
ar
X

iv
:1

30
3.

13
84

v1
 [

cs
.D

C
]

 6
 M

ar
 2

01
3

Causality in concurrent systems

Silvia Crafa

Dipartimento di Matematica

Università di Padova, Italy

Federica Russo

Center Leo Apostel

Vrije Universiteit Brussel

Abstract

Concurrent systems identify systems, either software, hardware or even
biological systems, that are characterized by sets of independent actions
that can be executed in any order or simultaneously. Computer scien-
tists resort to a causal terminology to describe and analyse the relations
between the actions in these systems. However, a thorough discussion
about the meaning of causality in such a context has not been developed
yet. This paper aims to fill the gap. First, the paper analyses the notion
of causation in concurrent systems and attempts to build bridges with
the existing philosophical literature, highlighting similarities and diver-
gences between them. Second, the paper analyses the use of counterfac-
tual reasoning in ex-post analysis in concurrent systems (i.e. execution
trace analysis).

1 Introduction

In the terminology of computer science, Concurrent Systems identify systems,
either software, hardware or even biological systems, where sets of activities run
in parallel with possible occasional interactions. A simple example of concurrent
system is the Internet, which can be thought of as a set of computers, each one
computing its independent activity, that often communicate to exchange some
information. A further example is the railway system of a country, where many
trains travel sharing tracks in an ordered way so that two trains can move at
the same time along different tracks, whereas a single track (e.g, a platform
in a train station) can only be used by a single train at a time. Furthermore,
the large number of activities carried on by a single human cell form a biolog-
ical concurrent system, that actually shares a number of similarities with the
Internet.

Compared to sequential systems, where a single action is executed at a time
according to a sequential algorithm, concurrent systems raise new complex issues
dealing with the ordering of action executions. In particular, concurrent systems
are characterized by sets of independent actions that can be executed in any
order or simultaneously. As a consequence computer scientists resorted to the
causal terminology to describe and analyse the relations between the system
actions. However, a thorough discussion about the meaning of causality in such
a context has not been developed yet.

In this paper, therefore, we ask precisely what causality means and how
causal reasoning works in concurrent systems. As we will show in the foregoing

1

http://arxiv.org/abs/1303.1384v1

discussion, causality here means quite generally dependence, whether tempo-
ral, spacial, or even causal dependence. We will also see that counterfactual
reasoning is indeed one of the causal tools used in concurrent systems.

The paper is organised as follows. In section §2 we provide an introduction
to concurrent systems, in particular we explain their formal language and oper-
ational models through simple examples. In §3 we explain how causal relations
are formally defined in concurrent systems and what causality means in this
context. We also discuss this specific meaning with respect to more traditional
debates in the philosophy of causality, for instance about production and mech-
anisms, independence, and causation by omission. In §4 we discuss analysis
techniques in concurrent systems, showing that counterfactual reasoning is a
useful tool in this context. We provide examples of counterfactual validation
and refutation using the theory of Nicholas Rescher.

2 Concurrent Systems: a Crash Course

Concurrent Systems identify systems where sets of activities run in parallel with
possible occasional interactions. Moreover, new activities can be dynamically
added to the system during its evolution, and terminated or aborted activities
can be removed as well, possibly in unexpected ways.

In computer science, a simple example of concurrent system is a network
like Internet: it can be thought of as a set of computers, each one computing
its independent activity, that often communicate to exchange some information
and that unpredictably disconnect. The activities of (mobile) phones in a town,
the railway system of a country, or else the large number of activities carried on
by a single human cell are also concurrent systems that share similarities with
the Internet. To illustrate, we discuss some (simple) examples.

Railway system. Consider the simple railway system depicted below, where
we assume that each pair of stations is connected by a single track.

A

⑦⑦
⑦ ❅❅

❅

B C

Then consider Train1 that leaves form A, reaches B and then C, and Train2
that leaves form A, reaches C and then B. The two trains can move concur-
rently (possibly at different speed) to their first stop, while the transit on the
track between B and C must be regulated so that they do not collide. In other
words, the presence of Train1 at C depends on the previous presence of Train1
at B. Moreover, the usage of track AB by Train1 and track AC by Train2 are
concurrent activities, that can take place in any order or at the same time as
well. Finally, we say that the usage of track BC by Train1 is in conflict with
the usage of the same track by Train2. Hence the track BC can only be trav-
eled across either by first Train1 and then by Train2 or vice-versa, and the two
possibilities are equally valid. That is, in absence of a fixed train scheduling,
the choice between these two possibilities is called nondeterministic. A nonde-
terministic choice between a set of possible alternatives is a choice that can be
solved in different ways during different system executions. For instance, in one
execution of the railway system first Train1 travels along BC and then Train2,

2

but in a different execution Train2 is the first one travelling across BC. Note
that concurrent systems are generally nondeterministic, meaning that different
executions of the same system may lead to different behaviours according to
different runtime choices between nondeterministic alternatives, each of them
equally valid even if observationally different.

Computer network. As a further example, consider the following computer
network, where we assume that computers exchange messages:

London

❦❦❦
❦❦❦ ❘❘❘

❘❘❘

NewY ork

❍❍
❍❍

❍❍
❍❍

❍❍
❍ Moscow Beijing

Paris

❙❙❙❙❙❙❙
❧❧❧❧❧❧

Madrid Cairo

Messages can travel concurrently along different links and sequentially on the
same link. For instance, a message generated in New York can be sent to Cairo
and at the same time a different message can be sent to Beijing travelling either
through London or Paris. In this case the reception of the message in Beijing
“causally” depends on the fact that it has passed through London or Paris (we
shall discuss later what “causally” mean). Notice that such “or-causality” is not
an issue since it might be ok to abstract from—in the sense of not knowing—
the precise path that the message has followed, as long as we are interested in
relaxed properties such as “Europe might have sniffed the message in transit”
or “Egypt has certainly have not sniffed the message”.

Phone calls and text messages. As a final example, we distinguish from
synchronous and asynchronous communication. On the one hand, the way two
people talk through a phone call is a synchronous communication, that is speak-
ing and listening happens at the same time. On the other hand, texts sent with
mobile phones are asynchronous communications since the writer does not as-
sume that the reading is immediate, hence he can proceed with its activity
without waiting for the receiver to read the text. In the asynchronous scenario
there are less “causal” dependencies than in the synchronous one. To illustrate,
consider Alice that wants to communicate a three paragraph length letter to
Bob. In a phone call Bob will not listen the final paragraph before he has lis-
tened the first one. However, if Alice writes the letter to Bob by means of a
long text, it might happen that the phone splits the long text into three texts
of fixed length, more or less corresponding to the three paragraphs. Even if
the three texts are sent by Alice in the right order, there are no constraints
on the order in which the three paragraphs are received by Bob. Indeed, it is
not a problem for Bob to first receive the final paragraph, since he eventually
receives the remaining texts and they are properly recomposed. Hence, in an
asynchronous system the order of reception does not depend on the order of
sending.

In computer science, the complexity of (concurrent) systems is addressed in a
standard way: first the system is specified using the syntax of a precise formal

3

language; then, the system behaviour is formally described by means of a se-
mantic operational model; finally, analysis techniques and formal reasoning are
developed (and automated) to prove properties of such a system on top of its
operational model. As far as concurrent systems are concerned, a number of
formalisms have been proposed; they can be summarized as follows, according
to three different levels of abstraction described above:

Formal languages to specify/to program a concurrent system. Examples of
these languages are the Java programming language, that is commonly
used to write concurrent software, and a number of domain specific lan-
guages targeted to the description of specific concurrent systems such as
security protocols, concurrent hardware, system biology. Besides a rich
number of “concrete concurrent languages”, the research on concurrent
theory has distilled few formal languages made of a minimal number of
primitives/connectives that capture the essential features of concurrent
systems (Milner, 1980, 1999). Such languages are also called process alge-
bras to highlight the mathematical treatment of connectives like sequential
composition, parallel composition, interaction, nondeterministic choice.

Operational models describing all the possible behaviours of a given concur-
rent system (written in a formal language). Many different formalisms
have been proposed to define such models, corresponding to different
trade-offs between the expressivity of the model and its simplicity/abstra-
ction power. Standard models for concurrent systems are based on the
interleaving approach: they are based on the idea that only a single action
can be executed at a time, according to what actually happens in a single-
processor computer. In these models two concurrent actions A and B are
modeled as the nondeterministic choice between executing first A and then
B or viceversa, i.e. the arbitrary interleaving of A and B rather than their
simultaneous occurrence. Reducing the notion of concurrency to those of
nondeterminism and sequentiality allows us to build models that are easier
to deal with, and has provided the basis for the development of very rich
and elegant theories of concurrency (see for instance Aceto et al. (2007)).
However, there are properties of concurrent systems that cannot be speci-
fied without a clear distinction between concurrency and nondeterminism.
Then a number of non-interleaving models, a.k.a. true-concurrent models
and sometimes causal models, have been developed by taking the notion of
concurrency—or the complementary notion of causality—as fundamental
(Winskel and Nielsen, 1995). We discuss below the operational models of
the previous examples. For the time being, it will suffice to say that an
interleaving model of the railway system described in the previous section
cannot model the case where Train1 is travelling across AB and at the
same time Train2 is travelling across AC; in such a model the two actions
can be executed in any order but not at the same time. Instead, a true-
concurrent model can express all the possible behaviours: Train1 travels
before Train2, Train2 travels before Train1, and also Train1 and Train2
travel at the same time.

Analysis techniques. Working with a model that explicitly talks about (ab-
sence of) causal dependencies between the actions of the system allows for-
mal reasoning about such dependencies. A rich toolbox of formal methods

4

have been developed to specify and automatically verify (causal) proper-
ties of models of concurrent systems. Model checking tools, diagnosis
methods examining the causal history of an error occurrence, behavioural
abstractions based on the observable degree of concurrency, and specifica-
tion temporal logics are examples of such formal analysis techniques.

3 Causal Concepts in Concurrent Systems

In this section we explain how ‘causal relations’ are defined in concurrent sys-
tems and we discuss the meaning of causality in this context. It will emerge
that concurrent systems are quite peculiar with respect to many other areas
investigated in the philosophy of causality. In fact, causal relations are defined
and decided by the programmer, rather than discovered or established as cus-
tomarily done by biologists, social scientists, or physicists. Causal talk may
also appear ‘loose’, or even unnecessary, as causality means, in this context,
just dependence but not production.

3.1 Causal Relations in Concurrent Systems

We start by looking at how the term “causality” is customarily used in the
semantics of concurrent systems. First, since in computer science everything is
discrete, we call event the occurrence of an action of the systems, i.e. a step
of computation. Hence, in sequential programs, where there is a single flow
of control at any time, causality is interpreted as space-time sequentiality of
events. The case of concurrent systems is more complex: as anticipated above,
for these systems there are both interleaving and true-concurrent models. We
are now interested in the second class of models, that can express the difference
between two actions that might simultaneously happen and two actions that can
just be executed in any order. True concurrent models include, between others,
Petri nets, event structures, generalized labelled transition systems and causal
trees. Each of them comes equipped with its specific formal analysis techniques,
but their expressivity is roughly the same (Winskel and Nielsen, 1995), hence
we briefly review here Prime Event Structures, which are in a sense canonical
ad pretty accessible.

A Labelled Prime Event Structure E is a tuple 〈E,≤,#, λ〉 where

• E is a set of events and λ is a function that associates to each event the
action whose occurrence that event stands for;

• ≤ is a partial order representing the causal relation between events. Let
be e1, e2 ∈ E, then we write e1 ≤ e2 to state that e1 is a cause of e2.
By definition of partial order, the causal relation is reflexive, i.e. e ≤ e,
transitive, i.e. if e1 ≤ e2 and e2 ≤ e3 then e1 ≤ e3 and antisymmetric, i.e.
if e1 ≤ e2 and e2 ≤ e1 then e1 = e2. When the set of events E is infinite
(infinite computation), we assume that each event has only finitely many
causes, i.e. causal histories are finite. Later, we shall discuss in detail what
“causality” means in this context.

• # is an irreflexive and symmetric relation called conflict. Let be e1, e2 ∈ E,
then we write e1#e2 to express two alternative behaviours: either the sys-
tem executes e1 or it executes e2, the choice between the two alternative

5

behaviours is purely nondeterministic. As an example, remember the sin-
gle track railway system where Train1 travelling across the track BC is
in conflict with Train2 travelling across the same track (we give below
the complete event structure model of the railway system). There is an
additional axiom stating that the conflict is hereditary, that is if e1 is a
cause of e2 and e1 is in conflict with e3, then e2 must also be in conflict
with e3.

Let us first illustrate these true-concurrent models by defining the prime
event structures associated to the examples given in Section 2. The discus-
sion about the meaning of the causal relation introduced by event structures is
postponed to the next subsection.

Computer network. We begin by illustrating the event structure associated
to the transmission of two messages from New York to both Beijing and Cairo
in the computer network described above.

e6, Beijing
OO

e7, Beijing
OO

e4,Moscow
OO

e5,Moscow
OO

e9, Cairo
OO

e2, London
ii

❙❙❙
❙❙❙

❙❙
e3, Paris
55

❧❧❧
❧❧❧

❧❧
e8,Madrid

OO

e1, NewY ork

22❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡

In the figure “causal relations” proceed upwards following the arrows; “con-
flict” is depicted by dotted lines. The event structure contains 9 events whose
labels are specified besides events. The event e1 (corresponding to message cre-
ation in New York) is a cause of e2, e3, e8, since in any behaviour of the system
the event e2 (similarly for e3 and e8) cannot occur without a previous occur-
rence of e1, namely it cannot be the case that a message is in London, Paris,
Madrid if it was not in New York before. The events e2 and e3 are in conflict,
accordingly, the path from New York to Beijing nondeterministically crosses
either London or Paris. On the other hand, events e4 and e5 have the same
label, both standing for the presence of the message in Moscow. However, they
are kept different since they have a different causal history: e4 stands for the
arrival of the message in Moscow travelling across London, while e5 stands for
the arrival of the message along the alternative path. This example illustrate
how disjoint causality is represented in event structures by duplicating events
(with the same label but different causal histories). We shall get back to disjoint
structure later in section 3.2.

Notice that there is a conflict also between e4 and e5 (as well as between e2
and e5, between e3 and e4, and similarly for e6 and e7), however this is a conflict
inherited from the conflict between e2 and e3, but we do not depict inherited
conflicts in order to keep the picture more readable.

Finally, the events e2 and e8 are not causally related nor in conflict; they are
then said to be concurrent. Indeed, in our system it is possible that a message is
in Madrid, travelling to Cairo, while the other message is in London travelling
to Beijing. Notice that there are many other pairs of concurrent events, such

6

as (e6,e8), (e9,e2), (e5 and e9), etc. Recall, concurrent events are independent:
they can occur in any order and also simultaneously.

Phone calls and text messages. Consider the two event structures corre-
sponding to the system made of Alice and Bob, where Alice first performs the
action A1, then talks to Bob and continues with the action A2, while Bob first
performs the action B1, then listens to Alice and continues with the action B2.

A2 B2

phone call

88qqqqqqq

ff▼▼▼▼▼▼▼

A1

88qqqqqqq
B1

ff▼▼▼▼▼▼▼

B2

A2 SMS read

OO

SMS send

55❦❦❦❦❦❦❦❦

OO

A1

OO

B1

OO

The event structure in the left represents the synchronous communication
between Alice and Bob, while the event structure in the right represents the
asynchronous send of a text. Accordingly, only in the asynchronous case Alice
can perform the action A2 without even waiting for Bob’s completion of action
B1. Notice that in both cases the occurrence of Bob’s B2 action depends on the
previous occurrence of Alice’s A1 action, i.e. A1 is in the causal history of B2.

Railway system. The case of the single-track railway system is more com-
plex. We can represent its causal model with the following event structure:

e5 kk

❲❲❲❲
❲❲❲❲

❲❲❲❲
❲❲ e633

❣❣❣❣
❣❣❣❣

❣❣❣❣
❣❣

e3 e4

e1

OO

::✉✉✉✉
e2

OO

dd■■■■

λ(e1) = Train 1 in track AB

λ(e2) = Train 2 in track AC

λ(e3) = Train 1 in track BC

λ(e4) = Train 2 in track BC

λ(e5) = Train 1 in track BC

λ(e6) = Train 2 in track BC

This model illustrates which events can occur in parallel (or in any order) and
which event must occur before another. For instance e1 and e2 are concurrent,
that is Train 1 and Train 2 can freely travel across their first track, either at the
same time, or in any order. However, Train 2 cannot travel across BC before
travelling across AC, represented by the dependency of, e.g., e6 on e2. Moreover,
both events e3 and e5 represent Train 1 in track BC. They both depend on e1,
i.e. the passage of Train 1 in track AB, but e5 also depend on e4, i.e. the passage
of Train 2 in track BC. In other words, e3 represent Train 1 that first travels
across track BC, while e5 represent Train 1 that travels across BC after Train
2. The conflict between e5 and e3 models the fact that Train 1 either travels
across BC first or second. On the other hand the conflict between e3 and e4
models the nondeterminism of the first Train starting its travel across the track
BC.

7

It should be clear by now that the complexity of causal models rapidly grows:
even the behaviour of simple concurrent systems corresponds to big event struc-
tures due to all the nondeterministic interleaving of concurrent actions and the
duplication of events with disjoint causes. Moreover, concurrent systems usually
have infinite behaviour (e.g. a railway system does not (should not) stop) which
can be finitely represented by a finite set of states the system can enter infinitely
many times. Despite such complexity, formal methods have been developed to
automatically derive a true-concurrent model associated to a given concurrent
program/system specified in a handy concurrent language, and further improve-
ments are subject of current research.

3.2 The meaning of causality in concurrent systems

Causality as a primitive relation. The main point to notice is that in Prime
Event Structures causality is taken to be a primitive relation: given an event
structure E , an event A ∈ E is causally dependent on an event B ∈ E if and only
if it has been so defined, i.e. if and only if (B,A) ∈≤. Indeed, these models
are not intended to be used for causal discovery: instead of asking whether
two events are related by a causal relation or not, which might be difficult or
controversial, we take causal relations as already decided, so to speak, and we
reason on top of them.

As we said in Section 2, a concurrent system is first specified using a formal
syntax, then an operational model is built so that to describe all its possible
behaviours, and finally formal analysis is conducted on top of the model in order
to prove its properties. So, even if event structures take causal dependencies as
primitive, the difficult problem is not completely eluded: given the system, we
still have to associate it with a correct event structure, that is an event structure
whose (primitive) causal dependencies agree with the system behaviour. More
precisely, we say that a model is correct with respect to the system if any
behaviour in the model is a plausible behaviour of the real system; we say that
the model is also complete if any behaviour of the real system also appears in the
model. While a model that is not correct is useless, models that are not complete
are often useful abstractions of complex systems. Notice for instance that an
empty model is correct with respect to any system even if it is clearly useless.
Any other definition stating what kind of system information is represented in
the model is somewhat arbitrary, and it is essentially justified by a proof that the
given model is correct (i.e. any behaviour in the model is a plausible behaviour
of the real system) and an illustration of the reasoning and predictions about
the system allowed by that model.

How to (automatically) associate an operational model to a given system
is a lively research topic in computer science. While operational semantics
based on sequential or interleaving models are pretty standard, the case of true-
concurrent/causal models is more controversial. As an example, consider a
software system written in the Java programming language. A naive approach
would define a programming instruction A as dependent on an instruction B
whenever B appears in the code before A. However, such a definition would
lead to an incorrect model when B is the instruction “run this instruction in
parallel with the code appearing in the following”. Moreover, the sequence of
program instructions written by the programmer do not in general correspond
to the sequence of instructions actually executed by the hardware: indeed the

8

runtime program execution is often defined so that to allow the reordering of
instructions to get optimized execution performances. Rather than precisely
modelling the reordered runtime program, the Java programming language re-
lies on the so-called Java Memory Model (Manson et al., 2005), which defines
a partial ordering called happens-before on all actions within a program. In
absence of a happens-before ordering between two operations, the runtime exe-
cution is free to reorder them as it pleases. Then in defining the causal model
of a given Java program, the definition of the causal relation linking the pro-
gram instructions will then agree with (but non necessarily be the same as) the
happens-before relation defined in the specification of the Java programming
language. Moreover, the advent of new parallel hardware (e.g. multicore CPUs
or GPUs) have renewed the debate about the identification of the key depen-
dencies between software instructions, leading to different memory models for
new programming languages.

So to summarize, the difficult problem of deciding whether two events are
causally dependent or not is confined into the problem of correctly associating
an event structure to a concurrent system. The definition of a correct and use-
ful model for a given concurrent system is a lively research topic in the area of
formal semantics. Anyway there is no causal discovery to do; the debate gener-
ally amounts to the (somewhat arbitrary) definition of a “precedence relation”
between system actions.

Causality vs Dependency. The examples above show that the causal rela-
tion ≤ of event structures encodes any form of dependence, such as temporal
and or spatial precedence, rather than puzzling over the causal nature of the
link between two events. Reasoning in this way has two benefits:

(i) Having a model that talks about causality/dependencies allows formal
reasoning about such dependencies. For instance, we can define specifica-
tion logics that help with proving system properties like “it is true that at
any time an action A depends on an action B and is concurrent with an
action C”. In the phone call and text message example above, it is true
that Bob’s action B2 depends on Alice’s action A1 and is concurrent with
Alice’s action A2, whereas it is not true that Alice’s action A2 depends
on the action B1 performed by Bob before reading the text sent by Alice.
So more generally, we can say that formal reasoning about dependencies
help prove some important properties of the system (or of the model).

As another example of the impact of these models in formal reasoning, con-
sider the reasoning of “reductio ad absurdum”, commonly used in maths.
Such reasoning entails indirect proofs as “reductio ad absurdum” argu-
ments, that derive a contradiction from a to-be-refuted false assumption.
This proof technique also applies to the verification of concurrent systems,
both in proving the properties of a given model and in proving the correct-
ness of a general analysis technique. The effectiveness of indirect proofs
comes form the fact that in the true-concurrent models described so far,
given any pair of events A,B, the model precisely states whether they are
causally dependent, or in conflict or concurrent. The key point is that
there is no room for an unknown/yet-to-be-discovered link between them.
Such a full knowledge is essential when conducting reductio ad absurdum
arguments, since starting form a negative assumption such as “A and B

9

are not causally linked” we can still proceed in the argument by distin-
guishing two subcases: (1) the positive assumption that A and B are in
conflict and (2) the positive assumption that A and B are concurrent.

(ii) The choice of encoding any dependency with the same relation rather than
distinguishing between the natures of the dependency is particularly well
suited to study independence of actions, which is at the core of concurrent
systems. One of the major impacts of studying independency of actions
is the ability to optimize the execution of a software system on top of new
multiprocessor/multicore architectures. A single processor, or a processor
with a single core, can only execute a single instruction per cycle, hence if
A and B are two concurrent/independent actions, the processor can only
perform an interleaving of A and B, that is either the sequence A and
then B or the opposite sequence B and then A. On the other hand, if
the processor is dual-core, A and B can be executed simultaneously. By
correctly identifying independent actions, we can for instance compute the
“degree of concurrency” of an application, and then estimate the maximal
number of processors/core that application makes use of.

It is important to observe that independence is not just the negation of
causality. Indeed, the event structure model makes clear that two events that
are not in the causal relation might be either independent/concurrent -i.e. they
can occur in any order and also simultaneously—or in conflict—i.e. they can be
both enabled but the occurrence of one disallows the occurrence of the other.
In other terms, independence is not just non-(causal)dependence, but it is both
non-(causal) dependence and non-conflict. We shall discuss causality and inde-
pendence in more detail later.

Disjunctive causality. We have mentioned that in prime event structures
events with disjoint causes get duplicated: for instance in the Computer Network
example above the presence of the message in Moscow is represented by two
different events, one depending on the transit of the message through London,
and the other one depending on the transit through Paris. As a general example,
consider: “If Argentina or Brazil win the world cup, I’ll eat my hat”. This case
is modelled by means of two separate events:

(i) “I eat my hat because Argentina won” and

(ii) “I eat my hat because Brazil won”.

Notice that the two alternative causes, “Argentina wins” and “Brazil wins”
are mutually exclusive. Furthermore, any event depending on “me eating my
hat” must also be duplicated, so that a copy of it depends on “me eating my
hat because Argentina won” and a different copy depends on “me eating my
hat because Brazil won”.

The duplication of events corresponding to the same action with different
causal histories guarantees an important property of prime event structures: in
these models the causal history of any event is always fully and non-ambiguously
known. However, such a property implies that these models cannot represent the
so-called inclusive disjoint causality. Suppose at the beginning of the European
Cup I say:

10

“If Germany or Italy do not reach the final, you’ll eat your hat.”

If both teams don’t reach the final, which one, out of the two, is the cause of
your eating your hat? There are two possible causes (that are not mutually
exclusive), that is “Germany does not reach the final” and “Italy does not reach
the final”. However, from the perspective of concurrent systems, there is no
real gain or interest in establishing which one, out of the two, is the cause.
Notice indeed that in computer science it is often preferable to promptly rely on
incomplete information rather than to engage space/time resources in retrieving
complete info. It sometimes happens that even if we could in principle establish
whether there is a dependence between two actions, we decide that it is not
worth looking at it in more detail.

When we are just interested in sets of possible causes we cannot rely on
prime event structures anymore. However, generalized event structures has
been studied by relaxing the constraint of fully knowing the causal history of
events and by introducing some sort of incomplete information (Winskel, 1987).
Observe, in particular, that losing a piece of information about dependencies is a
price that we can pay when we are just interested on the concurrency properties
of the system, that is on its independent actions.

Summing up, encoding any form of precedence with the same relation yields
already a very expressive model to reason about. Moreover, this is good enough,
as long as all these kinds of dependency do not diverge/oppose, which appears
to be the more frequent case. Also, extensions of event structures dealing with
more than a single “causal relation” are also the object of current research. At
this point, it is worth comparing this meaning of “causality” with the discussions
happening in the philosophy of causality.

3.3 A comparison with concepts from the philosophy of

causality

There are a number of ways in which the meaning of causality as just discussed
differ from the meaning discussed in the philosophy of causality.

Production and mechanisms. In concurrent systems, while we are inter-
ested in whether events A and B stand in a relation of dependence, we are not
interested in other possible meanings of causality, most notably, production. One
problem discussed in the philosophy of causality is precisely about the nature
of the connection from the cause to the effect. The Salmon-Dowe mechanical
model for instance, identifies production in the exchange of conserved quantities
in physical processes (see Salmon (1984); Dowe (2000)). But this account has
been subsequently criticised by Machamer et al. (2000) because it is not well-
suited to biology, where the production is given by bio-chemical interactions
that happen between entities in complex systems. In social contexts, produc-
tion is cashed out terms of interactions between individuals, or communication,
role of norms and values (Hedström and Ylikoski, 2010).

We are not saying that events in a model cannot stay in a ‘productive’
relation, but that this is not what we are interested in establishing. We are not
interested in whether event A causes event B in the sense of producing it, for
instance in the sense that a virus produces flu. Likewise, we are not interested in

11

reconstructing the causal mechanism that is responsible for a phenomenon, for
instance when we are interested in understanding the mechanisms of spread of
an infection. We have seen that in constructing the causal model, it is sufficient
to define a “precedence relation” between system actions.

Preemption. Likewise, the examples about disjunctive causality just men-
tioned have the same structure of the well-known example of ‘Billy and Suzy’
in the philosophy of causality. However, from the same conceptual structure we
draw different conclusions. Let us explain.

In the literature there are many variants of the example, but roughly the
story goes like this. Billy and Suzy are playing throwing rocks at a bottle.
Billy throws first and shatters the bottle, Suzy throws next, the rock going
through exactly where the bottle was. So, had Billy missed the bottle, Suzy
would have shattered it. The example shows a difficulty for the counterfactual
theory of causality to correctly identify the cause that is responsible for an
event. Is Suzy or not the actual cause of the shattered bottle? In fact, had
Billy missed, she would have made it. And yet, at the same time, Suzy is just
a preempted potential cause (for a presentation and discussion, see Hall (2004);
Menzies (2009).

The example certainly shows that causal assessment in natural language is
oft undecided or unclear and that counterfactual reasoning may fail to give a
definite answer. It does not follow, though, that in some specific disciplines
causal relations remain undecided. In law, for instance, we can decide about
causal assessment based on tools that complement counterfactual reasoning,
including the whole corpus of jurisprudence or the distinction between ‘causes’
and ‘conditions’ (Hart and Honoré, 1985).

The majority of the (counter)examples in the philosophy of causality are
meant to illustrate the difficulties for a specific theory or approach to unam-
biguously identify causal relations. In concurrent systems, while we can find
examples sharing the same structure of Billy and Suzy, they do not illustrate
the same shortcomings. The reason is that, in this context, programmers are not
so much interested in deciding what causes what, but what relations holds and
do not hold in order to run a programme without bugs. Admittedly, this might
show that the use the term ‘causality’ in concurrent systems is a bit overloaded
with meaning.

Independence. In statistical modelling and probabilistic causality, the mean-
ing of independence is different from the one given earlier for concurrent systems.
In these contexts independence specifically means statistical or probabilistic con-
ditional or unconditional independence between variables of interest (Suppes,
1970). In the approach known as ‘Granger causality’, independence is used to
analyse the present state of a given variable—e.g., wealth conditions in a popu-
lation of retired people—given the history of other, possibly related variables—
e.g., their health conditions and the history of their wealth (Granger, 1969). In
this way Granger tested independence: he was interested in whether informa-
tion about past history of some variables is (or isn’t) informative in order to
determine the value of the outcome variable. Here, causality is defined through
its negative: we say that A does not “Granger-cause” B if the history of A is
irrelevant for B.

12

This use and meaning of independence is clearly at variance with the use
and meaning of independence in concurrent systems, where it has to do with
the (potentially) simultaneous execution of events in the model, which leads to
some consequences in the evolution of the system, to be studied and analysed.

Causation by omission. Causation by omission happens when an absence
or a non-entity supposedly cause something. For instance, not watering the
plant caused it to die. Philosophers worry about cases like this because it
doesn’t exist a ‘metaphysical’ causal link between the cause and the effect. One
reason to insist on such a link is that often we are interested in the ‘productive’
relation between the cause and the effect. But how can a non-event such as
non watering the plant cause its death? Possible solutions to this puzzle come
for instance from legal theory, where a causal nexus between an omission and
its effect can still be established, but on other grounds (e.g., legal or moral
responsibility) (Pundik, 2007). Or from biology, where scientists notice that
the omission of watering the plant causes its death because other mechanisms
activate, for instance dehydration (Machamer, 2004).

In sum, all these considerations mark an important difference between concur-
rent systems and the philosophy of causality, where scholars by and large agree
that causality, in various scientific contexts, involves a ‘dependence’ component
and a ‘productive’ component (Hall, 2004; Russo and Williamson, 2007; Illari,
2011a,b). But all this is just to say that concurrent systems seem to have
different worry, in spite of a similarities of types of problems.

Of course this opens the debate whether ‘causality’ be used improperly in
concurrent systems. This may well be. The analysis above suggests that concur-
rent systems may as well dispose of the term ‘causality’ and employ ‘dependence’
instead, without loss of content in their modelling practices. Yet, to argue for a
reform of technical vocabulary in concurrent systems goes well beyond the goals
of this paper.

At the same time, the present discussion paves the way for a more thorough
examination of causality vs dependence, not only from conceptual point of view,
but also for applications. For instance, when the formalism of concurrent sys-
tems is used to model biological systems, e.g. in system biology, the absence of
a clear distinction between causality, generic dependency, precedence, necessary
condition, leads to problems, since in biological systems the notion of causality
certainly does not reduce to necessary conditions/precedence relation.

We will consider already an achievement to have clarified what ‘causality’
means and how ‘causal reasoning’ works in this context. It will be a useful
bridge between the philosophy of causality and scientific context that attracted
comparatively less attention from the community.

4 Counterfactual Reasoning in Concurrent Sys-

tems

We now turn to the discussion about the form of causal reasoning in concur-
rent systems. Recall, a concurrent system may evolve in many different ways,
and its semantic model precisely describes the (possibly infinite) set of its pos-
sible executions. Analyzing a system amounts to study the system properties,

13

where a property is a proposition which holds true in any execution of the
system. However, reasoning about the models of real (rather than ‘toy’) con-
current systems is in general very difficult since the size of these models is huge
and possibly unbounded. In these cases an exhaustive look at the model in
unfeasible. Available approaches include advanced model checking techniques,
that rely on abstractions based on behavioural equivalences or suitable tempo-
ral logics (Clarke et al., 2001). These technique can deal with the complexity of
concurrent systems verification. More generally, a rich toolbox of formal meth-
ods have been developed to automatically reason about causal models, that is to
specify and verify (causal) properties of (models of) concurrent systems. These
analysis techniques can be partitioned into three main categories: the analysis
conducted on the system model before the system execution (static analysis),
the analysis conducted during the system execution (dynamic analysis, execu-
tion profiling) and the analysis of the actual behaviour executed in a system
run (trace analysis, fault diagnosis).

In this section we discuss how the third class of techniques, i.e., fault di-
agnosis or execution trace analysis, shares connections with the philosophical
debate, namely conditionals and counterfactuals.

We said earlier that models of real concurrent systems are huge and possibly
unbounded, essentially because of the nondeterminism inherent to concurrent
systems. Remind that nondeterministic executions mean that if we run the same
program several times, its execution can be different each time. For instance,
in the railway example, on one occasion train 1 arrives before train 2, but on a
subsequent occasion train 2 arrives before train 1, and the system model meant
to describe all the possible executions.

In order to deal with such a complexity, only parts of the model are built, or
the modelled behaviour is just an abstraction/approximation of the actual sys-
tem execution. In particular, correct system behaviours are precisely described
by the model, while system failures are less detailed in the model. Then, if
during an execution something goes wrong, we need to run an ex post analysis
to find the error in the programme. In particular we need to perform a fault
diagnosis, that is to identify the exact system behaviour and the “cause” of the
error. The causal model of the system then turns out to be very useful to focus
on the specific incorrect behaviour and to reason on the chain of events that led
to the error. Interestingly, such a process involves counterfactual reasoning.

We will make use of the approach to counterfactuals developed by Nicholas
Rescher (2007). We first briefly present the theory and then illustrate how the
theory can be applied in the validation and refutation of counterfactuals. We
end the section with some general conclusions about the use of counterfactuals
in concurrent systems.

4.1 Rescher’s theory of counterfactuals

A counterfactual is a subjunctive conditional where the antecedent is known
or supposed to be false. Everyday language provides plenty of examples: “if I
hadn’t missed the buss, I would have been on time for class”; “had I watered
the plant, it wouldn’t have died”, etc. Counterfactuals are often used to reason
about causes and effects, in particular about what would have happened had
the putative cause not occurred. The goal of a counterfactual is then to pick
out the ‘right’ cause and we’ll know that it did in case it holds true.

14

The problem, as is well known, is that it is easy to show that classical propo-
sitional logic is not a suitable logic for giving us truth values of counterfactuals.
In fact, if we analyse subjunctive conditionals as material implications, then we
are bound to consider any counterfactual as true, given that the antecedent is
false—this a consequence of the paradoxes of material implication.

This situation led the philosopher and logician David Lewis to explore a
different path: counterfactuals are regimented by a possible-worlds semantics
(Lewis, 1983, 2000). Simply put, a possible-world semantics rests on the as-
sumption of the existence of a plurality of worlds, among which there is also
our actual world. This position is also known as modal realism. Counterfactual
evaluation is carried out by comparing worlds with each other on the basis of
their similarity or closeness to our actual world: the closer the world is, the more
similar it is to the actual world. The truth of a counterfactual is then ascertained
by an ‘inspection’ of what happens in other possible worlds, and according to
the rules of counterfactual dependence as defined in the Lewis-Stalnaker seman-
tics (Stalnaker, 1968, 1975; Lewis, 1973). ‘Lewisian’ counterfactuals gave rise to
an incredibly vast literature, defending, refining, and criticising the account, to
the point that counterfactual reasoning is usually associated with Lewis’ possi-
ble worlds approach, while alternative theories are often neglected. One such
theory is Nicholas Rescher’s, that we present next.

Rescher criticises Lewis’ theory because of its (unnecessary) metaphysical
baggage and also because of its practical difficulties, for instance how to get
from one world to another or how to implement proximity between worlds.
Rescher’s account, on the contrary, is capable of making sense of counterfactual
validation in a way that is logically precise and rigorous, and that is metaphys-
ically parsimonious. In fact, Rescher claims his theory to be epistemic rather
than metaphysical: while Lewis-Stalnaker invoke possible worlds and possible
objects, Rescher invokes sets of beliefs, “which can straightforwardly, after all, be
finite in scope, and indeed sometimes even inconsistent” (Rescher, 2007, p.166).

To begin with, Rescher adopts a slightly different characterisation of ‘coun-
terfactual’: a counterfactual “purport[s] to elicit a consequence from an an-
tecedent that is a belief-contradicting supposition, on evidence that it conflicts
with the totality of what we take ourselves to know” (Rescher, 2007, p.74). This
definition avoids reference to events and to the truth or falsity of the antecedent.
All is phrased in epistemic terms, appealing to beliefs and evidence.

The formalism required by Rescher is not very heavy. He represents a coun-
terfactual as p{B} → q, which is read “If p were true, which we take not to
be so—not-p being a member of the set of our pertinent beliefs B (so that
¬p ∈ B)—then q would be true” (Rescher, 2007, p.81). The idea is that a coun-
terfactual holds, or is validated, when the belief-contradicting supposition which
is at stake will yield its consequent as a deductively valid conclusion. To perform
the demonstration, we will have to add suitable supposition-compatible beliefs.
The validation of a counterfactual has therefore the following generic structure:
(disbelieved antecedent + certain accepted beliefs) ⊢ consequent. Rescher calls
it a derivability construal of counterfactuals.

The consequent q is derivable from the combination of q plus some appro-
priately subsection of the set of background beliefs. The problem, of course,
is to determine which beliefs to choose. These background beliefs are called
‘belief-compatible assumptions’. The choice of these assumptions is guided by a
principle of conservation of information, namely “prioritising our beliefs in point

15

of generality of scope and fundamentality of bearing” (Rescher, 2007, p.105).
Counterfactual validation is then about restoring consistency in an optimal

way by prioritising information. For instance, conceptual relations have priority
over mere facts, norms of practice will advantage some facts over mere matters of
brute contingency. This idea is made more precise and sophisticated by spelling
out the acronym ‘MELF’. MELF stands for Meaning, Existence, Lawfulness,
Fact. It indicates how precedence and prioritisation work in the absence of
case specific specifications to the contrary. The derivability of q depending on
B (i.e. background context) is done using MELF, which guides us in choosing
what background beliefs to use and what beliefs to discard in the derivation.
Consider the following example borrowed from Rescher (2007, p.106):

“If this rubber band were made of copper, it would conduct electricity”.

This counterfactual arises in an epistemic context where the following beliefs
are salient:

1. This band is made of rubber (factual belief).

2. This band is not made of copper (factual belief).

3. This band does not conduct electricity (factual belief).

4. Things made of rubber do not conduct electricity (lawful belief).

5. Things made of copper do conduct electricity (lawful belief).

We now negate the second belief: this band is made of copper. To restore
consistency between the initial set of beliefs, we’d have to choose whether to
keep 3. or 5., that is between a particular feature of this band and a general
fact about copper things. Since 5. is systematically more informative than 3., it
has higher priority, hence we keep 5. in the background beliefs and we therefore
accept the counterfactual.

An important remark in using MELF is the following. While in factual
contexts we give priority to evidence—i.e. the most supported proposition is the
one that is most strongly evidenced—in counter factual contexts, we give priority
to ‘fundamentality’ (rather than evidentiation)—i.e. aspects about meaning,
existence, and lawfulness.

For the interested reader, Rescher (2007, ch.11) book provides more technical
details on the logics to be used for MELF considerations in derivability; in
particular, Rescher discusses the inductive character of his derivability construal,
and also other important properties such as monotonicity and transitivity (it is
non-monotonic and transitivity fails).

With this theoretical background, we can now illustrate counterfactual reasoning
at work in a concurrent systems example.

4.2 Application of counterfactual reasoning in concurrent

systems

We illustrate counterfactual reasoning taking inspiration from a real case, Rover
on Mars. A precise account of what happened to Mars Pathfinder is out of our
scope. We just describe here an example containing an erroneous behaviour
with the aim of illustrating counterfactual reasoning over causal models. The
real case is documented in Jones (2007) These are the salient facts:

16

Rover on Mars. On the 4th July 1997 the Mars Pathfinder bounced onto
the Martian surface surrounded by airbags. After landing, it deployed the So-
journer rover which started gathering and transmitting voluminous data back
to the Earth. But a few days into the mission, the spacecraft began experi-
encing system resets. After the failure, NASA engineers spent hours and hours
running the system on the exact spacecraft replica in their laboratory, attempt-
ing to replicate the precise conditions under which they believed that the reset
occurred. When they finally reproduced a system reset on the replica, the anal-
ysis of the computation trace revealed a well known concurrency bug, a so-called
priority inversion problem.

The essence of the Mars Pathfinder experience can be illustrated in terms of
counterfactual reasoning on top of the concurrency models discussed in previous
sections. The software system controlling the Sojourner rover is a concurrent
system that carries out and coordinates a number of parallel activities. For the
sake of simplicity we can assume that the following event structure is a (minimal)
portion of the whole operational model describing the rover’s behaviour:

F E

C

❅❅❅❅
⑦⑦⑦⑦

D

A

❅❅❅❅
⑥⑥⑥⑥

B

❆❆❆❆

λ(A) = Take landscape pictures
λ(B) = Move the rover
λ(C) = Communicate with the Earth
λ(D) = Inspect a specific object
λ(E) = Error
λ(F) = Ok

The model shows that initially the rover can move (event B) and at the same
time it can take pictures (event A). We can think the event D as the rover
inspecting a specific object that had been previously identified in a picture and
after the rover have moved next to it, i.e. D “causally depends” on both A

and B. Moreover, the model specifies that moving the rover (event B) is in
conflict with a communication with the Earth (event C), which means that the
execution of B prevents the execution of C, and viceversa. Therefore, even if
initial independent actions A and B could be in principle executed in any order
or even concurrently, different choices in their execution order have different
impacts on the possibility of executing C. Finally, the model shows that after a
communication with the Earth, the system enters either a correct state F or an
error state E. Let suppose that such a choice depends on the presence of light
on the Martian surface: if after a communication with the Earth the rover is in
the darkness, then it enters an error state.

Let assume that this event structure is a correct model for the Sojourner
rover, that is all the behaviours in the event structure are plausible rover’s
behaviours. Than the correctness of the model shows that the system itself is
not correct: indeed, a system is said to be correct whenever no system run can
end up in an error state, which is clearly not the case of the rover. Notice that
such a situation is not so odd: the entire model of the rover system has millions
of states, hence it is usually unfeasible to generate (and inspect) the whole
model. Instead, only parts of the model are built up, or it is generated only
an approximation of the concrete model, taking into account the risk of leaving
unnoticed an error state, typically hidden in an infrequent system behaviour.
That’s exactly what happened to the Mars Pathfinder: the engineers did not
realize the system error and sent the rover to Mars.

Once activated on the Martian surface, the system started to run according

17

to its model. There were three initial possibilities: executing A, or executing B,
or executing both A and B concurrently. The rover on Mars executed A. After
that, the rover could choose to execute either B or C; it executed C and then
moved to the error state E since the rover found itself into the darkness.

We now distinguish two types of use of counterfactuals: validation and refuta-
tion.

Counterfactual validation. The precise sequence of actions performed by
the rover was not known by the NASA engineers on the Earth. They only
new that the rover had started its execution according to the installed soft-
ware, meaning that it was executing one of the possible behaviours they had
programmed. It has been reported that after the unexpected failure, the engi-
neers “spent hours and hours running the system on the exact spacecraft replica
in their laboratory, attempting to replicate the precise conditions under which
they believed that the reset occurred”. This can be rephrased in our example as
the engineers setting out all the possible behaviours in the system model until
they found a behaviour ending up in the error state reported by the rover. Their
explanation of the problem could then be stated as the following counterfactual:

“Since it was dark, if the first rover’s action had been B,
it would not have entered the error state.”

Now, using Rescher’s MELF theory, our beliefs are as follows:

1. It was dark.

2. The rover did not perform B as its first action.

3. The rover performed C.

4. The rover ended up in E.

5. The execution of B prevents the execution of C.

6. If E is executed, then it is dark and C has been previously executed.

where 1-4 are “Facts”, while 5-6 are “Laws”. In order to validate the coun-
terfactual let assume not-2, then 3 and 5 become incompatible. MELF theory
prioritizes the lawful 5 over the merely factual 3. We then retain 5, which is
however incompatible with 4+6 Again we reject the weaker factual 4 obtain-
ing the desired conclusion. Notice that we could have used a slightly different
belief: (5bis) The execution of B prevents the execution of E. This choice
leads to a simpler counterfactual validation: assume not-2, then 5bis and 4 are
incompatible, and 4 must be rejected since it has lower precedence.

As a further example, given the actual rover execution, consider the following
counterfactual:

“If there had been light, the rover would not have
entered the error state.”

Notice that the “cause” of the rover error is not (just) the darkness, but (also)
the fact that, after A, in the choice between executing B or C, the rover executed
C. In other terms, even if there had not been light (which was indeed the case),
the rover could not have entered the error state. Anyway, this counterfactual is
valid. Indeed, consider the following beliefs:

18

1. It was dark.

2. The rover ended up in E.

3. If S is executed, then it is dark.

Assuming not-1 we have that 2 and 3 become incompatible, and the factual
2 must be rejected in favour of the lawful 3 The dismissal of 2 proves the
counterfactual.

The puzzling thing behind this counterfactual is that the cause of the event
E is twofold (i.e., the darkness and the occurrence of C instead of B) while the
assumption of the counterfactual just falsifies a single cause. The counterfactual
validity then comes since a conjunction can be negated by just negating one of
its operands. The dual case, that is disjunction, is more delicate, and has rather
to do with counterfactual refutation, which we discuss next.

Counterfactual refutation. Let now assume that the actual rover execution
on the Martian surface had been the following, which is still consistent with the
model above: first B, then A and finally D, everything in the darkness. Let
consider the following counterfactual:

“If the first rover action had been A, it would have
ended up in the error state.”

We know that this counterfactual is false since, even if the sequence starts with
A, the Rover still has to choose between B and C, and only choosing C would
lead to an error.

In order to show how to precisely refute this counterfactual according to
Resher’s theory, we first discuss the following example, taken form Rescher
(2007, p.123): consider the following two counterfactuals

(C1) If Napoleon were Julius Caesar, then Napoleon would be dead by 100 CE
(since Caesar was).

(C2) If Napoleon were Julius Caesar, then Caesar would be alive in 1800 CE
(since Napoleon was).

These two conditionals seem innocuous when taken separately, but they are not
cotenable since they constitute an inconsistently conflicting pair. Indeed, using
MELF approach, they cannot be validated: consider the following beliefs

1. Caesar was dead by 100 CE.

2. Napoleon was alive in 1800 CE.

3. If X=Y, then whatever holds of X will hold of Y.

4. Napoleon is not Caesar

Let assume not-4. Then B1={not-4, 3, 2} is a consistent subset of beliefs which
gives “Caesar was alive in 1800 CE”, while B2={not-4, 3, 1} is a different
subset of beliefs which gives “Napoleon was dead by 100 BC”. Rescher’s MELF
theory requires the consequence to be obtained from every consistent subsets of
beliefs. So (C1) cannot be validated since “Napoleon was dead in 100 CE” is only
obtained from B2 whereas form B1 (actually from 2) we have that “Napoleon

19

was not dead in 100 CE” (since he was alive in 1800 CE). Similarly (C2) can be
obtained from B1 while B2 proves its denial. Notice that the only counterfactual
we can validate is

(C3) If Napoleon were Julius Caesar, then either Napoleon would be dead by
100 CE or Caesar would be alive in 1800 CE.

Coming back to the rover example, the valid couterfactual is

“If the first rover action had been A, it would have
end up either in error or in the correct state D”.

More precisely, for any set of beliefs, we have a (salient) law stating that after
A the rover can execute either C (leading to the error) or B (preventing the
error). The presence of such a disjunction actually prevents the validation of
the original counterfactual. Notice also that this very same argument prevents
the validation of its denial, that is “If the first rover action had been A, it
would not have end up in the error state.” Anyway, how do we prove that a
counterfactual is false in MELF theory? Recsher only seems to refer to proving
the counterfactual negation or denial, but we have seen that it might not always
be possible. On the other hand, since a counterfactual C must be verified in
every consistent subset of (salient) beliefs, in order to reject it it is sufficient to
show a consistent subset of beliefs that implies the denial of C. Notice that it is
still different from validating the denial, which would indeed require a proof of
the denial for every subsets of beliefs rather than for just one.

In other words, proving a counterfactual amounts to deal with a universal
quantifier (i.e., validate it for every consistent subset of beliefs), while to refute
a counterfactual we only have to deal with an existential quantifier (i.e., show
a consistent subset of beliefs that implies the denial). For instance, in the
Napoleon-Caesar example above, the subset B1, respectively B2, can be used to
prove that the counterfactual (C1), respectively (C2), is false. Interestingly, in
concurrent systems, operational models offer a very effective way to prove that
a counterfactual is false: indeed it is sufficient to show a specific behaviour that
is allowed by the model and where the counterfactual is false. The behaviour A,
then B then D is indeed a plausible behaviour that refutes the counterfactual,
while the behaviour A then C then E is a plausible behaviour that refutes the
counterfactual’s denial.

4.3 Philosophical morals

Before closing this section, we draw some general morals about the use of coun-
terfactual reasoning in concurrent systems using Rescher’s approach.

Rescher’s account is versatile and well fits the needs of counterfactual reason-
ing in concurrent systems. More precisely, in Rescher’s theory we can distinguish
between different types of belief, on the other hand using operational models
we can rely on simplified distinction just between ‘facts’ and ‘laws’. In particu-
lar, ‘facts’ correspond to assertions such as “event E occurred” or “event E did
not occurred”, and ‘laws’ correspond to the relations between events as they
are described in the model, e.g. “A and B are independent / dependent / in
conflict” (these relations can be written as implications between occurrences of
events). Such a clear distinction is important because we have that using these
models in the derivation of the proof of a counterfactual we can always decide

20

the priority of beliefs. This is clearly at variance with Lewis’ theory, where the
similarity between possible worlds is taken as primitive and the criteria to order
worlds according to their similarity remains an open problem in the approach.

Being able to use ‘laws’ in the proofs is an advantage also for the following
reason. Given the nature of the model, for each couple of events, it is known
what relation they stand in, as the programmer decides about such relations.
Consequently, all the ‘laws’ connecting all the couple of events are known from
the model. Counterfactuals can then be validated by combining salient laws
into a well-constructed proof. Conversely, given that the model describes all the
possible system executions, a counterfactual can be rejected by showing a case,
namely one possible execution that violates the counterfactual.

5 Conclusion

We presented an account of causality in an important field of computer science,
that is the modelling of concurrent systems. These systems, either software,
hardware or even biological systems, can be thought of as sets of activities that
run in parallel with possible occasional interactions.

The formalization of concurrent systems is an interesting area to investigate
the meaning and use of causal concepts. One reason is that these systems have
important practical applications since concurrent software systems and parallel
hardware are pervasive. Another reason is that the literature in computer sci-
ence customarily use causal terms, but a systematic investigation has not been
carried out so far.

We first provided a crash course in concurrent systems to set the ground for
a discussion of the meaning and use of causal concepts therein. One result is
that the use of the term ‘cause’ or ‘causality’ in this area is perhaps not fully
justified, as it could be replaced with ‘dependence’ or ’precedence’ with no loss of
content or informativity. In fact, ‘causality’ or ‘dependence’ denote an ordering
between event occurrences. But there is nothing, in such a characterization,
which is specifically causal, in the sense that causes produce their effects.

An important feature of causal reasoning in concurrent systems is the use
of counterfactuals. We examine how counterfactuals are used in concurrent
systems and we illustrate applications using Nicholas Rescher’s theory. This
also marks a difference with the philosophical literature, that mainly focused on
Lewis’ account better-known account based on possible-world semantics.

So there are a number of ways in which the use of causal terms in concurrent
systems distances itself from the traditional ‘hot’ topics in the philosophy of
causality: production, mechanisms, causation by omission. Yet, our goal in
the paper is not to call for a terminological change in the field of concurrent
systems. We think that at this stage a rounded discussion about similarities and
dissimilarities with parallel debates happening in the philosophy of causality is
already a contribution.

Acknowledgements F. Russo is currently Marie Curie Pegasus Fellow, for which

financial support from the FWO-Flanders is gratefully acknowledged.

21

References

Aceto, L., Ingólfsdóttir, A., Larsen, K. G., and Srba, J. (2007). Reactive Sys-
tems: Modelling, Specification and Verification. Cambridge University Press,
New York, NY, USA.

Clarke, E. M., Grumberg, O., and Peled, D. (2001). Model checking. MIT Press.
Dowe, P. (2000). Physical causation. Cambridge University Press, Cambridge.
Granger, C. W. J. (1969). Investigating causal relations by econometric models
and cross-spectral methods. Econometrica, 37(3):424–438.

Hall, N. (2004). Two concepts of causation. In Pau, L., Hall, E., and Collins,
J., editors, Causation and Counterfactuals, pages 225–76. MIT Press.

Hart, H. L. A. and Honoré, T. (1985). Causation in the law. Clarendon Press,
2nd edition edition.

Hedström, P. and Ylikoski, P. (2010). Causal mechanisms in the social sciences.
Annual Review of Sociology, 36:49–67.

Illari, P. M. (2011a). Mechanistic evidence: Disambiguating the Russo-
Williamson thesis. International Studies in the Philosophy of Science,
25(2):139–157.

Illari, P. M. (2011b). Why theories of causality need production: an information-
transmission account. Philosophy and Technology, 24(2):95–114.

Jones, M. (2007). What really happened on mars?
http://books.google.de/books?id=Nmc4wEaLXFEC.

Lewis, D. K. (1973). Counterfactuals. Blackwell.
Lewis, D. K. (1983). Philosophical papers, volume 1. Oxford University Press,
Oxford.

Lewis, D. K. (2000). Causation as influence. Journal of Philosophy, 97(4):182–
197.

Machamer, P. (2004). Activities and causation: The metaphysics and episte-
mology of mechanisms. International Studies in the Philosophy of Science,
18: 1:27–39.

Machamer, P., Darden, L., and Craver, C. (2000). Thinking about mechanisms.
Philosophy of Science, 67:1–25.

Manson, J., Pugh, W., and Adve, S. V. (2005). The java memory model. In
Proceedings of the 32nd ACM SIGPLAN-SIGACT symposium on Principles
of programming languages, POPL ’05, pages 378–391, New York, NY, USA.
ACM.

Menzies, P. (2009). Counterfactual theories of causation. In Zalta, E. N., editor,
The Stanford Encyclopedia of Philosophy (Fall 2009 Edition).

Milner, R. (1980). A Calculus of Communicating Systems, volume 92 of Lecture
Notes in Computer Science. Springer.

Milner, R. (1999). Communicating and mobile systems - the Pi-calculus. Cam-
bridge University Press.

Pundik, A. (2007). Can one deny both causation by omission and causal plu-
ralism? the case of legal causation. In Russo, F. and Williamson, J., editors,
Causality and probability in the sciences, pages 379–412. College Publications.

Rescher, N. (2007). Conditionals. The MIT Press.
Russo, F. and Williamson, J. (2007). Interpreting causality in the health sci-
ences. International Studies in Philosophy of Science, 21(2):157–170.

Salmon, W. (1984). Scientific Explanation and the Causal Structure of the
World. Princeton University Press, Princeton.

22

http://books.google.de/books?id=Nmc4wEaLXFEC

Stalnaker, R. (1968). A theory of conditionals. Studies in Logical Theory:
American Philosophical Quarterly Monograph Series, 2:98–122.

Stalnaker, R. (1975). Indicative conditionals. Philosophia, 5(3):269–286.
Suppes, P. (1970). A probabilistic theory of causality. North-Holland, Amster-
dam.

Winskel, G. (1987). Event structures. In Advances in Petri Nets 1986, Part
II; Proceedings of an Advanced Course, volume 255 of LNCS, pages 325–392.
Springer.

Winskel, G. and Nielsen, M. (1995). Models for concurrency. In Handbook of
logic in Computer Science, volume 4. Clarendon Press.

23

	1 Introduction
	2 Concurrent Systems: a Crash Course
	3 Causal Concepts in Concurrent Systems
	3.1 Causal Relations in Concurrent Systems
	3.2 The meaning of causality in concurrent systems
	3.3 A comparison with concepts from the philosophy of causality

	4 Counterfactual Reasoning in Concurrent Systems
	4.1 Rescher's theory of counterfactuals
	4.2 Application of counterfactual reasoning in concurrent systems
	4.3 Philosophical morals

	5 Conclusion

