

ACM Computers in Entertainment, Vol. 3, No. 2, April 2005, Article 3°.

A RIO-Like Technique for Interactivity
Loss-Avoidance in Fast-Paced Multiplayer
Online Games

CLAUDIO E. PALAZZI, Università di Bologna AND University of
California at Los Angeles
AND
STEFANO FERRETTI, STEFANO CACCIAGUERRA, AND MARCO
ROCCETTI

Università di Bologna
__

The astonishing increase in the spread of the Internet has given rise to a globally connected community
proficient at deploying online games for a large number of participants geographically located very far from
each other. However, online games are characterized by more stringent requirements than traditional distributed
applications deployed over the Internet can fulfill Indeed, one of the key factors in determining the success of
an online game is its ability to rapidly deliver events to the various game servers that maintain the state of the
game over the network. We have already demonstrated [Palazzi et al. 2004] that in this context adapting RED
(random early detection) techniques, borrowed from queuing management, can improve the global
responsiveness of a game. However, this solution may not be sufficient for a specific class of online games. We
deem that fast-paced multiplayer online games (such as shoot ’em ups, for example) in which participants have
to behave frenetically, must guarantee a very high degree of interactivity, even at the cost of partially sacrificing
the consistency of the game state. In this case having only a partially consistent view of the game state will not
affect a player’s amusement as much as delaying action-processing activity will. Hence we explore the
possibility of applying a RIO-based (RED with in and out) algorithm to manage game delivery to the various
game servers, in order to improve the degree of interactivity for fast-paced online games. Preliminary
experimental results confirm the viability of our approach.

Categories and Subject Descriptors: K.8.0 [Personal Computing]: General—Games

General Terms: Algorithms, Performance

Additional Key Words and Phrases: Multiplayer computer games, online entertainment, event delivery service,
interactivity, consistency, evaluation, synchronization
__

1. INTRODUCTION
Nowadays, two main reasons above others attract an increasing number of researchers
and developers to online electronic entertainment. The first is the very high level of
revenue generated every year, which even surpasses the movie business. The second
reason is the correlation between the problems that emerge in developing innovative
game experiences and those typical of other conventional research fields such as, for
example, distributed multimedia applications, virtual environments, and simulation.
__

This work was funded in part by the Italian M.I.U.R., Interlink project and 60% (IT)..
Authors’ addresses: C.E. Palazzi is with the Università di Bologna and the University of California at Los
Angeles; S. Ferretti, S. Cacciaguerra, and M. Roccetti are with the Università di Bologna, Bologna, Italy;
emails: {cpalazzi, sferrett, scacciag, roccetti}@cs.unibo.it}
Permission to make digital/hard copy of part of this work for personal or classroom use is granted without fee
provided that the copies are not made or distributed for profit or commercial advantage, the copyright notice, the
title of the publication, and its date of appear, and notice is given that copying is by permission of the ACM, Inc.
To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission
and/or a fee. Permission may be requested from Publications Dept., ACM, Inc., 1515 Broadway, New York, NY
10036, USA, fax: +1-212-869-0481, or permissions@acm.org..
© 2005 ACM 1544-3574/05/0400-ART03A $5.00

2 • C.E. Palazzi et al.

ACM Computers in Entertainment, Vol. 3, No. 2, April 2005.

Under this second aspect, it is particularly interesting to analyze one of the most
innovative challenges in networked electronic entertainment: the deployment of an
efficient architecture to support massive multiuser online games (MMOGs) over a best-
effort network [Griwodz 2002; Mine et al. 2003; El Rhalibi 2004].

Creating an enjoyable online game requires the convergence of solutions belonging to
different technical areas. In particular, our focus here is on networking and the
computational load on the game servers’ architecture. For example, the mirrored game
server is an efficient way to provide support for MMOGs; it deploys a constellation of
communicating game state servers (GSS) over the network [Cronin et al. 2004; Ferretti
and Roccetti 2004]. Each GSS maintains part or the whole game state, takes charge of
event deliveries to/from other GSS, or to/from clients connected with it, and can
implement policies aimed at increasing the global performance of the system. However,
in order to guarantee a uniform view of the game state among all GSS, an efficient
synchronization scheme needs to be employed.

In a previous study [Palazzi et al. 2004], we proposed an innovative game
synchronization scheme, named ILA (interactivity loss-avoidance), specifically designed
to provide efficient event delivery synchronization in multiplayer online games. The ILA
mechanism is able to increase the degree of playability of online multiplayer games by
keeping delays in event delivery under a human-perceptivity threshold, while preserving
game-state consistency and fluency in favor of the player. Simply stated, this result was
obtained by discarding events considered obsolete and employing a dropping probability
that depends on the perceived responsiveness at the GSS.

However, our experiences with online games over the Internet leads us to claim that
there exist cases where even discarding all the obsolete events in a game is not enough to
ensure interactivity. This is particularly true for a class of games that requires extremely
fast, and often redundant, actions by the players.

This class of games is widely recognized in the gaming community as fast-paced (or
even fast and furious) games. Typical examples are the shoot and beat ‘em up games.
Simply put, we propose to enhance the ILA scheme by adding a further probability
function that will even discard some non-obsolete events, when throwing away all the
obsolete ones is not enough to ensure an adequate degree of interactivity.

Obviously, this may generate sporadic inconsistencies in the game state. However, we
deem that partial consistency is acceptable for fast and furious online games where the
lack of consistency lasts only a small amount of time. In fact in this scenario, the
necessity for a very high degree of interactivity emerges as overwhelming, even for the
full-consistency requirement.

We have developed a study whose experimental results confirm the viability of our
idea.

The remainder of this article is organized as follows. In Section 2 we briefly survey the
theoretical background, which is the basis of our synchronization scheme. Section 3
presents some details of the newly proposed interactivity maintenance technique. Section
4 describes the simulative environment adopted as our test bed. In Section 5, we report
preliminary results obtained from the evaluation. Finally, Section 6 concludes the article.

2. BACKGROUND

Interactivity vs Consistency
Distributed interactive games are characterized by two main requirements that cannot be
considered independent of each other: interactivity and consistency [Palazzi et al. 2004;
Ferretti and Roccetti 2004]. It is widely accepted that in order to provide interactivity in a

A RIO-Like Technique for Interactivity Loss-Avoidance • 3

ACM Computers in Entertainment, Vol. 3, No. 2, April 2005.

distributed gaming environment, it must be guaranteed that the external stimuli,
generated by players, are processed by other participants under a human-perceptivity
threshold [Palazzi et al. 2004; El Rhalibi 2004; Cronin et al. 2004]. This means that the
time elapsed from the generation of the event at a sending GSS to its processing time at
each receiving GSS results in values below a specific average. For example, scientific
literature declares that a delay of 50 ms is not perceived at all by players, while at 150 ms
the players’ performance may be jeopardized by the lag, and finally 225 ms of delay
could represent the maximal limit for playable interruptions. These values are valid for
games like first-person shooter and car racing, but can be relaxed for more strategic
games.

A low variance of these values should be guaranteed, and not only to obtain a factual
and smooth progression in visualizing the game on the player’s screen,

There must be a consistent, uniform, and simultaneous view of the game state at all the
nodes in the system [Ferretti and Roccetti 2004]. The easiest way to guarantee
consistency is to make the game proceed in discrete locksteps [Steinman 1995]. However,
allowing a single move for each player and synchronizing all the agents before moving
toward the next round, really impairs the interactivity of the system.

In a previous work [Palazzi et al. 2004], we demonstrated that a good level of
interactivity coupled with full-consistency may be obtained by exploiting the notions of
obsolescence and correlation, surveyed in the next section.

However, as we mentioned in Section 1, full-consistency may be sacrificed in favor of
a higher degree of interactivity when considering a specific class of online games. In case
of frenetic shoot ‘em ups, for example, losing a shoot action among hundreds of them, all
in a very tight time period, may be accepted even if the final outcome of the game is
slightly altered.

Conversely, consistent lags between the generation of the event and the visualization
of action on the screen, irremediably compromise the velocity of the action, which is the
most entertaining component of this kind of game.

Obsolescence and Correlation
It is well known that full consistency can be obtained through the use of a completely
reliable, totally ordered event-delivery scheme [Ferretti and Roccetti 2004]. On the other
hand, it is also common knowledge that totally ordered delivery approaches increase
complexity, and, most of all, are the basis for all the delays experienced by the system
[Cheriton and Skeen 1993].

Recent studies demonstrate that exploiting the semantics of the application can be put
to good use to relax the requirements for reliability and the delivery of total order, thus
augmenting interactivity [Palazzi et al. 2004; Ferretti et al. 2004]. Some events, in fact,
can lose their significance as time passes: new actions may make the previous ones
irrelevant.

For example, where there is a rapid succession of movements by a single agent in a
virtual world, the event representing the last destination makes the older events obsolete.
Thus obsolescence can be defined as the relation between two received events e1 and e2,
generated at different times t(e1) < t(e2), thereby diminishing the importance of e1 and the
need to process it. Dropping obsolete events before processing them clearly reduces the
computational cost at the GSS and speeds-up the execution of fresher events.

To define a game event as obsolete, we have to be sure that consistency will not be
weakened. To this end, we also have to introduce the notion of correlation. Two events,
say e1 and e2, are correlated if the final game state depends on their order of execution.

4 • C.E. Palazzi et al.

ACM Computers in Entertainment, Vol. 3, No. 2, April 2005.

Hence, to determine the obsolescence of a chain of subsequent events, correlation is to be
taken into consideration.

In fact, an event e3 makes a previous event e1 obsolete only if there is not another event
e2 (correlated to e1), temporarily interleaved between e1 and e3 that breaks the
obsolescence relationship between e1 and e3. In a scenario where we wish to maintain full
consistency, correlated events are the only ones that really need to be delivered to the
destination GSS in the same order as generated and cannot be subject to any dropping
action.

Since we are discussing design issues that concern the fast and furious class of
multiplayer online games, this requirement can be sporadically relaxed in order to boost
interactivity.

Interactivity Maintenance with RED
Ferretti and Roccetti [2004] demonstrated the interactivity benefits attainable by
exploiting the semantics of a game during its evolution towards relaxing the requirement
for the delivery of total order.

In their scheme Ferretti and Roccetti [2004] propose that the player’s actions be
collected by the closest GSS, transformed into events, and finally forwarded to the other
GSS in order to maintain a globally identical view of the game state. Events are marked
at their creation with a generation timestamp and then sent to the destination: hence they
are orderable.

Obviously, a global conception of time must be maintained by all the GSS, for
example by exploiting a variety of solutions that enable the synchronization of their
physical clocks [Drummond and Babaoglu 1993; Cristian 1989; Mills 1991], or by
employing new technological synchronization devices such as GPS.

Each receiving GSS considers the arrival time of the event and measures the difference
in elapsed time since its generation; the resulting value is called the game time difference
(GTD). The GTD of the event is then compared to a predefined constant game
interaction threshold (GIT), and normal delivery operations are performed until the
former value is lower than the latter. When the GTD value exceeds the GIT, the GSS
turns on a stabilization mechanism that exploits the obsolescence notion in order to drop
useless events so as to bring the GTD back within the GIT.

Taking inspiration from the RED (random early detection) approach, in case of
incipient congestion in the Internet [Floyd and Jacobson 1993] we have recently
enhanced the aforementioned interactivity-restoring mechanism with the interactivity
loss-avoidance (ILA) approach [Palazzi et al. 2004].

The main innovation of the latter scheme is that it can anticipate the loss of
interactivity, discarding packets when the level of interactions among the GSS declines
significantly.

In practice, ILA substitutes the basic binary mechanism that drops obsolete events
(OFF when interactivity is present and ON when interactivity is lost) with a proactive
mechanism that works continuously, dropping obsolete events with a probability that
depends on the level of interactivity.

Even if, similarly to RED, ILA utilizes a uniformly distributed dropping function, the
parameter taken under control is the average GTD instead of the average queue size.
Upon the arrival of each packet each GSS determines the GTD of the event upon its
arrival, namely the sampleGTD, and feeds a low-pass filter to compute the updated
average GTD, namely, avg_GTD. When avg_GTD exceeds a certain threshold, the GSS
drops obsolete events with a probability p, without processing them. If avg_GTD exceeds

A RIO-Like Technique for Interactivity Loss-Avoidance • 5

ACM Computers in Entertainment, Vol. 3, No. 2, April 2005.

a subsequent limit, p is set equal to 1, and all obsolete events waiting for processing are
discarded.

3. A RIO-LIKE TECHNIQUE FOR INTERACTIVITY LOSS-AVOIDANCE
Our previous RED-based ILA scheme can be usefully applied in those multiuser online
games that pursue a high degree of interactivity while maintaining full consistency in
game state views.

However, as already mentioned, there exist particular classes of games where it might
be desirable to guarantee a very high degree of interactivity, even at the cost of
sporadically ignoring the full-consistency requirement. This is the case when the core
attractiveness for players emerges from feverish, sometimes even chaotic, action
sequences, namely, fast and furious multiuser online games.

To advance this aim, our intention here is to add the possibility of discarding even non-
obsolete game events when dropping all the obsolete ones is not sufficient to maintain an
adequate level of interactivity. In particular, we want to create two discarding functions,
one for obsolete and another for non-obsolete events, respectively, with specific
boundaries and slopes that work independently of each other and take action in sequence
with the increase in game event’ GTDs at the GSS.

Obviously, dropping non-obsolete events without consequences can be done only for a
category of games, where small inconsistencies will not be highly deleterious to the goal
of the game and to the players’ entertainment (e.g., fast-paced games).

Even in this case, if the number of dropped non-obsolete events becomes significant, a
mechanism to restore consistency may be required to re-establish a coherent game state
view among all the GSS [Mauve 2000].

Hence we propose enhancing our ILA scheme with new features derived from the
integration of a RIO-like algorithm in place of the RED-like one. The RIO (RED with in
and out) scheme is an enhanced version of RED mechanism that is able to discriminate
between two different classes of traffic, non-prioritized (out) and prioritized (in), and
calculates two distinct dropping probabilities.

As illustrated in Figure 1, three parameters (and three phases) mino, maxo and Pmaxo,
for obsolete events, and minv, maxv and Pmaxv for valid (i.e., non-obsolete) ones
characterize each of the twin algorithms.

In the graph, the y-axis represents the dropping probability corresponding to the
avg_GTD indicated by the x-axis. Focusing on obsolete events for values of avg_GTD in
[0, mino), the mechanism performs normal operations, with no packet drops, while in
[mino, maxo) obsolete packets are discarded with a computed probability, and finally in
[maxo, ∞) all obsolete packets are thrown away.

The intervals [0, minv), [minv, maxv), and [maxv, ∞) define the corresponding phases
for valid events. The dropping probabilities are computed as a function of avg_GTD and
Pmaxo or Pmaxv, respectively.

Persistent states of low interactivity result in high avg_GTD, and hence in a high
probability for being discarded. High dropping probability values (for Pmaxo or Pmaxv)
will cause the GSS to discard events without processing or forwarding them, thus helping
to restore timely interactions between servers.

Since valid (i.e., non-obsolete) events are strictly linked to consistency, discarding
them should be considered only as a last resort, in case of a heavy disruption of
interactivity. Hence our scheme starts dropping obsolete packets much earlier than valid
ones. We have set the parameters such that the algorithm throws away all the obsolete

6 • C.E. Palazzi et al.

ACM Computers in Entertainment, Vol. 3, No. 2, April 2005.

mino avg_GTD

Pmaxo

1

Dropping
Probability

maxo

Pmaxv

minv maxv

phase 0 phase 1 phase 2 phase 3 phase 4

Fig. 1. Probability functions for discarding events.

packets before considering the probability for dropping any valid events; this is done by
choosing maxo smaller than minv.

Moreover, the degree of aggressiveness with which packets are dropped depends on
the class they belong to, and can be decided by adjusting the values of Pmaxo and Pmaxv.

The new ILA-RIO algorithm, which implements our scheme in all its phases, is shown
in Figure 2, and is obtained by endowing the RED algorithm in Floyd and Jacobson
[1993] with RIO features.

In essence, the algorithm repeats a block of operations each time a new event arrives at
the GSS.

In particular, the packet’s GTD is calculated (sample_GTD, line 1) as the difference in
time between the generation of the game control event at the sender GSS and its delivery
to the appropriate GSS.

0] for each event_packet arrival {
1] determine the sample_GTD
2] calculate the new average delay avg_GTD
3] if (mino ≤ avg_GTD < maxo) then {
4] calculate the probability Po of dropping an obsolete
 event
5] determine if ONE obsolete event has to be
 discarded
6] } else if (maxo ≤ avg_GTD) then {
7] drop ALL obsolete events
8] if (minv ≤ avg_GTD < maxv) then {
9] calculate the probability Pv of dropping a valid
 event
10] determine if ONE valid event has to be discarded
11] } else if (maxv ≤ avg_GTD) then {
12] drop ALL valid events
13] }
14] }
15] }

Fig. 2. The ILA-RIO algorithm.

A RIO-Like Technique for Interactivity Loss-Avoidance • 7

ACM Computers in Entertainment, Vol. 3, No. 2, April 2005.

Table. I. Configuring the GSS
GSS ID 1 2 3 4 5 6 7

Latency Avg (ms) 15 40 75 90 80 30 100
Latency Std Dev (ms) 15 15 30 10 20 15 25

The scheme feeds a low-pass filter with the just calculated sample_GTD in order to
update the average of the GTDs (avg_GTD, line 2).

In particular, the filter is implemented by resorting to the following formula:

 avg_GTD = avg_GTD + w × (sample_GTD - avg_GTD (1)

where w is a sensitivity coefficient, with values (0, 1], that determines how closely the
trajectory of the average follows the movements of the samples.

While avg_GTD lies below mino, the process stays in phase 0, and no particular
discarding operations are performed. Conversely, when avg_GTD is between mino and
maxo, the scheme is in phase 1 and lines 4-5 are executed.

Basically, a probability for dropping is computed in order to establish whether an
obsolete event should be discarded. Such a probability increases until an event is
discarded. This is done by exploiting a counter variable in order to have a uniform
distribution of drops, following the method explained in Floyd and Jacobson [1993].

If avg_GTD grows beyond maxo, the scheme enters phase 2, or successive and all
obsolete packets have to be discarded in order to re-establish interactivity (line 7).

Moreover, the algorithm has to distinguish between phase 3 (lines 9-10) and phase 4
(line 12). In the former case, valid events with a certain probability (Pmaxv), with a
behavior analogous to that already explained in phase 1 are dropped, while in the latter
case all events, with no distinction, are discarded.

4. SIMULATION ASSESSMENT
To evaluate our event-processing strategy, we simulated a general mirrored game server
architecture made up of various GSS dispersed over the Internet. As previously
mentioned, the events generated were totally ordered on the basis of a global notion of
time. This can be achieved either by resorting to the variety of software solutions for
clock synchronization proposed in the literature [Drummond and Babaoglu 1993; Cristian
1989; Mills. 1991] or by exploiting a technological device useful for synchronization like
the GPS.

For the sake of deeper comprehension, we focused our attention on the event-receiving
aspect of a single GSS, while the other GSS were sending events to it. GSS0 is the
receiving GSS and the others are the sending GSS.

Based on results obtained by other authors [Park and Willinger 2000; Farber 2002], the
values of the network latencies for each of the sending GSS and the receiving GSS0 were
obtained based on a lognormal distribution with the average and standard deviation
values shown in Table I.

Furthermore, the rate of event generation, i.e., the interval of time between the
departures of two subsequent events at each GSS, was sampled from a lognormal
distribution (average equal to 30 ms and standard deviation equal to 10 ms). These values
represent, approximately, the traffic generated by 5 to 10 players (depending on the
semantics of the game) connected to each GSS, and are utilized to generate a trace file

8 • C.E. Palazzi et al.

ACM Computers in Entertainment, Vol. 3, No. 2, April 2005.

containing 1000 events for each GSS. Trace files also include the information needed to
identify (correlated and) obsolete events.

In our simulations, we considered two different event-trace configurations where the
probability that an event makes previous ones obsolete was set, respectively, at 50% and
90%.

For each event trace the size of the generated game events was 200 bytes, on average.
The event delivery service was built by exploiting a receiver-initiated communication

protocol over the UDP that utilizes NACKs (negative acknowledgments) to provide
reliable communication.

In our tests we compared three different synchronization schemes: the proposed ILA-
RIO scheme; the ON-OFF mechanism (to restore interactivity, as reviewed in Section 2);
and the traditional OFF approach (with no mechanism to restore interactivity).

Focusing on the parameters exploited in the ILA-RIO algorithm, we set w=1/8 in (1),
in an attempt to make the algorithm filter out sporadic high GTDs, while maintaining a
prompt responsiveness to a persistent decline in the degree of interactivity.

Moreover, the other parameters in the algorithm were set as follows: mino = 50ms,
maxo = 100ms, Pmaxo = 0.2, minv = 150 ms (equivalent to the GIT for the ON-OFF
scheme), maxv = 225 ms, and Pmaxv = 0.3.

Several points can be made about the most appropriate values for the parameters cited
above. The phase boundaries should be chosen in order to activate phase 1 when the
delay between the generation of a player’s action and its execution on the screen is the
first perceivable symptom of interactive degradation. The threshold for the more
aggressive phase 2 should be chosen so that it can be surpassed when the lag results in
annoyingly low-performance for the players.

We give the following reasons for our chosen values: the scientific literature declares
that a delay of 50 ms (i.e., our mino parameter) is not perceivable by players; a lag of 150
ms (i.e., our minv and GIT parameters) results in disturbing the players’ performance; and
a delay of 225 ms (i.e., our maxv parameter) could represent an upper bound for playable
interactions [Armitage 2003; Borella 2000; Pantel and Wolf 2002; Henderson 2001].
These limits hold for games based on vehicle chases, first-person shooters, and fast shoot
‘em ups, but can be relaxed for strategic games (e.g., Starcraft, Age of Empire, etc.
[Fitzek et al.. 2002]).

5. RESULTS
We intend to demonstrate the benefits that can be attained by implementing an event-
discarding algorithm in case of a trend toward an increase in GTDs.

In a previous work we assessed the efficacy of the single ILA (RED-based) mechanism
in a similar scenario [Palazzi et al. 2004]. In particular, we saw an improvement of 27%
and 4% on the average GTD w.r.t. OFF and ON-OFF, respectively, and an improvement
of 66% and 41% on the standard deviation w.r.t. OFF and ON-OFF.

As to the approach presented in this article, in Figures 3 and 4, we compare the ILA-
RIO, ON-OFF, and OFF schemes for the following:

(1) the percentage of events that arrived at GSS0 with a GTD value larger than the

GIT; and
(2) the number of events dropped by ILA-RIO and ON-OFF.

Figures 3 and 4 refer to a specific event-trace configuration with different obsolescence

probabilities for events.

A RIO-Like Technique for Interactivity Loss-Avoidance • 9

ACM Computers in Entertainment, Vol. 3, No. 2, April 2005.

Prob. of Obsolescence = 50%

0

10

20

30

40

50

60

%
 G

TD
 o

ve
r G

IT

OFF ON-OFF ILA-RIO

Prob. of Obsolescence = 50%

0

2

4

6

8

10

12

%
 D

ro
pp

ed
 E

ve
nt

s

ON-OFF ILA-RIO
(a) (b)

Fig. 3. Probability of obsolescence = 50%; (a) event percentage with GTD > GIT; (b) percentage of discarded
events.

Prob. of Obsolescence = 90%

0

10

20

30

40

50

60

%
 G

TD
 o

ve
r G

IT

OFF ON-OFF ILA-RIO

Prob. of Obsolescence = 90%

0
5

10
15
20
25
30
35
40

%
 D

ro
pp

ed
 E

ve
nt

s

ON-OFF ILA-RIO
(a) (b)

Fig. 4. Probability of obsolescence = 90%; (a) event percentage with GTD > GIT; (b) percentage of discarded
events.

It can be seen in Figures 3(a) and 4(a) that the ILA-RIO and ON-OFF schemes
outperform the traditional OFF method in both configurations in terms of GTDs.
Moreover, ILA-RIO further reduces the number of events with GTDs above the GIT
w.r.t. ON-OFF. These results give a preliminary confirmation that ILA-RIO is able to
guarantee a higher degree of interactivity compared to the two alternative approaches.

Furthermore, while in the former event-trace configuration there are no significant
differences between ILA-RIO and ON-OFF in the number of dropped events (Fig. 3(b)).
In the second configuration, ILA-RIO greatly reduces this value (Fig. 4(b)). Therefore,
the ILA-RIO scheme augments the evolution of the game’s fluency.

Finally, we evaluated the number of valid events dropped by our ILA-RIO approach.
Indeed, while the ON-OFF approach discards only obsolete events, ILA-RIO can drop
valid events when the degree of interactivity is highly jeopardized.

Table II reports the percentage of obsolete and valid events that are discarded,
depending on the event trace. As expected, the number of dropped obsolete events
increases with the probability of obsolescence. Accordingly, the number of dropped valid
events diminish when the percentage of obsolete events is greater, since this suggests a
lower percentage of valid events.

Table II. Percentage of Obsolete and Valid Discarded Events in ILA-RIO
Obsolescence Prob. 50% 90%
Obsolete 9,46% 13,64%
Valid 0,16% 0%

10 • C.E. Palazzi et al.

ACM Computers in Entertainment, Vol. 3, No. 2, April 2005.

In particular, while a small number of valid events were discarded, corresponding to
the first event trace (probability of obsolescence equal to 50%), no valid event was
dropped in the second configuration (probability of obsolescence equal to 90%).

This tendency is due to the fact that if an adequate number of obsolete events is
available during the events-exchange activity, then our scheme is able to exploit all these
(obsolete) events to restore interactivity in phase 2. Simply stated, interactivity is
promptly restored by dropping only obsolete events without the need to discard valid
ones.

6. CONCLUSIONS AND FUTURE WORK
In this article we presented a new scheme for a fast event-delivery service for mirrored
GSS, aimed at supporting fast-paced networked games. The proposed approach exploits
an event-dropping mechanism, inspired by the RIO algorithm, devised to maintain a
higher degree of interactivity among players, while preserving only partial consistency in
the system.

The novelty of our proposal lies in the possibility of dropping non-obsolete events
when the degree of interactivity becomes highly jeopardized. We claim that this approach
may be utilized in certain games with very elevated interactivity requirements and when
small temporary inconsistencies are not highly deleterious for the aims of the game. As a
last resort, consistency-restoring mechanisms in the GSS may be exploited to re-establish
a coherent view of the game state. An experimental study has shown that a good degree
of interactivity may be obtained by exploiting our mechanism.

ACKNOWLEDGMENT
We wish to thank the ACM CiE editor for her careful reading of our paper and for all her
useful suggestions in helping to improve the quality of this article.

REFERENCES
ARMITAGE, G. 2003. An experimental estimation of latency sensitivity in multiplayer Quake 3. In Proceedings

of the ICON Conference (Sydney, Australia, 2003).
BORELLA, M. S. 2000. Source models for network game traffic. Computer Communications 23, 4 (2000), 403-

410.
CHERITON, D.R. AND SKEEN, D. 1993. Understanding the limitations of causal and totally ordered multicast. In

Proceedings of the 14th Symposium on Operating System Principles (SOSP '93, Asheville, NC, 1993). 44-
57.

CRISTIAN, F. 1989. Probabilistic clock synchronization. Distributed Computing 3,.3 (1989), 146-158.
CRONIN, E., KURC, A. R., FILSTRUP, B., AND JAMIN, S. 2004. An efficient synchronization mechanism for

mirrored game architectures. Multimedia Tools and Applications 23, 1 (2004), 7-30.
DRUMMOND, R. AND BABAOGLU, O. 1993. Low-cost clock synchronization. Distributed Computing 6,.3

(1993), 193-203.
EL RHALIBI, A. 2004. Peer-to-peer architecture and protocol for a massively multiplayer online game. In

Proceedings of the 1st IEEE International Workshop on Networking Issues in Multimedia Entertainment
(NIME'04, GLOBECOM 2004, Dallas, TX, 2004).

FARBER, J. 2002. Network game traffic modelling. In Proceedings of the NetGames 2002 Conference
(Braunschweig, Germany, 2002). 53-57.

FERRETTI, S. AND ROCCETTI, M. 2004. A novel obsolescence-based approach to event delivery synchronization
in multiplayer games. Int. J. Intelligent Games and Simulation.3, 1 (2004), 7-19.

FERRETTI, S., ROCCETTI, M., AND CACCIAGUERRA, S. 2004. On distributing interactive storytelling: Issues of
event synchronization and a solution. In Proceedings of the 2nd International Conference on Technologies
for Interactive Digital Storytelling and Entertainment (TIDSE 2004, Darmstadt, Germany). LNCS 3105,
Springer Verlag, 219-231.

FITZEK, F., SCHULTE, G., AND REISSLEIN, M. 2002. System architecture for billing of multi-player games in a
wireless environment using GSM/UMTS and WLAN services. In Proceedings of the NetGames2002
Conference (Bruanschweig, Germany, April 2002) 58-64.

FLOYD, S. AND JACOBSON, V. 1993. Random early detection gateways for congestion avoidance. IEEE/ACM
Trans. on Networking 1, 4 (1993), 397-413.

A RIO-Like Technique for Interactivity Loss-Avoidance • 11

ACM Computers in Entertainment, Vol. 3, No. 2, April 2005.

GRIWODZ, C. 2002. State replication for multiplayer games. In Proceedings of the NetGames2002 Conference
(Braunschweig, Germany, 2002). 29-35.

HENDERSON, T. 2001. Latency and user behaviour on a multiplayer game server. In Proceedings of the 3rd
International Workshop on Networked Group Communication (NGC01, London, Nov. 2001). 1-13.

MAUVE, M. 2000. Distributed interactive media. Ph.D. dissertation, University of Mannheim. Berlin, 2000.
.MILLS, D. L. 1991. Internet time synchronization: The network time protocol. IEEE Trans. on Communications

39, 10 (1991), 1482-1493. MAUVE, M. 2000. Distributed interactive media. Ph.D. dissertation, University
of Mannheim. Berlin, 2000.

MINE, R. M., SHOCHET, J., AND HUGHSTON, R. 2003. Building a massively multiplayer game for the
millions: Disney's Toontown online. ACM Computers in Entertainment 1,1 (2003), 15.

PALAZZI, C. E., FERRETTI, S., CACCIAGUERRA, S., AND ROCCETTI, M. 2004 On maintaining interactivity in
event delivery synchronization for mirrored game architectures In Proceedings of the 1st IEEE
International Workshop on Networking Issues in Multimedia Entertainment (NIME'04, GLOBECOM
2004, Dallas, TX, 2004).

PANTEL, L. AND WOLF, L. C. 2002. On the impact of delay on real-tme multiplayer games. In Proceedings of
the 12th International Workshop on Network and Operating Systems Support for Digital Audio and Video
(May 12-14, 2002, Miami, FL).

PARK, K. AND WILLINGER, W. 2000. Self-Similar Network Traffic and Performance Evaluation. 1st ed. Wiley-
Interscience, 2000.

STEINMAN, J. S. 1995. Scalable parallel and distributed military simulations using the SPEEDES framework. In
Proceedings of the Second Electronic Simulation Conference (ELECSIM95).

Received January 2005; accepted March 2005

