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Abstract

The majority of Internet traffic relies on the Transmission Control Protocol (TCP1) devised in the early 1970s
to provide a reliable data transfer across the ARPANET. Today’s users download large multimedia files from remote
servers using TCP. If these TCP sessions share the same bottleneck, they are expected to receive the same share
of bandwidth, thus achieving the same transfer rate. Unfortunately, this is not the case when the round trip delay
RTT is very different among sessions. This may have negative practical implications in downloads of delay-sensitive
(though non-real-time) information from servers. For instance, suppose in a popular internet cafè in New York City
several users are simultaneously downloading multimedia files from various servers. Most of the servers are local.
However, one customer is downloading a large file from a remote server in Australia. All customers share the same
11 MBPS WiFi bottleneck. The customer connected to Australia will make no visible progress until all the customers
downloading from local servers are done! One solution would be to set up a time day when only remote customers
download. But this is not quite application transparent. Here we propose a new version of TCP, namely TCP Libra,
that guarantees fair sharing regardless of RTT. Libra in Latin means scale, thus indicating a balance between the
sessions.

In this paper we describe the design of TCP Libra and prove that it is indeed RTT fair. The key element of
TCP Libra is the window adjustment algorithm. The algorithm is derived by modeling TCP performance as a utility
function and by optimizing this function such that the result is independent of RTT, yet maintaining the function
stability. Non-linear optimization is used, leading to a solution that provides fairness among TCP flows that share
the same bottleneck link regardless of RTT. The remarkable property of TCP Libra is that it achieves fairness while
still maintaining throughput efficiency and friendliness with respect to TCP New Reno. Another important property
from the implementation standpoint is the “sender-side-only modification introduced by TCP Libra. The fairness and
stability properties are proved analytically and are extensively tested via simulation. A comparison is also carried
out with other TCP versions that have been reported as RTT fair in the literature.

I. I NTRODUCTION

The success of the Internet is based on the ability to provide a reliable medium for information exchange. In
the current Internet, traffic control functionalities are provided by the Transmission Control Protocol (TCP) in an
end-to-end fashion. TCP was initially designed to provide a connection-oriented reliable service in the ARPANET
[1], and later, in the Internet. TCP addresses two major issues: reliability and congestion control [2]. To achieve
the second goal, TCP adapts the sending rate to avoid network overflow or falling into service starvation. TCP
congestion control has been studied by the research community for the last 25 years, leading to several TCP variants
for congestion control with and without the explicit intervention of the network layer (a survey can be found in
[3]).
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Science Foundation through grants CNS-0435515/ANI-0221528, and the UC-Micro Grant MICRO 04-05 private sponsor STMicroelectronics.
Libra is the Latin word for “scale”. This paper has been also submitted for publication to the IEEE JSAC —Special Issue on Non
Linear Optimization. Reference Author: Giovanni Pau, Computer Science Department, University of California Los Angeles, CA 90095,
e-mail:gpau@cs.ucla.edu

1With TCP, unless specified, we refer to TCP New Reno.
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The most popular version, TCP New Reno, implements a congestion control algorithm, known as the AIMD
(Additive Increase, Multiplicative Decrease) algorithm. The very basic concept can be summarized as follows:

• When a packet loss is detected, the TCP sender decreases its sending window by half.

• When a packet is successfully delivered, it increases its sending window by one.

Naturally, the TCP New Reno implementation goes well beyond the basic AIMD principle. To begin, if the
packet loss is due to a timeout, the network is assumed to be severely congested, hence the sending window is
drastically reduced to 1 and a new slow-start initiated. A sequence of three duplicate acknowledgments indicates a
mild congestion and leads to the Fast Retransmit and Fast Recovery algorithm followed by a congestion window
reduction by half. The window increase rate slows down when a window threshold is reached from one unit
per ACK received to one unit after an entire RTT. In summary, the data-sending rate of TCP2 is determined by
the rate of incoming acknowledgments (ACKs) to previous packets. At a steady state, the sending rate of a TCP
source will match the arrival rate of the related ACKs. The congestion control mechanisms triggered by a segment
loss guarantees that the protocol automatically detects congestion buildup and thus decreases its sending rate. This
behavior has been referred to as TCPs “self-clocking behavior”. Unfortunately this self-regulation procedure may
be unfair. Experimentally It has been observed that competing TCP senders, with different end-to-end propagation
delays, will typically have different rates of feedback from their peers and will increase their sending window at a
different pace. The different increase rates of the sending windows (the faster, the shorter the RTT between sender
and receiver) determine the RTT-bias or unfairness of TCP New Reno. This phenomena can also be analytically
derived from the formula that models the TCP rate by Kurose in [4]. In particular, it may be seen that competing
flows will share a bottleneck link based on the inverse of their round-trip times. The RTT-bias has been recognized
from early protocol deployment. In [5], the TCP New Reno authors proposed a solution to the protocol’s RTT-
unfairness; unfortunately this has been found unstable by Henderson stability studies in [6]. The RTT-bias shown
by TCP negatively affects users, content providers, and network providers. In particular, users with a larger RTT
will experience a lower throughput and higher latency and completion time. To overcome this imbalance, content
providers are required to use (for a price) a content delivery network with a fine-grain geographic distribution, where
content is downloaded off-line to sites relatively close to users. The RTT-unfairness may also affect decisions on
cache location, CDN deployment, overlay networks topology, and capacity expansion [7]. In this paper we study the
RTT-bias in TCP, approaching the problem from a non-linear optimization and a system dynamics point of view. In
particular we leverage the seminal work on TCP modeling done by Kelly, Vinniecombe, Low, Paganini and Doyle.
Our contribution lies in the design of a new utility function for TCP that doesn’t include RTT and therefore is
not sensitive to the self-clocking behavior. This results in an enhanced congestion control algorithm for TCP. Our
scheme, namelyTCP Libra (where Libra in Latin means “scale,” i.e., balance, fairness), shows RTT-fairness as
well as scalability (related to network bottleneck size), and good friendliness to TCP New Reno.

The reminder of the paper is organized as follows. In Section II we introduce the current state of the art, while
in Section III we present our solution to the RTT-bias along with the dynamic and stability analysis for TCP Libra,
as well as several competing protocols. The simulation experiments are presented in section IV and the paper is
finally concluded by sections V.

II. RELATED WORK

In recent years a large amount of research has been conducted to understand TCP behavior under different
scenarios and network conditions. Particularly remarkable are the efforts to provide a well-defined mathematical
model suitable to study the behavior and stability of TCP and active queuing management (AQM) techniques in
the Internet. In this section we will report the leading theoretical work on congestion control and AQM, focusing
mainly on RTT-fairness and stability.

The RTT-bias, as well as the bursty nature of TCP traffic, was first experimentally discovered by Sally Floyd
and Van Jacobson in [5]. They also proposed a solution for the RTT-bias based on a constant increase algorithm

2We use as equivalents the terms congestion window, sending window, and data-sending rate.
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for the TCP window at steady state. In a further study they also introduced a network layer technique, namely
RED, designed as a relief from the effects of traffic bursts [8] [9]. Briefly, RED monitors the queue length at the
routers and probabilistically drops a random TCP packet from the queue upon reaching a certain queue length
—thus leading to a more regular traffic pattern [10]. Henderson in [11] [6] shows that using constant increase and
RED to achieve RTT-fairness leads to an unstable solution for links with long propagation delays and small buffers
such as satellite links.
A detailed mathematical model for the TCP throughput at steady, including the the Fast Retransmit–Fast Recovery
phases and TCP’s timeout impact, was first introduced by Towsley in [4] and [12]. Additionally, in [13] the same
authors developed a new fluid based modeling methodology for studying TCP behavior in a network that features
AQM routers. In particular, the proposed approach models TCP behavior that includes the transient effects introduced
by AQM routers such as RED gateways.3

A fresh impulse to congestion control modeling in communication networks has to be acknowledged: Frank
Kelly introduced a new mathematical formulation for congestion control in communication networks in terms of
non-linear optimization problem (primal/dual). The network is modeled as an interconnection of users/sources which
generate data and resources/links. The key constraint is that the network control information can only be passed
along the same routes as the data that is being transmitted, and with the same propagation delay as data [14]. In [15]
and [16] it was shown that TCP stability can be achieved in the aforementioned network model if the TCP utility
function is concave [17] [7]. Kelly’s results have been extended by several researchers. In particular, Vinnicombe,
Massoulie, Johari and Tan addressed the stability in network congestion control schemes [18]. Vinnicombe showed
that delay instability is characterized by the increase rule; while Ott has shown that stochastic instability is primarily
influenced by the decrease rule [19] [20] [21]. Additionally Vinnicombe and Massoulie derived the stability condition
for scenarios with heterogeneous delays [22] [23]. A further substantial advancement in developing the theory for
network congestion control was made by Low, Paganini and Doyle. They fully exploited thePrimal/Dual modeling
approach, finding the conditions needed for a scalable and stable congestion control for the Internet [24] [25] [26]
[27] [28] [29]. The theoretical results have been used to drive the design of an enhanced AQM technique namely
Random Early Mark (REM) that improves RED performance while reducing the drawbacks, and TCP Fast that
contains a congestion control mechanism, based primarily on queuing time, able to guarantee network stability and
high utilization in multi-gigabit networks [30], [31] [32] [33].

Focusing our attention on the TCP RTT-bias it is worth noting that there are few recent TCP variations that
have tried to address RTT-unfairness. In particular, TCP CUBIC [34], developed by North Carolina University,
features a linear RTT-fairnes, while TCP Hybla [35], that enhances the solution proposed by Floyd in [9], provides
RTT-fairness under a certain stability bound, and TCP Vegas [36] that provides good RTT-vairness if it is the only
TCP in the Network.

In summary, in almost a decade new modeling techniques for network congestion control have been developed
which offer a new set of mathematical tools for understanding scalability and stability limits of network algorithms
and protocols. In particular, network congestion control has been modeled as a non-linear optimization problem
in which the primal models the system as seen from the source/destination point of view, while the dual models
the system as seen from the resource point of view. The use of this formulation benefits theoretical studies of the
system dynamics from both network and transport layers.

III. M ODEL

In this section we will first describe the network model and present the optimization problem. We will then give
a brief review of TCP New Reno and TCP Vegas, and introduce and analyze the TCP Hybla solution. We will
finish considering other solutions by adding some comments on TCP CUBIC. Finally, we will show the steps in
the design choices of TCP Libra and include a stability analysis, using a control theoretic approach.

3The fluid model presented in [13] shows, as a potential source of instability, the RED adaptive sampling and averaging algorithms. These
algorithm, indeed, are dependent on packet size and arrival rates.
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A. Network Model and Optimization Problem

The network is modeled as a finite set of nodesN and linksL, which connect the nodes inN . Each link is
characterized by a finite capacity. We definec as the vector of capacities where each row(cl, l ∈ L) represents
the capacity of linkl ∈ L. S is the set of sources that accesses network resources, typically a subset ofN andL.
We may define the routing matrixR as:

Rlr =

{
1, if link l ∈ L is utilized by source r ∈ S

0, otherwise
(1)

Each sourcer ∈ S is characterized byxr(t), the transmission rate. Theaggregateflow at link l is defined as
the sum of the contributions of the sources that use that link:

yl(t) =
∑

r

Rlrxr(t− τ f
lr) (2)

whereτ f
lr is the forward delay from sourcer to link l. We defineprice to be the marginal cost (or penalty) per

unit flow that a source incurs in sending that flow increment. The price is sent back to source as a feedback signal
by the link when congestion is detected. Theprice(s) to which an algorithm is sensitive shapes its dynamics: TCP
New Reno is, for example, sensitive to packet loss, while TCP Vegas is sensitive to queueing delay. The aggregate
price seen by sourcer is:

qr(t) =
∑

l

Rlrpl(t− τ b
lr) (3)

whereτ b
lr is the backward delay in the feedback path from linkl to sourcer, pl(t) is the price signal sent by link

l at time t. The price, also known asbarrier [37] is a function of the link flow. We definefl(y) as theprice for
sending traffic at rateyl =

∑
r:l∈r xr on link l.

Let’s now suppose we are able to define a function that describes precisely the return that each sourcer experiences
when sending data at ratexr. In fact, it is very difficult to understand which is thetrue advantage for a user when
sending at a certain rate. The function that describes this advantage,Ur(xr), is defined in economics as aUtility
function. The utility function of a congestion control scheme is very important, since it determines the equilibrium
properties of the scheme, such as the equilibrium sending rate and its fairness properties.

We now have all the ingredients to state the optimization problem we want to address:

maxxV (x) (4)

subject to: {
R x ≤ c

xr ≥ 0, ∀r ∈ S,
(5)

whereV (x) =
∑

r Ur(xr)−
∑

l

∫ P
s:l∈s xs

0 fl(y)dy. By definition
∫ P

s:l∈s xs

0 fl(y)dy is the cost incurred by resource
l when it pushes flow y through the network. Thus,V (x) is the net gain, i.e. net utility of sourcesx, which must
be maximized.

Theorem 3.1:Under the assumptions [38] [37]:

1) Ur(xr) is a continuously differentiable, non-decreasing, strictly concave function.
2) fl(y) is a non-decreasing, continuous function.

Starting from any initial condition{xr(0) ≥ 0}, the congestion control algorithm:

ẋr = kr(xr)(U ′
r(xr)− qr(t)) (6)

(whereqr is the aggregate price function defined earlier andkr(x) is any non-decreasing, continuous function such
that kr(x) > 0, ∀xr > 0) will converge to the unique solution of (4) (5),x(t)→ x̂ as t→∞.
The left-hand side of (6) represents the componentr of the gradient ofV (x), to which the multiplicative term
kr(xr) was added. Normally, in the conventional gradient method,kr(xr) = 1. There is no harm, however, in
introducing a non-decreasing function that acts as an amplificator of the gradient. The convergence point does not
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change. The reason for this term will become clearer later when the utility function will be used to interpret various
existing heuristic flow control schemes.

The derivativeẋr on the right-hand side reflects the fact that in the gradient optimization method, the incremental
change ofxr over a unit time should be proportional to the value of the gradient.

The detailed proof of convergence is found in [40]. The careful reader, however, will notice that the function
with the derivative shown on the right hand side of (6) is concave by construction. The multiplicative term does not
change the valuexr that nullifies the gradient. Thus, the gradient method leads to the unique optimum of function
V (x).

This theorem is therefore telling us that in the absence of feedback delay, any congestion control algorithm that
can be mapped into a concave utility function, attains global asymptotic stability. In the following sections we
will show how the protocols that we use for comparison fit into this framework and how they implement different
versions of this algorithm.

B. TCP New Reno

TCP New Reno implements a very simple and effective algorithm. This algorithm is able to scale various orders
of magnitude in terms of network dimensions and speed. The algorithm may be briefly summarized as follows:

• On receiving an ACK:windown+1 = windown + 1
windown

.
• On an indication of mild congestion (3 DUPACK):windown+1 = 1

2windown.

This may be understood as an attempt to probe the network trying to sense which sending rate may be achieved
at the cost of packet loss when the probing fails [39]. Lets now consider the fluid model for congestion control of
TCP New Reno. From now on we will follow the notation:

• The r subscript means we are considering ther-th source.
• xr(t) is the rate of the connection at time t.
• wr(t) is the window size of the connection at time t.
• T̃r is the average round trip time.
• λr(t) is the probability of loss at time t.
• ar, the increase factor, is a constant that in TCP New Reno is set to 1.
• br, the decrease factor, is a constant that in TCP New Reno is set to1/2.

With the AIMD algorithm, TCP New Reno increments the window by1/wr(t) per each received ACK, hence
the window increases instantaneously asxr(t)

wr(t)(1 − λr(t)). Similarly, per each 3 DUPACK, the window is cut by
half. The rate of this event isxr(t)λr(t). The window then decreases at a ratexr(t)λr(t)wr(t)/2. We now may
write the fluid model for congestion control for an AIMD-like congestion control scheme (of which TCP New
Reno is an example):4

ẇr(t) = ar
1− λr(t)

Tr(t)
− brxr(t)λr(t)wr(t) (7)

By settingTr(t) = T̃r, wr(t) = xr(t)T̃r, we have:

ẋr(t) = ar
1− λr(t)

T̃ 2
r

− brxr(t)λr(t)xr(t) (8)

This may be re-written in a more general form, taking in account feedback delays, as:

ẋr(t) =
xr(t− T̃r)

T̃r

(ar
1− λr(t)
xr(t)T̃r

− brλr(t)xr(t)T̃r) (9)

We took in account that the update at timet is determined by the flow that left the source at a timeT̃r in advance.
The increase or decrease in the second parenthesis of the right-hand side of equation (9) is then done in terms of
the rate at timet− T̃ , because of feedback delay.

4Here and in the rest of the paper, we will ignore the4
3

factor that takes in account that the window,wr(t), oscillates between2
3
wr(t)

and 4
3
wr(t) with an averagewr(t). We will also avoid substituting the values ofar and br in order to keep a clear understanding of how

these parameters influence the dynamics of the algorithm.
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TCP New Reno implements an approximate gradient algorithm for the resolution of the congestion control
problem. In terms of (9), and considering feedback delay negligible, we may write [38]:

ẋr = ar(
1− λr(t)

T 2
r

− br

ar
x2

r(t)λr(t)) = ar((
br

ar
)x2

r(t) +
1
T 2

r

)(
1

br

ar
T 2

r x2
r(t) + 1

− λr(t)) (10)

Following the structure of eq. (6), the derivative of the net utility function that TCP New Reno implements and the
congestion measure TCP New Reno is sensitive to are:

U ′
r(xr)− qt(t) = (

1
br

ar
T 2

r x2
r(t) + 1

− λr(t)) (11)

Integrating inxr the termU ′
r(xr), we get the utility function as:

U(xr) =
1
T̃r

√
ar

br
tan−1(

√
br

ar
T̃rxr) (12)

C. TCP Hybla

The Hybla scheme has been introduced in [35]. This scheme, from a congestion control point of view, is mainly
based on the modification to the increase of the AIMD algorithm proposed in [5] and furtherly analysed in [8] [9]
[6] [11]. The fluid flow model may be easiliy obtained from (9) by making the following substitution:

ar ← ar
T̃ 2

r

T 2
0

(13)

We then have:
dxr(t)

dt
=

xr(t− T̃r)
T̃r

(ar
T̃r

xr(t)T 2
0

(1− λr(t))− brxr(t)T̃rλr(t)) (14)

where the new variable,T0, is a constant reference value. We may interpretT0 as the reference round-trip time to
which Hybla is adjusting the behavior of a flow. More precisely, whatever the round-trip time of a generic flow,
the flow will attempt to behave as a flow that is a experiencing a round-trip time ofT0 with the sink. This property
becomes clearer by observing the value of the stable point:

x̃r =
1
T0

√
ar

br

1− λ̃r

λ̃r

≈ 1
T0

√
ar

br

1
λ̃r

(15)

w̃2
r ≈

ar

br

T̃ 2
r

λ̃rT 2
0

(16)

By comparing (15) with (35), it is clear that TCP Hybla achieves the same average throughput as a New Reno flow
with average RTTT0. From equation (16) we expect that in the future Hybla will suffer from the same scalability
problem known per New Reno. The fluid model is showing that the probability of loss necessary to support a
large window size may become exceedingly small, so that the equilibrium window value expressed in (16) may be
difficult to achieve.

Here we recall the sufficient condition for the local asymptotic stability of a network with hosts with heterogenous
delays operating an AIMD-like congestion control scheme [22] [19] and apply it to Hybla:

ar

x̃rT̃r

=
T̃r

x̃rT 2
0

<
π

2β
(17)

Observing (17) and referring to Kelly [7], one concludes that for Hybla,we expect there may be delay instability
on routes where the ratioTr/xr is large and approaches the threshold. Conversely, the convergence will be slow
on routes where the ratio is small.

We also derived the expression of the approximate gradient projection algorithms that Hybla implements:

ẋr = ar(
1− λr(t)

T 2
0

− br

ar
x2

r(t)λr(t)) = ar(
1
T 2

0

+
br

ar
x2

r(t))(
1

1 + br

ar
T 2

0 x2
r(t)
− λr(t)) (18)
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The utility function that TCP Hybla optimizes is:

U(xr) =
1
T0

√
ar

br
tan−1(

√
br

ar
T0xr) (19)

We note the similarity with TCP New Reno, wherẽTr is replaced with constantT0. Thus, the utility function does
not depend on round-trip time.

D. TCP Vegas

Here we follow the simple model described in [40]. We here assume that buffer size is large enough so that
equilibrium queue length is smaller than the buffer and that there is no packet loss in equilibrium. In this situation,
we may assume that the onlyprice that is sensed for congestion is queueing time. As stated in [24],a source
monitors its difference between its expected rate and its actual rate, and increments or decrements its window by
one in the next round-trip time according to whether the difference is less or greater than a parameterαr. Source
r sets its window according to the following rule:

wr(t + 1) =


wr(t) + 1

Tr(t) if wr(t)
T ∗r
− wr(t)

Tr(t) < αr

wr(t)− 1
Tr(t) if wr(t)

T ∗r
− wr(t)

Tr(t) > αr

wr(t) else

(20)

whereT ∗
r is the propagation delay experienced by ther-th flow. We can then observe that:

wr(t)
T ∗

r

− wr(t)
Tr(t)

= wr(t)(
1
T ∗

r

− 1
Tr(t)

) (21)

=
wr(t)
Tr(t)

(
Tr(t)− T ∗

r

T ∗
r

) (22)

= xr(t)(
Tr(t)− T ∗

r

T ∗
r

) (23)

= xr(t)
φr(t)
T ∗

r

(24)

where in (24),φr(t) = Tr(t) − T ∗
r is the instantaneous queueing time experienced by ther-th flow. We then see

that we can express (20) more simply as:

ẇr(t) =
1

Tr(t)
sgn(

αrT
∗
r

φr(t)
− xr(t)) (25)

wheresgn(x) = 1 if x > 0, sgn(x) = −1 if x < 0 andsgn(x) = 0 if x = 0. By substitutingwr(t) = T̃r(t)xr(t)
and assuming thatTr(t) ≈ T̃r we see that we can write (25) in terms of throughput as:

ẋr(t) =
1
T̃ 2

r

sgn(
αrT

∗
r

φr(t)
− xr(t)) (26)

=
1
T̃ 2

r

sgn(
αrT

∗
r

xr(t)
− φr(t)) (27)

From (27) we may notice that:
1) The step of the Vegas algorithm is given by1

T̃ 2
r

.
2) Considering that in the Vegas algorithmαr is a paramater that depends on the inverse ofT ∗

r , we may then
assumeαr = k/T ∗

r , wherek is some constant. The equilibrium sending rate is then given by:

x̃r =
αrT

∗
r

φ̃r

=
k

φ̃r

(28)

The above equation states that the equilibrium rate achieved by the Vegas algorithm is independent from
propagation delay; it depends only from average queuing timeφ̃r.

3) The utility function that TCP Vegas attempts to maximize is:

U(xr) = αrT
∗
r log(xr) (29)
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E. TCP CUBIC

TCP CUBIC [34] has been designed to enhance the window control of TCP BIC [41]. The congestion window
of TCP CUBIC is determined by the following:

Wcubic = C(t−K)3 + Wmax (30)

wheret is the elapsed time from the last window reduction,Wmax is the window size just before the last window
reduction,C is a constant andK = 3

√
Wmaxβ/C, whereβ is a constant multiplication decrease factor applied for

window reduction at the time of loss event (i.e., the window reduces toβWmax at the time of the last reduction).
TCP CUBIC claimslinear RTT fairness in terms of throughput.

Suppose two competing flows, with two different round-trip timesT1 and T2, share the same path. Let’s also
suppose both flows sense losses in a synchronized manner [42], and that the initial parameters are the same. We then
have that the instantaneous throughputs for the two flows (making the assumption thatT1(t) ≈ T̃1 andT2(t) ≈ T̃2)
may be written as:

x1(t) =
w1(t)
T̃1

(31)

x2(t) =
w2(t)
T̃2

(32)

But since the time elapsed from the last window reduction is the same, we have thatw1(t) = w2(t). It is easy
then to see thatx1(t)

x2(t)
= T̃2

T̃1
, from which we may derive thelinear RTT-fairness property that is claimed by this

algorithm.

F. Comparison

We have written all of the congestion control algorithms (with the exception of TCP CUBIC which we propose
to study in more detail in the future) that we have so far analysed in the form:

ẋr(t) = kr(xr)(U ′
r(xr)− qr(t)) (33)

The quantities that appear in the expression are:

1) kr(xr) is the stepsizeof the algorithm. As we mentioned earlier, this term is an amplification factor that
determines the amount by which the algorithm moves toward the solution at each step. This term determines
the speed of convergence and the stability of the algorithm. For all the algorithms we have considered here,
kr(xr) is a continuous, non-decreasing function such thatkr(xr) > 0, ∀xr > 0.

2) (U ′
r(xr)− qr(t)) is thedirection in which the algorithm is proceeding, searching for a solution (stable point).

More in particular,U ′
r(xr) is the marginal utility function andqr(t) is the congestion measure (i.e., the

marginal penalty) to which the algorithm is sensitive to. The marginal (utility-penalty) functions characterizes
the location of the equilibrium point of the algorithm (see Table I).

Algorithm Stable Point Stepsize Marginal Utility Congestion Measure

NewReno 1

T̃r

q
ar
br

1−λ̃r

λ̃r
( br

ar
)x2

r(t) + 1

T̃2
r

1
br
ar

T̃2
r x2

r(t)+1
loss probability

Hybla 1
T0

q
ar
br

1−λ̃r

λ̃r
ar(

br
ar

x2
r(t) + 1

T2
0
) 1

br
ar

T2
0 x2

r(t)+1
loss probability

Vegas αrT∗r
φ̃r

1

T̃2
r

αrT∗r
xr

queueing delay

TABLE I

DYNAMIC AND EQUILIBRIUM PROPERTIES
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G. Dynamic Analysis

Let us start by recalling the fluid model for the TCP New Reno congestion control scheme:

dxr(t)
dt

=
xr(t− T̃r)

T̃r

(
ar

xr(t)T̃r

(1− λr(t))− brxr(t)T̃rλr(t)) (34)

This is an NL differential equation in the variablexr(t) and models the rate’s behavior of ther-th flow. For steady
state equilibrium we lett→∞. The stable point corresponds to the value ofxr(t) that nullifies the gradient. It is
found by setting the right hand side= 0.

We then have:

x̃r =
1
T̃r

√
ar

br

1− λ̃r

λ̃r

(35)

wherex̃r, T̃r, λ̃r are the stable points that are reached after the transient phase by ther-th connection in the network.

A dynamic system may be generally expressed as:{
ẋ = f(x, u)
y = g(x, u)

(36)

wherex is the vector of state variables,u is the vector of inputs to the system andy is the vector of outputs. We
want to linearize system (34) around its stable point, in order to express it as (for a strictly causal system):{

ẋ = A x + B u

y = C x
(37)

In (34) we may identifyxr(t) and xr(t − Tr) as state variables [44], andλr(t) as the input to the system. We
linearize (34) around its stable point in order to study the behavior of the system in its neighborhood. In equations
(38) to (40) we show the results of computing the derivatives of (34) with respect to the state and input variables,
and we substitute the value of (35) forxr(t) andxr(t− T̃r).

(
df

dxr(t)
)eq = −2

brλ̃r

T̃r

√
ar

br
(
1− λ̃r

λ̃r

) (38)

(
df

dxr(t− T̃r)
)eq = 0 (39)

(
df

dλr(t)
)eq = − ar

T̃ 2
r λ̃r

(40)

In the linearization we assume thatxr(t) = x̃r + δxr(t), xr(t− Tr) = x̃r + δxr(t− T̃r), andλr(t) = λ̃r + δλr(t)
and that these quantities vary slowly around their equilibrium point. We are now able to findA andB, both |S| x
|S| matrices, where|S| is the number of sources, in the linearized system:

A = diag

−2
brλ̃r

T̃r

√
ar

br
(
1− λ̃r

λ̃r

)

 (41)

B = diag

{
− ar

T̃ 2
r λ̃r

}
(42)

The linearized form of (34), for ther-th flow, is then :

δẋr(t) = −2
brλ̃r

T̃r

√
ar

br
(
1− λ̃r

λ̃r

)δxr(t)−
ar

T̃ 2
r λ̃r

δλr(t) (43)
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The Laplace transform of the transfer function results to be (here we have thatC = I, the identity matrix, in (37),
since the outputy is equal to state variablex):

G(s) = C(sI −A)−1B (44)

= diag

− ar

T̃ 2
r λ̃r

(
1

s + 2 brλ̃r

T̃r

√
ar

br
(1−λ̃r

λ̃r

)
)

 (45)

Recall thatar and br vary from implementation to implementation of the AIMD-type control mechanism. Now
we choose these parameters in a way that will lead to the desired fairness results. The valuesâr and b̂r that we
propose are:

âr ←
αrT̃

2
r

T0 + T̃r

ar (46)

b̂r ←
T1

T0 + T̃r

br (47)

Note that a new coefficientαr was introduced. Its setting and function will be explained later.

These values lead to the following stable point for ther-th source:

x̃r =

√
ar

br

αr

T1

1− λ̃r

λ̃r

(48)

We now have that (41) and (42) become:

A = diag

−2T1λ̃rbr

T0 + T̃r

√
αrar

T1br

1− λ̃r

λ̃r

 (49)

B = diag

{
− αrar

(T̃r + T0)λ̃r

}
(50)

Kelly in [7] derives the variance for a flow in the case of N flows through a single resource (bottleneck), where all
flows share the same values ofâr, b̂r, T̃r; and assuming that queues are modeled as M/M/1, with a finite bufferβ.
In our case we have that:

var {xr(t)} =
b̂rx

2
r

2N
(

1
2(1− λ̃r) + β

+
N − 1

2(1− λ̃r)
) (51)

=
T1brx

2
r

2N(T̃r + T0)
(

1
2(1− λ̃r) + β

+
N − 1

2(1− λ̃r)
) (52)

We can now explain the design choices in (46) and (47) forâr and b̂r:

1) We achieve a stabilized rate independence from round-trip time by havingâr ∝ T̃ 2
r .

2) We achieve a reduced sensitivity to round-trip time in (49), the system matrix (forT0 >> T̃r).
3) We do not penalize the convergence speed of the system to the stable point by multiplying per factorαr.
4) We achieve scalability (this point will be throughly discussed in the next section).
5) We reduce the variance of throughput with respect to TCP New Reno, according to expression (52). The

variance of a flow may be controlled by setting theT0 andT1 parameters. In particular, by setting a value of
T0 ≥ 1 andT1 ≤ 1, we can diminish the variance by a factor of at least1/(T̃r + 1).

6) The variance of a flow scales with̃xr
2. The coefficient of variation (i.e. the ratio: standard deviation/mean) of

xr(t) does not depend onxr. This scale invariance property was first identified by Ott in [45].
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H. Theα Coefficient

In the previous section we introduced the newα coefficient. The design of theα factor was accomplished with
the objective of pursuing the following main objectives:

1) Increase convergence speed and achieve scalability for the algorithm.
2) Keep the algorithm behavior stable.5

For the above reasons, theα factor has been decoupled in the product of two components say:
α = S ∗ P , where

1) S = Scalability factor.
2) P = Penaltyor Dampingfactor.

We achieve scalability by adjusting thescalability factor to the capacity of the bottleneck link. To compute the
latter, we use packet pair techniques that are run in parallel to the algorithm. In particular, we set:

S = k1Cr (53)

wherek1 is a constant andCr is the capacity of the bottleneck link seen by ther-th source.

The penalty factor P has been designed in order to make the increase rate of the algorithm adaptive to the
amount of congestion in the network. We adopted queueing time as a measure of congestion of the network, the
same measure on which TCP Vegas relies, namely:

(Tr(t)− Tmin
r ) (54)

The role of thepenaltyfactor is then to penalize the increase of the window in the presence of congestion and
to maintain the window as close to the maximum value as long as possible. We may use different expressions
of penalty functions for this purpose. In Tab. II we show a few options, whereTr(t) represents the instantaneous
round-trip time,Tmax

r the maximum round-trip time andTmin
r the minimum round-trip time experienced by ther-th

connection. All these functions tend topenalizethe growth of the congestion window when the instant round-trip
time gets close to the maximum round-trip time experienced during the connection. In Fig. 1 and 2 we see the

Penalty Functions

k2(
T max

r −Tr(t)

T max
r −T min

r
)

k2(
T max

r −Tr(t)

T max
r −T min

r
(
2T max

r −T min
r −Tr(t)

T max
r −T min

r
))

e
−k2

Tr(t)−T min
r

T max
r −T min

r

TABLE II

MONOTONICALLY DECREASING FUNCTIONS IN TERMS OF QUEUEING DELAY

results of a simulation where we have two flows, with round-trip times of 400 and 10 ms respectively, in a butterfly
configuration, competing in a 100Mbps bottleneck. In the simulation related to Fig. 1, we used apenaltyfunction,
while we omitted it in the simulation related to Fig. 2.

5Here we mean stability in terms of the local asymptotic stability. We then expect that in its stable behavior, the protocol will achieve the
average throughput expressed in (48).
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Fig. 1. Throughput of two flows, using a penalty function Fig. 2. Throughput of two flows, omitting the penalty function

I. Stability Analysis

Here we will give a simple stability analysis for TCP Libra, which will show the importance of the choice of
the α coefficient.

Let’s consider a single TCP source on a single link. We will recall the results from the analysis available in [38]
for TCP New Reno and compare them with the same analysis for TCP Libra.

We assume that the price is set as in [22] for simplicity:

λ(x) = (
x(t)
C

)β (55)

which represents the probability of having a queue of lengthβ or greater for a M/M/1 queueing system;x(t) is
the arrival rate andC is the capacity of the link.

We make the assumption that the queue is close to full most of the time. We then have that the round-trip time
is equal to the sum of the queueing delay and propagation delay. The sufficient condition for asymptotical local
stability is:

κT̃
λ̃′

λ̃
<

π

2
(56)

considering that for a TCP New Reno flowκ = 1/T̃ 2 we have that:

λ̃′

λ̃
<

πT̃

2
(57)

Let’s now consider a TCP Libra flow. For a TCP Libra flow we have thatκ = α
T0+T̃

6. The analysis is the same,
we can simply substitute this value in (56) and obtain:

λ̃′

λ̃
<

π(T̃ + T0)
2αT̃

(58)

from which we are able to find the upper boundα < T̃+T0

T̃ 2 , which gives us the values thatα may assume in order to
keep a stability region greater than that of New Reno for this simple case. Recalling thatα = Scalability Factor ∗
Penalty Factor = S ∗ P , we see that the above bound gives a condition onk2 oncek1 is fixed, and vice versa.
We can find the following expression:

k2 > −Tmax − Tmin

T̃ − Tmin

log(
T̃ + T0

k1CT̃ 2
) (59)

6Here we substitutear = 1.
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Once k1 is fixed and the other parameters and characteristics of the link are known, the above expression
establishes the minimum value ofk2 in order to guarantee a stability region at least as wide as New Reno’s.

The above is clearly a qualitative analysis, since we have considered the simple case of a single link and a single
flow, but it gives us a feeling of how the choice ofk1 andk2 must be made. As we intuitively expected, (59) is
telling us that:

• If k1 is increased, thenk2 must be also increased in order to keep the same stability bound as New Reno.
• Higher values ofC and T̃ require a higher value ofk2. .

J. TCP Libra Algorithm

Finally, we are ready to derive the algorithmic expression of TCP Libra. We will use a synthesis process that
is the reverse of what we employed in the analysis of previous TCP protocols. As we did for the algorithms
analyzed and presented until now, we will derive the utility function that TCP Libra optimizes (though we will do
it before knowing the actual algorithm), and will derive the fluid model algorithm TCP Libra implements, with the
modification we designed in (46) and (47).

TCP Libra’s fluid flow algorithm is:7

dxr(t)
dt

=
xr(t− T̃r)

T̃r

(
α̃rT̃r

xr(t)(T̃r + T0)
(1− λr(t))−

T1

2
xr(t)T̃rλr(t)

T̃r + T0

) (60)

We may write the fluid model algorithm as in (6), by performing the same substitutions in (10):

ẋ = (
T1

T̃r + T0

x2(t) +
α̃r

T̃r + T0

)(
1

T1
α̃r

x2(t) + 1
− λr(t)) (61)

and we can see that the marginal utility function,U ′(x), is not dependent oñTr. TCP Libra is attempting to
minimize the sum of the transfer delays in the network, independently from the round-trip time experienced by the
source.

Finally, the TCP Libra algorithm:

• windown+1 ← windown + 1
windown

αnT 2
n

Tn+T0
in case of a successful transmission.

• windown+1 ← windown − T1windown

2(Tn+T0)
in case of loss (and the threshold is set accordingly).

In the following section we will show the simulation results for TCP Libra. The simulations have been obtained
by substitutingT0 = 1, T1 = 1, k1 = 2, k2 = 2 and using the exponentialpenalty function reported in Table
II. While a higher value ofk2 would have improved the link utilization by keeping the window at its maximum
for a longer time, we have noticed that a higher valuek2 generates an excessively timid behavior of TCP Libra
toward TCP New Reno. We adjusted this value as a tradeoff between utilization and friendliness. The parameter
k1 is adjusted accordingly tok2, as we discussed in the previous section. We finally setT0 to 1, since in the great
majority of cases this will result inTr << T0 [46], which gives a diminished sensitivity of (49) fromTr, without
excessively penalizing the stepsize in (61).

IV. PERFORMANCEEVALUATION

In this section we evaluate TCP Libra using the NS-2 [47] simulation platform. We also compare it to TCP New
Reno and with other RTT-fair TCP versions namely TCP Vegas, CUBIC and Hybla. For TCP New Reno and Vegas,
we used existing NS-2 modules; for TCP Hybla and TCP CUBIC we used the code provided by the developers;
and we developed our own code for TCP Libra. Default parameters had to be changed only in the case of TCP
Vegas, as inspired by literature [48].
Each experiment was run for 1000 seconds of simulation time (if not otherwise specified in the relative figure). We

chose such a long period because we wanted to evaluate the behavior of the various protocols after they stabilize.
Unless stated differently, the network topology was set as in Figure 3. Four FTP connections are established
between the source destination pairs Si, and Ri shown in Fig 3. The pairs S1, R1 and S2, R2 have RTT = 40 ms,

7Here we will substitute the values for̂ar and b̂r; we also substitutear = 1, br = 1/2 in (46) and (47).
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S3

S4

S1

S2

R3

R4

R1

R2
X Y

Fig. 3. NS-2 simulation topolgy

representing cross country links. The pairs S3, R3 and S4, R4 have RTT = 160ms, representing intercontinental
links. Link capacities are uniform for all links. Link X, Y is thus the common bottleneck. Buffer size at router X
(the bottleneck buffer) varies with the experiments. In one series of experiments we set the buffer size in X to the
pipe size, i.e., to the number of outstanding packets that can fill the pipe. This is equal to the product of bottleneck
capacity by the largest RTT (i.e., 160ms in most of the simulations) divided by packet size. In the remainder of this
paper we refer to this value as the longest pipe size. In other experiments, the buffer size was set equal to 200 or
500 packets which are the suggested values for buffers in Cisco Systems routers [49]. We are, in this manner, able
to test protocols behavior with buffers sizes that resemble the real routers, as well as with buffer sizes similar to
those found in the literature; moreover, we had the opportunity to study TCP Libra stability in relation to the buffer
size (see eq.59). Finally, the TCP packet size, including TCP/IP headers, was set to 1500 Bytes. We evaluated the
following performance measures:

1) available bandwidth utilization

2) intra-protocol RTT-fairness

3) inter-protocol RTT-fairness

4) friendliness to the legacy protocol TCP New Reno

5) scalability of TCP Libra to many flows, large capacity and large RTT
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Is worth noting that in our experiments there are no random errors on links. Thus TCP New Reno behaves the
same as TCP Sack. Thus, our friendliness results will hold also for TCP Sack.

A. Intra-Protocol Fairness

The Jains Fairness Index [50] is generally adopted in scientific literature to evaluate the RTT-fairness degree
among data flows sharing a single bottleneck; therefore we have adopted it even in our analysis. We computed its
values to compare the various protocols in various configurations characterized by different bottleneck capacities
and buffer sizes. In particular, Figure 4 considers the scenario having the buffer size always equal to the longest
pipe size, while Figure 5 corresponds to the case where the buffer size is set to 200 packets. TCP Libra shows
a better RTT-fairness than its competitors in almost all the considered scenarios. An exception is TCP Hybla that
shows a slightly better RTT-fairness for a bottleneck of 80 Mbps and 160 Mbps, and 200-packet buffer. This result
can be traced back to Hybla’s stability with large bottleneck capacities and small buffers, and can be derived from
the bound in equation (17). The slightly worst behavior of TCP Libra in the experiment with a buffer size of 200
packets may be explained by observing that for smaller buffers the penalty portion in theα factor clearly has a less
important influence compared to the larger buffers sizes. This problem may be reduced by increasing the value of
k2 in the functions of table II.
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Fig. 4. Jain’s Fairness Index vs. bottleneck capacity for TCP New Reno, TCP Vegas, TCP Cubic, TCP Hybla, and TCP
Libra. Buffer size at the bottleneck was set equal to the longest pipe size.

B. Inter-Protcol Fairness (Friendliness)

With an aim at verifying the compatibility of newly proposed protocols with Internet’s de facto standard we need
to evaluate scenarios where each of the new protocols competes for the same bottleneck with the traditional TCP
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Fig. 5. Jain’s Fairness Index vs. bottleneck capacity for TCP New Reno , TCP Vegas, TCP Cubic, TCP Hybla, and TCP Libra.
Buffer size at the bottleneck was set equal to200 packets, as suggested default value in the CISCO Systems configuration
manual(s) [49]

New Reno. We therefore considered various configurations where TCP New Reno was used for one short RTT flow
(from S2 to R2) and one long RTT flow (from S4 to R4), while the other two concurrent flows were driven by
one of the other TCP flavors. This allowed us to investigate the impact of coexistence on the RTT-fairness degree
and the friendliness of the alternative TCP versions towards TCP New Reno. We chose the asymmetry index [51]
as friendliness metric. The Asymmetry IndexA is defined in equation (62) below.

A =
x̄1 − x̄2

x̄1 + x̄2
(62)

In this formula x̄1 and x̄2 correspond to the average throughputs achieved by two different protocols competing
for the same channel. If, as in our case, the two competing protocols are provided with exactly the same initial
conditions and each of them is able to exploit (almost) all the available bandwidth when employed alone, then this
index can be employed to linearly indicate the degree of aggressiveness of the two protocols toward one another.
In essence, whenA = 0, the two protocols share the bottleneck perfectly evenly. ConverselyA > 0, correspond to
having the first protocol more aggressive than the second, whileA < 0 imply the inverse situation.

In Fig. 6 and Fig. 7 the asymmetry index is presented for all the bandwidth configurations and, for each of them,
TCP New Reno coexists with one of the alternative TCP versions. In particular, in Fig. 6 the buffer size was equal
to the longest pipe size (2133 packets), while in Fig. 7 the buffer size was 200 packets.

As can be seen in the charts, when TCP Vegas is used concurrently with TCP New Reno, the latter always
presents very high increments of throughput (the Asymmetry Index for TCP Vegas is :A < 0). This is because
as soon as TCP Vegas detects that the queue is starting to build up, it reduces the transmission rate. The same
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Fig. 6. SLAC Asymmetry Index [51]. TCP New Reno vs. TCP Vegas, TCP CUBIC, TCP Hybla, and TCP Libra. Two TCP
New Reno flows compete with two other flows. RTT values 40ms and 160ms respectively. Index= 0 −→ perfect friendliness;
Index < 0 −→ TCP New Reno is more aggressive; Index> 0 −→ the compared TCP is more aggressive than TCP New
Reno. Buffer size at the bottleneck has been set equal to thelongest link pipe size.

conservative behavior is not adopted by the concurrent TCP New Reno, which continues to probe the channel fully
exploiting available queues and bandwidth along the path and making TCP Vegas sense a continuous congestion in
the network. As a consequence, TCP Vegas quickly brings its congestion window to a stable but very low value,
thus achieving very low throughput levels.

In opposition, TCP Hybla is predisposed to be too aggressive toward TCP New Reno, thus using most of the
bandwidth and sensibly reducing TCP New Reno’s throughput when competing for the same channel, as confirmed
by Hybla’s Asymmetry Index always positive. This is because regardless of the actual current RTT, TCP Hybla
tries to make all the TCP connections achieve a transmission rate equivalent to the one that would be attained by
a connection experiencing the reference RTT value (i.e., in this experiment, 25 ms as reported in [35]).

TCP CUBIC was not as highly conservative or aggressive toward TCP New Reno as TCP Vegas and TCP
Hybla were. However, in all the configurations simulated, even in those that we did not presented here due to
space limitation, TCP Libra showed the highest friendliness degree among all the protocols compared in this work.
Indeed, TCP Libra is the protocol that had the least impact on the throughput achieved by the concurrent TCP
New Reno connections and, in a few configurations, (slightly) reduced the throughput attained by TCP New Reno
as confirmed by the Asymmetry Index.

In summary, TCP Vegas is excessively timid, while TCP Hybla and TCP CUBIC are too aggressive. TCP
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Fig. 7. BIC, TCP Hybla, and TCP Libra. Two TCP New Reno flows compete with two other flows. RTT values 40ms and
160ms respectively. Index= 0 −→ perfect friendliness; Index< 0 −→ TCP New Reno is more aggressive; Index> 0 −→
the compared TCP is more aggressive than TCP New Reno. Buffer size at the bottleneck has been set equal to 200 packets.
This is the suggested default value in the CISCO Systems configuration manual(s) [49].

Libra demonstrates that is generally able to fairly share the available bandwidth with TCP New Reno. The only
configuration where another protocol (i.e., TCP CUBIC) achieves a better asymmetry index than TCP Libra is
when a buffer of 200 packets is employed in combination with a 160Mbps bottleneck link (in this configuration,
the actual pipe size would be 2133 packets —an order of magnitude greater).

Finally, not only is TCP Libra RTT-fair when employed as the only transport protocol and friendly to TCP New
Reno when coexisting with it, but in this latter case it also maintains the intra-protocol RTT-fairness. Indeed, the
simulation results obtained using the aforementioned symmetric topology (see Fig. 3) showed that each of the two
TCP Libra connections tends to achieve a throughput which is close to the average throughput attained by the two
RTT-unfair connections utilizing TCP New Reno.

C. TCP Libra Scalability Discussion

We studied TCP Libra scalability focusing on three different aspects: (1) scalability in relation to link capacity, (2)
scalability in relation to number of flows across a given bottleneck and, (3) scalability in relation to the displacement
of RTT(s) among the flows.

1) Link capacity scalability:The current slow start and congestion control mechanism implemented by traditional
TCP flavors has proved to have difficulty reaching full utilization on high-speed8 links, particularly on connections

8Here we are targeting core links at gigabit speeds
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characterized by large RTT [52]. We have therefore decided to evaluate the scalability of TCP Libra with a 160ms
RTT connection over a 1244Mbps link (i.e., OC24). Figure 8 shows the acknowledged packets as a function of
time. The derivative is the throughput. One can see that the slope (i.e., throughput) stabilizes very rapidly in TCP
Libra. In contrast, TCP NReno is still climbing after 1000 seconds. In fact, in 8 one can verify that TCP Libra
hits 96% of channel utilization after 1000 sec. Under the same conditions, TCP New Reno only achieves about
9% (see Figure 9). We tested also configurations with 400Mbps, 500Mbps, and 622Mbps (i.e., OC12) obtaining
similar results.

Fig. 8. TCP Libra. Acknowledged packets vs.time. Bottleneck link bandwidth equal to Oc24(i.e., 1.244Gbps), RTT set to
160ms. The TCP Libra link utilization is about = 96%. Buffer size at the bottleneck has been set equal to the longest link
pipe size.

2) Number of flows scalability:In this experiment we studied TCP Libra scalability in relation to the number
of flows sharing the same bottleneck. In particular, we used the butterfly configuration in Fig. 3 with a bottleneck
link of 622 Mbps (i.e., OC12). We designed three experiments involving 100 contemporaneous flows each. The
RTT was set as follows:

• 30 flows with RTT 16 ms (i.e., a regional connection)
• 60 flows with RTT 60 ms (i.e., a cross-country connection)
• 20 flows with RTT 180 ms (i.e., transatlantic connection)

First we run TCP New Reno, and then we run TCP Libra using two different settings for thek2 parameter
(see eq. 59). TCP New Reno performance is shown in Fig. 10. As expected from the model, in particular from
the utility function in equation (12), TCP New Reno shows RTT-unfairness due to dependency on the RTT during
the increase phase. Using the same experimental scenario, we performed a set of experiments directed at studying
TCP Libra’s stability and friendliness. In particular, Fig.11 shows TCP Libra’s performance withk2 = 2, while
Fig. 12 shows the results withk2 = 12. It is worth noting the key role played by TCP Libra’s parameterk2. In
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Fig. 9. TCP New Reno. Acknowledged packets vs.time. Bottleneck link bandwidth equal to Oc24(i.e., 1.244Gbps), RTT set
to 160ms. The TCP New Reno link utilization is about 9% Buffer size at the bottleneck has been set equal to the bottleneck
link pipe size.

particular, the stability bound in equation (59) suggests the following considerations: (a) in this experiment we are
on the border of the stability region for TCP Libra and by increasingk2 we safely return to the stability region and
achieve a good RTT-fairness (see Fig. 12); (b) with relatively small buffers (compared to the pipe size) the penalty
function has a lower effect thus reducing the RTT-fairness and increasing the friendliness to TCP New Reno; (c) the
cluster effect in Fig. 12 suggests that in this condition withk2 = 2, TCP Libra still attenuates the RTT-unfairness
even though aggregates the flows in regions due to the fact that is on the border of its stability area. In summary,
especially with small buffers, a careful selection of TCP Libra’s parameters is needed to balance the algorithm’s
RTT-farness (or effectiveness area) with its friendliness to TCP New Reno as suggested by the TCP Libra’s Model.

3) Flows with large RTT spread and staggered start times:In this experiment four different TCP Libra flows
(Fig. 13) with RTTs 20, 100, 160, 200, 400 ms are started in sequence at different times. Bottleneck link bandwidth
is equal to 100 Mbps. The buffer size at the bottleneck has been set equal to the longest pipe size. Fig. 12 shows
the acknowledged packets versus time. It is worth noting that the slopes are the same across the flows. Thus, even
in the case of a ratio of 1:20 in RTT, TCP Libra allows all the flows to achieve their fair share. In contrast, Fig. 13
shows a similar experiment with TCP New Reno. One can readily see that the short flow captures the bottleneck.

V. CONCLUSIONS ANDFUTURE WORK

This paper introduces TCP Libra, a new protocol designed to be RTT-fair while maintaining a good friendliness
with TCP New Reno, thus allowing a seamless deployment in the network. We analytically studied TCP-Libra and
its competitors using the primal/dual network modeling formulation and deriving the relative stability bounds. Our
study was completed with a simulation analysis performed using NS2 that confirmed TCP Libra characteristics. In
particular, we discovered that TCP Libra, when used within its stability region, is able provide RTT-fairness and
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Fig. 10. TCP New Reno. Acknowledged packets vs. time. Bottleneck link of 622 Mbps (Oc12), 100 Flows; 30 Flows with
RTT = 16 ms, 60 Flows with RTT = 60 ms, and 20 Flows with RTT = 180 ms. Buffer size at the bottleneck has been set
equal to500 packets, the suggested default value for high speed core routers in the CISCO Systems configuration manual(s)
[49].

maintain good asymmetry index and Jain’s index values. TCP Libra requires awareness of the bottleneck capacity
and a careful setting of its parameters (i.e.,k1, andk2) in order to perform at optimum.

In the next several months we will refine TCP Libra and study its performance in a larger number of network
scenarios. In particular, we are: (a) developing an efficient capacity estimator, (b) designing aplug-n-playparameter
optimization technique to make the protocol easy do deploy, (c) implementing TCP Libra’s Linux code to perform
actual measurements in our high-speed test-bed, (d) developing a more extensive modeling that includes an extensive
comparison with other RTT-fair proposals, and (e) studying a slow start enhancement for TCP Libra. Finally we
will perform a more extensive set of simulations aimed at studying TCP Libra behavior in heterogeneous scenarios
that include mice flows such web those related to web traffic.

NOTES

The NS-2 Implementation of TCP Libra, along with the scripts used in this paper can be found athttp:
//netlab.cs.ucla.edu/TCP-Libra/
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Fig. 11. TCP Libra withk2 = 2. Acknowledged packets vs. time. Bottleneck link of 622 Mbps (Oc12), 100 Flows; 30 Flows
with RTT = 16 ms, 60 Flows with RTT = 60 ms, and 20 Flows with RTT = 180 ms. Buffer size at the bottleneck has been set
equal to500 packets, the suggested default value for high speed core routers in the CISCO Systems configuration manual(s)
[49].
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