N0 runs different applications, specifically: a TCP-based FTP or a UDP-based online 

game. In the former case the data flow is mostly unidirectional, from a server in the 

Internet to N0 (plus ACKs on the returning path), whereas in the latter case the data flow 

is bidirectional, game events go from N0 to a game server in the Internet (e.g., a GSS) and 

game updates go from the server to N0. A summary of the configuration for the various 

simulations is reported in Table 6.2. 

Similar to the wireless home scenario (see Chapter 5), applications are simulated to be 

as close as possible to the real world ones. Indeed, even in this case the video streaming 

corresponded to the real trace file of the movie Star Wars IV in high quality MPEG4 

format [145]; frames of different sizes are hence sent with a 25 fps frequency. Online 

gaming traffic is inspired by real traces of the popular Counter Strike action game, and 

had i) a server-to-client flow characterized by an inter-departing time of game updates of 

200 Bytes every 50 ms and ii) a client-to-server flow characterized by an inter-departing 

time of game events of 42 Bytes every 60ms [146]. 
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As for parameter C in (5.1), three different values were tested: 18, 19, and 20 (Mbps). 

Clearly C value has an impact only on SAP-LAW’s performances, whereas it is not 

employed when regular protocols and APs are utilized. In the next sections, we identify 

the case with regular protocols and AP with the name TCP regular. Finally, for the sake 

of a better comprehension of simulation outcomes, we report in Table 6.3 movement 

details of node N0 in the urban scenario. 

 

 

Figure 6.1: Urban vehicular scenario [122]. 
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Figure 6.2: Highway vehicular scenario [122]. 

 

Table 6.1: Simulated flows. 

From To 
Home Agent 

(AP) 
Flow Type 

Transport 

Protocol 

W1 N1 BS0 FTP TCP New Reno 

N2 W2 BS0 Online gaming UDP 

W2 N2 BS0 Online gaming UDP 

N3 W3 BS1 Online gaming UDP 

W3 N3 BS1 Online gaming UDP 

W4 N4 BS2 Video streaming UDP 

W5 N5 BS3 FTP TCP New Reno 

W6 N6 BS3 Video streaming UDP 
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Table 6.2: Simulated configuration. 

Simulation 

ID 
Scenario 

Vehicle’s 

Speed 
From To 

Application on 

Vehicle 

Transport 

Protocol 

U-ftp Urban 14 m/s W0 N0 FTP TCP New Reno 

U-game Urban 14 m/s N0/W0 W0/N0 Online gaming UDP 

H-ftp Highway 33 m/s W0 N0 FTP TCP New Reno 

H-game Highway 33 m/s N0/W0 W0/N0 Online gaming UDP 

 

Table 6.3: Movement details for the traveling node. 

Time 
Location on 

Fig. 6.1 

Distance 

Traveled 

Engaged 

AP 
Description 

0 s A 0 m BS0 Simulation start 

3 s B 42 m BS0 Data transmission start 

36.8 s C 515 m BS0 Handoff BS0-BS1 

71.4 s D 1000 m BS1 Min distance from BS1 

107.5 s E 1505 m BS1 Handoff BS1-BS2 

142.8 s F 2000 m BS2 Min distance from BS2 

153.7 s G 2152 m BS2 Handoff BS2-BS3 

214.3 s H 3000 m BS3 Min distance from BS3 

224.6 s I 3144 m BS3 Handoff BS3-BS0 

285.7 s A 4000 m BS0 Min distance from BS0 

300 s J 4200 m BS0 Simulation end 

 

6.2 Experimental Evaluation 

In this section we assess the performance improvement achieved by employing SAP-

LAW in a scenario involving vehicular communications through infrastructure. Similar to 
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the wireless home scenario, the considered metrics are the final goodput achieved by 

elastic flows (FTP/TCP) and the jitter experienced by real-time ones (gaming/UDP). 

6.2.1 Elastic Flow Evaluation 

First, we show the case with the mobile node downloading a file through FTP/TCP while 

driving in the urban scenario. In particular, we present in Fig. 6.3 the congestion window 

for a TCP regular in the urban scenario. The well known saw-tooth shape is evident in the 

picture; those peaks often corresponds to a packet loss due to congestion. Yet, before 

loosing a packet, others where queued at the bottleneck buffer, thus generating queuing 

delays that affected simultaneous real-time applications. 

 

 

Figure 6.3: Congestion window for an FTP from W0 to N0 in the urban scenario; TCP regular employed. 
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Figure 6.4: Congestion window for an FTP from W0 to N0 in the urban scenario; SAP-LAW employed, 

C = 18. 

 

The same simulative configuration has been utilized also for Fig. 6.4; in this case, 

however, SAP-LAW was employed on all the APs. As a consequence, the advertised 

window is not static; rather, it adapts to the traffic condition through the currently 

engaged AP. The advertised window trend clearly shows when the N0 switch from BS0 to 

BS1 and from BS2 to BS3. In fact, since both BS0 and BS3 are also utilized by another 

FTP/TCP flow each, the advertised window (representing the available share of the 

bandwidth for a FTP/TCP flow) is doubled in the former case and halves in the latter. 

Moreover, it is evident how SAP-LAW is able to avoid congestion and losses. Indeed, 

the congestion window of the TCP flow keeps growing until a disconnection occurs. This 

does not mean that also the sending rate increased: the actual sending rate is always the 

minimum between the congestion window and the advertised window. By appropriately 

limiting the sending window, SAP-LAW is able to avoid queuing at buffers while 

maintaining a high utilization of the available bandwidth. The latter assertion is 

confirmed by Fig. 6.5 that presents the total goodput achieved by an FTP application run 
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on the mobile node N0. Indeed, the goodput achieved by SAP-LAW is slightly worse that 

TCP regular’s one, especially when considering cases C = 19 and C = 20. 

Even better results are attainable by static wireless nodes. For instance, Fig. 6.6 reports 

the congestion window of TCP regular of a FTP flow through which N5 is downloading a 

file from W5. Two things in this chart are particularly worth of interest. First, there 

clearly is no sign of disconnection and, second, during the interval of time 180 s – 220 s 

there is a visible reduction of the height of the congestion window peaks. In that period 

the same AP was shared also by the traveling N0 (running itself an FTP application).  

The same configuration is represented in Fig. 6.7 with the only difference that SAP-

LAW is employed in place or regular protocols and APs. As it is evident by the seamless 

growth of the congestion window, N5’s FTP/TCP flow does not experience any losses 

even when N0 moves to the same area sharing the same wireless connection. This is the 

result of the employment of SAP-LAW to have flows coexist in an efficient way, without 

affecting one another. Indeed, the actual sending rate of the TCP flow is the minimum 

between the congestion window and the advertised window, with the latter continuously 

adapted by SAP-LAW to traffic conditions in that AP; it is evident from the chart that 

when N0 start sharing the channel with N5, the advertised window of N5 (depicted in 

Fig. 6.7) is correctly halved.  
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Figure 6.6: Congestion window for an FTP from W5 to N5 in the urban scenario; TCP regular employed. 

 

 

Figure 6.7: Congestion window for an FTP from W5 to N5 in the urban scenario; SAP-LAW employed, 

C = 18. 
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Figure 6.8: Achieved goodput by an FTP flow going from W5 to N5. 

 

The resulting goodput attained by the two schemes can be compared with the help of 

Fig. 6.8. Even in this case, the difference between achieved utilizations of the channel is 

not significant. 

6.2.2 Real-time Flow Evaluation 

Focusing on the online game applications, Fig. 6.9 and Fig. 6.10 show the jitter 

experienced by the game flow directed from server W2 to the client N2. As stated in 

Table 6.1, this game session has to share the same wireless channel (and AP) with a 

FTP/TCP flow; this allows us to appreciate the different performances achieved by 

employing TCP regular (Fig. 6.9) or SAP-LAW (Fig. 6.10). Clearly, when competing 

with a FTP flow based on TCP regular jitter values are consistently higher during the 

whole simulation period, also achieving peaks of circa 50 ms of jitter, which represent a 

huge amount of time when trying to deliver game events in less than 150 ms from their 

generation. Instead, with SAP-LAW, the jitter continuously stay under 15 ms. Only in 

one case this does not happen: when the mobile node N0 enters into the coverage area of 

the same AP engaging N2. Yet, this single high peak reaches 33 ms whereas with TCP 

regular we can witness tens of peaks higher than 35 ms. 
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Even the reverse game flow, from the client to the server, shows a jitter improvement 

when employing SAP-LAW in place of TCP regular (compare Fig. 6.11 and Fig. 6.12). 

However, as the direction of this flow is less crowded, the difference is not that wide as it 

was in the previous case and it is mostly concentrated during the period the channel was 

shared also with the FTP/TCP flow of mobile node N0. 

In a highly mobile scenario as the one we are considering, the problem of inefficient 

coexistence among heterogeneous application becomes even more critical. Suddenly, a 

vehicle generating or receiving a great amount of traffic may move under the same AP 

engaging other nodes. The sudden increase of the traffic experienced by the AP may 

cause sudden congestion with consequent losses (particularly deleterious for elastic 

applications) and queuing delays (particularly deleterious for real-time ones). This 

problem is evident in Fig. 6.13 that shows the jitter for the online game application 

between W3 and N3 in the urban scenario with TCP regular employed. The AP engaged 

by N3 (BS1) is continuously engaged only by N3. Therefore, there is neither congestion 

nor jitter until N0 passes through the coverage area of BS1. At that point, the high 

FTP/TCP traffic transferred to N0 will suddenly increase congestion and queuing levels in 

BS1 causing very high peaks in delay and jitter (up to 54 ms) experienced by the online 

game. 

Instead, the use of SAP-LAW in place of TCP regular greatly improves performances 

as it is demonstrated by the corresponding Fig. 6.14 where the highest jitter peak is just 

6 ms. 

Aimed at testing the performance of SAP-LAW with different parameter setting we 

run simulations with different C values. In particular, we considered the urban scenario 

where the mobile node N0 travels at 14 m/s, passing by the various APs, and running an 

online game applications engaged with the (game) server W0. We replicated this 

simulative configuration and tested TCP regular, first, and then SAP-LAW with different 

C values, specifically: C = 18, C = 19, and C = 20. 
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Figure 6.9: Jitter experienced by an online game flow from W2 to N2 (from server to client) in the urban 

scenario; the AP is shared also with a FTP application; TCP regular employed. 

 

 

Figure 6.10: Jitter experienced by an online game flow from W2 to N2 (from server to client) in the urban 

scenario; the AP is shared also with a FTP application; SAP-LAW employed, C = 18. 
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Figure 6.11: Jitter experienced by an online game flow from N2 to W2 (from client to server) in the urban 

scenario; the AP is shared also with a FTP application; TCP regular employed. 

 

 

Figure 6.12: Jitter experienced by an online game flow from N2 to W2 (from client to server) in the urban 

scenario; the AP is shared also with a FTP application; SAP-LAW employed, C = 18. 
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Figure 6.13: Jitter experienced by an online game flow from N3 to W3 (from client to server) in the urban 

scenario; the AP is not shared with other applications (only with N0 sometimes); TCP regular employed. 

 

 

Figure 6.14: Jitter experienced by an online game flow from N3 to W3 (from client to server) in the urban 

scenario; the AP is not shared with other applications (only with N0 sometimes); SAP-LAW employed, 

C = 18. 
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The jitter values for the four cases are shown by Fig. 6.15 – 6.18, respectively. 

Clearly, SAP-LAW with C = 18, outperforms the other configurations; even if SAP-

LAW always shows better jitter values than TCP regular, with C = 19 and C = 20, 

differences are not that evident. This is due to the fact that bandwidth oscillation on the 

wireless channel was often closer to 18 Mbps than to higher values (i.e., 19 Mbps or 

20 Mbps). Therefore, with C equal or greater than 19 (Mbps), SAP-LAW is not effective 

in avoiding packet queuing and hence delay jitter. 

Outcomes of the highway scenario are analogous to those of the urban context. 

However, for the sake of completeness, we show the outcome of an experiment run with 

the highway scenario where the mobile node N0 is playing to an online game while 

engaged with the (game) server W0. Values depicted in Fig. 6.19 and Fig. 6.20 represent 

the jitter experienced by the online game flow going from the server to the client when 

utilizing TCP regular or SAP-LAW, respectively. In Fig. 6.19, it is clearly visible how 

the jitter consistently increases every time the mobile node passes by a congested AP. 

This effect is greatly smoothened by the ability of SAP-LAW in regulating the bandwidth 

that elastic applications are factually going to use. 

 

 
Figure 6.15: Jitter experienced by an online game flow from W0 to N0 (from server to client) in the urban 

scenario; TCP regular employed. 
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Figure 6.16: Jitter experienced by an online game flow from W0 to N0 (from server to client) in the urban 

scenario; SAP-LAW employed, C = 18. 

 

 

Figure 6.17: Jitter experienced by an online game flow from W0 to N0 (from server to client) in the urban 

scenario; SAP-LAW employed, C = 19. 
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Figure 6.18: Jitter experienced by an online game flow from W0 to N0 (from server to client) in the urban 

scenario; SAP-LAW employed, C = 20. 

 

To evaluate the performance of SAP-LAW with different parameters, also in the 

highway scenario, we have run simulations with various C values. In particular, we 

replicated the simulative configuration used for results shown in Fig. 6.20 but using 

C = 19 and C = 20. The jitter outcome for the former is depicted in Fig. 6.21, whereas the 

latter is shown in Fig. 6.22. As expected, to a higher value of C correspond a higher jitter, 

yet, always smaller than 14 ms. These lower values for the jitter, regardless of the 

employed C parameter, are due to two main reasons: i) the high speed of the mobile node 

in this scenario did not allow TCP flow (regardless whether considering TCP regular or 

SAP-LAW) to continuously reach high values of sending windows before moving out of 

the coverage area of a certain AP and ii) the interferences caused by the linear topology 

of the highway scenario creates less interferences among APs thus making them offer a 

higher bandwidth (20 Mbps was a bandwidth effectively often available). 
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Figure 6.19: Jitter experienced by an online game flow from W0 to N0 (from server to client) in the highway 

scenario; TCP regular employed. 

 

 

Figure 6.20: Jitter experienced by an online game flow from W0 to N0 (from server to client) in the highway 

scenario; SAP-LAW employed, C = 18. 
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Figure 6.21: Jitter experienced by an online game flow from W0 to N0 (from server to client) in the highway 

scenario; SAP-LAW employed, C = 19. 

 

 
Figure 6.22: Jitter experienced by an online game flow from W0 to N0 (from server to client) in the highway 

scenario; SAP-LAW employed, C = 20. 
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Statistical values for the jitter of the online game flow going from W0 to N0, in the 

urban scenario and in the highway scenario, are presented in Fig. 6.23 and Fig. 6.24, 

respectively; in both cases SAP-LAW (with C = 18) and TCP regular are compared. Even 

if the average is similarly low for both schemes, the variance and the maximum value 

achieved sensibly differs thus demonstrating how TCP regular would cause continuous 

interactivity loss for the online game even just considering delays generated on the last 

link of the connection, whereas SAP-LAW clearly helps in maintain a smooth flow of 

online game packets between the (game) server and the player.  
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Figure 6.23: Jitter statistics by an online game flow from W0 to N0 (from server to client) in the urban 

scenario. 
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Figure 6.24: Jitter statistics by an online game flow from W0 to N0 (from server to client) in the highway 

scenario. 
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Figure 6.25: Jitter statistics by an online game flow from W2 to N2 (from server to client) in the urban 

scenario; online game application from W0 to N0. 
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Figure 6.26: Jitter statistics by an online game flow from W2 to N2 (from server to client) in the highway 

scenario; online game application from W0 to N0. 

 

We also evaluated jitter statistics for the online game flow going from W2 to N2, in 

urban and highway scenarios, and with different applications running on the mobile node 

N0: an online game (Fig. 6.25 and Fig. 6.26) and an FTP (Fig. 6.27 and Fig. 6.28). All 

results are coherent with the preceding ones and does not need further discussion. 

However, for the sake of completeness, we show in Fig. 6.27 and Fig. 6.28 also values 

corresponding to the use of C = 19 and C = 20. Clearly, the approach that provides better 
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performance to real-time applications in a wider set of scenarios is represented by using 

SAP-LAW with C = 18. This option should be preferred even if at the cost of a slight 

reduction of the goodput achieved by concurrent FTP/TCP applications. 
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Figure 6.27: Jitter statistics by an online game flow from W2 to N2 (from server to client) in the highway 

scenario; FTP application from W0 to N0. 
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Figure 6.28: Jitter statistics by an online game flow from W2 to N2 (from server to client) in the highway 

scenario; FTP application from W0 to N0. 
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Finally, for a better comprehension of the jitter distribution achieved by the various 

protocols we show in Fig. 6.29, Fig 6.30, and Fig. 6.31 the cumulative function of the 

jitter distribution for the compared schemes. The considered scenarios are, in order: i) 

online gaming flow from W0 to N0 (Fig. 6.29), ii) online gaming flow from W2 to N2 with 

also node N0 involved in online gaming (Fig. 6.30), and iii) online gaming flow from W2 

to N2 with node N0 running an FTP application (Fig. 6.31).  

The difference among the various scheme is evident, yet we provide quantitative 

evaluation also A quantitative summary of these cumulative functions shown, in order, in 

Fig. 6.32, Fig. 6.33, and Fig. 6.34. In these charts the height of the columns corresponds 

to the jitter value associated to the 95% and 99% of the cumulative function. It is 

particularly interesting to observe that the 99% of game messages delivered when SAP-

LAW is employed experiences very low delay jitter; whereas the same cannot be said for 

TCP regular.  

 

 

Figure 6.29: Cumulative function of the online game jitter; game flow from W0 to N0, urban scenario. 
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Figure 6.30: Cumulative function of the online game jitter; game flow from W2 to N2, urban scenario; 

online game application from W0 to N0. 

 

 

Figure 6.31: Cumulative function of the online game jitter; game flow from W2 to N2, urban scenario; FTP 

application from W0 to N0. 

 



 

160 

 

Figure 6.32: Quantitative summary of the online game jitter; game flow from W0 to N0, urban scenario. 

 

 

 

Figure 6.33: Quantitative summary of the cumulative function of the online game jitter; game flow from 

W2 to N2, urban scenario; online game application from W0 to N0. 
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Figure 6.34: Quantitative summary of the cumulative function of the online game jitter; game flow from 

W2 to N2, urban scenario; FTP application from W0 to N0. 
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CHAPTER 7 

VANET Scenario 
 

VANETs represent an alternative to infrastructured vehicular communications for cases 

where an adequate coverage of APs is not present. Moreover, some applications, 

specifically designed for a vehicular utilization, could be more effective over an ad-hoc 

networking. This is the case  

Every year 6 millions of car accidents happens in United States. For instance, statistics 

of 2003 reports 230 billions of dollars of cars’ damages, almost 3 millions of wounded 

people and more than 40 thousands of victims [206]. As 90% of the causes are related to 

humans’ errors, it is not surprising that ad-hoc networking technology has been proposed 

to enhance driving safety. To this aim, we have developed mechanisms able to quickly 

broadcast, even through multi-hops, alert messages from a vehicle behaving abnormally 

to all following vehicles in a range of kilometres [200], or video triggering messages to 

activate a video stream from a camera in a certain geographical location back to a 

requesting vehicle (e.g., first responders travelling toward an emergency area) [197]. 

All these schemes made use of hello messages to have each vehicle able to compute its 

own transmission range and utilize it to reduce the number of hops, the totally transmitted 

messages, and hence the delay to cover the whole area-of-interest till destination. We 

show now how to apply these solutions to the case of online gaming; even better, only 

exploiting regular game packets with no hello message overhead. 

7.1 Fast Multi-Broadcast Protocol 

Fast Multi-Broadcast Protocol (FMBP) is designed to quickly deliver game events to 

players in a certain gaming car platoon [123, 124]. Specifically, FMBP is run by all the 
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vehicle whose passengers are engaged in the online gaming session and its main feature 

is that of allowing each vehicle to estimate its current transmission range both frontward 

and backward. Vehicles’ current estimations are included in every game event sent by 

those vehicles so as to have all other vehicles in range aware of them. This way, vehicles 

receiving broadcast game events can exploit this information to determine their position 

within the sender’s transmission range and to assign themselves a priority in becoming 

the next forwarder of the received message. Indeed, by putting this information to good 

use the number of hops (and the delay) that a game event will experience in its trip to 

destination can be reduced. Needless to say, backward or frontward estimation is used 

when the game event has to be sent backward or frontward, respectively. 

The rationale of this scheme is clearer with the help of Fig. 7.1, which shows a group of 

cars belonging to the same gaming car platoon. For simplicity, we suppose that cars in 

the figure are located 200 m apart and that the transmission range along the road is 

variable due to environmental conditions. Cars move from right to left and each circled 

area represents the backward transmission range of the leftmost vehicle in that area. 

Therefore, in Fig. 7.1 we have that car A has a transmission range of about 400 m, thus 

being able to reach within a single transmission hop cars B and C; then, car C has a 

transmission range of about 600 m thus being able to be heard directly by cars D, E, and 

F; and so forth. In this situation, if we pretend that car A sends out a game message that 

has to reach all vehicles in the gaming car platoon, then the optimal solution would be 

represented by having (only) cars C, F, and G forwarding it.  

However, this optimal solution can be generated only if cars can be aware of their 

position within the sender’s transmission range. Cars C, F, and G have to realize that they 

probably are the farthest car in the transmission range having heard the last message to 

realize that they have to take upon themselves the task of being the next forwarders. This 

is the reason for having a continuously updated transmission range estimation: by 

including this estimation in game messages. 
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Figure 7.1: Transmission ranges in a gaming car platoon: an example. 

 

7.1.1 Embedding an Efficient Transmission Range Estimator into Regular 

Game Message Exchange 

To compute transmission range estimations, FMBP does not need to generate any 

overhead message (i.e., hello messages [22, 114, 190, 191]); rather, it just rely on regular 

game event transmissions. In particular, each vehicle includes information about the 

range of transmissions it has been able to hear and, at the same time, it collects data 

included in game messages sent by other vehicles. Consequently, a vehicle can update its 

transmission range upon every time a game message is received from some other vehicle. 

More in detail, every game message generated by a vehicle also includes i) its own 

position, ii) its backward maximum distance (BMD) parameter, iii) its frontward 

maximum distance (FMD) parameter, iv) its backward maximum range (BMR) 

estimation, and v) its frontward maximum range (FMR) estimation. 

Parameters BMD and FMD represent the maximum distance from which another 

vehicle, backward or frontward respectively, has been heard by the considered one. 

Supposing that both cars F and K in Fig. 7.1 embodies the farthest cars, with respect to 

the considered one, from which the game message has been heard, then car G computes 

FMD = 200 m and BMD = 800 m. Data utilized to determine these parameters are kept 

by each vehicle only for a certain amount of time, after which they are considered 

obsolete to participate in the transmission range computation. 

Vehicles exploit the information about position, BMD and FMD present in game 

messages to compute their BMR and FMR. To this aim, both the longest distance from 
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which another vehicle has been heard sending a game message and the longest maximum 

distance advertised by heard game messages are employed. Specifically, BMR is 

obtained by considering only game messages coming from following vehicles; its value is 

computed as the largest among all their included FMD values and all distances from 

vehicles that generated them. Instead, FMR utilizes only game messages sent by 

preceding vehicles; its value corresponds to the largest among distances from preceding 

vehicles that have sent game messages and the BMDs advertised within. 

Indeed, each car can be both a sender and a receiver of game messages. Considering for 

simplicity only the case where triggering messages are always sent backward (the 

frontward case is just specular), we have the following purpose for information included 

by FMBP in each message: 

i) Game messages received from the front allow the receiver to compute FMD; its 

value will then be declared by the receiver in its game messages in order to claim: 

“This FMD value represents the farthest distance from which I have been able to 

hear another car in front of me”. 

ii) Game messages received from the back includes the sender’s FMD and position. 

They hence provide the receiver with information about the hearing capabilities of 

following cars. This is what the receiver needs to know in order to compute its 

BMR, which will then be sent along with the triggering messages as it were saying: 

“This BMR value is the maximum backward distance at which some car would be 

able to hear me”. 

Concluding with the example in Fig. 7.1, G will compute a BMR of 800 m and a FMR 

of 200 m. 

7.1.2 Game message propagation by leaps and bounds 

During a game session, each player continuously generates game messages the have to 

be sent from that player’s vehicle to all others, very quickly. As discussed, this can be 

achieved through a reduction of the number of hops a message traverses during its trip. 

This is exactly what we try to achieve with the use of BMR and FMR. 

More in detail, upon players’ actions, game messages are broadcast along the gaming 
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car platoon, both backward and frontward. Each of these messages contains information 

related to the game evolution also the sender’s position and its current BMR and FMR. 

To avoid cyclic transmissions back and forth of the same game event, each message also 

includes its propagation direction and a unique identifier. 

BMR and FMR represent how far a transmission is expected to go before the signal 

becomes to weak to be intelligible. Clearly, only BMR is utilized when a message is 

propagated backward, whereas only FMR is utilized when the message is propagated 

frontward. Indeed their values are used by vehicles on the message’s path to determine 

which one among them will have to take upon itself the task of forwarding it on the next 

hop. Since our aim is that of minimizing the number of hops to reduce the propagation 

delay, we want the farthest possible vehicle from the sending one to perform this task. 

Therefore, the longer the relative distance of the considered vehicle from the sender with 

respect to the transmission range estimation, the higher the priority of the considered 

vehicle in becoming the next forwarder. 

In particular, vehicles’ priorities to forward a game message are determined by 

assigning different waiting times from the reception of the message to the time at which 

they will try to forward it. This waiting time is randomly computed based on a contention 

window value, as inspired by classical backoff mechanisms in IEEE 802.11 MAC 

protocol [142]. 

If, while waiting, some other vehicle closer to the destination already forwarded the 

game message, all vehicles between the sender and the forwarder abort their countdowns 

to transmission as the message has already been propagated “over their heads”. Instead, 

all vehicles between the forwarder and the destination will participate to the “forwarding 

contest” for the next hop. Obviously, the larger the contention window, the more likely 

somebody else will be faster in forwarding the game message. We also want to point out 

that BMR and FMR values advertised in the game message are updated at each hop with 

the value computed by the forwarder. This way, on each hop a proper transmission range 

estimation is used, based on information related to that specific area. 

The contention window of each vehicle is measured in slots and varied between a 
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minimum value (CWMin) and a maximum one (CWMax), depending on the distance 

from the sending/forwarding vehicle (Dist) and on the advertised estimated transmission 

range, which corresponds to BMR if the message is directed backward, or to FMR if the 

message is directed frontward. The case for BMR is summarized by (5.2). 

 

 ⎥
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This scheme ensures that the closest vehicle to the destination among those within the 

transmission range of the sender/forwarder will be statistically privileged in becoming the 

new forwarder. For instance, considering the setting in Fig. 7.1, if G forwards the 

triggering message advertising a correct BMR of 800 m, then the contention windows 

computed by H, I, J, and K based on (5.2), will be 776, 528, 280, and 32 slots, 

respectively. Consequently, K is more likely to become the next forwarder of the game 

message and with a high probability the final forwarder-chain will coincide with the 

optimal solution stated in Section 7.1, i.e., A, C, F, and G. 

7.2 Simulation Assessment 

We report the outcomes of an extensive campaign of simulative experiments we run to 

test our FMBP scheme and compare it with other possible schemes inspired by scientific 

literature.  

In these experiments, the length of the vehicular network varies from 1 to 8 Km and 

vehicles with communicating capabilities are placed in average every 20 m, thus having 

from 50 to 400 vehicles that are involved in the transmission/forwarding process (even if 

not directly engaged in the online game session). Note that this does not imply that there 

were not other vehicles on the road with no communication capabilities or that refuses to 

act as relay for other vehicles’ transmissions; indeed considering the case of a freeway 

with multiple lanes, several vehicle densities are possible.  

Among vehicles with communication capabilities, a number of them, varying from 2 to 
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50 and uniformly distributed over the vehicular network, are playing among each other. 

This means that game events are periodically generated in these nodes and broadcast, 

even through multi-hop, to all other players in the network. Actually, different sending 

rates are considered to test how the system behaves in presence of different kind of 

games, from frenetic fast-paced games, to slower strategic games, i.e., 100 ms, 300 ms, 

500 ms, whereas the size of each game event was 200 Bytes, constantly [73]. The actual 

transmission range varies from 300 m to 1000 m in order to test extreme values that have 

been declared by the IEEE 802.11p developing committee [207]. 

Focusing on FMBP’s parameters, we have set CWMin and CWMax equal to 32 and 

1024 slots, respectively, as inspired by the standard IEEE 802.11 protocol [142]. Two 

different slot sizes have been compared: 9 μs, which corresponds to the value utilized by 

IEEE 802.11g [205] and 200 μs, which allows a larger time distribution of contention 

delays among communicating cars. In particular, in the latter case, we expect to witness a 

reduced number of collisions among game events even if at the cost of an increased total 

delivery time. 

In all of the experiments reported in Section 7.3, if not differently stated, the default 

configuration is represented by a vehicular network with 8 km between the first car and 

the last one, negligible width, about 300 m of factual transmission range (depending on 

the interference level), 50 simultaneous players sending out game events every 300 ms. 

We have compared our FMBP with a scheme that takes inspiration from [189] to work 

in a scenario with multiple game event transmissions. This scheme is similar to FMBP in 

that it utilizes (5.2) in the attempt of having the farthest node in the transmission range to 

become the next-hop forwarder. However, it differs from FMBP because it simply 

assumes to have the transmission range parameter in (5.2) constantly set to a 

predetermined value, rather than being able to dynamically compute it according to the 

factual channel conditions. Specifically, we name this scheme Static300 if it considers 

300 m as the transmission range parameter, and Static1000 if it uses 1000 m.  

Needless to say, Static300 and Static1000 represent the ideal scheme when the factual 

transmission range is indeed 300 m and 1000 m, respectively. In any other situation, the 
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utilization of a wrong parameter in (5.2) could result in performance degradation. Indeed, 

results in Section 7.3 also show that FMBP performs as well as the ideal Static algorithm. 

Prominent advantage of our approach, this result is achieved without requiring perfect 

knowledge of the network topology, but just employing the transmission range estimator 

we designed. 

7.3 Experimental Evaluation 

To compare the various schemes, we analyze their ability in quickly deliver online 

game events to players under various conditions. Our tests focus on game interactivity 

when the system scales in terms of network length, number of players, and game event 

sending rate.  

To this aim, we utilized the following metrics: i) average number of hops that a game 

event experiences to cover the whole gaming car platoon; ii) average number of slots that 

a game event cumulatively waits on forwarding vehicles before being transmitted on the 

next hop; iii) average number of transmissions game events require to cover the gaming 

car platoon; and iv) average transmission time required by a game event to cover the 

whole gaming car platoon; and v) the percentage of sent game events that reached all the 

players in the network. Whereas the first four metrics are related to the game 

interactivity, the fifth one is concerned with having all players watching a consistent 

game state evolution. 

For the chosen metrics, we considered only game events belonging to the worst case: 

those sent by the passenger within the car leading the gaming car platoon. Indeed, these 

messages experience the longest transmissions both in terms of hops and delivery time, as 

they have to cover the whole platoon to reach all engaged players. Instead, a game event 

generated by a player located in the middle is simultaneously forwarded frontward and 

backward through two replica messages that have to cover, in average, just half of the 

platoon’s length. 
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7.3.1 Network Length Scalability 

First, we evaluate the ability of FMBP in ensuring interactivity with diverse lengths of 

the gaming car platoon. To this aim, Fig. 7.2 – Fig. 7.5 present results for the four 

aforementioned metrics with respect to different length of the vehicular network and slot 

duration. 

 

0

5

10

15

20

25

30

35

1000 2000 4000 8000

Length (m)

H
op

s

200us
9us

 

Figure 7.2: Average number of hops required to cover the whole gaming car platoon; 50 simultaneous 

players utilizing FMBP, 300 ms of message generation interval for each player, 300 m of factual 

transmission range. 
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Figure 7.3: Average number of slots cumulatively waited at forwarding vehicles by a message that has 

to cover the whole gaming car platoon; 50 simultaneous players utilizing FMBP, 300 ms of message 

generation interval for each player, 300 m of factual transmission range. 
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Figure 7.4: Average number of transmissions that a single game event experience while covering the 

gaming car platoon; 50 simultaneous players utilizing FMBP, 300 ms of message generation interval for 

each player, 300 m of factual transmission range. 
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Figure 7.5: Average transmission time required to cover the whole gaming car platoon; 50 simultaneous 

players utilizing FMBP, 300 ms of message generation interval for each player, 300 m of factual 

transmission range. 

 

Obviously, the smaller the vehicular network is, the faster game event delivery results. 

Indeed, outcome values are generally proportional to the length of the vehicular network 

and Fig. 7.2 shows how the number of hops that game events have to traverse to cover 

the whole gaming car platoon is about 3-4 hops for each km, regardless of the vehicular 

network’s size and of the slot duration. This is coherent with the fact that the actual 

transmission range was around 300 m. 

The number of slots a game event has to wait before being forwarded on the next hop 
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also depends on possible collisions that forces vehicles to retransmit the game event even 

multiple times. This happens more often when the time width of a slot is very small, i.e., 

9 μs, as demonstrated by Fig. 7.3 and Fig. 7.4. Indeed, Fig. 7.3 shows that with 9 μs, the 

number of slots that a game event experiences in its path through the vehicular network is 

much higher than when 200 μs is employed; while Fig. 7.4 demonstrates that this is due 

to a higher number of transmissions or, in other words, retransmissions caused by 

message collisions. 

On the other hand, having time slots about 20 time smaller allows the 9 μs setting to 

still result in shorter total transmission time for each broadcast game event (see Fig. 7.5). 

Yet, 200 μs represents a better tradeoff among the requirements for limiting the number 

of message collisions and for having game events quickly covering the whole gaming car 

platoon. Indeed, it has to be said that all the reported total delivery times are low enough 

to be acceptable for many games, e.g., strategic games, which represent the majority of 

online games played by online gamers today [25]. If considering just fast paced games 

(e.g., first person shooters, car races), the only case where the average transmission time 

of the 200 μs configuration surpasses the 150 ms interactivity threshold is when 

considering long vehicular networks (i.e., 8 km). Therefore, it would be enough to limit 

the gaming car platoon to a shorter maximum length, for instance 4-6 km to employ the 

200  μs time slot.  

These outcomes and the need for conciseness encourage us in considering just the case 

of a 8 km long vehicular network for the tests reported in the rest of the paper. 

Finally, as the main advantage and contribution of our scheme is represented by its 

transmission range estimator, we evaluate in Fig. 7.6 its efficiency in terms of the amount 

of time required to dynamically compute the factual transmission range that is currently 

available on each vehicle. As expected, with higher game message generation rates, 

FMBP needs less time to compute the correct estimation. This is a logic consequence of 

the fact that the estimation is based on information about vehicles’ positions and 

“hearing” distances included in exchanged messages. Therefore, the more the message, 

the more the information received, and the quicker the correct estimation can be built. 
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However, all the evaluated configurations shows very little delay, 20 ms at most, which is 

a really encouraging value; it proves that our scheme is able to adapt itself extremely 

rapidly, which is a crucial feature in a highly dynamic scenario such as a vehicular 

network and with highly delay sensitive application such as online gaming. 
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Figure 7.6: Average transmission time required to cover the whole gaming car platoon; 50 simultaneous 

players utilizing FMBP, 300 m of factual transmission range. 

 

7.3.2 Player Scalability 

The simultaneous number of players that a game platform can support is important as it 

relates to higher revenues for game or network providers or just because humans are 

social being: “the more we are, the funnier it is”. Focusing on this aspect, we report in 

Fig. 7.7 – Fig. 7.10 results achieved by employing FMBP with a different number of 

simultaneous players, from just 2 to 50.  

As it is evident, results do not change significantly when increasing the number of 

players that are engaged in the online game. This resilience to a higher number of 

players, and hence to a more intense traffic on the channel, is obtained thanks to the 

ability of FMBP in limiting the amount of game events simultaneously “on air”. Indeed, 

each message is forwarded by only few vehicles and is quickly broadcast over the whole 

network, thus limiting the amount of time a message spend “on air” occupying shared 
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resources. Analogous results in terms of resilience to player scalability are obtained even 

when considering different vehicular network’s length. We hence omit to present them 

here as they would not bring any further information for our evaluation. 

Considerations expressed in the previous subsection about the different slot durations 

hold even in this series of tests. Indeed, the case with 50 players in Fig. 7.7 – Fig. 7.10 

corresponds to the case with 8 km of network length in Fig. 7.2 – Fig. 7.5, respectively. 

As an example, we report in Fig. 7.11 transmission times experienced by FMBP in the 

considered scenario, comparing two possible time slot sizes: 9 μs, and 200 μs.  
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Figure 7.7: Average number of hops required to cover the whole gaming car platoon; FMBP employed, 

300 ms of message generation interval for each player, 8 km long vehicular network, 300 m of factual 

transmission range.  

 

0

300

600

900

1200

1500

1800

2 10 20 30 50

Players

Sl
ot

s 200us
9us

 
Figure 7.8: Average number of slots cumulatively waited at forwarding vehicles by a message that has 

to cover the whole gaming car platoon; FMBP employed, 300 ms of message generation interval for 

each player, 8 km long vehicular network, 300 m of factual transmission range. 
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Figure 7.9: Average number of transmissions that a single game event experience while covering the 

gaming car platoon; FMBP employed, 300 ms of message generation interval for each player, 8 km 

long vehicular network, 300 m of factual transmission range. 
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Figure 7.10: Average transmission time required to cover the whole gaming car platoon; FMBP 

employed, 300 ms of message generation interval for each player, 8 km long vehicular network, 300 m 

of factual transmission range. 

 

Furthermore, we also evaluated the reliability of the FMBP by verifying the percentage 

of game messages sent by a vehicle are then received by all the other players in the 

gaming car platoon. To this aim, Fig. 7.12 shows that with 200 μs slot size, practically all 

the sent messages are received by all players. Instead, when employing a slot size equal 

to 9 μs, the reliability of the scheme depends on the amount of traffic in the network; with 

higher game message generation rate (one every 100 ms) the percentage of messages that 

are delivered to all players drops to 74%. 
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Figure 7.11: Transmission time trend for 50 players by messages that have to cover the whole gaming 

car platoon; FMBP employed, 300 ms of message generation interval for each player, 8 km long 

vehicular network, 300 m of factual transmission range. 
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Figure 7.12: Percentage of received game events that succeed in covering the whole gaming car 

platoon; 50 players with FMBP employed, 300 ms of message generation interval for each player, 8 km 

long vehicular network, 300 m of factual transmission range. 

 

7.3.3 Comparing FMBP with other Schemes 

We are aimed at comparing the performance of FMBP with those achieved by other 

possible schemes for game event broadcasting. As anticipated, we compare FMBP 

against Static300 and Static1000. The three schemes are clearly tested under the same 
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exact conditions: 8 km of vehicular network length, 200 μs of slot duration, 50 

simultaneous players, and 300 m of vehicles’ transmission range. Different generation 

rates for game events at each player have been considered. Specifically, game events 

were generated at each vehicle in the gaming car platoon every 100 ms, 300 ms, or 

500 ms.  
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Figure 7.13: Average number of hops required to cover the whole gaming car platoon; 9μs slot, 50 

players, 8 km long vehicular network, 300 m of factual transmission range. 
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Figure 7.14: Average number of slots cumulatively waited at forwarding vehicles by a message that has 

to cover the whole gaming car platoon; 9μs slot, 50 players, 8 km long vehicular network, 300 m of 

factual transmission range. 
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Figure 7.15: Average number of transmissions that a single game event experience while covering the 

gaming car platoon; 9μs slot, 50 players, 8 km long vehicular network, 300 m of factual transmission 

range. 
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Figure 7.16: Average transmission time required to cover the whole gaming car platoon; 9μs slot, 50 

players, 8 km long vehicular network, 300 m of factual transmission range. 

 

Outcomes for the considered metrics are presented in Fig. 7.13 – Fig. 7.16. The first 

property that emerges is represented by the fact that each of the three schemes achieves 

similar results with all the three considered message rates. Only with the highest message 

sending rate (100 ms of inter-departure time) we can observe a little degradation of the 

performance due to the increased congestion in the network. 

The second evident property is that FMBP always obtains better results than the other 

two schemes, even better than Static300 that is supposed to be the ideal scheme in a 

scenario with 300 m of transmission range. This exceptional result is not due to any 



 

179 

mistake. Rather, it is due to the fact that even if we have set the transmission range to be 

300 m, yet, the adopted wireless model realistically generates interferences as it would 

happen in real life; these interferences make the factual transmission range oscillate 

around 300 m. Whereas FMBP dynamically adapts to the changing transmission range 

conditions to maximize its performance, Static300 is not able to. 
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Figure 7.17: Average number of hops required to cover the whole gaming car platoon; 8 km long 

vehicular network, 50 players, 9μs slot, 1000 m of factual transmission range. 
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Figure 7.18: Average transmission time required to cover the whole gaming car platoon; 8 km long 

vehicular network, 50 players, 9μs slot, 1000 m of factual transmission range. 
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Figure 7.19: Percentage of received game events that succeed in covering the whole gaming car 

platoon; 8 km long vehicular network, 50 players, 9μs slot, 1000 m of factual transmission range. 

 

To complete our evaluation of FMBP’s performance with respect to Static300 and 

Static1000 we have compared them in a scenario with 1000 m of factual transmission 

range. The number of hops required to cover all the gaming car platoon is shown in 

Fig. 7.17. As expected, in this case Static1000 performs much better than Static300; this 

is due to the fact that with 1000 m of factual transmission range, Static1000 corresponds 

to the ideal scheme. Yet, without any predetermined knowledge, FMBP succeeds in 

properly estimating the transmission range for each vehicle and performs as Static1000. 

The chart also shows that, for all the compared schemes, there is no sensible difference 

determined by having more or less intense game message generation at each node.  

However, if we analyze also the actual transmission time required to propagate a 

message over the whole gaming car platoon, we notice that if the game application 

generates a message on each vehicle every 100 ms the total transmission time is 

considerably higher than the other two considered cases (see Fig. 7.18). 

This is clearly due to an excessive increment in the traffic on the wireless channel that 

causes collisions and time consuming retransmissions. Indeed, Fig. 7.19 confirms this 

assertion by showing that the case with 100 ms of generation interval for game messages 

is the only case with a low percentage of game messages delivered to all players. 

Finally, we have evaluated the impact of the dispersion of networking vehicles on the 
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system’s performance. Specifically, Fig. 7.20 shows the total transmission time when 

vehicles that participate in the generation or forwarding of game messages are placed 

every 20 m (as in all the preceding simulations) or every 80 m. Clearly, FMBP is the only 

scheme that is not heavily affected by a more dispersed set of networking nodes on which 

count on to forward the message. This is due to the fact that the simulative transmission 

range was equal to 300 m, with a factual one often around 280 m. of factual transmission 

range, having a car every 20 m corresponds to have the farthest car in the factual 

transmission range exactly at 280 m from the sender; whereas with 80 m of space 

between successive cars, the farthest one in the factual transmission the transmission will 

be located at 240 m from the sender. Therefore, Static300 and, in particular way, 

Static1000 will be utilizing a transmission range parameter wrong with respect to the 

factual one; whereas FMBP will adapt itself in virtue of its transmission range estimator, 

correctly computing 240 m. 
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Figure 7.20: Average transmission time required to cover the whole gaming car platoon; 8 km long 

vehicular network, 50 players, 300 ms of message generation interval, 9 μs slot, 300 m of factual 

transmission range. 
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CHAPTER 8 

Conclusion 
 

We are living in a world which is faster and faster spinning toward a continuous, 

ubiquitous, and seamless wireless connectivity that will involve even vehicular scenarios. 

Customers are more and more attracted by high quality entertainment applications, and 

mobility represents the next frontier for this kind of technology. On the other hand, real-

time applications require continuous connectivity and have stringent delays bounds. 

MMOG represents an exemplar and very interesting case study among the various 

entertainment applications that would be soon ubiquitously available. 

Several factors concur in creating a pleasant game experience for online players: high 

responsiveness, uniform view of the game state, and fairness represent the most important 

of them. We have hence analyzed these issues devoting particular attention to latency 

issues, since they represent the most crucial prerequisite in developing online games. We 

have addressed this problem from two standpoints: the server-to-server synchronization 

and the client-server communication in a congested wireless environment. Both home 

and vehicular scenarios have been considered and, for the latter, solutions for both 

infrastructured and ah-hoc connectivity have been proposed and evaluated.  

The main contributions of this Thesis can be summarized as follows: 

1. Synchronization mechanism for a mirrored game server architecture to support 

scalability, fairness, and interactivity by exploiting the semantics of the game.  

2. Smart AP able to make elastic (e.g., FTP/TCP) and real-time (e.g., games) 

applications coexist on the same wireless bottleneck without affecting the 

performance of one another.  



 

184 

3. Fast multi-hop broadcast scheme that exploits a novel transmission range estimator to 

quickly deliver game events to all players in a certain gaming car platoon.  

 

Through the development of these solutions, other non-technical but even more 

significant contributions, as they represent general paradigms are: 

1. Through our holistic solution for quickly synchronizing game servers, we 

contradicted the general belief that interactivity and fairness are antithetic objectives. 

Instead, with the practical example represented by our approach we demonstrated that 

it is possible to improve (also) fairness by aiming at interactivity. 

2. Scientific literature and networking manuals depicts UDP-based flows as harmful 

toward TCP-based ones as the former generally do not implement any form of 

congestion control, thus potentially being able to occupy the whole available 

bandwidth. Instead, we demonstrated that even the viceversa holds: the TCP-based 

flow can harm the performance of UDP-based ones as TCP continuously probes the 

channel for more bandwidth, thus eventually generating queues (delays) on the 

connection. 

3. Thanks to our transmission range estimator for VANETs, we have relaxed one of the 

most common, yet unrealistic, assumptions present in scientific papers related to this 

issue, which is that the transmission range is a constant for all vehicles known a 

priori: clearly, it is not. 

 

More in detail, in this Thesis, we have first developed a fast synchronization scheme 

for a hybrid architecture combining the scalability of peer-to-peer paradigm with the easy 

management of the client-server one. Our synchronization scheme uses a proactive event 

discarding mechanism, named ILA, to preserve responsiveness. The proposed mechanism 

relies on the concept of obsolescence and correlation to drop old game events at GSSs, 

thus accelerating the processing of fresher ones. We have shown results that demonstrate 
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the benefits attainable by employing our scheme in place of traditional ones. In particular, 

with a limited number of obsolete event drops, ILA is able to proactively guarantee a 

high interactivity degree also maintaining, in the ILA-RED version, full consistency. 

Following a holistic approach we have been able to further refine our synchronization 

mechanism to improve the degree of fairness experienced by players. We have named 

this upgraded version FILA and we have presented simulation results showing the 

improvements in terms of game events that were fairly and interactively delivered to 

destination with respect to traditional Local Lag schemes. 

To support engaged players in a wireless and even highly mobile scenario, we have 

proposed and evaluated solutions able to diminish queuing delays in congested wireless 

environments. In particular, we have devised SAP-LAW, an easily deployable scheme 

that exploits enhanced APs and the TCP’s advertised window to ensure both goodput 

efficiency and high responsiveness. The efficacy of our scheme as been evaluated for 

both a wireless home and an infrastructured vehicular network (urban and highway 

scenarios). 

Finally, as vehicular networks are still far from being supported by an epidemic set of 

APs specifically deployed to this aim, we have also investigated the scenario of online 

games played in a VANET. In this context, the best solution to propagate game messages 

is that of utilizing (multi-hop) broadcast; the longer the broadcast hops, the quicker all 

players will be reached by each game event. 

Our proposal for this issue is that of utilizing priorities so that when a car sends a 

game event, the farthest car in its transmission range will be the one that will take upon 

itself the task of forwarding it onto the next hop. We named our scheme FMBP and its 

more prominent feature is that of employing a novel transmission range estimator for 

vehicles that works in a distributed way, just exploiting game message exchange, without 

utilizing control traffic (i.e., hello messages). Through our FMBP, each vehicle becomes 

aware of how far each game message will go and is hence able to compute its own 

probability in becoming the next forwarder. 
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In conclusion, through a holistic approach that covers the game architecture both in 

the core Internet and in the wireless edges, we have designed and extensively tested a 

system that is able to maintain a high interactivity degree while achieving also fairness, 

scalability, and consistency. 

8.1 Future Work 

Both online gaming and vehicular networks represent interesting and quickly evolving 

topics. The combination of them certainly provides a fertile soil for the generation of an 

infinite number of possible extension to this work. 

Among the many possibilities, we elaborate on a few potential future studies of 

prominent interest for the scientific community and that we are already working on. 

First, good results in terms of low jitter and per packet delays could be obtained 

through the utilization of the IEEE 802.11e in place of the regular IEEE 802.11b/g [55, 

162]. The IEEE 802.11e defines different classes of traffic and, for each class, diverse 

configurations of the parameters permit the creation of priorities. These parameters, in 

fact, determine the various contention delays that packets have to experience before 

having access to the wireless medium. From the application point of view, video-chats 

and online games will belong to the highest priority class of traffic. Since video-stream 

applications could make use of buffering techniques, they could be featured with a 

medium priority level. Finally, TCP packets could have a low priority level in order to 

minimize the impact on real time traffic.  

It should be said that the IEEE 802.11e needs to have marked packets in order to 

classify them and it is not clear yet how to implement this functionality in a factually 

deployable way. Still, it would be interesting to compare the performance of this protocol 

with those of our SAP-LAW. We deem that not only SAP-LAW is more easily 

deployable, but it will probably achieve performance comparable with those of IEEE 

802.11e. 

Automatic IP address configuration in VANETs represents another challenging and 

almost unexplored issue. The importance of this problem cannot be overemphasized since 
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any application that involves communication between two or more nodes (even if 

vehicles) requires the presence of unique identifiers to deliver the data to the right 

destination. To solve this problem in a vehicular scenario, we have proposed a novel 

scheme that exploits the topology of vehicular ad-hoc networks and an enhanced DHCP 

service with dynamically elected leaders to guarantee reliable and fast address 

configuration [199, 201, 202]. It would now be interesting to evaluate this scheme with 

an online gaming application running on top of it to evaluate its factual utilization with 

online games. 

Finally, wireless mesh networks represent an interesting evolution of wireless 

architecture able to merge the quality of the infrastructure with those of ad-hoc 

connectivity. Mesh networks can be utilized to deliver services for a large variety of 

applications in personal, local, campus, and metropolitan areas. Unlike WLANs, mesh 

networks are self-configuring systems where each Access Point (AP) can relay messages 

on behalf of others, thus increasing the range and the available bandwidth. Key 

advantages of wireless mesh networks include ease of installation, no cable cost, 

automatic connection among nodes, network flexibility, discovery of newly added nodes, 

redundancy, and self-healing reliability. Moreover, they represents a hybrid architecture 

framework where we could join our SAP-LAW with FMBP and more. We are hence 

motivated in investigating performances, problems, and solutions that involves online 

games in this context.  
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