
Regenerating TCP Dynamics From
Traces Path Characteristics

Cesar Marcondes1, Claudio Palazzi
M. Y. Sanadidi and Mario Gerla

Computer Science Department
University of California (UCLA)

Los Angeles, California, USA 90095
Email: (cesar,cpalazzi,medy,gerla)@cs.ucla.edu

Magnos Martinello2

and Marcos Tadeu Torres3

Computer Science Department
Universidade Federal do Espı́rito Santo (UFES)

Vitoria, ES, Brazil 29060
Email: (magnos,tadeu)@inf.ufes.br

Abstract— A deep knowledge of TCP performance on the
Internet at large is intimately related to understanding the
role of the underlying path characteristics (bottleneck rate,
buffer sizes, end-to-end delay, loss rate) on the performance
of dynamic TCP flows. The practical way to study the TCP
performance is by simulating on a dumbbell topology, Internet
statistically equivalent cross-traffic along with simulated TCP,
then extracting interest variables such as throughput as the
indicator of performance. However, we advocate that much more
can be learned about TCP performance by regenerating path
characteristic conditions derived from traces, and let TCP flows
run loose on top of it. In this study, we investigate several Internet
public TCP flows, using LAN-specific traces (Berkeley LBNL
traces), and we show how path characteristics can be extracted.
We devise a new technique to obtain path capacity by searching
longitudinal patterns of packet pairs on each TCP flow present
in a trace. In addition, we look on buffer usage patterns based
on effective throughput/estimated capacity ratio, as a way to
relate RTT variation, packet loss and disclosure buffer sizes.
Finally, the natural application is to test advanced TCP proposals
on a per-trace scenario basis by regenerating dynamic traffic
patterns directly from stored traces, such method is also called
source-based traffic pattern. In this trace regeneration testbed, we
have as input the TCP trace, then, a post-processing mechanism
inferring path characteristics per flow. Finally, emulated virtual
machines running in parallel enable the TCP traffic dynamics to
run loose.123

I. INTRODUCTION

In this paper, our goal is to present ideas for low cost,
scalable path characteristics estimations and TCP replayability
based purely on observed TCP behavior derived from traces.
As a proof-of-concept, we study and estimate the network
path capacity and buffer size of networks traces from a
well-know dataset of the LBNL Lawrence Berkeley National
Lab enterprise network. This dataset promises to be an
interesting material for our study, since previous papers [14]
[13] have exposed in detail the application heterogeneity of
the experimental samples and the process of anonymization.
In addition to the derivation of path conditions, we describe
in great level of detail the design of a research testbed to
regenerate TCP dynamics from traces.

1Cesar Marcondes is supported by CAPES/Brazil #1283-02-2
2M. Martinello is supported by CNPq/Brazil Pos-Doc Junior (PDJ)
3M. T. Torres is supported by CNPq/Brazil #50.6284/04-2

Extract path characteristics information from Internet
traces, such as capacity, delay variation, etc. is an accurate
way to represent the exact conditions on which TCP protocol
were running prior to be stored on a trace file. If one could
extract precisely such conditions and emulate them using a
controlled testbed, the emulation of Internet dynamics using
regular TCPs and source-level behavior information could
be achieved. The regeneration helps on the development of
new transport protocols, switching equipment and tuning
end-servers.

We begin by verifying that the current literature in the
area of replayable traces is in its early stage, the important
papers so far include [1] and [18]. In [1], the authors extract
basic information about the delays of the TCP connections
to feedback on a Google Search Server. They model the
service rate using a customized algorithm that execute similar
tasks as the Google Search Engine does. However, the
material fall short on exploiting path capacity estimations,
buffer size variability and thinking user times. The paper
[18] shows another possible way to use the interarrival of
packets from traces as thinking times and response times. In
this study, the authors basically extract the exact gap period
between packets, and tag them as transactions time (socket
reads/writes), therefore there is no separation on queuing time
and service time. In addition, their testbed does not support
different end-to-end capacities and buffer variability.

Therefore, there is a lack on using precise path characteristics
to lead TCP performance research. Such issue can be further
explained by the lack of tools to extract path characteristics
from stored traces based on IP/TCP headers. Thus, we
propose a simple technique derived from packet pairs
serialization delay and its relationship to capacity to obtain
precise path capacity from traces, called TraceProbe. From
this information we can infer capacities from TCP traces
by searching specific packet pair patterns. Moreover, this
tool is developed in python script language and the results
are applied to the mentioned enterprise trace dataset. For
validation purposes, a proper comparison with another passive



estimation tool, PPRate [16] demonstrates the accuracy of
our method and a pathological discrepancy based on flow
controlled application such as ssh and NFS on Section 2.

Another major effort in this paper is on the study of
buffer estimation on traces, on Section 3. We start our
approach by collecting a straightforward metric from the
traces, namely, the relationship between the RTTs from
the TCP feedback loop and the RTT just before the buffer
overflows. The latter is identified through a packet loss or
3 duplicate ACK. In order to derive reliable buffer sizes,
our approach also requires the knowledge of narrow link
capacity beforehand. The buffer size scheme is validated
through simulation of realistic Internet traffic patterns. It is
then applied to the LBNL traces, using the narrow capacity
estimation from the previous set of experiments.

The final piece is the detailed description of applications
including the design of a research testbed for replayable
traces. Our goal is to develop a system to automatically
extract path characteristics on a per-trace basis. Then prepare
an end-to-end structure where the flows maximum capacity is
shaped according to the derived characteristics. In addition,
the delay and buffer variability behavior is to be emulated
using middleware software, in order to reproduce with high
fidelity the environment where the trace was collected. We
conclude the paper, on Sections 4 and 5, by introducing
another possible application that reveals the path capacities
behind the router ports where the traces were obtained as
a way to fingerprint specific machine connectivity in the
enterprise LAN.

II. GATHERING CAPACITY ESTIMATIONS FROM TRACES

Capacity estimation has been a very attractive doctrine on
Internet measurement research. The work on [3] and [9] are
among the earliest and most complete on the area, which
subsequently led to the creation of Pathrate, a very popular
active tool to assess capacities. Recently, researchers have
looked into the possibility of removing the active restriction
posed by the access to both end points in order to obtain path
capacity.

This has led to the extention of the capacity estimation
work to passive measurement (in particular, to the study
of traces). PPRate [16] is one example of those efforts. It
uses a method similar to Pathrate: it relies on a relatively
large number of interarrival samples (at least 300) to reveal
capacity modes. In addition, it uses a statistical process to
identify modes, and to select the mode corresponding to the
narrow link capacity.

In spite of this early solution, passive capacity estimation is
an active area of research. For example, PPRate has shown
several drawbacks. Firstly, it tends to require considerable
computation effort. In addition, as mentioned in [16] there is
an intrinsic difficulty on dealing with application flow control

on top of TCP. If one has a large number of idle periods, it
potentially generates a bias on the capacity mode detection
histogram, when packet pairs are not correctly identified.
Other areas of potential improvement are convergence time
(for real time applications) and number of samples necessary
for sufficient reliability on the estimate.

Among the active tools, one in particular, Capprobe
[10] deserves special attention as the least expensive
computationally, without post-processing statistical method.
Given its low cost, CapProbe will be the starting point from
which we are proposing to extend our work on scalable
dataset trace studies. The basic active principle of Capprobe
consists of sending pairs of packets back to back from source
to destination, in order to estimate the capacity. Once passing
through the narrow link capacity, this packet pair ought to be
dispersed according to the maximum sending rate. Thus, the
dispersion represents an estimation of the end-to-end narrow
link. The key aspect of Capprobe is that packet pairs could be
impacted by cross-traffic, hence by applying a proper filter,
identifying the packet pair that suffers the minimal queueing
delay, the dispersion measurement can be made reliable.

We devise a technique based on these same insights in
our tool TraceProbe. The key advantages compared to PPrate
are: low computational cost since it doesnt need an extensive
statistical processing, just one pass through the data and the
correct identification is sufficient. Another advantage is that it
needs only 40 samples [10] to obtain a good estimation what
makes it a valuable tool for wider analysis of data traces.

A. Estimating RTT

In addition to the task of finding the right capacity, our
method relies on RTTs been estimated from network flows
stamped in the traces. This RTT estimation is also known
to be non-trivial. In fact, it has received recently a fair
amount of attention (i.e. [17]). The main point of difficulty
is that we are interested in inferring the RTT from the TCP
sender perspective while observing the communication at the
measurement point. In addition the measurement point can be
located in any part of the path.

Indeed, this RTT estimation can be obtained by a simple
observation that the distance 1 to 2 and 3 to 4 is similar
(Figure 1(a)). Therefore, if one can obtain the association
of DATA packet X and Z, the problem of determining RTT
estimation from the sender would be solved. However, since
TCP expand its congestion window and packets could be
in-flight the association is non-trivial in the trace.

We describe briefly 3 known methods to infer this RTT.
• The first, and hardest one, is based on emulating the state

of the congestion window that an ideal TCP flow would
have, from the packet communication seen in trace file
[9]. The difficulty of this method is based on the fact that
there is a vast heterogeneity of TCP implementation on
Internet hosts, leading to difficulty on emulating different



(a) RTT 3-4 is a projection of RTT 1-2 (b) Measurement Point Distance (c) RTT Estimation using TCP Times-
tamp

Fig. 1. RTT Estimation on Traces

reactions to loss, non-conformity with standards and other
issues.

• The second method is the simplest one, and relies on the
identification of the position of the measurement point
compared to sender and receiver. If the position is close
to the sender, RTT estimation is trivial (Figure 1(b)).

• Finally, the third method is based on the usage of the
TCP timestamp option ([8]), where the sender echoes the
receiver internal clock in the optional TCP header, while
the receiver echoes the sender clock as well (Figure 1(c)).

This last RTT estimation method is the basis for our passive
capacity estimation technique. Instead of just estimating RTT,
we search specifically for matching packets (ACKs and DATA
packets) and estimate delays on the packet pairs. A method
like this permits precise identification of the DATA packets
following an ACK. Furthermore, its advertised that the option
is well deployed in the Internet, according to previous research
76.5% of Forbes 500 web servers [4] have support for this
option, so we expect our method to work on a large sample
of the TCP flow population.

B. The Search of Packet Pairs

The quest for packet pairs, the set of packets that define
precisely the physical line rate, is the key for realistic capacity
estimation on traces. These microbursts would happen mainly
during slowstart and at congestion avoidance only once per
1-2 RTT, when the window increases ([3]). So the question
becomes how to identify these micro-bursts in a trace easily,
without relying on congestion state-machine schemes? We
claim that the guaranteed method of search consists on do
association of pairs of packets on the traces using TCP times-
tamp and applying the minimum delay sum in a longitudinal
way, specially on the duration of slow start, where we will
be able to obtain sufficient samples. We implemented the
described methods, in script language by relating (ACK)-
(DATA)-(NEXT DATA) packets (figure 1(b)) on a longitudinal
search until the end of the slow start phase is reached. Our
results are based on the dataset previously described, and we
validate comparing results with another popular tool, PPRate.

The following is a precise description of the Traceprobe
algorithm (Algorithm 1).

Algorithm 1 TraceProbe Algorithm - Longitudinal Search
1: Phase 1 - Longitudinal Search Loop
2: Search for Delayed ACKs
3: if PreviousACK − CurrentACKNumber > 1MSS then
4: Store this ACK
5: Current Packet.type = (ACK)
6: Current Packet.num = (ACK TCP Timestamp Number)
7: if Current Packet.type == (DATA) && Current Packet.num == (ACK TCP

Timestamp Number) then
8: if DATA TCP Timestamp Number + 1 then
9: Found a ACK, DATA, DATA + 1 Triple

10: Store Association Triple
11: else
12: Next Packet
13: end if
14: end if
15: end if
16: End Loop
17:
18: Phase 2 - Apply Capprobe Filter
19: pair ← minSumRTT (AssociationTripleArray)
20: firstPacket← minFirstPacketRTT (AssociationTripleArray)
21: secondPacket← minSecondPacketRTT (AssociationTripleArray)
22: sumRTT ← pair[0].rtt + pair[1].rtt
23: if sumRTT <= (firstPacket.rtt + secondPacket.rtt) then
24: dispersion← pair[1].timeStamp− pair[0].timeStamp
25: secondPacketSize← pair[1].packetSize
26: narrowLinkCapacity ← secondPacketSize÷ dispersion

27: end if

C. Traces Handling

The dataset of LBNL/ICSI Enterprise Project consists of
roughly 11GB of data, spread over more than 150 trace files.
We start our analysis by extracting each TCP flow contained
in the dataset, since our methods work on a per TCP flow
basis. From the traces, half-million flows were generated by
applying a collection of in-house tools and tcptrace, ethereal,
tcpsplit, etc. to obtain the raw data on a per-flow basis. Based
on previous results on this dataset [13], we know beforehand
that the majority of the byte transport is carried out by TCP
(particularly network file systems, scp, backup and bulk).

For statistical purposes, we started cutting off short lived
connections that are intrisically difficult to assess, by creating



a threshold of flows of more than 100 pkts, the number of
connections dropped immediatelly to about 42,000 unique
TCP flows. For the sake of comparison, and due to the
restriction of PPrate at least 300 interarrivals, this number
dropped again to 13,125 spread over all the router monitored
ports. While we notice that 15,082 supported the TCP
timestamp option. In spite of the reduction on the number
of flows, the extracted sub-population is still representative
of the amount of traffic transferred through LBNL, since the
remaining flows are large in size, and most of the demand on
this site is known to be TCP-related.

III. CAPACITY ESTIMATION ON LBNL

We evaluate our capacity estimation scheme by comparing
it with PPRate. We use the PPRate matlab code provided in
[5] to extract interarrival times to feed the statistical process
of estimation capacity modes. On the same traces, we also
run our tool in order to compare and have insights about both.
Figure 2 presents the capacity estimation on the population
from a common TCP set for both tools. In other words,
the intersection of restrictions of both tools (timestamps +
600 samples) restricted the study to 5000 flows. As we
have already pointed out earlier, this small population is still
representative since we got samples from the majority of the
ports and address space monitored.

The graph shows us some insight about the organization
and the internal connectivity, while most of the flows have
capacity about 100Mbps, there is a small fraction of 10Mbps
connections and a number of sub-Mbps, that is related to the
nature of some applications, like ssh.

From the direct handling of the discrepancy cases, we
have verified that some applications do not actually follow
the TCP phases (slow-start and congestion avoidance). The
sending rate of the packets seems to be determined by a
higher layer state-machine transport architecture. These lower
sending rate samples happen to disrupt the PPRate statistical
analysis, while Traceprobe relies only on the microburst
identification. This way, regarding the mode distribution
there is more smoothness due to statistical process on
PPRate compared to Traceprobe when taking into account
flow-controlled applications.

A. Algorithm Performance Evaluation

Our advantage compared to PPRate lays in the low cost
solution. From the chart (Figure 2) both have obtained com-
parative results. In fact, the relative error (the difference of the
same estimation by the two tools) shows that nearly 70% of the
estimations were equal. In addition to the need of a commecial
Matlab license, several drawbacks turn PPRate tool expensive
computationally. In particular, PPRate needs the estimation of
multi-modes and a smoothness fitting phase, several order of
algorithmic complexity larger (up to O(n3)) than the single
straighforward lookup on Traceprobe (O(nlogn), assuming
the triples are stored in a sorted fashion). “n” in this asymptotic
analysis represents the interarrival input size.

IV. DERIVING BUFFER SPACE FROM TRACES

The next step on the trace assessment is the buffer
estimation. These are the memory/physical storage of
forwarding devices, consisted of constrained NIC, switches,
and routers. Prior work in buffer size estimation has included
[11] and [2]. In [11], the authors utilize the modal round
trip time from passive packet pair to infer queue size, while
[2] addresses queue estimation via an ICMP mechanism.
While all prior techniques have small footprints, they sample
infrequently compared to TCP methods. In particular, in case
of [2], the estimations rely on network services, which are
sometimes disabled on Internet routers. Our in-band method
infers buffer size based upon the many RTT samples gathered
from TCP traces. The buffer estimation technique we utilize
is based upon a simple observation. The amount of time to
traverse a queue completely full multiplied by the capacity
yields the buffer size of a network entity. Thus, the capacity
technique mentioned in the prior section is used to calculate
the buffer size.

Let’s assume that the traversal of packets go through
the same path, and TCP is the underlying protocol generating
traffic. In addition, another assumption is that a TCP flow
is short enough such that the bottleneck do not shift due to
change in network dynamics. Thus, these assumptions lead
to the common scenario of TCP naturally trying to overflow
the bottleneck. In fact, after“n” RTT cycles in congestion
avoidance, TCP will insert “n” extra packets in the pipe
eventually filling the bottleneck buffer.

As the bottleneck router queue is filled, every packet
that traverses the bottleneck, in addition to the propagation
time and service time (similar to all packets), will have an
additional queueing time embedded in the RTT metric. At
the end, TCP will force a packet to be dropped, since the
bottleneck buffer will not hold the extra amount. At this
exact moment, the packet pn will be dropped (identified by
the first duplicate ACK of a 3 DUPACK). It is pn that serve
as an indicator that the prior packet pn−1 or the last good
packet is the most likely packet to have experienced the
queue completely full. Hence, we can use pn−1 round trip
time as a measure of the traversal time of the queue.

We refer in this section to the pn−1’s RTT as the last good
RTT. Trivially, the round trip time (current RTT) of pn−1 is a
function of two factors, the queuing delay (queue delay) and
the path delay (propagation delay), assuming transmission
and processing negligible. Therefore, We will measure buffer
using the queuing delay: current RTT pn−1 = queue delay
+ min RTT . The path delay (min RTT) is obtained by
extracting the smallest RTT estimated out of the flow trace.

A. Buffer Estimation Validation

Even though some prior research sources [15], [7] have
shown evidence (by simulation or controlled measurements)
that relating RTT samples, as a predictor of buffer overflow
is not sufficient in the context of the Internet, we claim that



Fig. 2. Side by Side Capacity Estimation - TraceProbe versus PPRate

there is still relevant information available on these RTT
samples that can help on uncovering the amount of buffer
space been used on a path, and ultimately discover typical
buffer spaces allocated on enterprise networks and Internet.

We start our argumentation, considering that there is no
known easy way to assess buffer. The bursty aggregate
traffic of the Internet (long-range dependent LRD) potentially
perturbs measurements of this nature. Thus, we argue that
what is needed is extra information that can make buffer size
predictions more reliable. We advocate that such information
can be derived from the flow trace and it’s the amount of
utilized capacity, obtained by comparing the ratio of narrow
link capacity and aggregate throughput passing through the
path.

The validation of these ideas was done via simulation
using the ns-2 [12]. In a typical research scenario consisted
basically of a bottleneck is shared with long-lived on-off
pareto sources (Figure 3). The basic configuration of the
simulation is the following: access links with bandwidth of
50Mbs, local propagation delays of 1ms. Access network
links with bandwidth of 7.5Mbs and propagation delay of
40ms. All buffers on each router along the path were set to 50
packets and are pure drop tail policy. We launch connections
performing bulk transfers using FTP between the nodes
“Start” and “End”, where we monitor (in the access router)
both the minimal RTT and the RTT just prior to a packet
loss (3 DUPACK) throughout the connection, as our buffer
space interest measure. These bulk transfers are 600 seconds
long in order to simulate download of large files (long-lived
flows), proven to be good to gather reliable loss quantities.

We studied mainly the impact of demanding realistic
traffic scenarios on the metric, such as the cross-traffic pattern
generated an similar LRD traffic by using agreggated on-off
sources (on the links 3-4), the parameters choice was: idle
time=0.5 sec, burst time=0.1 sec, pareto shape 1.5 and rate
equal 2.25Mbps.

As expected, the burstiness of the traffic impacted the
end-to-end TCP congestion control performance. The
following presents the frequency on which the RTT samples
are obtained (early drops due to bursts) and moreover leading
to underestimation of the buffer space by our metric. While
exploring this issue in detail, we performed simulations using
parallel flows as a way to gain easily in performance, keeping
the ratio capacity/achieved throughput close to 1. And we
observed that indeed the burstiness impact on the estimation
could be alleviated if enough achieved throughput is passing
through the path over-loading it properly. Such results are in
conformance to findings described in [15].

In Figure 3, there is only one bottleneck (and the aggregate
Pareto sources do not fill up the capacity). We calculate the
buffer based on converting the delay signal into a physical
utilization of the buffer. The first curve shows the distribution
of “last good RTT” or buffer size estimate distribution inferred
from a single flow crossing the start-end segment. We can
verify how it is shifted with the median pointing to buffer size
of 28.49. In subsequent tests, we include parallel connections
(Figure 3) to present the insight of buffer sampling on
the presence of a large aggregate throughput passing. The
aggregate in fact, help to narrow down the variability and
skew the buffer estimation to a better estimation position
(median size = 39.47 and 44.89 in the respective cases of
starting 4 and 8 parallel connection). The inference is done
on a single flow basis but the aggregate throughput can be
obtained using a trace.

In the next sub-section, we apply our buffer space techniques
on the enterprise traces, separating the best performers as our
sample population and looking at the aspect of buffer size
conformity to regular values applied by vendors.

B. Buffer Inference on LBNL Traces

Our analysis of LBNL trace files was a multi-step process.
First, we isolated the highest throughput flows to exploit
the lessons learned in simulation. Secondly, we chose the



(a) Simulation Topology (b) Bursty Cross-Traffic

Fig. 3. Simulation Evaluation - Buffer Estimation Under Realistic Bursty Traffic

flows that were closest to the sender. Third, we log both the
RTT for every packet sent and the RTT value before a loss
occurred (last good RTT).

We derived meaningful RTT measurements from enterprise
traces by collecting samples closer to the sender (the easiest
way to estimate RTT). To select these flows, we used
the RTT Estimation method of inferring the distance of
the measurement point. The idea is to calculate the time
interval between SYN and ACK as an estimate of RTT
and the total distance. RTTm-r characterizes the distance of
the measurement device from the receiver while RTTtotal
represents the total distance from the sender to the receiver.
We chose the flows that maximized RTTm-r / RTTtotal. In
other words, if the starting point of the flow measured by the
trace was really close the sender, LBNL flows.

This method is subject to delayed ACKs. We argue
that the delay imposed by the receiver will be accounted
for by the sender and, hence, is an accurate representation.
We found this to be true of the flows selected. Unlike
capacity estimation, RTT loss measurement techniques
require distributions formed by much more samples and
therefore, necessitate larger flows. Our analysis of these flows
revealed a long tail distribution for the RTTs. This result
motivated the use of median as a central value which best
describes the last good RTTs gravity center.

Typically, we would choose the minimum RTT amongst
all RTTs to characterize path delay. Our computation of
the median RTT and the capacity resulted in buffer size
estimations from 64 KB to 600KB buffers for some of the
flow traces. This result is consistent with some of the switch
manufacturers. Another key observation was the trend of
multimodality on buffer sizes. Figure 4 presents a 64KB
buffer estimation from a flow trace and a smoothed fitting
curve showing the multimodality pattern of certain buffer
sizes.

V. APPLICATIONS

A. Replayable TCP Flows

The task of building a research testbed that can reproduce
TCP flows from traces needs several software pieces to be
glued together in order to create the right testbed environment.
We have developed so far TCP trace analysis, and we are
designing and implementing the delay box and validation of
original and emulated traces on a Linux testbed.

In terms of trace analysis, in addition to the difficulties de-
scribed in the previous sections, we need a per IP-address path
characteristics linear-time majority algorithm to be included.
The idea is to shield the network estimations by making
several flows from the same address to agree on the order
of magnitude and values of the estimators. So, the first step
is to gather and analyze many TCP traces in order to extract
path characteristics. This process involves the extraction of
every flow in order to obtain the round trip times (RTT) and
the buffer sizes. The analysis tools were developed on the
context of Traceprobe and Buffer Estimation techniques and
latter aggregate the different flows from same IP addresses’
pair to have similar path conditions.

The implementation of the delay box using C++ is the
second step. The delay box will be similar to the one which has
been implemented for ns-2, and allows the delay variability
due to buffers to be included easily. It involves the pre-
configuration of socket pipes used for communication along
with the replay tool.

Upon the completion of the delay box implementation, there
are a few additional steps to be taken. For validation, the
original and emulated traces will be tested with the delay box
on the network. Each link on the network will have 100Mb
of traffic. When the validation is complete, we will compare
the results of the original traces and the ones generated using
the delay box.

B. System Architecture

The following diagram (Figure 5) presents the basic com-
ponents of this testbed.



(a) Difference of Last Good RTT and Common RTTs (b) MultiModality of Buffer Sizes

Fig. 4. Buffer Size Estimation on Traces

1) we investigate some Internet trace files, extracting its
basic characteristics using tools developed on this paper
(like traceprobe and tracebuffer).

2) we spawn several virtual network stacks, keeping separate
the IP queueing and CPU/mem such that different flows
don’t interfere with each other.

3) we configure the testbed based on the constrains derived.
The configuration will be done using a user-level library
Trickle [6] that cap the transmission rate of applications
on a per-flow basis.

4) the middle machine (based on a network emulator) needs
the queueing delay distribution to be generated according
to the TCP overflow behavior (buffer size estimation).

5) Finally, our system will require the separation of appli-
cation delays and TCP overflow delays. Our preliminar
idea is to transform this problem, into a signal theory
problem, and therefore by performing the deconvolution
of the overall delay signal (the interarrival/interdeparture
times) extracted per flow from the estimated buffer size
delay. Such that, we could emulate a meaningfull thinking
time and service time on our environment.

At this time, we have completed the implementation of the
infra-structure and we expect to start validating the testbed in
the future.

1) Similarity Metrics: In terms of validation, it’s important
to note that additionally to normal interest variables such as
single flow throughput and aggregate throughput. We could
compare emulated and original traces by re-analysing the
path characteristics from both. Another, stronger statistical
test includes a non-parametric goodness-of-fit test, based on
the Kullback-Leibler distance. Such statistical method is usu-
ally used to evaluate the similarity of the interarrival and
interdeparture distributions that result from the original trace
and the replayable trace. The idea is to show that for the
majority of enterprise traces, there is no statistically significant
difference between the original distributions and the emulated

Fig. 5. Reproducible Trace System

distribution.

C. Learning Population Structure by Narrow Down Per
Router Port

Another interesting application of the passive capacity es-
timation of these flows was that we could infer some aspects
of the LBNL network organization, since passive capacity
estimation is a pure pre-trace method, and since the monitoring
and trace was done on a router at LBNL. Here, we grouped the
population in terms of server capacity behind every port on the
monitor switch. And we discover that the machines’ capacity
is not evenly distributed over the ports. Therefore, behind
every port, there is either a population of updated machines
or outdated ones. For example, Router Port 8 have faster
servers with 100Mbps NICs, in comparison to Router Port
5 that has 70% of the machines as 10 Mbps(Figure 6). This
application has network infra-structure planning and security
implications, since it can be used to learn the network topology
and capillarity (end-to-end capacities between IP-addresses) as
a whole.



(a) Narrow Down Per Port (b) Cumulative Distribution Per Port

Fig. 6. Per Port Estimation

VI. CONCLUSIONS

We present several trace analysis tools and validation of the
tools that can extract accurately path characteristics conditions
from stored TCP flows on traces. The path characteristics
include a non-exhaustive list of end-to-end path capacities
from both directions, the buffer size, minimum delay associ-
ated with propagation delay, etc. The tools, called Traceprobe
and Tracebuffer, can be derived reliably the estimation that
recover the exact conditions on which the underlying TCP
flows experience on the time of the trace. We present an
evaluation of the tools using both side-by-side comparison
with other state of the art tools and simulations. We also
describe in great detail a new testbed infra-structure that can
replay the dynamics of the stored TCP flows. We intend in a
short time to pursue the evaluation and validation of original
traces and emulated traces using such deployed testbed.

ACKNOWLEDGMENT

The authors would like to thank Anil Kapur (UCLA) for
providing scripts to extract buffer sizes from traces. This
research was supported by grants NEC System Platforms
Research Laboratories #4-522511-SY-57454 and FAPES (Fun-
dacao de Apoio a Ciencia e Tecnologia do Esprito Santo) with
grants of Telecardio Project #31024866/2005.

REFERENCES

[1] Yu-Chung Cheng, Urs Hlzle, Neal Cardwell, Stefan Savage, and Geof-
frey M. Voelker. Monkey see, monkey do: A tool for tcp tracing and
replaying. USENIX 2004 Annual Technical Conference, 2004.

[2] Mark Claypool, Robert Kinicki, Mingzhe Li, James Nichols, and Huahui
Wu. Inferring queue sizes in access networks by active measurement.
Lecture Notes in Computer Science, Volume 3015, Jan 2004, Pages 227
236.

[3] C. Dovrolis, P. Ramanathan, and D. Moore. What do packet dispersion
techniques measure? In INFOCOM 2001. Twentieth Annual Joint
Conference of the IEEE Computer and Communications Societies, pages
no.pp.905–914 vol.2, 2001.

[4] Michael Dyrna. Network tomography tools. Institut Eurecom Sophia-
Antipolis Master’s Thesis 2005.

[5] T. En-Najjary. Pprate - matlab code. http://www.eurecom.fr/ ennaj-
jar/PPrate.html.

[6] Marius A. Eriksen. Trickle: A userland bandwidth shaper for unix-like
systems. In Proceedings of USENIX 2005 Annual Technical Conference,
FREENIX Track, pp. 6170.

[7] Masaki Hirabaru. Impact of bottleneck queue size on tcp protocols and
its measurement. IEICE TRANS COMMUN. OL. E89-B, No. 1 JANUARY
2006. Special Section/Issue on New Technologies and their Applications
of the Internet III.

[8] V. Jacobson, R. Braden, and D. Borman. Tcp extensions for high
performance. IETF RFC 1323, 1992.

[9] S. Jaiswa, G. Iannaccone, C. Diot, J. Kurose, and D. Towsley. Inferring
tcp connection characteristics through passive measurements. IEEE
INFOCOM 2004 Conference on Computer Communications.

[10] Rohit Kapoor, Ling-Jyh Chen, Li Lao, Mario Gerla, and M. Y. Sanadidi.
Capprobe: A simple and accurate capacity estimation technique. ACM
SIGCOMM ’04, 2004.

[11] J. Liu and M. Crovella. Using loss pairs to discover network proper-
ties. In Proceedings of IEEE/ACM SIGCOMM Internet Measurement
Workshop, San Francisco, CA, Nov. 2001.

[12] S. McCanne and S. Floyd. The ns manual (formerly ns notes and
documentation). ns-2 simulator http://www.isi.edu/nsnam/ns/.

[13] R. Pang, M. Allman, M. Bennett, J. Lee, V. Paxson, and Brian Tierney.
A first look at modern enterprise traffic. Proceedings of Internet
Measurement Conference (IMC05), October, 2005.

[14] R. Pang, M. Allman, V. Paxson, and J. Lee. The devil and packet trace
anonymization. ACM SIGCOMM Computer Communication Review,
2006.

[15] Ravi S. Prasad, Manish Jain, and Constantinos Dovrolis. On the
effectiveness of delay-based congestion avoidance. Second International
Workshop on Protocols for Fast Long-Distance Networks PFLDNET
2004.

[16] G. Urvoy-Keller T. En-Najjary. Pprate: A passive capacity estimation
tool. Proceeding of IEEE/IFIP Workshop on End-to-End Monitoring
Techniques and Services (E2EMON06), Vancouver, Canada, April 2006.

[17] B. Veal, K. Li, and D. Lowenthal. New methods for passive estimation of
tcp round-trip times. Proceedings of Passive and Active Measurements
(PAM), 2005.

[18] M.C. Weigle, P. Adurthi, F. Hernndez-Campos, K. Jeffay, , and F.D.
Smith. Tmix: A tool for generating realistic application workloads in
ns-2. In ACM SIGCOMM Computer Communication Review (CCR),
July 2006, Vol 36, No 3, pp. 67-76.


