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Abstract 
 

Having an inexpensive and accurate means to estimate capacity could be put in good use for several 
purposes: QoS schemes could utilize it to claim the feasible ratio at which video/audio streaming are 
allowed to transmit, bandwidth estimators could receive help in discriminating between their samples. 
Nowadays, the plethora of applications available to users and the widely adopted mobile technology 
require new features that only an deeper awareness of the accessed link characteristics could provide.  

 
In this paper, we present RCE (Residual Capacity Estimator), a new scheme able to provide a simple 

and effective esteem of the bottleneck link capacity deducted the uniformly distributed traffic present. Our 
scheme is embedded in the normal TCP functionalities and achieves precise results even from the very 
beginning of a connection. We provide simulation results under various and complex situations in order 
to prove the efficacy of RCE and we conclude with future directions for this work. 
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1. Introduction 
 
Even if, at present, packet switched 

technology can be considered mature, new 
applications as peer-to-peer, remote working, 
video/audio streaming, television distribution 
and interactive online gaming present new 
challenges that require at least an adaptation or, 
in some cases, a complete redesign of the 
currently used mechanisms. New applications 
usually necessitate of capabilities that where not 
included in the original design of the Internet, 
thus asking for solutions able to provide the 
efficiency needed in order make the new 
products widely adopted by the final users.  

 
In order to really understand the complexity 

of this scenario we also have to mention the 
high number of people using wireless 
technology. Cellular phones, laptops and PDAs 
are devices owned by a very elevated and still 
increasing percentage of people and, with the 
introduction of the higher data rates of the third 
generation (3G) of mobile systems [10], we can 
easily foresee a raising request for new services 

able to push people in purchasing this new 
technology. The new “killer applications” able 
to alter the trajectory of the market will 
probably come from the interaction between the 
new devices and the Internet. Indeed, virtual 
libraries, video-telephony over IP, 
videoconferencing, games, remote-medicine, 
video and music on demand and locality based 
information are only few of the innumerable 
services that will be available in every place and 
at every time. 

 
On the other hand, the interaction between 

mobile devices and the Internet, coupled with 
the need for an efficient and reliable data 
transfer have generated several unresolved 
problems [5], amongst the other, the high error 
rate present on the channel. Therefore, 
applications that rely on a reliable transmission 
protocol are especially affected by a wireless 
environment. Focusing on the TCP 
(Transmission Control Protocol), indeed the 
most popular transport protocol for reliable data 
delivery, we have also to notice that it was 
designed in a time when networks were 
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exclusively based on wired technology. For this 
reason, the flow control and the congestion 
control functions fail when introduced into a 
wireless context [13]. To really understand the 
reasons of this failure we should remember that 
traditional TCP uses packet losses as a metric to 
evaluate the congestion level of the network. 
Consequently, when a packet is considered to be 
lost, TCP reduces the data sending rate. In 
presence of numerous losses related to non-
congestion factors, as in a wireless environment, 
this behavior is not appropriate and causes a 
consistent underutilization of the available 
bandwidth on the link [4]. Having a means to 
precisely estimate the accessible bandwidth 
could help in discriminating between the 
congestion related losses and wireless error 
losses. In order to avoid potential overestimation 
of the available bandwidth it could be useful to 
have a tool able to provide a capacity measure 
of the bottleneck. Not only this value could be 
used as an upper bound for data sending rates, 
but it could also be put in good use in other 
applications as, for instance, to determine 
appropriate routes/trees for multicast overlay 
networks [12].  

 
In Section 2 we briefly present related works 

which regards estimation either of bandwidth or 
capacity, in Section 3 we propose the reasoning 
that brought us to design our new link capacity 
estimator, in Section 4 we explain the simulated 
environment used to test the new mechanism, in 
Section 5 we show the results obtained in 
simulations by our scheme and Section 6 
concludes this work and presents future 
directions. 

 
 

2. Related works 
 

In recent years, many researchers have 
focused their studies on the obstacles present in 
a wireless environment proposing various 
alternative techniques [14]. Several solutions 
proposed to face those problems relies on the 
ability to estimate the factual capacity or the 
available bandwidth. Equipped with these 
information, protocols could be able to set the 
most appropriate sending parameters decoupled 
from the losses.  

 
Tsaoussidis and Badr propose the use of 

special pairs of probe packets after each loss 
[17]. When one of these couples reaches the 

receiver, the measured delay of these probing 
packets, is used to understand if the network is 
congested and, only in this case, to diminish the 
data sending rate. If the wireless link is 
experiencing a disconnection or a fading, the 
probe cycle is extended, thus avoiding further 
data losses and consequently erroneous 
restrictions of the sending rate. Their purpose is 
also obtaining a better energy resource 
consumption. This protocol requires 
modification at both sender and receiver side in 
order to handle with probing packets: this lack 
of compatibility with the current implementation 
of the TCP seriously affects its real development 
possibility. 

 
A new end-to-end transport protocol is also 

proposed by Sinha et al. [18]. They face the high 
number of errors and the variable latency of a 
wireless environment eliminating the timeout 
mechanism, using periodic SACK packets [7] to 
understand when a retransmission is 
appropriate, and estimating the channel capacity 
to set the data sending rate. In their protocol, the 
departure time is included in each packets, thus 
the receiver can use this information and the 
interarrival times to measure the bandwidth and 
communicate the sending rate back to the sender 
by SACK packets. If the sender doesn’t receive 
any SACK for a long time, it suspends the data 
transmission and starts sending probe packets 
until an acknowledgment from the receiver 
makes it resume the communication. Since the 
bandwidth estimation is computed at the 
receiver, the packet data rate calculation is quite 
accurate. Despite this, Sinha’s mechanism 
development in the TCP/IP stack is limited by 
the requirement of modifications on both sender 
and receiver hosts. 

 
Mascolo et al. suggest a new transport 

protocol which uses a sender side end to end 
estimation of the available bandwidth [1]. While 
traditional TCPs blindly reduce the data sending 
rate every time a data packet is lost, the key 
innovative idea in their work is to use the rate of 
the returning acknowledgments of received data 
to measure the effective link availability. This 
bandwidth estimation is computed by sampling 
and exponential filtering methods that have been 
progressively refined in order to be effective and 
fair at the same time [2][3] and then used, after a 
loss or during slow start to appropriately set the 
slow start threshold. This protocol has shown 
great results on big pipes, even if affected by 
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error losses, as for example satellite links; 
however, in some other wired-cum-wireless 
connection with a very narrow links, as with 
802.11, 1xRTT and Bluetooth, the behavior 
seems to be too conservative if compared with 
TCP Newreno [11]. 

 
Dovrolis et al. present a capacity estimation 

scheme which starts making use of packet pairs 
but, in case of multimodal distribution, the 
number of packets used is increased until having 
a value N for the cardinality of the packet train 
that produces an unimodal distribution [15]. 
Their scheme results to be accurate but too slow. 

 
Finally, Kapoor et al. suggest to use a packet 

pair scheme to estimate the capacity of a link 
[8]. In particular, between the various samples, 
they suggest to use that one obtained with the 
packet pair having the minimum delay sum. That 
value, in fact, has probably not suffered by cross 
traffic thus giving the most accurate measure. 
Their work shows maximum values close to the 
real channel capacity but, on the other hand, 
packet pair techniques tend to suffer when 
coupled with TCP because of the bulk nature of 
its transmissions and the use of delayed acks. 

 
 

3. Rationale of the idea 
  

A packet train is a set of packets which 
depart from the sender one close to the other. 
Their leaving time is beat by the transmission 
rate available, thus depending on the outgoing 
capacity. Along their path to reach the 
destination, the packets composing the train 
could encounter links with lower bandwidth 
than that present on the first one traversed, 
consequently, packets requires more time to be 
transmitted and the train becomes longer. This 
dispersion could be caused not only by narrow 
links, but also by time spent in queue due to 

other traffic sharing part of the same connection. 
The correspondent acks go back to the sender 
triggering new transmissions at a rate which 
hence depends on all these factors and causes 
packets coming out separated by gaps of idle 
time.  
 

In Fig. 3.1 time is divided into slots; using 
these slots as the measurement units, we 
indicate as X the part used to transmit the 
packets back to back and with Y the time needed 
to contain the dispersion of the correspondent 
acks. Considering the time slot equal to 1, it is 
easy to understand that the maximum portion of 
the slot usable to send packets corresponds to 

Y
X . The rate at which the sender could transmit 

is given by 
X

dtransmitteBits _ , hence to obtain 

the maximum rate usable, given the bottleneck, 
we simply multiply for 

Y
X  obtaining 

Y
dtransmitteBits _ . 

 
In a situation with a single flow and having the 
packets leaving the sender back to back, the 
formulas given above easily determine the 
capacity of the connection. If we introduce in 
this scenario other traffic, we also have to take 
into account the possibility that packets could 
leave the source distributed on the whole slot. In 
fact, the effective transmitting time of the sender 
will probably be divided into several chunks of 
time having gaps in between them that remain 
unused. In those pauses, the sender just waits for 
new acks in order to be allowed to transmit new 
data. Consequently, the correspondent acks 
distribution will be characterized by gaps that 
does not depend on the bottleneck size. 
 

 
 
 
 
 
 
 

 
 
 
 

 
Fig. 3.1 – Acks dispersion due to bottleneck link present along the path. 
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Fig. 3.2 – Packets-slots and acked-slots division. 
 

We can distinguish between several causes 
that insert gaps between returning acks: 

• Different capacity between outgoing 
link and  bottleneck link 

• Queuing time caused by congestion 
• Different size, and thus channel 

occupancy, between data packets and acks 
• Wasted time due to a low sending 

window 
 
RCE eliminates the last type of waiting time 

from the above list maintaining, at the same 
time, the dispersion of the packets due to links 
with different total bandwidth along the path. In 
this way, we are able to obtain an accurate 
estimation of the capacity of the bottleneck link. 

 
The scalability of the mechanism is assured 

by the very easy set of calculations and by the 
very few information we need to store at sender 
side about the TCP flow. Time is divided into 
slots: we set packets-slots as large as an RTO 
[6] and we count packets leaving in that period, 
we then wait for correspondent returning acks to 
determine the acks-slots as shown in Fig. 3.2. 
Since the number of packets-slots and of acks-
slots is the same, on average they will have the 
same length. 
 

When the acks corresponding to the sent 
packets come back, we compute the bottleneck 
capacity as 

timeWastedtimeslotAcks
ackedBits

___
_

−
. 

With RCE, we utilize the dispersion of the 
acknowledgments, the source ratio and the 

information regarding the time wasted with no 
data sent to the destination due to a low sending 
window. In particular, the last element is the 
introduced enhancement in our scheme that 
allows to have a correct estimation since the 
very first period of a connection making use of a 
mechanism which is perfectly embedded into 
the usual TCP operations. This wasted time at 
sender, in fact, potentially affects the 
effectiveness of all the bandwidth or capacity 
estimators that relies on returning 
acknowledgements. Following the aim of 
considering just the wasted time due to a little 
sending window while maintaining the 
dispersion induced by the narrower links, we 
have to calculate the Wasted_time from the 
acks_slot standpoint. The proposed scheme 
measures the average of the interarrival time 
between the acks of the slot (the first one is 
counted from the beginning of the slot, the slot 
ends receiving the last ack belonging to it); the 
Wasted_time is then computed as the sum of the 
time exceeding this average in each interarrival 
time of the acks_slot. This formula is justified 
by the fact that all the included packets will 
experience the same channel conditions in terms 
of transmission time: consequently, the 
exceeding gap times between acks is most likely 
a result of having periods of no transmissions 
due to the sending window size. Focusing on 
queuing time, we have to notice that, since the 
bulk nature of TCP transmission, this element 
will not be endured equally by all packets in a 
slot. 

 
 

Packets departures 

Corresponding acks arrivals 

Effective tx time Sender waiting time
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• At sender side, time is divided into slots 
• In each slot, N packets are sent to destination 
• The corresponding N acks will return back in Acks_slot_time 
• Sender_waiting_time is calculated as: 

Sender_waiting_time = 0; 
calculate AVG_acks_interarrival_time; 
for each acks_interarrival_time of the slot { 

if acks_interarrival_time > AVG_acks_interarrival_time { 
Diff = acks_interarrival_time – AVG_acks_interarrival_time; 
Sender_waiting_time = Sender_waiting_time + Diff; 

}; 
}; 

• The sample is:  
Cap_sample = Bits_acked / (Acks_slot_time – Sender_waiting_time) 

• This is averaged as:  
Cap_est = 0.5 * Cap_sample + 0.5 * Cap_est 

 
 

Tab. 3.1 – The proposed scheme. 
 

This difference in time spent in queue will 
produce acks with higher interarrival time than 
the average. Consequently, queuing time is 
removed by our mechanism in case of 
contemporary presence of other TCP flows and 
the final result is the capacity of the bottleneck. 
Conversely, if the considered TCP connection 
competes for the channel with other CBR flows, 
the outcome has a different meaning. The 
distribution shape of a CBR transmission, in 
fact, uniformly occupies a portion of space both 
in the channel and in the queues. Since all the 
interarrival times of the acks are in this case 
affected by the same amount of queuing time, 
our mechanism leaves it in the average of the 
interarrival time. Thereby, the final estimation 
will count also queuing time caused by the CBR 
traffic thus computing the shared bandwidth. 
Summarizing what we are going to demonstrate 
with simulations in Section 5, we can say that 
RCE returns the bottleneck capacity, detracted 
the portion of channel occupied by the 
uniformly distributed traffic. 

 
We can summarize the concepts above 

noticing that RCE recalls the packet train 
technique. The main difference is the fact that 

no special packets are utilized: the scheme is 
perfectly embedded in the usual TCP operations. 
Packets are sent as usual to destination causing 
acks response from receiver which generates 
new transmissions. The outcome is depurated 
from the wasted time at sender side, virtually 
reproducing the results that we would have 
obtained from an initial configuration of a 
compact packet train. Since in this way we have 
a new usable sample every RTO, this also solve 
the problem of having few natural packet pairs 
on a TCP connection seen in [9]. The scheme 
here proposed is recapitulate in Tab. 3.1. 
 
 
4. Simulation environment 

 
NS-2 is a widely used network simulator 

[16], many scientific articles regarding various 
aspects of networking are based on this tool. In 
particular, since the widely accepted reliability 
of simulations results obtained from 
modifications of transport layer protocols, NS-2 
is the standard for simulations of  TCP. In this 
work we have utilized the seventh version.  

 
 
 
 
 

 
 
 

Fig. 4.1 – The simulated environment. 
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The configuration of the simulations is 
intuitively understandable from Fig. 4.1. One or 
more connections share a link which represents 
the bottleneck. In particular, nodes have access 
to the common link coming from very high 
bandwidth connections having in B an almost 
infinite queue. This is a simplification that 
allows us to have congestion only before the 
bottleneck link which is desirable in order to 
properly test the ability of RCE to detect the 
capacity in that point. Besides the data cited in 
the picture, we have used in our simulations 
different bottleneck bandwidths having the 
queue in entrance set to the pipe size. Our 
scheme has been tested with or without errors 
on the link, the former in order to simulate a 
wireless connection and the latter to simulate a 
normal wired connection, and with  or without 
the concurrent presence of CBR (Constant Bit 
Rate) flow both in the same or in the opposite 
direction of the TCP flows. The functionalities 
of the transport protocol utilized have not been 
modified: our estimator makes calculations 
simply observing the normal execution of  the 
TCP flows. 

 
A summary of the main characteristics of the 

various flows follows: 
 

• Single or multiple TCP flows (bulk transfer): 
o Type:  Westwood Agile 
o Packet size:  1000 bytes 
 

• Straight and/or reverse UDP/CBR flows: 
o Packet size: 125 Byte 
o Transmission interval: 1 ms 

 
In order to simulate the RCE mechanism 

under various conditions, we have modified 
some NS-2 modules and written new ones in 
order to implement the new capacity estimation 
scheme. Moreover, we have prepared a tcl script 
that allows with minimal commands to run the 
various simulations having as results trace files 
and graphs.  

 
 

5. Results of the simulations 
 
We have verified the correctness of RCE 

running several simulations under various 
conditions. It is obviously not possible to cover 
here the whole plethora of all possible cases that 
we could encounter in the Internet but we 
believe that the set of situations recreated for 
this work allows us to state some important 
conclusions. Since the good performance 
demonstrated by the Westwood protocol in 
estimating the correct eligible rate under various 
conditions [1][2][3], we have decided to run this 
version of the transport protocol. Besides, this 
gives us an immediate comparison between an 
accurate shared bandwidth value and our 
capacity estimator. In all the graphs presented, 
the red line represents the congestion window 
(which is in our simulations always 
corresponding to the sending window), the 
green one is the slow start threshold, in yellow 
we have the Westwood Agile ERE (Eligible 
Rate Estimate) and in blue there is the capacity 
estimation provided by our mechanism.

 
 

 

Fig. 5.1 – Single TCP flow on a bottleneck link of 
5Mb, with no errors 

Fig. 5.2 – Single TCP flow on a bottleneck link of 
5Mb, PER of 0.1% and a period of CBR traffic 
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From now, every time we say TCP we mean 
TCP Westwood Agile and for all the simulations 
run we have set the condition (CBR 
transmission interval, CBR and TCP packet 
size) as presented in Section 4. 

 
In Fig. 5.1 we present the outcome of a very 

simple scenario with a single TCP flow on a 
connection with a bottleneck bandwidth of 5Mb. 
Since the presence of a single  connection on the 
channel, the eligible rate and the capacity of the 
link are the same. As we can see, our estimator 
(blue line) reaches the correct value almost 
immediately, in particular the maximum value  
given by our estimator correspond to 43.25 
packets while the pipe size is 44 packets. 
Maximum value is chosen as a parameter in 
order to allow comparisons with CapProbe 
papers [8][9]. 

 
In Fig. 5.2 we can see the outcome of a 

simulation run in order to test the reactivity and 
effectiveness of RCE, even in situation 
characterized by errors as those faced in a 
wireless environment. In particular, a single 
TCP flow operates from second 0 to second 30 
while a CBR flow starts at second 8 of the 
simulation and ends at second 18. The capacity 
of the channel and the introduction of a 
uniformly distributed traffic are perfectly 
detected by the estimator: the latter is perceived 
as a decrease of the actual capacity. We have 
also introduced a PER (Packet Error Rate) of 
0.1% to simulate the error prone conditions of a 
typical wireless environment: our mechanism is 
not affected at all by this.  
 

Figg. 5.3, 5.4 and 5.5 show the results of a 
simulation in which three TCP flows compete 
for a common bottleneck of 10Mb over a total 
period of time of 80 seconds; the RTT is 70ms, 
thus the pipe size results to be 88 packets. Since 
RCE relies on the dispersion of the acks, we 
have inserted a CBR flow sharing the same 
bottleneck but in the opposite direction in order 
to study the impact of reverse traffic. In this 
configuration, the first TCP source starts 
sending packets at second 0 and ends at 40, the 
second one transmits from second 10 to 50 and 
the third one starts at  20 and finish at 80. As it 
is easy to see, in all the three cases the capacity 
is estimated promptly and correctly. More in 
detail, the maximum value estimated for the 
capacity is respectively 87.87, 86.71 and 86.84 

which is very close to the factual pipe size of 88 
packets. 
 

Finally, we have also tested RCE with 
delayed acks. Obviously, delayed acks 
employment impacts on the acknowledgments 
distribution, thus affecting the detected capacity 
of the connection. Despite of this, results where 
not bad in a scenario with two TCP competing 
for a 10Mb bottleneck: over 30 seconds of 
simulation, the achieved maximum capacity 
estimate were respectively 83.17 and 82.22 
packets over a truthful capacity of 88. Our 
mechanism is hence able to give an appropriate 
value even in a case where traditional packet 
pair techniques fail. 

 
 

 
Fig. 5.3 – 1st over 3 TCP flow on a bottleneck link 

of 10Mb, no errors, with reverse CBR flow 
 

 
Fig. 5.4 – 2nd over 3 TCP flow on a bottleneck link 

of 10Mb, no errors, with reverse CBR flow 
 

 
Fig. 5.5 – 3rd over 3 TCP flow on a bottleneck link 

of 10Mb, no errors, with reverse CBR flow 
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6. Conclusions and future directions. 
 
In this work, we have studied the problem of 

properly estimate the capacity of a channel. In 
particular, we have defined the various 
components of the waiting time at sender side, 
enlightening the impact of one of its component: 
the wasted time due to a current low sending 
window. Aware of this, we have then proposed 
RCE, a simple and non expensive algorithm 
able to provide accurate estimation of the 
channel capacity detracted the uniformly 
distributed concurrent traffic, since the very 
beginning of a connection. Our scheme recalls 
the packet train mechanism but is perfectly 
embedded with the normal functionalities of 
traditional TCPs; in fact, it uses normal packets 
and acks and does not require the employment 
of apposite new packets. 

 
The simulations results showed that RCE is 

highly precise and provides an appropriate value 
also at the very beginning of a connection. 
Moreover, it works properly even if plunged in 
an error prone environment or with preexisting 
or successively starting concurrent flows. 
Finally, despite of relying on returning acks 
distribution, our scheme has been demonstrated 
robust also against reverse flows and able to 
provide an acceptable esteem in case of delayed 
acks utilization.  

 
Future studies include the real 

implementation of the proposed mechanism in 
order to verify the simulation results. Moreover, 
we would like to find a practical employment 
for our capacity estimator and experiment it. As 
first step, we could use RCE as an upper bound 
provider for the bandwidth sample obtained by 
the TCP Westwood. This will let us know if it is 
possible to still achieve the same accuracy in 
bandwidth estimation substituting the heavier 
filter currently used with a less computationally 
expensive one. As another real application, we 
could utilize our scheme to compute the most 
appropriate transmission rate for video/audio 
streaming in presence of QoS policies 
requirements. Having an accurate estimation of 
the capacity can help the system to claim the 
correct feasible rate for high priority 
applications regardless of low priority traffic. 
Furthermore, it would be interesting to evaluate 
our capacity estimator coupled with routing 
algorithms to create efficient multicast overlay 
networks. Finally, we are looking for enhancing 

our scheme in order to take into account also the 
non uniformly distributed traffic present on the 
channel, in order to construct a simple and 
effective available bandwidth estimator. This 
feature could be obtained determining the 
queuing wasted time due to congestion and 
integrating this value in our scheme.  
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