
On Maintaining Interactivity in Event Delivery
Synchronization for Mirrored Game Architectures

Claudio E. Palazzi(1,2), Stefano Ferretti(1), Stefano Cacciaguerra(1), Marco Roccetti(1)
1Dipartimento di Scienze dell’Informazione, Università di Bologna,

Mura Anteo Zamboni 7, 40127 Bologna, Italia
2Computer Science Department, University of California Los Angeles,

Boelter Hall, Los Angeles CA, 90095, USA
{cpalazzi, sferrett, scacciag, roccetti}@cs.unibo.it

Abstract—Online amusement applications, as distributed
multiplayer videogames and interactive storytelling, are gaining
increasing attention both from entertainment industry and from
scientific community. Providing a pleasant experience to players
requires a rapid delivery of game actions among the various
nodes in the network. A high playability degree should be
guaranteed independently of user’s location, utilized device (PC,
PDA, cellphone), type of connection (wired, wireless), and
number of contemporary players. To this aim, we have devised
an innovative approach to design the event delivery service for
networked multiplayer game applications. Exploiting the
semantics of the game, our scheme relaxes the ordering and
reliability properties, upholding the interactivity level while
preserving the game state consistency. The main contribution of
our work is to show the benefits in event delivery synchronization
obtainable employing, in this context, RED techniques borrowed
from networking queuing management.

Keywords-multiplayer computer games; online entertainment;
event delivery service; interactivity; consistency.

I. INTRODUCTION
Many years elapsed since Higginbotham’s tennis for two

appeared in the world (Brookhaven National Laboratory, a US
nuclear research lab in Upton, New York) as the first
videogame, in 1958 [1]. That non-commercial first experience
of interactive entertainment immediately gained a vast
popularity and traced the path for the horde of commercial
descendants that have invaded arcades and homes till our days.
Nowadays, two main reasons above the others attract an
increasing number of researchers and developers toward
electronic amusements. The first one is the very high level of
revenues generated every year, which surpasses even the
cinematography industry [2]. The second reason, but clearly
not less worthy, is represented by the correlation between
problems that emerge in developing innovative game
experiences and those typical of various other “conventional”
research fields in Computer Science. Under this aspect, it is of
particular interest to analyze one of the most innovative
challenges in electronic amusements: on-line entertaining
applications. Specifically, we concentrate on videogames in
Internet, potentially engaging a very elevated number of
players: namely, Massive Multiuser Online Games (MMOGs).

Critical issues regarding MMOGs, as well as distributed
interactive cyberdrama generation, have identical counterparts
in Distributed Interactive Simulations and in Networked
Virtual Environments [3, 4, 5, 6, 7, 8, 9, 10]. Indeed, creating
an enjoyable online game entertainment requires the
convergence of solutions belonging to extremely diverse
groups of different technical areas. Examples are represented
by networking, computer graphics, animation, multimedia
design, human-computer interaction, software engineering.
Solutions designed in traditional fields of computer science
could thus be easily extended to MMOGs. In particular, our
focus here is centered on networking and computational load at
the servers of the game platform architecture.

Customers have always been attracted by the possibility to
expand their game experience sharing fun with other users. The
ever-increasing popularity of the Internet and the exploding
market of connectable handheld devices, always looking for
new killer applications, push the game industry to propose
effective distributed logical platforms proficient at engaging an
unlimited number of contemporary users. This large and
emerging market is driving researchers and experts to develop
novel distributed solutions able to efficiently sustain interactive
multiplayer networked game sessions [11, 12, 13, 14, 15, 16].

Focusing on a well-organized management of large-scale
distributed games, a typical underlying architecture deploys
over the network one or more Game State Servers (GSSs)
communicating each other through a mirrored game server
communication architecture. GSSs maintain part or the whole
game state, take charge of event deliveries to/from other GSSs
or to/from Input/Output Clients (I/O_Cs) connected with them,
and can implement policies aimed at increasing the global
performance of the system. Hence, in order to guarantee a
uniform view of the game state among all GSSs, an efficient
synchronization scheme needs to be employed.

Since a pleasant game experience for the final user is
characterized by strict real time requirements in processing
actions, playability in interactive gaming applications results
extremely sensitive to delays in event deliveries. Loss of
responsiveness in a MMOG can be caused both by an intense
traffic load in the network that slows down message
transmissions and by an excessive amount of events waiting to
be processed by a single GSS. Consequently, a proficient

This research has been partially funded by the Italian M.I.U.R. Interlink
project and 60% (IT) and by Microsoft Research (UK).

synchronization algorithm should be able to face these two
situations, preserving a high level of interactivity among
distributed players while maintaining an identical
contemporary view of the game state in all the nodes of the
system.

In this paper, we present a novel synchronization scheme,
named ILA (Interactivity-Loss Avoidance), able to uplift the
playability degree of online multiplayer games by maintaining
the event delivery delays under a human-perceptivity threshold.
This result is obtained discarding events that can be considered
obsolete since the arrival of “fresher” ones, with a dropping
probability which depends on the perceived responsiveness at
GSSs. Limiting the number of messages in the system reduces
both the processing and the network latency factors in the total
delivery time experienced by the other events.

The core innovation in our work is the utilization of the
RED mechanism imported from networking solutions and
adapted here to preserve the interactivity degree in MMOGs. In
essence, the idea is to monitor the interactivity level of the
system and, when required, preempt the loss of interactivity
discarding some events that have lost their importance during
the game execution. As we show, this presents the prominent
advantage to avoid more drops later in the attempt to restore an
already disrupted interactivity. Consequently, players perceive
a better playability thanks to a smoother progression of the
executed events. ILA is specifically functional for Mirrored
Game Server architectures and does not jeopardize the
uniformity of the game state views at the various GSSs.

The remainder of this paper is organized as follows. Section
II reviews some recent results in the field of interactivity
performance for online gaming. In Section III we analyze some
design issues as: i) the possible architectures to implement
MMOGs (Subsection A), ii) the tradeoff between interactivity
and consistency as the two main requirements in distributed
interactive gaming (Subsection B), and iii) the notions of
obsolescence and correlation as effective tools in relaxing the
strict total order paradigm to the aim of augmenting
interactivity (Subsection C). Section IV is concerned with
interactivity maintenance techniques. After presenting some
details about the inspiring RED (Subsection A) and
Interactivity Restoring techniques (Subsection B), we present
ILA, our novel approach to avoid interactivity loss (Subsection
C). In Section V we describe the simulative environment
adopted as the test bed and the metrics chosen to compare the
various server synchronization schemes. Section VI presents
simulation results. In particular, Subsection A shows the
performance gain in utilizing an obsolescence based discarding
mechanism. Subsection B, instead, discusses the performance
obtained with the ILA algorithm. We conclude the paper with
some comments and ongoing enhancements to our work in
Section VII.

II. RELATED WORK

Trying to improve the interactivity performance of a
distributed game architecture, two main causes for delays have
to be analyzed: network latencies and computational costs.
Several research works have already brought contributions to
the factual developing of efficient synchronization schemes.

Compression and aggregation considers networking having a
dominant position when dealing with the delays and thus with
the playability of a MMOG [17]. In particular, packet
compression tries to speed up transmissions by reducing
bandwidth requirements. Indeed, minimizing the number of
bits needed to represent a game information is a proficient
method to diminish the traffic present in the network.
Aggregation is another technique attempting to limit the
bandwidth required by the application. Specifically, before
being transmitted, packets are merged in larger ones thus
reducing the overhead. Both compression and aggregation
schemes, however, pay the latency benefits achieved with an
increment in computational costs. Information compressed and
aggregated, in fact, needs to be recovered with decompressing
and disaggregating algorithms at the receiving server, thus
increasing the time required to process each single event.
Moreover, aggregation can origin further waste of time if a
transmission is delayed while waiting for having available
other events to aggregate.

In the attempt to reduce both the traffic load in the network
and the computational cost to process each game event, Interest
Management techniques have been devised [18]. In some game
scenario, events generated are relevant only for a small fraction
of the users. Therefore, implementing an area-of-interest
scheme for filtering events, as well as a multicast protocol,
could be put in good use to match every packet with the nodes
that really need to receive it and, consequently, to reduce both
the traffic on the channel and processing burden at each node
[19]. Conversely, a tradeoff exists between the computation
spared at the destination by receiving only a limited number of
packets and that one expended at the sending GSS for
implementing the filtering scheme. Games having interest-
areas occupying a significant portion of the global virtual
environment could hence be further delayed if Interest
Management schemes would be implemented. For instance,
think about games having a simple scenario wholly includable
in the screen of the user’s device (e.g. as in Pac-Man). In this
case, all the game actions have to be forwarded to all the
participants thus making useless a filter scheme while
maintaining its computational cost.

Slightly detaching playability from the real responsiveness
of the network, optimistic algorithms for synchronizing game
state at servers can be utilized in order to avoid delay
perception at destination. In case of lousy interactivity between
GSSs, in fact, an optimistic approach executes events before
really knowing if ordering would require to process other on-
the-way events first. Game instances are thus processed
without wasting any time in waiting for other eventually
coming packets. On the other hand, this performance gain is
paid with some occurrence of temporary consistency loss.
Standard Time Warp and Breathing Time Warp represents
typical exemplars of this family of algorithms [20, 21].
Rollback based techniques are exploited to reestablish the
consistency of the game state. The problem, in this case, is that
the use of this realignment techniques may further impact on
the responsiveness of the system.

Dead Reckoning is another method that can cause some
temporary incoherence between the factual game state and the
assumed one at the server [22]. In fact, attempting to limit the

bandwidth required by the application, this scheme utilizes a
reduced frequency in sending update packets while
compensating the lack of information with prediction
techniques. Obviously, predicted movements and actions are
not always trustful. Therefore, even in this case, convergence
techniques need sometimes to be exploited to recover from
provisional instances of the game having some momentary
inconsistencies. These eventual restoring actions further impact
on interactivity and playability of the game.

All these mechanisms propose enhancements that can
improve the performance of a MMOG. Nonetheless, we have
exposed some limits and situations where those schemes could
fail. We present here a novel algorithm, specifically designed
for an efficient event delivery synchronization in multiplayer
online games. Our scheme can be integrated with all the works
mentioned above, adding further gains in reducing the delays of
the system and bringing benefits, both for network and
computational loads, even if singularly applied.

III. DESIGN ISSUES

A. Game Architectures
Typically, network architectures supporting MMOGs can

be distinguished in three main categories: Centralized Client-
Server, Peer-to-Peer, Mirrored Game Server. The Centralized
Client-Server architecture represents a simple solution, but the
unique bottleneck can limit its efficiency and scalability [14,
23, 24]. Having a unique server simplifies the maintenance of a
correct game view in all the nodes of the system; conversely, it
embodies a single point of failure. Fully distributed
architectures, as Peer-to-Peer solutions, spread the traffic load
among many nodes and result in a more scalable and failure-
resilient system [25]. At the same time, identical copies of the
current game state need to be stored at each node. This raises
the necessity of devising some fully-distributed coordination
scheme among clients to guarantee the coherence of all game
views. Neither diverse networking delays nor any other factor
should be able to compromise the uniformity of the game
conditions. Moreover, with Peer-to-Peer architecture, IP
multicast should be employed to reduce the bandwidth
requirements, but this technology is neither generally available,
nor enough mature for the kind of application we are
considering.

Both Centralized Client-Server and Peer-to-Peer
architectures present advantages and disadvantages in their
employment to support MMOGs. Mirrored Game Servers
represent an alternative architecture which efficiently collects
the positive aspects of the other two [26]. Indeed, a hybrid
architecture with multiple distributed servers present several
benefits that could reveal it as the most appropriate solution for
online multiplayer games. Having multiple replicas of the
servers allows each client to connect in a classic client-server
fashion to the closest mirror, thus reducing the communication
latency. Mirrors are limited in number if compared to a fully
distributed architecture and contain copy of the current game
state. The connection may follow the Peer-to-Peer paradigm in
order to exchange game state messages. Other advantages are
the absence of a single point of failure, the networking
complexity maintained by the servers, and the possibility to

implement authentication. Even if synchronization schemes are
still required to ensure the global consistency of the game state
hold by the various servers, this requirement is made easier
than in Peer-to-Peer architectures thanks to the lower number
of nodes involved. All these reasons depict Mirrored Game
Servers as the most appropriate architecture for MMOGs.

B. Interactivity vs Consistency
Distributed interactive gaming are characterized by two

main requirements which cannot be considered independent
one from the other: interactivity and consistency. The former
refers to the delay between a game event generation in a node
and the time at which the other nodes become aware of that
event. Therefore, it includes both the network latency and the
processing time. Having a high level of interactivity represents
a fundamental quality for a MMOG. Hence, in order to assure
an enjoyable playability to the final user, external stimuli
generated by players need to be processed under a human-
perceptivity threshold. This means that the time elapsed from
the event generation at sending GSS and its processing time at
the receiving GSS must maintain a low average value. Not
only, in order to obtain a factual smooth progression in the
game visualization on the player’s screen, a low variance must
be guaranteed too. Frequent changes in the perceived velocity
of the game, depending on excessive traffic present at the GSS
and regardless of the effective game evolution, result in
annoying the customers, pushing them away from ever
reattempting such an unpleasant experience.

Consistency regards the contemporary uniformity of the
game state view in all the nodes belonging to the system [27].
Depending on the features of the game, consistency
requirements may be absolute or partial. In the former case,
each node must always have an identical view of the game
state, while in the latter small discrepancies may occur.
Whether a game requires absolute or partial consistency
depends on the unique rules correlating the diverse player’s
area-of-interests.

The easiest way to guarantee absolute consistency is to
make the game proceed through discrete locksteps [28]. At
each step the system waits until having received all the actions
generated by the final users; only at this moment a new
instance of the game is produced and propagated to all the
nodes. Having a single move allowed for each player and
synchronizing all the agents before moving toward the next
round, for sure grants absolute consistency but, on the other
hand, impairs the interactivity of the system. Obtaining both
absolute consistency and high interactivity would require the
employment of almost unlimited network and computation
resources (very high bandwidth, very low latencies, very high
speed at server to process events). Consequently, in order to
design an efficient game architecture, a trade-off between the
two attributes needs to be found.

C. Obsolescence and Correlation
Absolute Consistency can be attained through the

employment of a totally ordered event delivery scheme. On the
other hand, this would imply an increment of the complexity
and, most of all, in the total delays experienced by the system
[29, 30]. Waiting for the next in order action to be processed

while having other events ready in queue may sensibly slow
down the evolution of the game, thus jeopardizing interactivity.
Exploiting the semantics of the application can be put in good
use to relax the total order delivery requirement and augment
interactivity [31]. Some events, in fact, can lose their
significance as time passes: new actions could make irrelevant
the previous ones. For example, player’ s moves are generally
represented by final absolute position in the message
exchanged by the various nodes and, in case of rapid
succession of movements of a single agent, the event
representing its last destination makes obsolete the older ones.
Obsolescence can thus be defined as the relation between two
received events e1 and e2, generated at different times t(e1) <
t(e2), by which the existence of event e2 diminishes the
importance of processing also event e1 (without affecting
consistency). Dropping obsolete events before processing
them, clearly reduces the computational cost at GSSs and
speeds up the execution of fresher events. Consequently,
exploiting obsolescence may result in an enhanced interactivity
of the global system.

To define as obsolete a game event, we have to be sure that
consistency would not be weakened. To this aim, we have also
to introduce the notion of correlation. Two events, say e1 and
e2, are correlated if the final game state depends on their
execution order. Correlation have to be taken into account to
determine the obsolescence of an event. In fact, it might be the
case when e3 would make obsolete a previous event e1 but a
further event e2 (correlated to e1), temporary interleaved
between e1 and e3, breaks this relationship of obsolescence.
However, they are the only events that really need to be
delivered to the destined GSSs in the same order as generated.
Total order delivery requirement can thus be relaxed in case of
non-correlated events. Their semantic independence, in fact,
allows different GSSs to process them in diverse order without
affecting consistency. This means that non-correlated events
can be processed as soon as they are received without wasting
any time in waiting preceding ones, again augmenting
interactivity.

The enhancement to the synchronization scheme proposed
in this work to augment the interactivity degree improves
primarily the way to exploit the obsolescence notion rather than
correlation. The interested readers in a deeper analysis of
correlation may refer to [27].

IV. INTERACTIVITY MAINTENANCE

A. RED Technique
Random Early Detection (RED) algorithm is an active

congestion avoidance mechanism enforced at routers [32].
Traditional queue managements employ simple “tail drop”
schemes that drop packets only when the queue overflows.
Conversely, RED algorithm randomly discards packets earlier
to notify sources about the incipient congestion. In this way, a
single loss experienced by a sender smoothly decreases the
entire congestion level of the network and keeps low the
average queue size. The rationale lies in the gained capability
of better accommodating occasional bursts of packets and
avoiding situations in which several connections decrease their
sending rate at the same time. Summarizing, RED avoids

severe congestion and maintains a stable traffic level in place
of dealing with it after occurred.

Every time the router receives a packet, the RED algorithm
calculates the new average queue size and the probability to
discard the packet. The computing method utilizes a uniform
random variable that behaves better than a geometric random
variable. In fact, a uniformly distributed discarding function
avoids global synchronization thus attaining an unwavering
course of transmissions. The dropping probability is bounded
by two thresholds of the queue size: minth and maxth. Within
this interval, the probability to drop a packet increases from 0
to a maximum discarding probability (maxp). Under minth, no
packet is dropped and beyond maxth all packets are discarded.

B. Interactivity Restoring
In a precedent study, Ferretti and Roccetti demonstrate the

interactivity benefits attainable exploiting the semantics of a
game during its evolution to relax the total order delivery
requirement [27]. The scheme proposed in that work foresees a
Mirrored Game Server architecture and the concepts of
obsolescence and correlation, as summarized respectively in
Subsection A and C of Section III in this paper.

Specifically, player’ s actions are collected by the closer
GSS and transformed into events and finally forwarded to the
other GSSs in order to maintain a global identical view of the
game state. Events are marked at their creation with a
generation timestamp and then sent to destination. Each
receiving GSS considers the arrival time of the event and
measures the difference elapsed since its generation; the
resulting value is named Game Time Difference (GTD). The
GTD of the event is then compared with a predefined constant
Game Interaction Threshold (GIT) and, until the former value
is lower than the latter, normal delivery operations are
performed. Conversely, when the GTD value exceeds the GIT,
the GSS turns on a stabilization mechanism which exploits the
obsolescence notion to drop useless messages so as to bring the
GTD back within the GIT.

As mentioned by the authors, this approach is based on the
existence of a mechanism that synchronizes all the game
system on a unique global conception of time. Finally, since
only obsolete events are eventually discarded, this stabilization
mechanism succeeds in reducing the GTD without causing
inconsistencies in the game evolution.

C. Interactivity-Loss Avoidance: a Novel Scheme
Taking inspiration from the RED approach in case of

incipient congestion [32], we propose to enhance the
aforementioned Interactivity Restoring mechanism with the
novel Interactivity-Loss Avoidance (ILA) approach. The main
feature of this new scheme is the capability of avoiding
interactivity loss before it happens, eventually discarding some
packets when the level of interaction among GSSs descends
significantly. In practice, ILA substitutes the previous binary
dropping mechanism (OFF when interactivity is present and
ON when interactivity is lost) with a continuously-working
proactive mechanism that drops obsolete messages with a
probability depending on the level of interactivity.

0] for each event_packet arrival
1] determine the sample_GTD
2] calculate the new average delay avg_GTD
3] if (min � avg_GTD < max) then
4] calculate probability p
5] determine if one obsolete_event has to be discarded
6] else if (max � avg_GTD) then
7] discard all obsolete_events
8] endif
9] endfor

Figure 1. Discarding probability function.

Even if, similarly to RED, ILA utilizes a uniformly
distributed dropping function, however, the parameter taken
under delimited boundaries is the average GTD instead of the
average queue size. This choice derives from the different goals
of the two schemes: with RED we are trying to avoid buffer
overflows, instead with ILA we want to preserve low delays in
game command execution.

We focus now on some details of the algorithm. Upon each
packet arrival, the GSS determines the GTD of the relative
event, namely sample_GTD, and feeds a low pass filter to
compute the updated average GTD, namely avg_GTD.
Sporadic delays in game event deliveries, in fact, does not
necessary compromise the perceived interactivity. When
avg_GTD exceeds a certain threshold, the GSS drops obsolete
events with a certain probability p, without processing them. If
avg_GTD exceeds a subsequent limit, p is set equal to 1, and all
obsolete events waiting for being processed are discarded.

As illustrated in Fig. 1, three parameters and three phases
characterize the algorithm: respectively min, max and Pmax
(parameters), and phase 0, phase 1 and phase 2 (phases). In the
graph, the y-axis represents the dropping probability
corresponding to the avg_GTD indicated by the x-axis. For
values of avg_GTD in [0, min) (phase 0) the mechanism
performs normal operations, with no event drops, while in
[min, max) (phase 1) obsolete events are discarded with the
computed probability p. Finally, when in [max, �) (phase 2),
all obsolete events are thrown away. The dropping probability
is computed as a function of avg_GTD and Pmax. Persistent
situations of low interactivity result in large values of
avg_GTD and, hence, in high discarding probabilities. An
elevated dropping probability will make the GSS discard
events without processing or forwarding them, thus helping in
restoring an adequate level of time interaction between servers.

A pseudocoded version of our algorithm is given in Fig. 2
and it proceeds as follows. After an initialization phase, the
algorithm repeats a block of operations each time a new packet
arrives at the considered GSS. In particular, line 1 calculates
the sample_GTD as explained in Section IV, Subsection B,
while avg_GTD, in line 2, is computed employing the low pass
filter given below, in (1). In this filter, w is a sensitivity
coefficient, with values comprised in (0, 1], that determines
how closely the trajectory of the average follows the

movements of the samples. The higher the value of w, the
higher is the relative weight of the last sample in the current
average. In order to speed up computations, w should be
chosen as a negative power of two, thus allowing to implement
a shift operation in place of the multiplication.

�)GTD_avgGTD_sample(wGTD_avgGTD_avg ���� � ����

When avg_GTD lies below min, the process stays in phase
0 and normal operations are performed. Conversely, when the
value of avg_GTD is comprised between min and max (line 3),
the scheme is in phase 1 and the discarding probability function
has to be applied to obsolete events. Specifically, as shown in
(2), the probability p could be calculated as a fraction of Pmax;
this fraction linearly corresponds to the relative position of
avg_GTD in the interval [min, max).

�
min)(max

min)(avg_GTDPmax
p �

��
� � ����

Following the approach proposed by RED, (2) may be
transformed into (5) to speed up its computation. This can be
done by defining two constants L1 and L2, as shown in (3) and
(4), that need to be determined just once, during the very first
initialization of the algorithm. The parameters can be chosen
wisely so that L1 results a power of two, and a shift operation
can be utilized in place of the multiplication thus sparing cycles
spent by the processor.

�
min)(max

Pmax
L1 �� (3)

min)(max
minPmax

L2 	

� � ����

In conclusion, (2) can thus be easily rewritten as follows
and employed in line 4 of the ILA algorithm:

� L2avg_GTDL1p �u � ����

Figure 2. ILA Algorithm.

GSS0

GSS1

GSS2
GSS4GSS3

GSS5

GSS6

GSS7

a:15 sd:15

a:40 sd:15 a:75 sd:30 a:90 sd:10

a:80 sd:20

a:30 sd:15

a:100 sd:25

Processing
& Delivery

a: latency average (ms) sd: latency standard deviation (ms)Legend:

Figure 3. The adopted configuration.

So far, the probability function results in a geometric
random variable distribution of the drops, while it would be
desirable to discard events at a fairly regular intervals.
Applying an incrementing counter to augment, at each
iteration, the weight of the discarding probability, we can
generate a uniform distribution of the dropping dispersion, thus
being more resilient to temporary bursty periods [32].

To this aim, the probability p is compared with a randomly
generated number R comprised in [0, 1], also taking into
account the number of iterations elapsed since the last drop.
Basically, in phase 1 an obsolete event is dropped when (6) is
satisfied (line 5).

�)pR(counter t � ����

Both counter and R are reinitialized each time obsolete
packets are discarded. The dropping probability, instead, is
computed with each new event arrival.

If avg_GTD grows beyond max (line 6), the scheme enters
in phase 2 and all obsolete packets have to be discarded in the
attempt of re-establishing interactivity (line 7).

V. SIMULATION ASSESSMENT

To evaluate our event processing strategy, we have
simulated a general Mirrored Game Server architecture
comprising various GSSs connected via diverse links over the
Internet. Without any loss of generality, we assume that the
events generated in the system may be totally ordered based on
a global notion of time. It is out of the scope of this paper to
propose a novel scheme to order events based on time, instead
we claim that this goal may be accomplished exploiting a
variety of different solutions proposed in literature [29, 30, 33,
34, 35], or employing technological synchronization devices,
such as, for example, GPS.

The considered scenario includes a variable number of
GSSs. For the sake of a deeper comprehension and without loss
of generality, we have focused our attention on the event

receiving aspect of a single GSS, pretending that the other
GSSs are sending events to it. Fig. 3 depicts the adopted
configuration of the network and shows the values assigned to
the simulation parameters. GSS0 is the receiving GSS and the
others are the sending GSSs.

We carried out several simulation experiments with a
number of servers varying in the range from four to seven. The
involved GSSs for each different configuration is listed in
Table I.

The values of the network latencies among the GSSs have
been obtained based on a lognormal distribution having the
average and standard deviation values as shown in Fig. 3 [36].
Also the average event size (200 Bytes), as well as the event
generation rate at each GSS, is inspired by the games literature
and varies from a normal traffic situation to an intense load one
[37]. In particular, several experiments have been conducted
with an interval of time between two subsequent event
departures based on a lognormal distribution whose average
was equal to 30ms and the standard deviation was set to 10ms.

By exploiting this configuration, we have generated a
diverse trace file containing 1000 events for each GSS of the
considered scenario. Each trace file also includes the
information needed to identify (correlated and) obsolete events.
In essence, in our simulations, we have set to 90% the
probability that an event makes obsolete preceding events.

As in real commercial games, we have utilized UDP as the
transmission protocol [38]. This protocol, in fact, responds
better to the real time requirements of online game applications
than TCP. Further, to circumvent the problems deriving from
UDP’ s unreliability, we have implemented an application level
retransmission scheme based on NACKs (Negative
ACKnowledgments).

We have replicated each run to compare the outcomes of
three different synchronization schemes: our proposed ILA
scheme, the ON-OFF mechanism (Interactivity Restoring as
reviewed in Subsection B of Section IV), the traditional OFF
approach (having no discrimination of obsolete packets and no
event discarding nor other algorithms to restore interactivity).

Focusing on the tuning of the ILA algorithm, we need to
find an efficient tradeoff in adjusting the various parameters. In
particular, we have chosen to set w=1/8 in (1) in the attempt to
make the algorithm able to filter out sporadic high GTDs, while
maintaining a prompt responsiveness to a persistent decline of
the interactivity degree.

TABLE I. SENDING GSSS INVOLVED IN THE SIMULATIONS.

Number of
sending GSSs Corresponding sending GSSs employed

4 GSS1, GSS2, GSS3, GSS4

5 GSS1, GSS2, GSS3, GSS4, GSS5

6 GSS1, GSS2, GSS3, GSS4, GSS5, GSS6

7 GSS1, GSS2, GSS3, GSS4, GSS5, GSS6, GSS7

0
5

10
15
20
25
30
35
40
45
50
55

4 5 6 7

Number of Senders

%
 G

T
D

 o
ve

r G
IT

OFF ON-OFF ILA

The values for the parameters highlighted in Fig. 1 have
been chosen keeping in mind that 150ms of time elapsing
between the generation of a player’ s action and its execution in
the system could be considered as a threshold for human
perception of an annoying delay [39, 40]. Since we want ILA
mechanism take action before that limit, we have set min =
50ms, max = 150ms (equivalent to the GIT for the ON-OFF
scheme) and Pmax = 0.2.

Our aim is to guarantee the best possible playability to
MMOGs. Since this passes through ensuring an high level of
interactivity in the network and the absence of interruptions, we
have chosen to demonstrate the benefits attainable by the
obsolescence based dropping mechanisms analyzing the
following metrics:

x The number of events having a GTD higher than the
GIT.

x The average of the GTD values, their standard
deviation, the minimum and maximum values.

x The cumulative function of the GTD values.

x The number of obsolete events dropped (ILA and ON-
OFF only).

VI. RESULTS

A. Obsolescence Based Discarding Schemes: Performance
Evaluation.
We intend to demonstrate here the interactivity benefits

attainable by implementing a discarding algorithm for obsolete
events in case of an increasing trend of the GTD values. To this
aim, in Fig. 4, we compare for ILA, ON-OFF and OFF
schemes the percentage of events arrived at GSS0 with a GTD
value larger than the GIT. As observable, both ILA and ON-
OFF mechanisms outperforms the traditional OFF mechanism,
independently of the number of sending GSSs employed in the
scenario.

Figure 4. Percentage of events with GTD over GIT.

The trend of the outcomes, when we augment the number
of servers utilized, is not monotonically increasing within the
same synchronization scheme. First, this is due to the fact that
we are considering a percentage rather than an absolute value.
Second, this is also caused by the choice of conducting
experiments using different selections of available servers.
Specifically, the experimental scenario where six GSSs were
involved was based on the experimental scenario with five
servers plus the newcomer GSS6 (see Table I). The adjoined
GSS6 has a latency value, 30ms, lower than the other GSSs,
while the average latency for the other five sending GSSs, from
GSS1 to GSS5, is 65ms (as shown in Fig. 3). For this reason,
game events coming from GSS6 have a much lower probability
than the others to have a GTD value higher than the GIT. Even
if the total traffic and thus also the sum of the delays are
augmented, the percentage of events out of the interactivity
threshold results slightly diminished. This is an obvious
consequence of the fact that decreasing the latencies in the
network reduces one of the causes of delay in event processing.
As previously mentioned, the others are the queuing time at the
receiving GSS (waiting to be processed) and the processing
time at the receiving server.

The cumulative function of the GTDs embodies another
tool proficient at evaluating the worth of ILA and ON-OFF
schemes. Indeed, the more the line is concentrated in the left
side of the chart, the higher is the percentage of events having a
GTD lower than a certain threshold. In particular, Fig. 5 depicts
the cumulative function of the GTDs in a scenario with seven
sending GSSs, each one sending events to the receiving GSS0.
In this configuration, ILA has 93.86% of events with a GTD
less or equal to the GIT of 150ms, ON-OFF hits the 89.40%,
while OFF reaches only the 49.94%.

These results are coherent with the values of the average
and the standard deviation of the GTDs considering all the
events transmitted. Table II shows a sensible reduction in the
values of both these metrics when ILA or ON-OFF are
implemented in place of the traditional OFF scheme.
Moreover, the two obsolescence based discarding schemes
result more resilient to an increased event generation activity
within our game architecture. This is evident if the case of
seven sending GSSs is compared with the one employing only
four sending GSSs. In this case, the average of the GTDs
decreases from 19.72% (OFF) to 12.07% (ON-OFF) and
11.71% (ILA).

The reminder of our performance study aims at focusing on
the advantages in utilizing a continuously acting scheme as
ILA instead of a binary working approach like ON-OFF.

B. ILA vs ON-OFF: a Comparative Evaluation
We compare more in detail the two obsolescence based

discarding schemes (ILA and ON-OFF), highlighting the
benefits introduced by the proactive mechanism implemented
by ILA. Indeed, in all the charts and tables presented so far
(Fig. 4, Fig. 5, and Table II), ILA results always at the same
level or, actually, slightly better than ON-OFF in the attempt of
guaranteeing interactivity. Not only, Table II also shows that
the standard deviation of the GTDs obtained employing ILA is
always smaller than that obtained utilizing ON-OFF.

0

0.2

0.4

0.6

0.8

1

1.2
0 30 60 90 12
0

15
0

18
0

21
0

24
0

27
0

30
0

33
0

msec

Pr
ob

(G
TD

 <
 x

)

OFF ON-OFF ILA

0
5

10
15
20
25
30
35
40

4 5 6 7
Number of Senders

%
 D

ro
pp

ed
 E

ve
nt

s

ON-OFF ILA

Figure 5. Cumulative function of the GTDs in a scenario with 7 GSSs.

This results in a more homogeneous flow of actions
executed at the player’ s side, thus hiding to the customer the
negative effects involved in utilizing a performance varying
environment, likely the Internet, to support the game. The
visually perceived evolution of the game results smoothened by
ILA, thus providing a more pleasant game experience for the
user.

Not only ILA obtains a slightly better interaction level with
respect to ON-OFF, but the total number of discarded events to
attain this positive result is definitively lower. In fact, Fig. 6
shows that the results in Fig. 4 and Table II are obtained by
ILA at the cost of circa only 40% of the obsolete events
dropped by ON-OFF.

This is a very important advantage obtained utilizing a
proactive mechanism as ILA. In fact, even if obsolete events
can be sacrificed to gain a better interactivity since consistency
does not depend from them, they still are part of the game
visual evolution. Dropping too many obsolete events, could
result in sudden “jumps” and temporary interruptions of the
images/video flow on the player’ s screen. These unpredictable
gaps in the game plot could result annoying for customers and
should be avoided every time it is possible.

In other words, we can say that even if both schemes
ensures interactivity and consistency, ILA outperforms ON-
OFF and founds an efficient tradeoff between the percentage of
obsolete events to be discarded and a fluent visual progression
of the game.

Figure 6. Percentage of dropped events.

VII. CONCLUSION AND FUTURE WORK

To guarantee a pleasant gaming experience to online
players engaged by MMOGs, a high interactivity degree, as
well as game consistency, has to be provided. Efficient
synchronization schemes among Mirrored Game Servers are
usually implemented as basic solutions. A proactive event
discarding mechanism relying on the discrimination of obsolete
events has been proposed as an innovative way to meet the
aforementioned requirements. Inspired by the RED algorithm
that manages queues at networking routers, ILA improves the
fluency of the game progression on the player’ s screen,
avoiding loss of interactivity at GSSs, instead of restoring it
after having been disrupted. The benefits achievable in
employing ILA as synchronization scheme among Mirrored
Game Servers have been highlighted.

As a further enhancement of this work, we are currently
studying the possibility of discarding also non-obsolete game
events, under situations of particularly jeopardized
interactivity. Taking inspiration from RIO technique, ILA
scheme could thus be enhanced by employing two distinct
discarding probability functions, respectively for obsolete and
for non obsolete events [41]. In particular, it should be
exploited when discarding all the obsolete events is not enough
to restore an adequate level of interactivity, thus requiring, as
last resort, to drop also some non-obsolete events. We are
currently collecting data from simulations employing this
enhanced ILA algorithm.

TABLE II. MAXIMUM, MINIMUM, AVERAGE AND STANDARD DEVIATION OF THE GTDS.

4 GSSs 5 GSSs 6 GSSs 7 GSSs
int = 30

OFF ON-
OFF ILA OFF ON-

OFF ILA OFF ON-
OFF ILA OFF ON-

OFF ILA

MAX 324 324 325 325 324 277 318 319 278 345 345 300
MIN 88 88 86 88 88 88 87 88 88 93 93 93
AVG 142 116 111 153 120 115 148 119 114 170 130 124
ST.DEV 52 30 20 53 32 19 50 28 18 56 32 19

REFERENCES
[1] The First Video Game. Brookhaven National Laboratory (BNL), 2004.

Web Site: http://www.bnl.gov/bnlweb/history/higinbotham.asp
[2] Kushner D., Masters of Doom, Random House, New York, N.Y, 2002.
[3] Smed J., Kaukoranta T., and Hakonen H., “Aspects of Networking in

Multiplayer Computer Games”, in Proc. of International Conference on
Application and Development of Computer Games in the 21st Century,
pp.74-81, Hong Kong, China, 2001.

[4] Cavazza M., Charles F., Mead S. J., “Emergent Situations in Interactive
Storytelling”, in Proc. of SAC2002, ACM, pp.1080-1085, Madrid,
Spain, 2002.

[5] Macedonia M. R., A Network Software Architecture for Large Scale
Virtual Environments, Ph.D. Thesis, Naval Postgraduate School,
Monterey, CA, 1995.

[6] Neyland D. L., Virtual Combat: A Guide to Distributed Interactive
Simulation, Stackpole Books, Mechanicsburg, PA, 1997.

[7] United States Department of Defence. Defence Modeling and
Simulation Office, 2002. Web Site: http://www.dmso.mil/

[8] Frécon E. and Stenius M., “DIVE: a Scaleable Network Architecture for
Distributed Virtual Environments”, Distributed Systems Engineering,
vol.5, no. 3, pp.91-100, 1998.

[9] Funkhouser T. A., “RING: a Client-Server System for Multi-User
Virtual Environments”, in Proc. of the 1995 Symposium on Interactive
3D Graphics, pp.85-92, Monterey, CA, 1995.

[10] Normand V., “The COVEN project: Exploring Applicative, Technical,
and Usage Dimensions of Collaborative Virtual Environments”,
Presence, vol.8, no.2, pp.218-236, 1999.

[11] Cai W., Xavier P., Turner S. J. and Lee B., “A Scalable Architecture for
Supporting Interactive Games on the Internet”, in Proc. of the 16th
Workshop on Parallel and Distributed Simulation, pp.54-61,
Washington, DC, 2002.

[12] Griwodz C., “State Replication for Multiplayer Games”, in Proc. of
NetGames2002, pp.29-35, Braunschweig, Germany, 2002.

[13] Openskies Network Architecture Project, 2002. Web Site:
http://www.openskies.net

[14] Quake Forge Project, 2002. Web Site: http://www.quakeforge.org
[15] Mine R. M., Shochet J., Hughston R., “Building a Massively

Multiplayer Game for the Million: Disney's Toontown Online”, ACM
Computers in Entertainment (CIE), vol.1, no.1, pp.15-15, 2003.

[16] Armagetron, 2003. Web Site: http://armagetron.sourceforge.net/
[17] Singhal S. and Zyda M., Networked Virtual Environments: Design and

Implementation, Addison Wesley, 1999.
[18] Morse K. L., Bic L. and Dillencourt M., “Interest Management in Large-

Scale Virtual Environments”, Presence, vol.9, no. 1, pp.52-68, 2000.
[19] Deering S., “Host Extensions for IP Multicasting”, Internet RFC 1112,

1989. ftp://ftp.isi.edu/in-notes/rfc1112.txt
[20] Jefferson D. R., “Virtual Time”, ACM Transaction on Programming

Languages and Systems, vol.7, no.3, pp.404-425, 1985.
[21] Steinman J. S., Bagrodia R. and Jefferson D., “Breathing Time Warp”,

in Proc. of the 1993 Workshop on Parallel and Distributed Simulation,
pp.109-118, San Diego, CA, 1993.

[22] Singhal S. K., Effective Remote Modeling in Large-Scale Distributed
Simulation and Visualization Environments. Ph.D. Thesis, Stanford
University, Stanford, CA, 1996.

[23] Everquest, 2003. Web Site: http://www.everquest.com
[24] Ultima Online, 2003. Web Site: http://www.uo.com
[25] Gautier L. and Diot C., “Design and Evaluation of MiMaze, a Multi-

player Game on the Internet”, 1998. ftp://ftpsop.inria.fr/rodeo/diot/ieee-
mms.ps.gz

[26] Cronin E., Kurc A. R., Filstrup B., Jamin S., “An Efficient
Synchronization Mechanism for Mirrored Game Architectures”,
Multimedia Tools and Applications, vol.23, no.1, pp.7-30, 2004.

[27] Ferretti S. and Roccetti M., “A Novel Obsolescence-Based Approach to
Event Delivery Synchronization in Multiplayer Games”, in International
Journal of Intelligent Games and Simulation, vol.3, no.1, pp.7-19, 2004.

[28] Steinman J. S., “Scalable Parallel and Distributed Military Simulations
Using the SPEEDES Framework”, in Proc. of 2nd Electronic Simulation
Conference (ELECSIM95), Internet, 1995.

[29] Cheriton D.R. and Skeen D., “Understanding the Limitations of Causal
and Totally Ordered Multicast”, in Proc. of the 14th Symposium on
Operating System Principles (SOSP '93), pp.44-57, Asheville, NC, 1993.

[30] Défago X., Schiper A. and Urban P., “Totally Ordered Broadcast and
Multicast Algorithms: a Comprehensive Study”, Technical Report,
DSC/2000/036, Swiss Federal Ecole Politechnique Fédérale de
Lausanne, Switzerland, 2000.

[31] Ferretti S., Roccetti M. and Cacciaguerra S., “On Distributing Interactive
Storytelling: Issues of Event Synchronization and a Solution”, in Proc.
of the 2nd International Conference on Technologies for Interactive
Digital Storytelling and Entertainment (TIDSE 2004), LNCS 3105,
pp.219-231, Darmstadt, Germany, 2004.

[32] Floyd S. and Jacobson V., “Random Early Detection Gateways for
Congestion Avoidance”, IEEE/ACM Transactions on Networking, vol.1,
no.4, pp.397-413, 1993.

[33] Birman K., “A Response to Cheriton and Skeen’ s Criticism of Causally
and Totally Ordered Communication”, ACM Operating System Review
28, no.1, pp.11-21, 1994.

[34] Drummond R. and Babaoglu O., “Low-Cost Clock Synchronization”,
Distributed Computing, vol.6, no.3, pp.193-203, 1993.

[35] Ramanathan P. Shin K.G, Butler R. W., “Fault Tolerant Clock
Synchronization in Distributed Systems”, IEEE Computer, vol.23,
no.10, pp.33-42, 1990.

[36] Park K. and Willinger W., Self-Similar Network Traffic and
Performance Evaluation, Wiley-Interscience, 1st Edition, 2000.

[37] Farber J., “Network Game Traffic Modelling” in Proc. of
NetGames2002, pp.53-57, Braunschweig, Germany, 2002.

[38] Wright S. and Tischer S., “Architectural Considerations in Online Game
Services over DSL Networks”, in Proc. IEEE International Conference
on Communications - Multimedia Technologies and Services
Symposium (ICC'04), IEEE Communications Society, Paris, France,
2004.

[39] Armitage G., “An Experimental Estimation of Latency Sensitivity in
Multiplayer Quake 3”, in Proc. ICON, Sydney, Australia, 2003.

[40] Borella M.S., “Source Models for Network Game Traffic”, Computer
Communications vol.23, no.4, pp.403-410, 2000.

[41] Clark D. D., Fang W., “Explicit Allocation of Best-Effort Packet
Delivery Service”, IEEE/ACM Transactions on Networking, vol.6, no.4,
pp.362-373, 1998.

