
ALGOMOVE – A Move Embedding for Algorand

Lorenzo Benetollo
Ca’ Foscari University of Venice, Italy

University of Camerino, Italy
lorenzo.benetollo@unive.it

Michele Bugliesi
Ca’ Foscari University of Venice, Italy

bugliesi@unive.it

Silvia Crafa
University of Padua, Italy

silvia.crafa@unipd.it

Sabina Rossi
Ca’ Foscari University of Venice, Italy

sabina.rossi@unive.it

Alvise Spanò
Ca’ Foscari University of Venice, Italy

alvise.spano@unive.it

Abstract—As applications based on Distributed Ledger Tech-
nology (DLT) gain popularity, the wide range of vulnerabilities
that have affected existing blockchains (most notably Ethereum
and Solidity-based applications) has motivated renewed interest
in the design of programming languages capable of providing
more adequate abstractions for managing digital assets and their
access control policies. These mechanisms are crucial to certify
that applications are safe and secure before deploying them on
the target blockchains.

Venturing into this challenge, we focus on Move, currently
one of the most promising programming languages for resources
and digital assets management with the aim to investigate its
effectiveness in the realm of general-purpose smart contract
development, and the long-term goal to identify the design
principles and language-based techniques for the safe and secure
development of asset-based DLT applications. As a first step in
that direction, in the present paper, we develop ALGOMOVE,
a Move embedding on Algorand. In addition to providing
new insight into the nature of digital assets, the embedding
is noteworthy in its own right. It provides Algorand/TEAL
developers with a friendly API that aligns with their familiar
programming patterns, while at the same time leveraging Move’s
mechanisms of static typing and security verification to offer
certified, language-level protection against double spending and
other resource-related pitfalls commonly encountered in DLT
applications.

Index Terms—Smart contract development, language-based
techniques, digital-asset management.

I. INTRODUCTION

Blockchain platforms have evolved significantly over the

past decade. Initially intended as a support for distributed

micropayments and other money-transfer applications, they

have progressively turned into expressive frameworks provid-

ing more and more powerful tools for asset management and

access control with smart contracts.

Along this evolution, a steadily growing number of security

incidents have affected existing blockchains, causing signifi-

cant damage. According to the SlowMist Annual Report 2022

This research was funded by Ministero dell’Università e della Ricerca
(MUR), issue D.M. 351/2022, under the National Recovery and Resilience
Plan (NRRP), and partially supported by the PRIN project NiRvAna –
Noninterference and Reversibility Analysis in Private Blockchains, and by the
project SERICS (PE00000014) under the MUR NRPP funded by the European
Union - NextGenerationEU.

(cf. Figure 1 below) the major causes for the 303 incidents

that occurred in 2022 were smart contract vulnerabilities and

other design flaws and loopholes, with a total cost of nearly

US$1.1 billions.

Fig. 1. Blockchain attack vectors (source: [9])

As a result, a new wave of awareness is gaining ground that

more adequate tools are needed to build safe and secure smart

contracts and web3 applications, leveraging the advances from

programming language theory and implementation.

The Move programming language [1] developed by the

(subsequently dismissed) Libra/Diem project represents one,

perhaps the most significant step in that direction. Motivated

by the vision that ”providing first-class abstractions for the

key asset management concepts would significantly improve

both the safety of smart contracts and the productivity of

smart contract programmers” [8], Move is designed as a cross-

platform, embedded language with a simple core built around

generic concepts such as structs integers and references,

specific abstractions for resources and digital assets, but no

blockchain-specific concepts like accounts, transactions, time,

cryptography, etc. These features, instead, must come with the

blockchain platform that integrates Move, so that developers

may largely count on the core language elements and toolchain

to add blockchain-specific features via code that builds on top

of the core components. This kind of development has gained

popularity recently, as witnessed by the number of Move-based

chains under active development, among which, most notably,

Aptos [6] and Sui [13].

62

2023 IEEE International Conference on Blockchain (Blockchain)

2834-9946/23/$31.00 ©2023 IEEE
DOI 10.1109/Blockchain60715.2023.00019

Our standpoint is that this new wave of interest in

safe, platform-independent programming abstractions for asset

management is much welcome, and that further research and

effort should be invested to promote the widest possible adop-

tion of programming languages supporting a principled design

for the variety of DLT applications – tokens, NFTs, DeFi,

legal and real estate applications, . . . etc. – that blockchains

are progressively meant to support.

Main Contributions

Motivated by that vision, in the present paper we take Move

as our reference programming language and develop ALGO-

MOVE, a new blockchain embedding for the core language.

Unlike the recent work carried out by Aptos and Sui, which

are both Move-based platforms, our present effort is targeted at

Algorand [2], the well-known blockchain originated by Silvio

Micali’s ”Pure Proof-of- Stake” consensus mechanism, highly

reputed for its security and performance effectiveness.

Our purpose and contribution to this endeavour are two-fold.

• By making Move’s high-level programming abstractions

for asset management and smart contracts available

for Algorand, we provide a new, effective ground for

safe DApp design and development over the Algo-

rand blockchain. Specifically, ALGOMOVE offers Algo-

rand/TEAL developers a new, friendly API to design

applications based on their familiar programming patterns

while at the same time being supported by Move’s

mechanisms of static typing and security verification.

As a result, ALGOMOVE smart contracts enjoy Move’s

certified guarantees against double-spending and strong

language-level protection against other resource-related

pitfalls often found in DLT applications. This represents

a significant step forward over the current TEAL and

PyTEAL programming practice available for Algorand.

• By developing our experiment with a new, independently

developed blockchain, we aim to assess the effectiveness

of Move’s core abstractions for digital asset management

and to gather deeper insight into the different mecha-

nisms available on existing platforms. Based on that, the

ultimate goal of our present effort is to isolate the design

principles and language-based techniques for the safe and

secure development of asset-based DLT applications.

Related Work

Blockchain programming languages. The substantial body

of existing R&D work on blockchain programming languages

is only loosely related to our present endeavour. Solidity [4],

the first and still dominant smart contract language, is all but

cross-platform, being specifically tailored for the Ethereum

Blockchain as the result of an explicit design choice. Also,

the fragility of the Solidity design, as it emerged from the

wealth of incidents experienced since its initial adoption (e.g.,

the reentrancy exploit and many other attacks), is in straight

contrast with the foundational nature distinctive of Move.

Indeed, our contention is that the development of sound, cross-

platform programming languages like Move will be the best

answer to the shortcomings suffered by Solidity.

Rust [10] is a safer alternative to Solidity. Launched in

2011, Rust was conceived as a general-purpose programming

language offering fast, efficient execution and strong memory

safety guarantees thanks to its ownership model and expressive

type system. Its use for smart contract programming came only

later, with its adoption as the primary programming language

for Solana [14]. Build on Rust, from which it inherits a number

of the benefits of the original Rust design, Move provides

substantially stronger support for safety and composability

thanks to its simpler programming model and its enhanced

type and bytecode verification systems (cf. [11] for a thorough

comparison between Move and Rust).

PyTeal [5] is the new tool provided by the Algorand devel-

opment environment to encode smart contracts using Python.

Though interesting in that it provides a more convenient and

familiar syntax for developers, PyTeal is simply a Python

library for generating programs in Algorand’s native language

TEAL and, as such, it retains the inherent fragility of TEAL’s

assembly-level abstractions for data representation and control.

Move Blockchain Embeddings. Several blockchain platforms

have adopted Move as their primary programming language,

including 0L [3], and Starcoin [7] besides the already men-

tioned Aptos and Sui. As noted earlier on, our purpose is

orthogonal to these experiments, as they are intended to build

an integrated Move-based blockchain from the ground up,

whereas ALGOMOVE targets an existing and fully developed

blockchain. As a consequence, though ALGOMOVE does share

some similarities with these platforms – notably, the presence

of an API framework to inter-operate with the underlying

blockchain – the resulting technical development is inherently

different and more challenging in various respects, as it

requires a non-trivial effort to reconcile the many design gaps

between the Move and Algorand Virtual Machines.

Paper Plan

In Section II we introduce the background material on

Move and Algorand required to make the paper self-contained.

In Section III we give an overview of the ALGOMOVE

programming model and show its effectiveness for smart

contract development on Algorand. In Section IV we discuss

the structure of the ALGOMOVE framework. We conclude in

Section V with final remarks and a brief discussion of our

plans for future work. For the sake of clarity and improved

readability, some of the technical aspects of the ALGOMOVE

framework are omitted from the main body of the paper and

reported in the Appendix.

II. BACKGROUND

A. Programming with resources in Move

The Move programming model is centered around a few,

simple principles. Smart contracts are published as modules

consisting of struct definitions and functions: the former are

63

the fundamental building block for representing data; the latter

provide the only interface for the module clients to create,

access and/or modify the module data structures, thus giving

modules full control over how their datatypes are operated

with. The module functions are always executed on behalf of

an authenticated blockchain account represented inside Move

as the signer of the account. The combination of these access
control mechanisms is one of the two fundamental components

of Move’s powerful support for resource management. The

second component is the language static typing system based

on linear types, which ensures scarcity: once created (by a

privileged module function), the type system construes structs

as first-class resources that cannot be copied or implicitly

discarded, only moved between program storage locations or

passed around between functions.

The linear restrictions imposed by the type system are lifted

for structs enhanced with abilities, to qualify them as values
that can be duplicated (the copy ability) and/or discarded (the

drop ability), i.e. not transferred, hence effectively destroyed

as the execution flows through the program. Two additional

abilities, key and store, allow structs to be stored persistently

(on the underlying blockchain) and, respectively, to exist inside

structs held in persistent storage.

Different Move variants provide different persistent storage

representations, quite naturally so given that storage repre-

sentation is inherently blockchain specific. For our present

purposes, we assume the original Diem-Move (sometimes

called Core Move) representation defined in terms of the global
storage abstraction, that is as a table of (acct, struct) pairs,

keyed by acct, the addresses of the accounts holding the

resources encoded by struct. A resource can be created or

modified on the global storage under an account only by the

account’s signer, by invoking the move_to primitive. Global

storage resources, in turn, can be accessed by requesting

(borrowing) a reference to the resource (via the account

address under which the resource is stored).

B. Managing digital assets in Algorand

Initially conceived as simple TEAL scripts encoding au-

thorization policies for micro-payments and other transfer

protocols for Algos, the Algorand native currency, today

Algorand Smart Contracts support fully general digital-asset

management applications. The Algorand programming model

revolves around two components: (Py)TEAL scripts encoding

the application logic and an API providing access to the

underlying blockchain system of transactions and Algorand

Standard Assets (ASAs). Unlike Move resources, which are

first class (i.e. values that can be passed as arguments to

functions and returned from functions as results), Algorand

assets are layer-1 entities that may only be manipulated by

way of the system of transactions which are provided by the

platform and are made available for invocation from within

the (Py)TEAL scripts by the API.

The Algorand storage model is organized in two areas of

persistent state. A first area, which we refer to as account
storage, is structured around accounts much in the same way

as in Move, though without the access restrictions imposed

by the authentication mechanisms underlying Move’s signer

values. A second area, referred to as contract storage is instead

associated with smart contracts1. Thus, unlike Move modules,

Algorand Smart Contracts are stateful and may therefore count

on the existence of their own local state much like Solidity

smart contracts and more generally, like objects in object-

oriented languages.

III. PROGRAMMING IN ALGOMOVE

We introduce ALGOMOVE and its programming model with

a smart contract implementing a simple auction. We first look

at a Move implementation that uses the coin module provided

by the standard library available on existing Move platforms

(e.g. Aptos).

module coin;

struct Coin<CoinType> has store {
value: u64

}

public fun deposit<CoinType>(account_addr: address,
coins: Coin<CoinType>)

The module collects the Coin parametric struct type that

represents fungible assets, and the functions available to pro-

grammers to exchange assets among their accounts. Our Move

implementation, below, is itself parametric over the CoinType

generic type parameter so that different auctions are free to

accept bids in their custom assets.

module auction;

struct Auction has key {
auctioneer: address,
top_bidder: address,
expired: bool

}

struct Bid<CoinType> has key {
coins: Coin<CoinType>

}

public fun start_auction<CoinType>(acc: &signer,
base: Coin<CoinType>) {

let auctioneer = signer::address_of(acc);
let auction = Auction {

auctioneer,
top_bidder: auctioneer,
expired: false };

move_to(acc, auction);
move_to(acc, Bid { coins: base });

}

public fun bid<CoinType>(acc: &signer,
auctioneer: address,
coins: Coin<CoinType>)

acquires Auction, Bid {
let auction = borrow_global_mut<Auction>(auctioneer);
let Bid { coins: top_bid } =

move_from<Bid<CoinType>>(auction.top_bidder);
assert!(!auction.expired);
assert!(coin::value(&coins) > coin::value(&top_bid));
coin::deposit(auction.top_bidder, top_bid);
auction.top_bidder = signer::address_of(acc);
move_to(acc, Bid { coins });

}

1Algorand adopts a different naming scheme: what we call account storage
is Algorand local state, while our contract storage corresponds to the global
state. Choosing alternative names is simply meant to clarify the role of each
storage area.

64

public fun finalize_auction<CoinType>(acc: &signer)
acquires Auction, Bid {

let auctioneer = signer::address_of(acc);
let auction = borrow_global_mut<Auction>(auctioneer);
assert!(auctioneer == auction.auctioneer);
auction.expired = true;
let Bid { coins: top_bid } =
move_from<Bid<CoinType>>(auction.top_bidder);

coin::deposit(auctioneer_addr, top_bid);
}

The auction module defines the Auction and Bid datatypes

together with three functions to start the process, make bids

and close the auction. The Auction datatype encodes the

auction state, including the address of the user who last made

the bid and the address of the auctioneer. The current top bid is

stored separately on the Bid struct, allowing linearity checks

performed by the Move compiler to keep track of movements

of fungible assets (represented by the Coin datatype) between

bidders and the blockchain, ensuring no double spending

occurs.

The auctioneer starts the bidding by invoking

start_auction, which initializes the auction state as

well as the base bid on the blockchain storage under the

auctioneer account. Participants may join in by invoking the

bid function with their bid amount: the auctioneer address

is passed on to bid in order to request a reference to the

auction state and update it as needed. The current top bid is

updated separately by retrieving the previous Bid struct from

the blockchain through a move_from, and then storing the

new bid under the new bidder account through a move_to.

To pay back participants whose bids have been outbid, the

deposit function is invoked. Finally, the auctioneer may

close the bids by invoking finalize_auction.

The ALGOMOVE structure of the auction module is similar

to the Move implementation we just illustrated, with few

key differences that arise from the different nature of the

programming and storage models distinctive of the underlying

Algorand/TEAL architecture.

First, as noted earlier, unlike Move modules, Algorand smart

contracts may have a state. As a result, the auction state

in our example may directly be associated with the auction

smart contract and held on the auction contract storage rather

than being associated with the auctioneer account used by

the Move implementation. In other words, the Move auction

module and the auctioneer’s account can be combined within

ALGOMOVE and integrated into the auction smart contract,

which can therefore receive and store the bids deposited by

the auction participants.

Secondly, while assets are first-class Move values (in fact,

resources), Algorand provides its Standard Assets as layer-

1 entities that may only be manipulated by corresponding

layer-1 transactions. As a consequence, all the logic, and

security checks associated with the management of assets are

accounted for at layer-1, while at the language level there

is no room for any form of flow and/or access control. AL-

GOMOVE rectifies this by providing Move-based mechanisms

to introduce first-class datatypes to act as the language-based

counterpart of Algorand layer-1 assets. Furthermore, ALGO-

MOVE provides a set of functions for handling assets as Move

resources and at the same performing the corresponding layer-

1 asset operations by executing the associated transactions. As

a payoff, ALGOMOVE enjoys all the support from Move’s

static typing discipline for linear types and safe resource

management.

The ALGOMOVE auction module is given below. The code

should be easily understood based on its Move companion and

the explanations we just provided.

module algomove_auction;

struct Auction<AssetType> has key {
auctioneer: address,
top_bid: Asset<AssetType>,
top_bidder: address,
expired: bool

}

public fun start_auction<AssetType>(base:Asset<AssetType>){
let sender = get_sender();
let auction = Auction<AssetType> {

auctioneer: sender,
top_bid: base,
top_bidder: sender,
expired: false };

app_global_put(sender, auction);
}

public fun bid<AssetType>(auctioneer: address,
assets: Asset<AssetType>) {

let Auction {auctioneer, top_bid, top_bidder, expired} =
app_global_get<Auction<AssetType>>(auctioneer);

assert!(!expired);
assert!(get_amount(&assets) > get_amount(&top_bid));
let sender = get_sender();
transfer(top_bid, top_bidder);
let new_auction = Auction<AssetType> {

auctioneer,
top_bid: assets,
top_bidder: sender,
expired: expired};

app_global_put(auctioneer, new_auction);
}

public fun finalize_auction<AssetType>() {
let sender = get_sender();
let auction = app_global_get<Auction<AssetType>>(sender);
assert!(sender == auction.auctioneer);
let Auction { auctioneer, top_bid,

top_bidder: _, expired: _ } = auction;
transfer(top_bid, auctioneer);
let new_auction = Auction<AssetType> {

auctioneer,
top_bid: assets,
top_bidder: sender,
expired: true };

app_global_put(auctioneer, new_auction);
}

All function calls appearing in green are part of the AL-

GOMOVE framework, that is the Algorand wrapper on top of

which we develop our Move embedding. A tiny excerpt of

this layer, which we describe in more detail in Section IV, is

given below.

struct Asset<AssetType> has store {
id: u64,
amount: u64
owner: address

}

public fun transfer<AssetType>(asset: Asset<AssetType>,
receiver: address)

public fun get_amount<AssetType>(a: &Asset<AssetType>): u64

65

public fun get_sender(): address
public fun app_global_get<T: key>(k: vector<u8>): T
public fun app_global_put<T: key>(k: vector<u8>, data: T)

The Asset datatype provides the language-level counterpart

of Algorand’s layer-1 assets. This is where the Move type

system comes into play: once a resource of type Asset

has been minted or withdrawn, it can only be moved, not

copied or dropped. The id field in the Asset datatype hosts

the Algorand unique layer-1 identifier of the created asset.

Notice that ALGOMOVE assets cannot be directly stored on-

chain as they miss the key ability, but can be embedded

into other structs (specifically, within the Auction struct)

thanks to the store ability. The transfer function takes

an asset and moves it to the receiver address invoking an

Algorand transaction. The boundary between Move and Al-

gorand is subtle here. The Move type system is in action

for checking, statically, that assets are not copied: as a result

no double spending may ever take place at the code level.

While Algorand still lies beneath and performs transactions,

including asset transfers, that are subject to run-time checking

to prevent double-spending, using ALGOMOVE renders the

checks performed by Algorand redundant.

The two app_global_* functions are plain stubs of the

respective Algorand instructions for reading and writing to the

global state, here turned into functions exhibiting a Move-like

flavour in the prototype. Although Algorand does not support

abilities and allows all datatype to be read or written on-

chain, our framework enforces the Move tradition by putting

the key constraint on the generic type parameter T, in the

likes of the move_to and the move_from primitives. Most

notably, though, the app_global_get in Algorand performs

a copy of the data being read from the blockchain, thus its

overall semantics substantially differ from a borrow or a

move_from. That is the reason why, in the auction example,

the bid function performs an app_global_get followed by

a app_global_put for updating the state of the auction.

IV. THE ALGOMOVE FRAMEWORK

We may characterize the relationship between ALGOMOVE

and Algorand along three dimensions: data model, computa-

tional model, and access control mechanisms. The following

table provides as synthetic picture of the distinctive features

of the two frameworks:

In principle, ALGOMOVE appears to outperform Algo-

rand/TEAL both as a platform for program design and as

a development environment equipped with full support for

static typing and security verification. In fact, by supporting

assets as language-level objects, ALGOMOVE provides the full

expressivity of Move to design complex asset management

policies and asset-based applications. Algorand, instead, has

only its (somewhat limited) transaction suite to offer to support

the development of such applications. Also, ALGOMOVE

access control mechanisms provide static protection against

double spending and other safety & security threats affecting

asset-based applications, whereas Algorand addresses such

Algorand ALGOMOVE

Data Model Assets as layer-1 objects
Assets as Move first-class
objects (structs with abili-
ties)

Computational
Model

Transactions as the only
computational device to
operate with assets
Opt-in as a computa-
tional enabler for asset ex-
changes among accounts

Move (primitives and
user-defined functions) to
compute with assets
Opt-in and other ad-hoc
primitives to store assets
under accounts

Access Con-
trol

Account-based asset own-
ership
Transaction checking

Account-based ownership
(via the signer abstraction)
Module-based scope re-
strictions (entry, public,
friend qualifiers)
Linear typing

threats only with the run-time transaction-checking mecha-

nisms supported by the underlying blockchain.

A. Framework Architecture

The proposed framework consists of two major components:

a Move library, and a translation subsystem. The library (which

we often refer to as the framework following the terminology

adopted by other Move embeddings, like Aptos, Sui and

StarCoin), provides the API for interoperating with Algorand,

bundling a collection of Move modules that offer a variety

of services specifically tailored to the underlying chain. The

translation subsystem, in turn, converts Move bytecode into

TEAL bytecode to be deployed for execution on Algorand.

Due to space limitations, though, we are not delving into its

details.

The framework can be logically split into three layers,

implemented by three Move modules each relying on the

underlying layer, as shown in Figure 2. The highest layer

provides an abstraction for Algorand assets; the middle layer

provides an API for performing transactions; the lowest layer

consists of native functions that serve as stubs for TEAL

instructions. Programs can freely call any layer from the

application code.

OpCodes
Transactions
Assets

DApps

Fig. 2. A diagram of the ALGOMOVE framework layers. Each layer is built
on top of the one below. However, applications are allowed to directly call
any layer, for maximum control.

A breakdown of the library layers follows, from the lowest

level to the highest.

The OpCodes Layer: the lowest layer consists of a

Move module declaring function prototypes tagged with the

native keyword, thus having no implementation. Each native

66

function here represents an opcode in TEAL that goes under

the same name. Native functions have no implementation

and serve as stubs mapping TEAL instructions: whenever

a call to such natives is encountered during the translation

process, the respective TEAL opcode is emitted. Function

parameters stand for arguments that are expected to be found

on the stack by the TEAL opcode, whereas the function result

represents the output of the opcode pushed on the top of the

stack after its execution. See the TEAL opcode reference for

a full list [12].

The Transactions Layer: the middle layer provides an API

for performing transactions, inner transactions and transaction

groups. To create a transaction in TEAL a programmer

has to fill a number of fields with the desired information

and eventually submit the transaction for executing it. Our

transaction layer abstracts this procedure by providing an

easy-to-use API for a Move programmer to perform a

transaction by calling a function and passing the relevant

arguments.

The Assets Layer: the topmost layer provides datatypes and

functions for creating and manipulating Algorand assets. A

tiny excerpt of it has been shown in the previous Section.

Assets are parametric over a generic AssetType, reproducing

the same programming pattern provided by the Coin type in

the Move standard library. In Algorand, assets are layer-1 en-

tities that can be created and transferred using the transaction

system. The Asset type in ALGOMOVE, instead, represents

first-class structured values that cannot be copied or dropped,

which makes them subject to linearity checks by the Move

compiler. Transferring assets using the transfer function

triggers a transaction in Algorand, factually performing a

payment from a sender to a receiver.

V. FINAL REMARKS

The growing influence and worldwide adoption of DLT

applications across various critical production and societal

sectors calls for urgent action to provide developers with

principled tools and programming language techniques.

The experiment we have reported in the present paper aligns

with this call to action as a first attempt to shed new insight

into what such tools and techniques should provide and how.

From this standpoint, the ALGOMOVE framework emerges as

an interesting experiment, whose significance extends beyond

its practical implications which involve providing innovative

tools for secure DApp design on the Algorand blockchain.

In fact, equally important is its role in forging a conceptual

link between two well-developed, but previously unrelated

approaches to smart contract development.

Needless to say, gaining a full understanding of the essence

of digital assets and of the principles for their management

on distributed ledger platforms will require substantially more

effort both in theoretical research and in engineering work. Our

own plans for future work include both further engineering

experiments (of Move embeddings) with other platforms (e.g.

Sui, Solana, Ethereum, UTXO frameworks), and theoretical

work to assess the formal properties of the embeddings and

to contribute to the construction of a solid semantic and

type-theoretic framework for digital assets. We have already

explored the feasibility of what we believe to be the main

challenges of the Move embedding for Algorand, and we will

discuss them in a future work, going into the details of the

framework and the translation subsystem.

REFERENCES

[1] Sam Blackshear, David L. Dill, Shaz Qadeer, Clark W. Barrett, John C.
Mitchell, Oded Padon, and Yoni Zohar. Resources: A safe language
abstraction for money. CoRR, abs/2004.05106, 2020.

[2] Jing Chen and Silvio Micali. Algorand. Available at: https://arxiv.org/
pdf/1607.01341, 2017.

[3] The 0L Network Community. Open, transparent & community driven.
Available at: https://0l.network/, 2022.

[4] Chris Dannen. Introducing Ethereum and Solidity: Foundations of
Cryptocurrency and Blockchain Programming for Beginners. Apress,
USA, 1st edition, 2017.

[5] Algorand Foundation. PyTeal: Algorand Smart Contracts in Python.
Available at: https://pyteal.readthedocs.io/en/stable/, 2022.

[6] Aptos Foundation. The aptos white paper. Available at: https://aptos.
dev/aptos-white-paper, 2023.

[7] Starcoin Foundation. Introduction to Starcoin. Available at: https://
starcoin.org/downloads/Starcoin Whitepaper.pdf, 2022.

[8] Sui Foundation. Why we created sui move. Available at: https://blog.
sui.io/why-we-created-sui-move/, 2023.

[9] SlowMist Inc. 2022 Annual Blockchain Security and AML
Analysis Report. Available at: https://www.slowmist.com/report/
2022-Blockchain-Security-and-AML-Analysis-Annual-Report(EN)
.pdf, 2022.

[10] Nicholas D Matsakis and Felix S Klock. The rust language. ACM
SIGAda Ada Letters, 34(3):103–104, 2014.

[11] Krešimir Klas @ Medium.com. Smart Contract Development:
Move vs Rust. Available at: https://medium.com/@kklas/
smart-contract-development-move-vs-rust-4d8f84754a8f, 2022.

[12] Algorand Developer Portal. Algorand developer docs. Available at:
https://developer.algorand.org/docs/.

[13] The MystenLab Team. The Sui Smart Contracts Platform. Available at:
https://github.com/MystenLabs/sui/blob/main/doc/paper/sui.pdf, 2023.

[14] Anatoly Yekovenko. Solana: A new architecture for a high performance
blockchain v0.8.13. Available at: https://solana.com/solana-whitepaper.
pdf, 2022.

67

