

1

Residual Capacity Estimator for TCP on wired/wireless links

Claudio E. Palazzi – cpalazzi@cs.ucla.edu

Computer Science Department, University of California Los Angeles
Boelter Hall, Los Angeles CA, 90095 USA

 Dipartimento di Scienze dell’Informazione, Università di Bologna

Via Mura Anteo Zamboni 7, 40127 Bologna, Italy

Abstract

Having an inexpensive and accurate means to estimate capacity could be put in good use for several
purposes: QoS schemes could utilize it to claim the feasible ratio at which video/audio streaming are
allowed to transmit, bandwidth estimators could receive help in discriminating between their samples.
Nowadays, the plethora of applications available to users and the widely adopted mobile technology
require new features that only an deeper awareness of the accessed link characteristics could provide.

In this paper, we present RCE (Residual Capacity Estimator), a new scheme able to provide a simple

and effective esteem of the bottleneck link capacity deducted the uniformly distributed traffic present. Our
scheme is embedded in the normal TCP functionalities and achieves precise results even from the very
beginning of a connection. We provide simulation results under various and complex situations in order
to prove the efficacy of RCE and we conclude with future directions for this work.

Keywords: RCE, TCP Westwood, Wireless, Capacity Estimation, Packet Train.

1. Introduction

Even if, at present, packet switched

technology can be considered mature, new
applications as peer-to-peer, remote working,
video/audio streaming, television distribution
and interactive online gaming present new
challenges that require at least an adaptation or,
in some cases, a complete redesign of the
currently used mechanisms. New applications
usually necessitate of capabilities that where not
included in the original design of the Internet,
thus asking for solutions able to provide the
efficiency needed in order make the new
products widely adopted by the final users.

In order to really understand the complexity

of this scenario we also have to mention the
high number of people using wireless
technology. Cellular phones, laptops and PDAs
are devices owned by a very elevated and still
increasing percentage of people and, with the
introduction of the higher data rates of the third
generation (3G) of mobile systems [10], we can
easily foresee a raising request for new services

able to push people in purchasing this new
technology. The new “killer applications” able
to alter the trajectory of the market will
probably come from the interaction between the
new devices and the Internet. Indeed, virtual
libraries, video-telephony over IP,
videoconferencing, games, remote-medicine,
video and music on demand and locality based
information are only few of the innumerable
services that will be available in every place and
at every time.

On the other hand, the interaction between

mobile devices and the Internet, coupled with
the need for an efficient and reliable data
transfer have generated several unresolved
problems [5], amongst the other, the high error
rate present on the channel. Therefore,
applications that rely on a reliable transmission
protocol are especially affected by a wireless
environment. Focusing on the TCP
(Transmission Control Protocol), indeed the
most popular transport protocol for reliable data
delivery, we have also to notice that it was
designed in a time when networks were

 2

exclusively based on wired technology. For this
reason, the flow control and the congestion
control functions fail when introduced into a
wireless context [13]. To really understand the
reasons of this failure we should remember that
traditional TCP uses packet losses as a metric to
evaluate the congestion level of the network.
Consequently, when a packet is considered to be
lost, TCP reduces the data sending rate. In
presence of numerous losses related to non-
congestion factors, as in a wireless environment,
this behavior is not appropriate and causes a
consistent underutilization of the available
bandwidth on the link [4]. Having a means to
precisely estimate the accessible bandwidth
could help in discriminating between the
congestion related losses and wireless error
losses. In order to avoid potential overestimation
of the available bandwidth it could be useful to
have a tool able to provide a capacity measure
of the bottleneck. Not only this value could be
used as an upper bound for data sending rates,
but it could also be put in good use in other
applications as, for instance, to determine
appropriate routes/trees for multicast overlay
networks [12].

In Section 2 we briefly present related works

which regards estimation either of bandwidth or
capacity, in Section 3 we propose the reasoning
that brought us to design our new link capacity
estimator, in Section 4 we explain the simulated
environment used to test the new mechanism, in
Section 5 we show the results obtained in
simulations by our scheme and Section 6
concludes this work and presents future
directions.

2. Related works

In recent years, many researchers have
focused their studies on the obstacles present in
a wireless environment proposing various
alternative techniques [14]. Several solutions
proposed to face those problems relies on the
ability to estimate the factual capacity or the
available bandwidth. Equipped with these
information, protocols could be able to set the
most appropriate sending parameters decoupled
from the losses.

Tsaoussidis and Badr propose the use of

special pairs of probe packets after each loss
[17]. When one of these couples reaches the

receiver, the measured delay of these probing
packets, is used to understand if the network is
congested and, only in this case, to diminish the
data sending rate. If the wireless link is
experiencing a disconnection or a fading, the
probe cycle is extended, thus avoiding further
data losses and consequently erroneous
restrictions of the sending rate. Their purpose is
also obtaining a better energy resource
consumption. This protocol requires
modification at both sender and receiver side in
order to handle with probing packets: this lack
of compatibility with the current implementation
of the TCP seriously affects its real development
possibility.

A new end-to-end transport protocol is also

proposed by Sinha et al. [18]. They face the high
number of errors and the variable latency of a
wireless environment eliminating the timeout
mechanism, using periodic SACK packets [7] to
understand when a retransmission is
appropriate, and estimating the channel capacity
to set the data sending rate. In their protocol, the
departure time is included in each packets, thus
the receiver can use this information and the
interarrival times to measure the bandwidth and
communicate the sending rate back to the sender
by SACK packets. If the sender doesn’t receive
any SACK for a long time, it suspends the data
transmission and starts sending probe packets
until an acknowledgment from the receiver
makes it resume the communication. Since the
bandwidth estimation is computed at the
receiver, the packet data rate calculation is quite
accurate. Despite this, Sinha’s mechanism
development in the TCP/IP stack is limited by
the requirement of modifications on both sender
and receiver hosts.

Mascolo et al. suggest a new transport

protocol which uses a sender side end to end
estimation of the available bandwidth [1]. While
traditional TCPs blindly reduce the data sending
rate every time a data packet is lost, the key
innovative idea in their work is to use the rate of
the returning acknowledgments of received data
to measure the effective link availability. This
bandwidth estimation is computed by sampling
and exponential filtering methods that have been
progressively refined in order to be effective and
fair at the same time [2][3] and then used, after a
loss or during slow start to appropriately set the
slow start threshold. This protocol has shown
great results on big pipes, even if affected by

 3

error losses, as for example satellite links;
however, in some other wired-cum-wireless
connection with a very narrow links, as with
802.11, 1xRTT and Bluetooth, the behavior
seems to be too conservative if compared with
TCP Newreno [11].

Dovrolis et al. present a capacity estimation

scheme which starts making use of packet pairs
but, in case of multimodal distribution, the
number of packets used is increased until having
a value N for the cardinality of the packet train
that produces an unimodal distribution [15].
Their scheme results to be accurate but too slow.

Finally, Kapoor et al. suggest to use a packet

pair scheme to estimate the capacity of a link
[8]. In particular, between the various samples,
they suggest to use that one obtained with the
packet pair having the minimum delay sum. That
value, in fact, has probably not suffered by cross
traffic thus giving the most accurate measure.
Their work shows maximum values close to the
real channel capacity but, on the other hand,
packet pair techniques tend to suffer when
coupled with TCP because of the bulk nature of
its transmissions and the use of delayed acks.

3. Rationale of the idea

A packet train is a set of packets which
depart from the sender one close to the other.
Their leaving time is beat by the transmission
rate available, thus depending on the outgoing
capacity. Along their path to reach the
destination, the packets composing the train
could encounter links with lower bandwidth
than that present on the first one traversed,
consequently, packets requires more time to be
transmitted and the train becomes longer. This
dispersion could be caused not only by narrow
links, but also by time spent in queue due to

other traffic sharing part of the same connection.
The correspondent acks go back to the sender
triggering new transmissions at a rate which
hence depends on all these factors and causes
packets coming out separated by gaps of idle
time.

In Fig. 3.1 time is divided into slots; using
these slots as the measurement units, we
indicate as X the part used to transmit the
packets back to back and with Y the time needed
to contain the dispersion of the correspondent
acks. Considering the time slot equal to 1, it is
easy to understand that the maximum portion of
the slot usable to send packets corresponds to

Y
X . The rate at which the sender could transmit

is given by
X

dtransmitteBits _ , hence to obtain

the maximum rate usable, given the bottleneck,
we simply multiply for

Y
X obtaining

Y
dtransmitteBits _ .

In a situation with a single flow and having the
packets leaving the sender back to back, the
formulas given above easily determine the
capacity of the connection. If we introduce in
this scenario other traffic, we also have to take
into account the possibility that packets could
leave the source distributed on the whole slot. In
fact, the effective transmitting time of the sender
will probably be divided into several chunks of
time having gaps in between them that remain
unused. In those pauses, the sender just waits for
new acks in order to be allowed to transmit new
data. Consequently, the correspondent acks
distribution will be characterized by gaps that
does not depend on the bottleneck size.

Fig. 3.1 – Acks dispersion due to bottleneck link present along the path.

pkts

dispersed acks

SE
N

D
ER

 R
EC

EIV
ER

X

Y

time slot

 4

Fig. 3.2 – Packets-slots and acked-slots division.

We can distinguish between several causes
that insert gaps between returning acks:

• Different capacity between outgoing
link and bottleneck link

• Queuing time caused by congestion
• Different size, and thus channel

occupancy, between data packets and acks
• Wasted time due to a low sending

window

RCE eliminates the last type of waiting time

from the above list maintaining, at the same
time, the dispersion of the packets due to links
with different total bandwidth along the path. In
this way, we are able to obtain an accurate
estimation of the capacity of the bottleneck link.

The scalability of the mechanism is assured

by the very easy set of calculations and by the
very few information we need to store at sender
side about the TCP flow. Time is divided into
slots: we set packets-slots as large as an RTO
[6] and we count packets leaving in that period,
we then wait for correspondent returning acks to
determine the acks-slots as shown in Fig. 3.2.
Since the number of packets-slots and of acks-
slots is the same, on average they will have the
same length.

When the acks corresponding to the sent
packets come back, we compute the bottleneck
capacity as

timeWastedtimeslotAcks
ackedBits

_

−
.

With RCE, we utilize the dispersion of the
acknowledgments, the source ratio and the

information regarding the time wasted with no
data sent to the destination due to a low sending
window. In particular, the last element is the
introduced enhancement in our scheme that
allows to have a correct estimation since the
very first period of a connection making use of a
mechanism which is perfectly embedded into
the usual TCP operations. This wasted time at
sender, in fact, potentially affects the
effectiveness of all the bandwidth or capacity
estimators that relies on returning
acknowledgements. Following the aim of
considering just the wasted time due to a little
sending window while maintaining the
dispersion induced by the narrower links, we
have to calculate the Wasted_time from the
acks_slot standpoint. The proposed scheme
measures the average of the interarrival time
between the acks of the slot (the first one is
counted from the beginning of the slot, the slot
ends receiving the last ack belonging to it); the
Wasted_time is then computed as the sum of the
time exceeding this average in each interarrival
time of the acks_slot. This formula is justified
by the fact that all the included packets will
experience the same channel conditions in terms
of transmission time: consequently, the
exceeding gap times between acks is most likely
a result of having periods of no transmissions
due to the sending window size. Focusing on
queuing time, we have to notice that, since the
bulk nature of TCP transmission, this element
will not be endured equally by all packets in a
slot.

Packets departures

Corresponding acks arrivals

Effective tx time Sender waiting time

 5

• At sender side, time is divided into slots
• In each slot, N packets are sent to destination
• The corresponding N acks will return back in Acks_slot_time
• Sender_waiting_time is calculated as:

Sender_waiting_time = 0;
calculate AVG_acks_interarrival_time;
for each acks_interarrival_time of the slot {

if acks_interarrival_time > AVG_acks_interarrival_time {
Diff = acks_interarrival_time – AVG_acks_interarrival_time;
Sender_waiting_time = Sender_waiting_time + Diff;

};
};

• The sample is:
Cap_sample = Bits_acked / (Acks_slot_time – Sender_waiting_time)

• This is averaged as:
Cap_est = 0.5 * Cap_sample + 0.5 * Cap_est

Tab. 3.1 – The proposed scheme.

This difference in time spent in queue will
produce acks with higher interarrival time than
the average. Consequently, queuing time is
removed by our mechanism in case of
contemporary presence of other TCP flows and
the final result is the capacity of the bottleneck.
Conversely, if the considered TCP connection
competes for the channel with other CBR flows,
the outcome has a different meaning. The
distribution shape of a CBR transmission, in
fact, uniformly occupies a portion of space both
in the channel and in the queues. Since all the
interarrival times of the acks are in this case
affected by the same amount of queuing time,
our mechanism leaves it in the average of the
interarrival time. Thereby, the final estimation
will count also queuing time caused by the CBR
traffic thus computing the shared bandwidth.
Summarizing what we are going to demonstrate
with simulations in Section 5, we can say that
RCE returns the bottleneck capacity, detracted
the portion of channel occupied by the
uniformly distributed traffic.

We can summarize the concepts above

noticing that RCE recalls the packet train
technique. The main difference is the fact that

no special packets are utilized: the scheme is
perfectly embedded in the usual TCP operations.
Packets are sent as usual to destination causing
acks response from receiver which generates
new transmissions. The outcome is depurated
from the wasted time at sender side, virtually
reproducing the results that we would have
obtained from an initial configuration of a
compact packet train. Since in this way we have
a new usable sample every RTO, this also solve
the problem of having few natural packet pairs
on a TCP connection seen in [9]. The scheme
here proposed is recapitulate in Tab. 3.1.

4. Simulation environment

NS-2 is a widely used network simulator

[16], many scientific articles regarding various
aspects of networking are based on this tool. In
particular, since the widely accepted reliability
of simulations results obtained from
modifications of transport layer protocols, NS-2
is the standard for simulations of TCP. In this
work we have utilized the seventh version.

Fig. 4.1 – The simulated environment.

Min RTT: 70 ms

Bottleneck (various bw value)
33 ms delay

100 Mbps
1 ms

100 Mbps
1 ms

A B

TCP flows

6

The configuration of the simulations is
intuitively understandable from Fig. 4.1. One or
more connections share a link which represents
the bottleneck. In particular, nodes have access
to the common link coming from very high
bandwidth connections having in B an almost
infinite queue. This is a simplification that
allows us to have congestion only before the
bottleneck link which is desirable in order to
properly test the ability of RCE to detect the
capacity in that point. Besides the data cited in
the picture, we have used in our simulations
different bottleneck bandwidths having the
queue in entrance set to the pipe size. Our
scheme has been tested with or without errors
on the link, the former in order to simulate a
wireless connection and the latter to simulate a
normal wired connection, and with or without
the concurrent presence of CBR (Constant Bit
Rate) flow both in the same or in the opposite
direction of the TCP flows. The functionalities
of the transport protocol utilized have not been
modified: our estimator makes calculations
simply observing the normal execution of the
TCP flows.

A summary of the main characteristics of the

various flows follows:

• Single or multiple TCP flows (bulk transfer):
o Type: Westwood Agile
o Packet size: 1000 bytes

• Straight and/or reverse UDP/CBR flows:
o Packet size: 125 Byte
o Transmission interval: 1 ms

In order to simulate the RCE mechanism

under various conditions, we have modified
some NS-2 modules and written new ones in
order to implement the new capacity estimation
scheme. Moreover, we have prepared a tcl script
that allows with minimal commands to run the
various simulations having as results trace files
and graphs.

5. Results of the simulations

We have verified the correctness of RCE

running several simulations under various
conditions. It is obviously not possible to cover
here the whole plethora of all possible cases that
we could encounter in the Internet but we
believe that the set of situations recreated for
this work allows us to state some important
conclusions. Since the good performance
demonstrated by the Westwood protocol in
estimating the correct eligible rate under various
conditions [1][2][3], we have decided to run this
version of the transport protocol. Besides, this
gives us an immediate comparison between an
accurate shared bandwidth value and our
capacity estimator. In all the graphs presented,
the red line represents the congestion window
(which is in our simulations always
corresponding to the sending window), the
green one is the slow start threshold, in yellow
we have the Westwood Agile ERE (Eligible
Rate Estimate) and in blue there is the capacity
estimation provided by our mechanism.

Fig. 5.1 – Single TCP flow on a bottleneck link of
5Mb, with no errors

Fig. 5.2 – Single TCP flow on a bottleneck link of
5Mb, PER of 0.1% and a period of CBR traffic

7

From now, every time we say TCP we mean
TCP Westwood Agile and for all the simulations
run we have set the condition (CBR
transmission interval, CBR and TCP packet
size) as presented in Section 4.

In Fig. 5.1 we present the outcome of a very

simple scenario with a single TCP flow on a
connection with a bottleneck bandwidth of 5Mb.
Since the presence of a single connection on the
channel, the eligible rate and the capacity of the
link are the same. As we can see, our estimator
(blue line) reaches the correct value almost
immediately, in particular the maximum value
given by our estimator correspond to 43.25
packets while the pipe size is 44 packets.
Maximum value is chosen as a parameter in
order to allow comparisons with CapProbe
papers [8][9].

In Fig. 5.2 we can see the outcome of a

simulation run in order to test the reactivity and
effectiveness of RCE, even in situation
characterized by errors as those faced in a
wireless environment. In particular, a single
TCP flow operates from second 0 to second 30
while a CBR flow starts at second 8 of the
simulation and ends at second 18. The capacity
of the channel and the introduction of a
uniformly distributed traffic are perfectly
detected by the estimator: the latter is perceived
as a decrease of the actual capacity. We have
also introduced a PER (Packet Error Rate) of
0.1% to simulate the error prone conditions of a
typical wireless environment: our mechanism is
not affected at all by this.

Figg. 5.3, 5.4 and 5.5 show the results of a
simulation in which three TCP flows compete
for a common bottleneck of 10Mb over a total
period of time of 80 seconds; the RTT is 70ms,
thus the pipe size results to be 88 packets. Since
RCE relies on the dispersion of the acks, we
have inserted a CBR flow sharing the same
bottleneck but in the opposite direction in order
to study the impact of reverse traffic. In this
configuration, the first TCP source starts
sending packets at second 0 and ends at 40, the
second one transmits from second 10 to 50 and
the third one starts at 20 and finish at 80. As it
is easy to see, in all the three cases the capacity
is estimated promptly and correctly. More in
detail, the maximum value estimated for the
capacity is respectively 87.87, 86.71 and 86.84

which is very close to the factual pipe size of 88
packets.

Finally, we have also tested RCE with
delayed acks. Obviously, delayed acks
employment impacts on the acknowledgments
distribution, thus affecting the detected capacity
of the connection. Despite of this, results where
not bad in a scenario with two TCP competing
for a 10Mb bottleneck: over 30 seconds of
simulation, the achieved maximum capacity
estimate were respectively 83.17 and 82.22
packets over a truthful capacity of 88. Our
mechanism is hence able to give an appropriate
value even in a case where traditional packet
pair techniques fail.

Fig. 5.3 – 1st over 3 TCP flow on a bottleneck link

of 10Mb, no errors, with reverse CBR flow

Fig. 5.4 – 2nd over 3 TCP flow on a bottleneck link

of 10Mb, no errors, with reverse CBR flow

Fig. 5.5 – 3rd over 3 TCP flow on a bottleneck link

of 10Mb, no errors, with reverse CBR flow

8

6. Conclusions and future directions.

In this work, we have studied the problem of

properly estimate the capacity of a channel. In
particular, we have defined the various
components of the waiting time at sender side,
enlightening the impact of one of its component:
the wasted time due to a current low sending
window. Aware of this, we have then proposed
RCE, a simple and non expensive algorithm
able to provide accurate estimation of the
channel capacity detracted the uniformly
distributed concurrent traffic, since the very
beginning of a connection. Our scheme recalls
the packet train mechanism but is perfectly
embedded with the normal functionalities of
traditional TCPs; in fact, it uses normal packets
and acks and does not require the employment
of apposite new packets.

The simulations results showed that RCE is

highly precise and provides an appropriate value
also at the very beginning of a connection.
Moreover, it works properly even if plunged in
an error prone environment or with preexisting
or successively starting concurrent flows.
Finally, despite of relying on returning acks
distribution, our scheme has been demonstrated
robust also against reverse flows and able to
provide an acceptable esteem in case of delayed
acks utilization.

Future studies include the real

implementation of the proposed mechanism in
order to verify the simulation results. Moreover,
we would like to find a practical employment
for our capacity estimator and experiment it. As
first step, we could use RCE as an upper bound
provider for the bandwidth sample obtained by
the TCP Westwood. This will let us know if it is
possible to still achieve the same accuracy in
bandwidth estimation substituting the heavier
filter currently used with a less computationally
expensive one. As another real application, we
could utilize our scheme to compute the most
appropriate transmission rate for video/audio
streaming in presence of QoS policies
requirements. Having an accurate estimation of
the capacity can help the system to claim the
correct feasible rate for high priority
applications regardless of low priority traffic.
Furthermore, it would be interesting to evaluate
our capacity estimator coupled with routing
algorithms to create efficient multicast overlay
networks. Finally, we are looking for enhancing

our scheme in order to take into account also the
non uniformly distributed traffic present on the
channel, in order to construct a simple and
effective available bandwidth estimator. This
feature could be obtained determining the
queuing wasted time due to congestion and
integrating this value in our scheme.

7. References

[1] S. Mascolo, C. Casetti, M. Gerla, M. Y.

Sanadidi, R. Wang, "TCP Westwood:
Bandwidth Estimation for Enhanced
Transport over Wireless Links",
MOBICOM 2001, July 2001.

[2] R. Wang, M. Valla, M.Y. Sanadidi, and M.
Gerla, "Adaptive Bandwidth Share
Estimation in TCP Westwood", Globecom
2002.

[3] R. Wang, G. Pau, K. Yamada, M. Y.
Sanadidi, M. Gerla, " TCP Startup
Performance in Large Bandwidth Delay
Netwroks ", to appear in INFOCOM 2004,
March 2004.

[4] H. Balakrishnan, V. N. Padmanabhan, S.
Sehan, and R. H. Katz, "A comparison of
mechanism for improving TCP
performance over wireless links",
IEEE/ACM Trans. Networking, vol. 5, no.
6, pp. 756 - 769, december 1997.

[5] C. E. Palazzi, "Protocolli di Trasporto in
Ambiente Wireless", Bachelor Degree
Thesis, University of Bologna, July 2002,
Cesena, Italy.

[6] W. R. Stevens, TCP/IP Illustrated, Volume
1: The Protocols, Addison Wesley, 1994.

[7] K. Fall, S, Floyd, "Simulation-based
Comparisons of Tahoe, Reno, and Sack
TCP", ACM Computer Communication
Review, July 1996.

[8] “CapProbe: A Simple and Accurate
Technique to Measure Path Capacity”,
submnitted for publication (authors’ name
withheld of double-blind reviewing).

[9] "Accuracy of Link Estimates using Passive
and Active Approaches with CapProbe",
submnitted for publication (authors’ name
withheld of double-blind reviewing).

[10] UMTS forum, http://www.umts-forum.org
[11] V. Ghini, G. Pau, M. Roccetti, P. Salomoni,

M. Gerla, "For Here or To Go?
Downloading Music on the Move with an
Ultra Reliable Wireless Internet
Application", IEEE ICC’2004, Paris, 2004.

 9

[12] S. Banerjee, B. Bhattacharjee, and C.
Kommareddy, " Scalable Application
Layer Multicast," Proc. ACM Sigcomm
2002, Pittsburgh, Pennsylvania, August
2002.

[13] G. Huston, "The future for TCP", The
Internet Protocol Journal, vol. 3, n. 3,
September 2000.

[14] G. Huston, "TCP in a Wireless World",
IEEE Internet Computing, pp. 82 – 84,
March – April 2001.

[15] C. Dovrolis, P. Ramathan and D. Moore
"What do packet dispersion techniques
measure?", in Proc. Of IEEE Infocom’01,
Anchorage, Alaska, April 2001.

[16] http://www.isi.edu/nsnam/ns/
[17] V. Tsaoussidis, H. Badr, "TCP-Probing:

Towards an Error Control Schema with
Energy and Throughput Performance
Gains", The 8th IEEE Conference on
Network Protocols, November 2000.

[18] P. Sinha, N. Venkitaraman, R. Sivakumar,
V. Bharghavan, "WTCP: A Reliable
Transport Protocol for Wireless Wide-Area
Networks", ACM Mobicom '99, August
1999.

