
A RIO-like Technique for Interactivity Loss
Avoidance in Fast-Paced Multiplayer
Online Games: A Preliminary Study

Claudio E. Palazzi(1,2), Stefano Ferretti(1), Stefano Cacciaguerra(1), Marco Roccetti(1)

1Dipartimento di Scienze dell’Informazione, Università di Bologna,

Mura Anteo Zamboni 7, 40127 Bologna, Italia

2Computer Science Department, University of California Los Angeles,
Boelter Hall, Los Angeles CA, 90095, USA

{cpalazzi, sferrett, scacciag, roccetti}@cs.unibo.it

Abstract-The astonishing increase of the Internet diffusion has
provided global connectivity proficient at deploying online games
for a large number of participants located even very far from
each other. However, online games are characterized by more
stringent requirements than those accomplishable by traditional
distributed applications deployed over best-effort networks.
Indeed, one of the key factors in determining the success of an
online game is represented by the ability to rapidly deliver events
among the various game servers that maintain the state of the
game over the network. We already demonstrated that adapting
in this context RED (Random Early Detection) techniques
borrowed from queuing management can improve the global
responsiveness of the game [1]. However, this solution may be
not sufficient for a specific class of on-line games. We deem that,
in case of fast-paced multiplayer online games (such as shoot ’em
up, for example) requiring a frenetic behavior of the participants,
a highly elevate interactivity degree must be guaranteed even at
the cost of partially sacrificing the consistency of the game state.
In this case, in fact, having only a partial consistency view of the
game state is not so player’s amusement affecting as, instead, a
delayed action processing activity may be. We have hence
explored the possibility to apply a RIO (RED with In and Out)
based algorithm to manage the game state delivery among the
various game servers, in order to further improve the aptitude of
our scheme in maintaining a highly playable interactivity degree
for fast-paced online games. Preliminary experimental results
confirm the viability of our approach.*

Keywords- multiplayer computer games; online entertainment;

event delivery service; interactivity; consistency.

I. INTRODUCTION

Nowadays, two main reasons above the others attract an
increasing number of researchers and developers toward
online electronic amusements. The first one is the very high
level of revenues generated every year, which surpasses even
the movie business. The second reason is represented by the

* This research has been partially funded by the Italian M.I.U.R., Interlink
project and 60% (IT).

correlation between problems that emerge in developing
innovative game experiences and those typical of other
conventional research fields such as, for example, distributed
multimedia applications, virtual environments and simulation.
Under this aspect, it is of particular interest to analyze one of
the most innovative challenges in networked electronic
amusements: the deployment of an efficient architecture to
support Massive Multiuser Online Games (MMOGs) over a
best effort network [2, 3, 4].

Creating an enjoyable online game entertainment requires
the convergence of solutions belonging to different technical
areas. In particular, our focus here is centered on networking
and computational load at the servers of the game platform
architecture. To this aim, Mirrored Game Server represents an
efficient solution to support MMOGs, which deploys over the
network a constellation of communicating Game State Servers
(GSSs) [5, 6]. Each GSS maintains part or the whole game
state, takes charge of event deliveries to/from other GSSs or
to/from clients connected with it, and can implement policies
aimed at increasing the global performance of the system.
However, in order to guarantee a uniform view of the game
state among all GSSs, an efficient synchronization scheme
needs to be employed.

In a previous study [1], we proposed an innovative game
synchronization scheme, named ILA (Interactivity-Loss
Avoidance), specifically designed for providing efficient event
delivery synchronization in multiplayer online games. ILA
mechanism is able to uplift the playability degree of online
multiplayer games by maintaining the event delivery delays
under a human-perceptivity threshold whilst preserving the
game state consistency and the game evolution fluency at the
player’s side. Simply stated, this result was obtained
discarding events that can be considered obsolete and
employing a dropping probability which depends on the
perceived responsiveness at GSSs.

However, our experiences with online games over a best
effort network lead us to claim that there exist cases where

even dropping all the obsolete events in a game is not enough
to ensure interactivity. This is particularly true for a class of
games that requires frenetic, and often redundant, actions by
the players.

This class of games is widely recognized in the gaming
community as fast-paced (or even fast and furious) games. A
typical example in this class amounts to shoot/beat ‘em up
games. Simply put, for this class of games we propose to
enhance ILA scheme adding a further dropping probability
function that discards even some non-obsolete events when
throwing away all the obsolete ones is not enough to ensure an
adequate interactivity degree.

Obviously, this may generate some sporadic inconsistencies
in the game state. However, we deem that partial consistency
becomes acceptable with fast and furious online games where
the lack of consistency lasts only for a small amount of time.
In this scenario, in fact, the necessity of a very high
interactivity degree emerges as overwhelming even on the
full-consistency requirement.

We have developed a preliminary study whose experimental
results confirm the viability of our idea.

The remainder of this paper is organized as follows. In
Section 2 we briefly survey the theoretical background at the
basis of our basic synchronization scheme. Section 3 presents
some details of the newly proposed interactivity maintenance
technique. Section 4 describes the simulative environment
adopted as our test bed. In Section 5, we report preliminary
results obtained from the conducted evaluation. Finally,
Section 6 concludes the paper.

II. BACKGROUND

A. Interactivity vs consistency
Distributed interactive games are characterized by two main

requirements which cannot be considered independent one
from the other: interactivity and consistency [1, 6]. It is widely
accepted that in order to provide interactivity in a distributed
gaming environment, it must be guaranteed that the external
stimuli, generated by players, are processed by other
participants under a human-perceptivity threshold [1, 4, 5].
This means that the time elapsed from the event generation at
a sending GSS and its processing time at each receiving GSS
results below a specific average value. For example, scientific
literature declares that a delay of 50ms is not perceived at all
by players while at 150 ms players’ performances may result
jeopardized by the lag and finally 225 ms of delay could
represent the maximal limit for playable interruptions. These
values are valid for games like first person shooter and vehicle
racing by can be relaxed in the case of more strategic games.

Not only, in order to obtain a factual smooth progression in
the game visualization on the player’s screen, also a low
variance of these values should be guaranteed.

Consistency regards the contemporary uniformity of the
game state view in all the nodes belonging to the system [6].
The easiest way to guarantee consistency is to make the game
proceed through discrete locksteps [7]. However, having a
single move allowed for each player and synchronizing all the

agents before moving toward the next round, strongly impairs
the interactivity of the system.

In a previous work [1], we demonstrated that a good level
of interactivity, coupled with full-consistency
accomplishment, may be obtained exploiting the notions of
obsolescence and correlation surveyed in the next Subsection.

However, as mentioned in Section 1, full-consistency may
be sacrificed in favor of a higher interactivity degree when
considering a particular class of online games. In case of
frenetic shoot ‘em up games, for example, loosing a shoot
action among hundreds of them, all comprised in a very tight
period of time, may be accepted even if the final outcome of
the game evolution results slightly altered.

Conversely, having consistent lags between event
generation and action visualization on screens irremediably
compromise the velocity of the action which is, in other
words, the funniest component of this kind of games.

B. Obsolescence and correlation
It is well known that full consistency can be obtained

through the use of a completely reliable, totally ordered event
delivery scheme [6]. On the other hand, it is also common
knowledge that totally ordered delivery approaches imply an
increment of the complexity and, most of all, are at the basis
of the total delays experienced by the system [8].

Recent studies demonstrated that exploiting the semantics
of the application can be put in good use to relax reliability
and total order delivery requirements, thus augmenting
interactivity [1, 9]. Some events, in fact, can lose their
significance as time passes: new actions could make irrelevant
the previous ones.

For example, in case of rapid succession of movements of a
single agent in a virtual word, the event representing its last
destination makes obsolete the older ones. Obsolescence can
thus be defined as the relation between two received events e1
and e2, generated at different times t(e1) < t(e2), by which the
existence of e2 diminishes the importance of processing e1.
Dropping obsolete events before processing them clearly
reduces the computational cost at GSSs and speeds up the
execution of fresher events.

To define as obsolete a game event, we have to be sure that
consistency would not be weakened. To this aim, we have also
to introduce the notion of correlation. Two events, say e1 and
e2, are correlated if the final game state depends on their
execution order. Hence, correlation is to be taken into
consideration to determine the obsolescence of a chain of
subsequent events.

In fact, an event e3 makes obsolete a previous event e1 only
if there is not another event e2 (correlated to e1), temporary
interleaved between e1 and e3, that breaks the relationship of
obsolescence between e1 and e3. In a scenario where we wish
to maintain full consistency, correlated events are the only
ones that really need to be delivered to the destined GSSs in
the same order as generated and that cannot be subject to any
dropping action.

Since we are here discussing design issues about fast and
furious class of multiplayer online games, this requirement can
be sporadically relaxed in order to boost the interactivity.

C. Interactivity Maintenance with RED
Ferretti and Roccetti demonstrated the interactivity benefits

attainable exploiting the semantics of a game during its
evolution to relax the total order delivery requirement [6].

In their proposed scheme, the player’s actions are collected
by the closer GSS, transformed into events and finally
forwarded to the other GSSs in order to maintain a global
identical view of the game state. Events are marked at their
creation with a generation timestamp and then sent to
destination: they are hence orderable.

Obviously, a global conception of time is to be maintained
by all the GSSs, for example exploiting a variety of different
solutions proposed in literature that enable the GSSs’ physical
clocks synchronization [10, 11, 12], or employing new
technological synchronization devices, such as, for example,
GPS.

Each receiving GSS considers the arrival time of the event
and measures the difference elapsed since its generation; the
resulting value is named Game Time Difference (GTD). The
GTD of the event is then compared with a predefined constant
Game Interaction Threshold (GIT) and normal delivery
operations are performed until the former value is lower than
the latter. When the GTD value exceeds the GIT, the GSS
turns on a stabilization mechanism which exploits the
obsolescence notion to drop useless events so as to bring the
GTD back within the GIT.

Taking inspiration from the RED (Random Early Detection)
approach in case of incipient congestion in best effort
networks [13], we have recently enhanced the aforementioned
Interactivity Restoring mechanism with the Interactivity-Loss
Avoidance (ILA) approach [1].

The main innovation presented by this latter scheme is the
capability of avoiding interactivity loss before it may happen,
discarding some packets when the level of interaction among
GSSs descends significantly.

In practice, ILA substitutes the basic binary dropping
mechanism for obsolete events (OFF when interactivity is
present and ON when interactivity is lost) with a continuously-
working proactive mechanism that drops obsolete events with
a probability depending on the level of interactivity.

Even if, similarly to RED, ILA utilizes a uniformly
distributed dropping function, however, the parameter taken
under control is the average GTD instead of the average queue
size. Upon each packet arrival, in fact, each GSS determines
the GTD of the arrived event, namely sample_GTD, and feeds
a low pass filter to compute the updated average GTD, namely
avg_GTD. When avg_GTD exceeds a certain threshold, the
GSS drops obsolete events with a certain probability p,
without processing them. If avg_GTD exceeds a subsequent
limit, p is set equal to 1, and all obsolete events waiting for
being processed are discarded.

III. A RIO-LIKE TECHNIQUE FOR INTERACTIVITY LOSS
AVOIDANCE

Our previous RED based ILA scheme can be usefully
applied in those multiuser online games that pursue a good

interactivity degree whilst maintaining full consistency in
game state views.

However, as already mentioned, there exist particular
classes of games where it might be desirable to guarantee a
very high interactivity degree even at the cost of sporadically
renounce to the full-consistency requirement. This is the case
when the core attractiveness for players emerges from a
feverish, sometimes even chaotic, action sequence, namely,
fast and furious multiuser online games.

To this aim, our intention here is to add the possibility to
discard even non-obsolete game events when dropping all the
obsolete ones is not sufficient to maintain an adequate level of
interactivity. In particular, we want to create two discarding
functions, respectively for obsolete and for non-obsolete
events, featured with specific boundaries and slopes, that work
independently one from the other and that take action in
sequence with the increasing of the game event GTDs at the
GSSs.

Obviously, dropping non-obsolete events can be done
without consequences only for a category of games where
little inconsistencies are not highly deleterious for the aim of
the game and for player’s fun (e.g., fast-paced games).

Even in this case, if the number of dropped non-obsolete
events becomes significant, a consistency restoring
mechanism may be required to re-establish a coherent game
state view among all the GSSs [14].

We hence propose to enhance our ILA scheme with new
features deriving from the integration of a RIO-like algorithm
in place of the RED-like one. RIO (RED with In and Out)
scheme is an enhanced version of RED mechanism able to
discriminate between two different classes of traffic, non-
prioritized (Out) and prioritized (In), and calculates two
distinct dropping probabilities.

As illustrated in Fig. 1, three parameters (and three phases)
characterize each of the twin algorithms: mino, maxo and
Pmaxo, for obsolete events, and minv, maxv and Pmaxv for
valid (i.e., non-obsolete) ones.

In the graph, the y-axis represents the dropping probability
corresponding to the avg_GTD indicated by the x-axis.
Focusing on obsolete events, for values of avg_GTD in [0,
mino) the mechanism performs normal operations, with no
packet drops, while in [mino, maxo) obsolete packets are
discarded with a computed probability, and finally in [maxo,
∞) all obsolete packets are thrown away.

The intervals [0, minv), [minv, maxv) and [maxv, ∞) define
the corresponding phases for valid events. The dropping
probabilities are computed as a function of avg_GTD and of,
respectively, Pmaxo or Pmaxv.

Persistent situations of low interactivity result in high
avg_GTD and hence in high discarding probabilities. High
dropping probability values (for Pmaxo or Pmaxv) will make
the GSS discarding events without processing or forwarding
them, thus helping in restoring an adequate level of time
interaction between servers.

mino avg_GTD

Pmaxo

1

Dropping
Probability

maxo

Pmaxv

minv maxv

phase 0 phase 1 phase 2 phase 3 phase 4

Fig. 1: Discarding probability functions.

Since valid (i.e., non-obsolete) events are strictly linked to
consistency, the possibility to discard them should be taken
into account only as last resort, in case of heavy disruption of
interactivity. For this reason, our scheme starts dropping
obsolete packets much earlier than valid packets. Not only, we
have set the parameters such that the algorithm throws away
all the obsolete packets before considering any dropping
probability on valid events; this is done by choosing maxo
smaller than minv.

Moreover, diverse aggressiveness in dropping packets,
depending on their belonging class, can be decided by
adjusting the values of Pmaxo and Pmaxv.

The new ILA-RIO algorithm, implementing the behavior of
our scheme in all its phases, is given in Fig. 2 and is obtained
endowing the RED algorithm presented in [13] with the RIO
features.

In essence, the algorithm repeats a block of operations each
time a new event arrives at the considered GSS.

In particular, the GTD of the packet is calculated
(sample_GTD, line 1) as the time difference elapsing between
the generation of the associated game control event at the
sender GSS and its delivery to the considered GSS.

0] for each event_packet arrival {
1] determine the sample_GTD
2] calculate the new average delay avg_GTD
3] if (mino = avg_GTD < maxo) then
4] calculate the probability Po of dropping an obsolete event
5] determine if ONE obsolete event has to be discarded
6] else if (maxo = avg_GTD) then
7] drop ALL obsolete events
8] if (minv = avg_GTD < maxv) then
9] calculate the probability Pv of dropping a valid event
10] determine if ONE valid event has to be discarded
11] else if (maxv = avg_GTD) then
12] drop ALL valid events
13] endif
14] endif
15] endfor

Fig. 2: ILA-RIO algorithm.

Table. 1: Configuration of the GSSs.

GSS ID 1 2 3 4 5 6 7
Latency Avg (ms) 15 40 75 90 80 30 100

Latency Std Dev (ms) 15 15 30 10 20 15 25

The scheme feeds a low pass filter with the just calculated

sample_GTD in order to update the average of the GTDs
(avg_GTD, line 2).

In particular, the filter is implemented by resorting to the
following formula:

avg_GTD = avg_GTD + w*(sample_GTD - avg_GTD) (1)

where w is a sensitivity coefficient, with values comprised in
(0, 1], that determines how closely the trajectory of the
average follows the movements of the samples.

While avg_GTD lies below mino, the process stays in phase
0 and no particular operations are performed. Conversely,
when avg_GTD is comprised between mino and maxo, then the
scheme is in phase 1 and lines 4-5 are executed.

Basically, a dropping probability is computed in order to
establish if an obsolete event must be discarded. Such a
probability increases until an event is discarded. This is done
exploiting a counter variable in order to have a uniform
distribution of the drops, following the method well explained
in [13].

If avg_GTD grows beyond maxo, the scheme enters in
phase 2 or successive and all obsolete packets have to be
discarded in the attempt of re-establishing interactivity (line
7).

Moreover, the algorithm has to distinguish between phase 3
(lines 9-10) and phase 4 (line 12). In the former case, valid
events are dropped with a certain probability (Pmaxv) with a
behavior analogous to the already explained phase 1, while in
the latter case all events, with no distinction, are discarded.

IV. SIMULATION ASSESSMENT

To evaluate our event processing strategy, we have
simulated a general Mirrored Game Server architecture
comprising various GSSs dispersed over the Internet. As
previously mentioned, the events generated are totally ordered
based on a global notion of time. These can be achieved iehter
by resorting to the variety of different software solutions
proposed in literature for clocks synchronization [10, 11, 12]
or by exploiting some technological device useful for
synchronization like the GPS.

For the sake of a deeper comprehension, we have focused
our attention on the event receiving aspect of a single GSS,
while the other GSSs are sending events to it. GSS0 is the
receiving GSS and the others are the sending GSSs.

Based on results obtained by other authors in [15, 16], the
values of the network latencies among each sending GSS and
the receiving GSS0 have been obtained based on a lognormal
distribution having the average and standard deviation values
as shown in Table 1.

Furthermore, the event generation rate i.e., the interval of
time between two subsequent event departures at each GSS,

was sampled from a lognormal distribution (average equal to
30ms and standard deviation equal to 10ms). These values
represent approximately the traffic generated by from 5 to tens
players (depending on the semantics of the game) connected to
each GSS and are utilized to generate a trace file containing
1000 events for each GSS. Trace files also include the
information needed to identify (correlated and) obsolete
events.

In our simulations, we considered two different event trace
configurations where the probability that an event makes
obsolete previous ones was set, respectively, to 50% and 90%.

For each event trace the size of the generated game events
was 200 Bytes on average.

The event delivery service was built by exploiting a
receiver-initiated communication protocol over the UDP, that
utilizes NACKs (Negative ACKnowledgments) to provide
reliability to the communication.

In our tests we compared three different synchronization
schemes: the proposed ILA-RIO scheme, the ON-OFF
mechanism (Interactivity Restoring as reviewed in Section 2,
Subsection C), the traditional OFF approach (having no
mechanism to restore interactivity).

Focusing on the parameters exploited in the ILA-RIO
algorithm, we set w=1/8 in (1) in the attempt to make the
algorithm able to filter out sporadic high GTDs, while
maintaining a prompt responsiveness to a persistent decline of
the interactivity degree.

Moreover, the other parameters involved in the algorithm
were set as follows: mino = 50ms, maxo = 100ms, Pmaxo =
0.2, minv = 150 ms (equivalent to the GIT for the ON-OFF
scheme), maxv = 225 ms and Pmaxv = 0.3.

Several considerations can be expressed about the most
appropriate values for the above cited parameters. The phase
boundaries, in fact, should be chosen in order to activate phase
1 when the delay between the generation of a player’s action
and its execution on the screens provides the first perceivable
symptoms of interactive degradation. Instead, the threshold for
the more aggressive phase 2 should be chosen in order to be
surpassed when the lag results annoying and low-performance
determining for players.

As rationale for our chosen values, scientific literature
declares that a delay of 50ms (i.e., our mino parameter) is not
perceived at all by players while at 150ms (i.e., our minv and
GIT parameters) players’ performance results disturbed by the
lag and 225ms (i.e., our maxv parameter) of delay could
represent an upper bound for playable interaction [17, 18, 19,
20]. These limits hold for games like vehicle racing, first
person shooters and fast shoot/beat ‘em up, but can be relaxed
in case of strategic games (e.g. Starcraft, Age of Empire, etc.)
[21].

V. RESULTS

We intend to demonstrate the benefits attainable by
implementing an event discarding algorithm in case of an
increasing trend of the GTDs.

In a previous work we already assessed the efficacy of the
single ILA (RED-based) mechanism in a similar scenario [1].

In particular, we experimented: i) an improvement of 27% and
4% on the average GTD w.r.t OFF and ON-OFF respectively,
and ii) an improvement of 66% and 41% on the standard
deviation w.r.t. OFF and ON-OFF.

As to the approach presented in this paper, in Fig. 3 and Fig.
4, we compare for ILA-RIO, ON-OFF and OFF schemes:

i) the percentage of events arrived at GSS0 with a GTD

value larger than the GIT, and
ii) the amount of events dropped by ILA-RIO and ON-OFF.

Figures 3 and 4 respectively refer to a specific event trace
configuration, with a different probability of obsolescence
among events.

As observable (Fig. 3-a, Fig. 4-a), in both configurations
ILA-RIO and ON-OFF schemes outperform the traditional
OFF method in terms of GTDs. Moreover, ILA-RIO further
reduces the number of events with GTD above the GIT w.r.t.
ON-OFF. These results give a preliminary confirmation that
ILA-RIO is able to guarantee a higher interactivity degree
when contrasted with the two other alternative approaches.

Furthermore, while in the former event trace configuration
there is no significant difference among ILA-RIO and ON-
OFF when comparing the amount of dropped events (Fig. 3-
b), in the second configuration ILA-RIO greatly reduces this
value (Fig. 4-b). Therefore, ILA-RIO scheme augments the
game evolution fluency.

Finally, we evaluated the amount of valid events dropped
by our ILA-RIO approach. Indeed, while the ON-OFF
approach discards only obsolete events, ILA-RIO is enabled to
drop valid events when the interactivity degree results highly
jeopardized.

Prob. of Obsolescence = 50%

0

10

20

30

40

50

60

%
 G

T
D

 o
ve

r
G

IT

OFF ON-OFF ILA-RIO

Prob. of Obsolescence = 50%

0

2

4

6

8

10

12
%

 D
ro

p
p

ed
 E

ve
n

ts

ON-OFF ILA-RIO
(a) (b)

Fig. 3: Probability of obsolescence = 50%; (a) Event percentage with
GTD > GIT; (b) Percentage of discarded events.

Prob. of Obsolescence = 90%

0

10

20

30

40

50

60

%
 G

T
D

 o
ve

r
G

IT

OFF ON-OFF ILA-RIO

Prob. of Obsolescence = 90%

0

5

10

15

20

25

30

35

40

%
 D

ro
p

p
ed

 E
ve

n
ts

ON-OFF ILA-RIO
(a) (b)

Fig. 4: Probability of obsolescence = 90%; (a) Event percentage with
GTD > GIT; (b) Percentage of discarded events.

Table. 2: % of obsolete and valid discarded events in ILA-RIO.

Obsolescence Prob. 50% 90%
Obsolete 9,46% 13,64%
Valid 0,16% 0%

Table 2 reports the percentage of obsolete and valid events

that are discarded, depending on the event trace. As expected,
the number of dropped obsolete events increases with the
probability of obsolescence. Accordingly, the amount of
dropped valid events diminishes as the percentage of obsolete
events is greater, since this imply a lower percentage of valid
ones.

In particular, while a small amount of valid events has been
discarded in correspondence of the first event trace
(probability of obsolescence equal to 50%), no valid event has
been dropped in the second configuration (probability of
obsolescence equal to 90%).

This tendency is due to the fact that if an adequate number
of obsolete events is available during the events exchange
activity, then our scheme is able to exploit all these (obsolete)
events to restore interactivity when enters in phase 2. Simply
stated, interactivity is promptly restored by dropping only
obsolete events without the need of discarding valid ones.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we presented a new scheme for a fast event
delivery service among mirrored GSSs, aimed at supporting
fast-paced networked games. The proposed approach exploits
an event dropping mechanism, inspired by the RIO algorithm,
devised to maintain a higher interactivity degree among
players while preserving only partial consistency in the
system.

The novelty of our proposal amounts to the possibility of
dropping also non-obsolete events when the interactivity
degree results highly jeopardized. We claim that this approach
may be utilized in certain games having very elevated
interactivity requirements and when small temporary
inconsistencies are not highly deleterious for the aim of the
game. As last resort, consistency restoring mechanisms among
GSSs may be exploited to re-establish a coherent view of the
game state. A preliminary experimental study has shown that a
good interactivity degree may be obtained by exploiting our
mechanism.

ACKNOWLEDGMENT

We wish to thank the anonymous referees of the GDTW
Workshop for their helpful comments on an earlier version of
this paper.

REFERENCES
[1] Palazzi C. E., Ferretti S., Cacciaguerra S., Roccetti M., “On
Maintaining Interactivity in Event Delivery Synchronization for
Mirrored Game Architectures”, to appear in 1st IEEE International
Workshop on Networking Issues in Multimedia Entertainment
(NIME'04), GLOBECOM 2004, Dallas, TX, 2004.

[2] Griwodz C., “State Replication for Multiplayer Games”, in Proc.
of NetGames2002, Braunschweig, Germany, 2002, pp.29-35.
[3] Mine R. M., Shochet J., Hughston R., “Building a Massively
Multiplayer Game for the Million: Disney's Toontown Online”, ACM
Computers in Entertainment (CIE), vol.1, no.1, pp.15-15, 2003.
[4] El Rhalibi A., “Peer-to-Peer Architecture and Protocol for a
Massively Multiplayer Online Game”, ”, to appear in 1st IEEE
International Workshop on Networking Issues in Multimedia
Entertainment (NIME'04), GLOBECOM 2004, Dallas, TX, 2004.
[5] Cronin E., Kurc A. R., Filstrup B., Jamin S., “An Efficient
Synchronization Mechanism for Mirrored Game Architectures”,
Multimedia Tools and Applications, vol.23, no.1, pp.7-30, 2004.
[6] Ferretti S. and Roccetti M., “A Novel Obsolescence-based
approach to Event Delivery Synchronization in Multiplayer Games”,
International Journal of Intelligent Games and Simulation, vol.3,
no.1, pp.7-19, 2004.
[7] Steinman J. S., “Scalable Parallel and Distributed Military
Simulations Using the SPEEDES Framework”, in Proc. of 2nd
Electronic Simulation Conference (ELECSIM95), Internet, 1995.
[8] Cheriton D.R. and Skeen D., “Understanding the Limitations of
Causal and Totally Ordered Multicast”, in Proc. of the 14th
Symposium on Operating System Principles (SOSP '93), Asheville,
NC, 1993, pp.44-57.
[9] Ferretti S., Roccetti M. and Cacciaguerra S., “On Distributing
Interactive Storytelling: Issues of Event Synchronization and a
Solution”, in Proc. of the 2nd International Conference on
Technologies for Interactive Digital Storytelling and Entertainment
(TIDSE 2004), LNCS 3105, Darmstadt, Germany, 2004, pp.219-231.
[10] Drummond R. and Babaoglu O., “Low-Cost Clock
Synchronization”, Distributed Computing, vol.6, no.3, pp.193-203,
1993.
[11] Cristian F. 1989. “Probabilistic clock synchronization”,
Distributed Computing, vol.3, no.3, pp.146-158.
[12] Mills D. L. 1991. “Internet Time Synchronization: the Network
Time Protocol”, IEEE Transactions on Communications, vol.39,
no.10 pp.1482-1493.
[13] Floyd S. and Jacobson V., “Random Early Detection Gateways
for Congestion Avoidance”, IEEE/ACM Transactions on Networking,
vol.1, no.4, pp.397-413, 1993.
[14] M. Mauve, “Distributed Interactive Media”, PhD thesis,
University of Mannheim, ISBN 3-89838-471-3. infix. Berlin, 2000.
[15] Park K. and Willinger W., Self-Similar Network Traffic and
Performance Evaluation, Wiley-Interscience, 1st Edition, 2000.
[16] Farber J., “Network Game Traffic Modelling” in Proc. of
NetGames2002, Braunschweig, Germany, 2002, pp.53-57.
[17] Armitage G., “An Experimental Estimation of Latency
Sensitivity in Multiplayer Quake 3”, in Proc. of ICON, Sydney,
Australia, 2003.
[18] Borella M.S., “Source Models for Network Game Traffic”,
Computer Communications, vol.23, no.4, pp.403-410, 2000.
[19] Pantel L., Wolf L.C., “On the Impact of Delay on Real-Time
Multiplayer Games”, in Proc of the 12th International Workshop on
Network and Operating Systems Support for Digital Audio and
Video, May 12-14, 2002, Miami, FL, USA.
[20] Henderson T., “Latency and User Behaviour on a Multiplayer
Game Server”, in Proc. of the 3rd International Workshop on
Networked Group Communication (NGC01) pp.1-13, London (UK),
Nov 2001.
[21] Fitzek F., Schulte G., Reisslein M., “System Architecture for
Billing of Multi-Player Games in a Wireless Environment Using
GSM/UMTS and WLAN Services”, in Proc. of NetGames2002,
pp.58-64, Bruanschweig, Germany, Apr 2002.

