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Discretionary Access Control (DAC) systems provide powlasource management mechanisms
based on the selective distribution of capabilities tocteld classes of principals. We study a
type-based theory of DAC models for a process calculus ttiahds Cardelli, Ghelli and Gordon’s
pi-calculus with groups (Cardelli et al., 2005). In our thegroups play the role of principals, the
unit of abstraction for our access control policies, aneés$yallow the specification of fine-grained
access control policies to govern the transmission of natadmund the (iterated) re-transmission
of capabilities, to predicate their use on the inability &aspthem to third parties. The type system
relies on subtyping to achieve a selective distributionagfabilities, based on the groups that
control the communication channels. We show that the typirdjsubtyping relationships of the
calculus are decidable. We also prove a type safety rebiolyiag that in well-typed processé¥

all names flow according to the access control policy specifietheir types, andi) are received at
the intended sites with the intended capabilities. Wetithie the expressive power and the
flexibility of the typing system on several examples.

1. Introduction

Type systems have been applied widely in process calculrdwige static guarantees for a
variety of safety and security properties, including asaamtrol (Hennessy and Riely, 2002a;
Chothia et al., 2003), non-interference (Kobayashi, 2@@ftier, 2002; Honda et al., 2000), and
secrecy (Abadi and Gordon, 1997; Cardelli et al., 2005).

The focus of the present paper is on Discretionary Accesdr@anodels (Lampson, 1974;
Samarati and di Vimercati, 2001), i.e., models that supponterful resource management poli-
cies based on fine-grained mechanisms to control the usénarttistribution of capabilities. To
motivate our approach, we start with a long-known examplgypas for the pi-calculus (Pierce
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and Sangiorgi, 1996):
S=Is(x).print(x) C=%{(j1)-3j2)...

Srepresents a printer spooler, serving requests from a ehgnwhile C specifies a client sending
jobsji, jo2,... to the spooler. A property we may wish to show of a system irchvBiandC run

in parallel is that all the jobs sent I&yare eventually received and printed 8yHowever, while
such guarantees can be made for the sys®r@ in isolation, they may hardly be enforced
in more general situations: in fact, a misbehaved clienhagC’ = s(x).s(y)... may legally
participate in the protocol to ste@ls jobs, as inS| C | C'. The type system developed in (Pierce
and Sangiorgi, 1996) prevents this undesired behaviouelging on capability types to control
the use of channels in well-typed processes. Applied to samgle, that typing system would
rule out the misbehaved client by ensuring that clients aabeive write capabilities on the
channek, and by reserving the read capability ®just to the spooler:

cy: (T)").C) | (vs:(T)™)T(s).S

The types(T)VY are the types of channels with payload of typend capabilities for reading,
writing, or both, depending on whetheis r, w, or rw, respectively. By delivering the chanrsel
at the type(T)" on the channet shared with its clients, the spooler enforces a policy winere
(well-typed) clients may not intercept any job sent on clesn

While effective in controlling the transfer of access rgbetween the two partners of a syn-
chronization $andC in the example), the system of capability types of (Pierat Sangiorgi,
1996) provides limited control on the way that resourcestheit associated access rights are
propagated to third parties. For instance, a client may twighievent its jobs from being read by
processes other than the spo@eand hence to disallow situations like the following, whtre
spooler forwards the jobs it receives to proc88%:

s(x).log(x).print(x) | 5(j1).5(j2) | log(y).SPY

The capability-based access control from (Pierce and 8egigl 996) is of little help here, unless
one resorts to a more complex coding of the system, or elsesegooverly restrictive conditions

(e.g. prevent the spooler from writing on all public chaisieR similar problem arises in the

following variation of the protocol, in which the client negsts a notification that his jobs have
been printed:

S= (vprint) (!s(x).print(x) | !print(x).(P | ackx)))  C=3(j1).ackx).5(j2).ack(y)

As in the previous case, a standard capability-based tygtersywill fail to detect violations of
the intended protocol by malicious (or erroneous) spodtetdiscard jobs by, say, running the
process(x).ack(x).

To counter these problems, we propose a novel typing systabcomplements the access
control mechanisms based on capability types with stroagpport for controlling the flow of
resources among the components of a system. Our approagh draputting more structure
in the syntax of types so as to allow the specification of nicdeess control policies. In the
new typing system, the types take the fo&iT || A], whereG is a group (or principal) name,
T a capability type a la (Pierce and Sangiorgi, 1996) Araldelivery policy. Ifv is a value of
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type G[T || 4], thenG represents the authority in controlgfT describes the structure wfand
A specifies the legal flows of along the channels of the system. To illustrate, in our nugni
example, the type

JOB = Client| data || Spooler : data — Printer : data — Client : data ]

specifies a class of jobs controlled by clients, whose datn, (Ble descriptors) may only be
delivered to the spooler, then passed on to the printer, alydloen re-transmitted back to clients
for notification. Similarly, the type

JOB | Spooler = Client| data || Printer : data — Client : data |

identifies jobs that have “flown one hop” (to the spooler) gldheir intended delivery path,
reaching the spooler.

Based on the delivery policy specified by typ@B, our static typing system will make the
following guarantees for any composition of well-typed gesses(i) no notification is given
to clients for jobs that have not previously been sent to at@ri and(ii) no job is received
by the printer unless it has first been delivered to the spolwieparticular, assuming : JOB
ands: Spooler[(JOB | Spooler)¥ || A], our type system allows the transmissionjodvers,
and guarantees thatwill flow as specified inJOB | Spooler, once received os. Thus, these
typing assumptions make the spools(ix).print(x) well-typed, as desired. On the other hand,
they are also effective in ruling out the malicious sposiej.ack(x) as ill-typed because it fails
to comply with the policy associated with chansel

By combining our delivery policies with the traditional &ss control based on subtyping a la
(Pierce and Sangiorgi, 1996), our type system makes it jpledsi selectively advertise values at
different types depending on the groups to which they areeteld. To illustrate, we may refine
our printer example by statinggt SPOOL where

SPOOL = Spooler[ (JOB | Spooler)™ || Client: (JOB | Spooler)*]

demands that whesis delivered to the client, it be received at a type that omlyvwles write
access so that no well-typed client may intercept jobs threto the spooler. Now, assuming
c: Client[ (SPOOL | Client)™ || A], we achieve the desired security guarantees of the spooling
system by structuring it as shown below:

c(y: SPOOL | Client).C | (vs:SPOOL)T(s).S

HereSPOOL | Client = Spooler[ (JOB | Spooler)*] is the type assigned ®: SPOOL onces
has reached the client (this type has an empty delivery ydiiecause values of tyfE=POO0L
should not be further re-transmitted after having beervdedd to a client).

We formalize our approach with a typed extension of the jtdas with groups from (Cardelli
et al., 2005). The new calculus is structured in two layetsha lower level, we find a process
calculus that inherits the syntax of the pi-calculus witbugrs and extends its typing and sub-
typing systems with a richer class of resource and capgabyiites to capture fine-tuned access
control policies such as those discussed earlier. Thec dtgting system ensures the compile-
time detection of violations of such policies: in partiaukatype preservation theorem allows us
to derive a safety result stating that all well-typed preesscomply with the discretionary access
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control policies governing the use of resources. We shotstlhiatyping is decidable, and that so
is the type checking problem.

On top of the process calculus, we then introduce our notigmrincipals by interpreting the
groups from the underlying processes as principal namelscamstrue the latter as the unit of
abstraction for access control. We illustrate the flexipitif the type system by showing how
it supports DAC security models based on decentralizedaipsliwhere the owner of an object
can delegate to others the right to specify authorizatipnssibly with the ability of further
delegatingit.

1.1. Related work

While we are not aware of any approach specifically targeted@ess control mechanisms like
the ones we have outlined, our work is clearly related to geldvody of literature on type-
based security in process calculi. Several type systenmaepass various forms of access control
policies in distributed systems. Among them, (Chothia .¢28l03) proposes a form of distributed
access control based on typed cryptographic operatiomsydink on the Dt calculus (Riely and
Hennessy, 1998), has produced fairly sophisticated typtesys (Hennessy and Riely, 2002b;
Hennessy et al., 2005) to control the access to the resoadwestised at the different locations
of a distributed system. None of these systems, howevergsasies the kind of discretionary
policies we consider here. More precisely, imDesources are created at a specific, unique, type
and then delivered to different parties at different (sigpes on different channels. Unlike in
our system, however, the ‘delivery policy’ of a value is nesdribed (nor prescribed) by its type.
As a consequence, the only guarantee offered by the typensysthat names delivered at type
will be received, and re-transmitted freely, at super-y@d . As we will show, our types may be
employed to specify, and enforce, much more expressiveipsliOther related work on access
control in distributed systems has been carried in the sbofehe language KLAIM (De Nicola
et al., 2000) and its extensions i&LAIM (Gorla and Pugliese, 2003) with type systems that
enable the dynamic exchange of access rights targetedestsaoontrol mechanisms like the ones
presented in the present paper, also based on a notiegiohwhich in some respects is akin to
our idea of group (De Nicola et al., 2006).

Type systems have also been proposed to control impliatrmétion flows determined by
the behaviour of system components (see (Kobayashi, 2@teR? 2002; Honda et al., 2000;
Sewell and Vitek, 2003) among others). These type systeans the causality relations between
computational steps in order to detect covert channels diMaf a different approach to express
and verify the delivery of (and the access to) the systenmuress.

Our approach is also related to the large body of existingkweorsecurity automata. In fact,
the delivery policies we express in our type system couldvaigntly be described as finite-
state automata whose states are structural types and eddabelled with groups. On the other
hand, security automata have traditionally been employguidvide for run-time system moni-
toring (Schneider, 2000) rather than as a basis for the dprednt of static, type-based, security
analysis.

Session types (Honda et al., 1998) have originally beengsegwith motivations similar to
ours to express and gain control over the different stepsmincunication protocols. Recently,
they have been used extensively to structure the interaatioong the components of a dis-
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tributed system, cf. (Carbone et al., 2007; Honda et al. 8208t the core of session types, lie

mechanisms to regulate the sequence of events occurringiitezaction session. Specifically,

a session type prescribes the sequence of states for a taning a session, where each state
is encoded as the type of values that may legally be exchaoggdhe channel at that stage.

Instead, our resource types, encode the states of the \@abanged. As such, besides being
technically different, session types and resource typgetalual objectives: session types help
structure the interaction between parties, while resotyes help trace and control the flow of

information among those parties.

1.2. Plan of the paper

Section 2 illustrates the syntax and the operational seosaoit the process calculus. Section 3
introduces the notion of principals and illustrates its wsih several examples. Section 4 de-
scribes the typing system. Section 5 details the proof & sgiety and re-establishes the secrecy
result of the pi-calculus with groups of (Cardelli et al. 0B). Section 6 proves that typing and
subtyping are decidable. Section 7 concludes the pregamtaith final remarks.

A preliminary version of the present paper appeared as {8sigit al., 2004).

2. A pi-calculus with groups and delivery types

We start by introducing the process calculus that consstthie core of our formalization. The
calculus is derived from the process calculus with groufisée in (Cardelli et al., 2005), which
we henceforth refer to a®G. The syntax is defined by the following productions:

PQ = 0] c(X¢:T1,...,% :Th).P | T@s,...,an).P | (vn:T)P | (VG)P | PIQ | P

We presuppose countable sets of names, ..., s t, basic valuedv, and variables,y,..,z. We
reservea, b, c to range over all sets, with the proviso that basic values moayccur as channel
names in the input/output prefixes of a process: this cantiigi enforced by the typing system, in
Section 4. We also presuppose a countable sgtafp name$s, Gy, ..., and reserveany’ as a
distinguished group symbol. As usual, a restrictjon:t)P binds the name, and an input(x; :
T1,...,%: : Th).Pbinds the variables, . .., x,: in both cases the scope of the bindé?iSimilarly,

a group creatiorivG)P binds the group namé in P. The notions of free names, variables and
groups, notedn(P) andfv(P) andfg(P) respectively, arise as expected. The distinguished group
‘any’ may not occur in a group creation, hence it is always free.

Asin (Cardelli et al., 2005), groups provide our procesesual with a mechanism for privacy.
Briefly, one may define a name of gro@ and then confine it within the scope Gf as in
(vn: G)P. Although group creation is dynamic, group names cannobb&unicated: hence no
name belonging to a secret groGan be leaked outside the scopead original declaration.
Drawing on the work of (Myers and Liskov, 2000), we extendsthigleas and structure our types
so that they convey information on how names may legally bpg@gated among (the channels
of) the groups in a system.
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The syntax of types is defined by the following productions:

Resource Types T :i= G[T || 4] (G # any,A closed
Structural Types T:= B (T1,...,Tn)" (v e {rw,rw})
Delivery Policies A ::= s|ZGi:Ti—>Ai|X|uX.A (i #j=Gi #Gj)

|

Resource types specify the group name, the structural tygphéhe delivery policy of each value.

The role of the group name is twofold. Like in the calcui@ the presence di in the typing
n: G[T || A] confinesn within the scope of the declaration Gf In addition, wherT is a channel
type, the typing ensures that only data that can flovkanay be sent on.

The structural type conveys information on the value, wiether it is basic value, in which
case the structural type is a base ter a channel: as in other systems, a channel type specifies
the typeg; of the payload as well as the capabilitieassociated with the channel.

Finally, the delivery policy defines the groups of the chdsma which the value may be
exchanged, as well as the type at which the exchange may e ghus iA =5 G : Ty —

A, the legal flows of a value of typ@[T || A] are those that reach a channel of grépat type
Ti, and then continue to flow as specifiedfyfor all i € I. The distinguished group symbaty
may be used to create a default entrpirin particular, ifG; = any for somej € |, thenA allows
the transmission over channels of any group other thaGtheprovided that the transmissions
occurs at the type (and with the policy) associated with jtiheentry inA. An empty policy,
noted byeg, signals that the value should not be (re-)transmitted gnchannel: ifA; = €, we
write G : T — A simply asG : T. A delivery policy may be recursive, to allow the transnissi
of values to an unbounded distance. A recursive pqliy\ binds the recursion variabk with
scopeA: throughout the paper, we assume that the delivery polibetsoccur in a resource type
areclosed i.e., all their recursion variables are bound by an enclosing binder, dodmally
contractive in the following sensepX.A is contractive in the variablX if either X does not
occur free inA, or A can be rewritten via unfolding as a choice. The recursiorstrantor only
applies to policies, not to types: while the extension tairsive types would be possible, and
harmless, recursive policies are all we need for our prgaanpioses.

2.1. Operational semantics

The dynamics of the calculus could be defined in an entiralydsrd way, in terms of reduction.
On the other hand, in order to state and prove the propeftibe dype system, it is convenient
to resort to an instrumented semantics where the flow of eaoterand value is made explicit
along reduction.

To account for that, we use tags to trace the sequence of elsamaversed by each name
in a process. Thus, for example, we note with,4 the namen that flowed first through the
channelm, then througlp and finally throughy. Here mpd is short for the extended notation
m: p:q: € wheree denotes the empty sequence and ‘' is the right-assoeiatguence
constructor. We lep range over sequences of names, and use the notationio indicate the
sequence resulting from appending the narteethe tail ofd.

The definition of the instrumented semantics is given in &dblFormally, it is defined as a
binary relation ovedynamic processasther than processes. Dynamic processes, ranged over
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by A B,... are defined just like processes, but are built over taggeegsamd values, rather than
names and values. The tags may be empty, in which case wetaggied names just as hames. In
fact, processes themselves are to be understood as spesgalaf dynamic processes in which
all names are untagged.

The notion of free names for dynamic processes is easilytadap account for the presence
of the tags: namelyn(n) (X1 : T1,..., % : Th).A) = fn(A) U {n} U{m| me ¢}, and similarly for
the remaining dynamic process constructs. The clausesidfiaie the reduction and structural
congruence relations are largely standard. Indeed, stalatongruence is defined just as in
TG, though it relies on the definition of free names we just dised. The core of reduction,
in turn, is the synchronization ruleed comn), which formalizes semantics of value exchange
and additionally updates the tags of the values exchanged smtrace the flow of each of the
arguments through the synchronization channel.

Since values are used non-linearly in processes, the salme weay end-up flowing along
different paths and hence acquire different tags. For mt&tatwo steps of flow-reduction from
the procesa&(m) | b(m) | a(x).a(y).P yield the dynamic procesB{™d /,,"® /y}, in which the
two instances ofn can be distinguished by their tags tracing the paths alonghwhhas flown.
Notice, however, that the tags are only functional to aralye properties of the type system
and to establish our safety results. Instead, they havefaotefn the reductions available for
processes. We make this precise by relating our flow-seasgmantics of Table 1 with the
original reduction semantics ofs. The latter, which we denote with, is defined on processes
(rather than on dynamic processes) exactly as we do herasbatthe standard communication
rule

nm,...,m).P | n(xe:T1,... . % ).Q — P | Q{™/x },
in place of our fed comnj rule. Given any dynamic process let |A| denote the static process
resulting from erasing all the tags frof Let also—* and—"* denote the reflexive and tran-
sitive closure of the reduction relatiors— and+—, respectively. Then we have the following,
easily proved, result.

Proposition 2.1 (Flow vs Standard reductions).Let Abe a closed dynamic processAlf—* B
then|A| —* |B|. Conversely, if Al —* Q then there existB such thaiA —* B and|B| = Q.

3. Principals and discretionary access control policies

Principals are defined on top of the process calculus withiggpby establishing a connection
between the group names in the process calculus and thégailgand by construing principals
as the unit of abstraction for access control. Among mangiptesalternatives, we choose the
simplest representation of principals, based on a mapmhgden the group names of the low-
level process calculus and principal names.

3.1. Principals and Systems
A system is a composition of principals, formed with thedaling productions:

S = G{P}|S| S| (vG)S|(vn:T1)S
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Table 1 The flow-sensitive operational semantics

Dynamic Processesa,b,... denote either (non-tagged) variables or tagged names édrtimeny).
AB:= 0| a(x1:T1,...,%:Tn).A | &bg,...,bn).A | (vn:DA | (VG)A | AB | A

Structural congruence

(monoid) A|B=B|A A|0=A (A|B)|C=A|(BI|C)
(repl)) 1A = AlA
(name exty (vn:T)(A|B) = A|(vn:T7)B if n¢ fn(A)
(group extp (VG)(A|B) = A]|(vG)B if G ¢fg(A)
(name/group exch (vG)(vn:1)A = (vn:T)(VG)A if G ¢ fg(T)
(name exch (vn:tg)(vmei12)A = (vna:iT2)(vniiT1)A (N1 # )
(group exch (VG1)(VG2)A = (vG2)(VG1)A
Reduction

(red comm Mg (Mujg,),--- > Mkjp)-A | Ny (X T, %0 T).B — A B{™inl/y }

(red reg A— A = (WA — (VA

(red group A—A = (VGA — (VGA

(red par) A— A = A|B — A|B

(red struc) A=—=B = A — B

Principals are denoted by terms of the fo&§P}, whereG is a group name acting as the principal
identity, andP is the body, a process in the low-level calculus. In a sysfegincipals may run in
parallel and share local (group) names.

The principal formG{-} defines a static scope that helps enforce the discipline @wi¢l-
laration of resources (i.e. names) established by theviodip notion of well-formedness. Say
that a namen is controlled byG if n: G[...]: then the principaG{P} is well-formed if P it only
creates new names controlled ®yr by any of the local group names thaitself creates with a
group declaration. A system is well-formed iff so are allled tomponent principals: throughout,
assume that our systems are well-formed.

The dynamics of systems could be derived from the reducgtation over the underlying
processes, by stipulating tht— S wheneveS — R andR = [S] (one easily verifies that
one sucls exists for allR). However, this would convey principals a computationahstthat,
instead, we choose to dispense with. Indeed, we interpiretipals as purely static entities, that
define the access control policies associated with themuress, as we just discussed, but bear
no computational meaning. This is consistent with the redfiour resource policies which, once
established by a principal, are only intended to disciptimeflow of names along the channels
of a system, irrespective of the principals on behalf of wtlwe code exchanging those names
is run. Consequently, principals may be “compiled away&iathe well-formedness check, and
their dynamic semantics be defined directly in terms of thematation of their body. Formally,
given a systeng, let [§ the process obtained froBiby transforming each princip&@{P} into
its bodyP: thenS—* Rjustin casdS] —* R.
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3.2. Type Expressions

In the calculus of principals we presuppose an extendedsyat types to ease the specification
of the types themselves and of the associated access cpaliés. In particular, we write the
choices of a policy as a semi-colon separated list of en@emG[T || G1 — Asz;...; Gy — Al
Further, we introduce the high-level tyg8T| corresponding to the low-typ&[T || €] whose
delivery policy is empty. The calculus of principals alscludes the new type expression T,
with 1ta sequence of group names, to note the type occurringithe hop reached via the path
Tt Forinstance, if =G[T || G1: Ty — (G2: T, — Ay ; G3: T3 — Az)], thent | G1.G2 = G[T2 || Ay
We illustrate the types at work in the specification of acaas#rol policies, starting with a
simple example. Letcct be a basic type describing the data (say, name and passvesa) a
ciated with an electronic account that clients may use to-gig an on-line service. Typically,
the account data must be supplied to the e-service at eaith &ighe same time, however, the
clients will want to make sure that the service does not leak tlata to third parties. This policy
is expressed naturally in our system, by the t¢fient[acct || Service : acct], whose policies al-
lows the transmission of the account data only to the ser@eaeralizing the example, assume
now that the client of the on-line service is an organizafgay a university department) that
has obtained a collective account to be shared by all its reesnin that case, the policy for the
account data should be more flexible, so as to allow the daiactalate freely within the organi-
zation. That policy is expressed by the tyPept[acct || u X (Dept : acct — X; Service : acct)]:
here, the policy allows the free re-transmission of the antdata within department channels
(mailboxes) while still requiring the service to refraiofn passing it on to third parties.

The (re-)transmission of values may also be regulated obdbis of the capabilities that are
passed along with the names (channels) transmitted. Ranices, a collaborativeriki environ-
ments on the web typically splits users in two classes, aathod users, with different access
rights on the system (read/write and read-only respegjivélwe represent the wiki pages as
channels, of typéinfo)™, then the following type establishes the desired accedsaiqolicy:

Author[(info)™ || uX(1Y.(User : (info)" —Y) ; Author: (info)™ — X)]

The authors may freely exchange the wiki pages with full ascights; on the other hand, when
passed on to users, the wiki pages have read-only accesqexded. The users may themselves
advertise the pages to other users, but again with readaoobss right.

The presence of recursive policies make our types a strieheion of the types found mG,
which are defined by the following productiofis::= G[Tx,...,Tn] (for n = 0 the production
generates the base cdsg). These types may be encoded into our resource types as$ollo

I[G[Tla e ;Tn]]l = G[(I[Tl]l Yo I[Tn]] )rw || uX.any : (|[T1]|,...,|[Tn]] )rW — )(].

In other words, allnG types are interpreted as channel types provided with thd fiesal
delivery policy, one that allows the delivery over all chalm the only constraint is that the
receiving channels have access to the group of the valuecdmey with them, exactly as in
(Cardelli et al., 2005).
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3.3. An on-line editorial system

We further illustrate the calculus of principals, and thpressiveness of our types, with a more
extended example, in which we formalize a simple system talleaon-line submissions and
reviews for a journal.

To help structure the specification, we introduce a serienaifros, specified in Table 2, for
type expressions and principal definitions, and then we fitvendesired system around those
macros. The system comprises four main principal idestiieurnal, Author, Editor, Reviewer,
and three main types of documents exchany@dUSCRIPT, REVIEW, DECISION. All such doc-
uments come with policies that control their flow during thémission/review process. In par-
ticular, the manuscripts are created by their authors amddioa path that includes the journal
first, then the editor and finally the reviewers. The reporigt@n by the reviewers are sent back
to the editor, then forwarded first to the journal and thenmthe authors. The editor uses the
reviews to make an accept/reject decision, which is semt twothe journal, to forward it to the
author, and to the reviewers.

An instance of the entire system may be obtained as the gkeathposition of the principals
obtained by (recursively) expanding the principal and tyyaeros in the term below:

AUTHOR || JOURNAL || EDITOR || REVIEWERA || REVIEWERB

The author principal first registers to the journal and thebnsits his/her papers; the journal
principal represents the on-line system interfacing witthars and editors; the editor principal
interacts with the journal; finally, the reviewers read thenmscripts and report back to the editor.
To ease the notation, we omit the type annotations on the wgriables, as they are directly
inferred by the type of the input channels.

The channel types describe (and constrain) the policiesrgaw the dataflow in the submis-
sion and review protocols. The authors access the systetimaregisterchannel; the registration
is finalized when the system reports back with an ack orctivdirmchannel: notice that each
author retains full access on this channel that is instefideded with write-only access to the
journal. Registered authors have confidentiality guaestbat their manuscripts will not be
distributed to readers other than the editorial systenfi@diftors and reviewers), and that notifi-
cations about their papers will not reach any principalgpthan themselves outside the editorial
system. The first guarantee derives from the structure diANSSCRIPT type. The second is a
consequence dfi) the policy defined by the typBECISION, which requires that notifications
be only sent to thdournal andReviewers, and(ii) of the structure of the journal principal that
forwards the decision only to the legitimate author. Moepthe typeREVIEW guarantees that
reviewers may not consult each other by exchanging reviews.

Clearly, other specifications are possible for the systemn.istance, the journal may wish
to shield the internal processing of a submission from esteobservations. In that case, the
specification should be structured as follows

AUTHOR || (VEditor)(VReviewer)(JOURNAL || EDITOR || REVIEWERA || REVIEWERB)

The system now splits the component principals into two spacopes. Inside the scope of the
group declaration, all principals are known, while outdide scopeAuthor has only visibility
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Table 2 Macros for the types and and principals of the on-line etdit@ystem

Types

Documents Exchanged
MANUSCRIPT =  Author[string || Journal : string — Editor : string — Reviewer : string]
REVIEW =  Reviewer[string || Editor : string — Journal : string — Author : string|
DECISION =  Editor[string || Journal : string — Author : string ; Reviewer : string]

Main channels employed in the exchanges

NOTIFYAUTH =  Author[(DECISION | Journal.Author, REVIEW | Editor.Journal. Author)™
| Journal : (DECISION | Journal.Author, REVIEW | Editor.Journal.Author)"]

CONFIRM = Author[(SUBMIT | Author)™ || Journal : (SUBMIT | Author)%]
NOTIFYJOUR =  Journal[(DECISION | Journal, REVIEW | Editor.Journal)™
|| Editor : (DECISION | Journal, REVIEW | Editor.Journal)"]
SUBMIT = Journal[(MANUSCRIPT | Journal, NOTIFYAUTH | Journal)™
|| Author : (MANUSCRIPT | Journal, NOTIFYAUTH | Journal)¥]
REGISTER = Journal[(string, CONFIRM | Journal)™]
Additional channels
EVALUATE =  Editor[(REVIEW | Editor)™ || Reviewer : (REVIEW | Editor)"|
HANDLE =  Editor[(MANUSCRIPT | Journal.Editor, NOTIFYJOUR | Editor)™]
ASGN = Reviewer[(MANUSCRIPT | Journal.Editor.Reviewer, EVALUATE | Reviewer)™]
Principals
AUTHOR = Author{(vconfirmCONFIRM) register(info, confirm).confirmsubmip.
(vna: NOTIFYAUTH)submit{draft, na).na(decisionreview...}
JOURNAL = Journal{ ! register(info, confirm).(vsubmit: SUBMIT) confirm{submi}.
submitdraft,na).(vnj : NOTIFYJOUR) handl€/draft, nj).nj(dec rep).na(dec rep) }
EDITOR = Editor{ 'handlgm,n).(ve: EVALUATE)asgngm,e) | asgngm,e) |
e(reva).e(revb). < make a decisioth: DECISION > .N{d,reva:: revh) }
REVIEWERA = Reviewer{ !asgndm,e). < read and produceview: REVIEW > .&(review }
REVIEWERB = Reviewer{ !asgntim,e). < read and produceview: REVIEW > .&(review }

of Journal®. Of course, this requires some changes in the way that thepiidisies are designed
inside the types and the principals of the system. For iggtaauthors should be prepared to
accept weaker guarantees for their manuscripts, as erprbgshe following type:

MANUSCRIPT = Author[string || Journal : string — (U X.any : string — X))]

This policy is still compatible with the intended flow of theanuscript, but it only mentions the
Journal principal, leaving it in full control on how the manuscripte circulated.

T We are implicitly assuming a standard macro expansion nmésmawhich may cause variable capture, so that occur-
rences of the group naméslitor and Reviewer get captured by the group restriction in the expansion ofieftype
and principal macros.
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Having split the system into two scopes, the code of prifsipad the policies associated
with their resources must also be restructured to breakdhedf such resources across the two
scopes when needed. Specifically, the journal may not sirfigelyard decisions and reviews
as it receives them from the editor and reviewers; insteadijlli have to notify the authors
directly, producing its own decision based on the data iikes from the principals inside the
restricted scope. The types establishing the policieseidews and decisions must be redefined
accordingly, to stop the flow of their data at the journal pipal:

REVIEW = Reviewer[string || Editor : string — Journal : string]

DECISION = Editor[string || Journal : string ; Reviewer : string]
Then, new types must be introduced to establish the flow gbtmaal decision and of the reports
that the journal sends back to the author

JDECISION= Journal[string || Author : string] ~ JREVIEW= Journal[string || Author : string]

4. The Type System

The type system is based on the syntax of types from the calafilprocesses. As we shall see,
the typing of principals is derived easily from the typindgsifor processes by rewriting the type
expressions | tused in the calculus of principals into their (the typesiyevel counterpart.
In that direction, we formalize the interpretation of thpdyexpressions | 1. First define the
notationA(G) = T — A’ to identify the entry imA relative to the groui (if any):
g(G) = X(G)=undefined
(GG T —=A)(G) = if (3j. G=Gj) thenTj — 4
else if (Ik. Gk = any) then Ty — A else undefined
(MXA)(G) = A{uXA/X}(G)
Then we view a policy as a partial function, and we defd@m(A) = {G : A(G) is defined.

Finally we define the evaluation of the type expressignrt by interpreting] as the partial
operator given below:

T|€
GIT [|4] | (G.m)

T
if A(G) =T — AthenGIT || 4] | elseundefined

> >

4.1. Type and environment formation

We assume type equality up i) fenaming of the bound variables in a polidy) permutation of
entries inside policies (e.G[T || G1: Tt — Ag; G2 : To = D) =G[T || G2: T — Ap; G1:Th —
Aq]), and {ii) unfolding of recursive policies (i.eG[T || uX.A] = G[T || A{pX.A}/X]). To ease
the notation, we often writ{X} for a policy whereX occurs free, and{A’} for the result of
substitutingX with A’ in A.

Type formation is defined in Table 3. The rules for structtypés are standard. As for resource
types, the rules enforce two constraints, namely: a §pe || A] should only mention group
names known to the type environméntand furthermore all the structural types occurringhin
should be super-types of tyde The first constraint helps guarantee a secrecy propeay@a;|
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Table 3 Good types and environments

Environments
(EMPTY) (ENV N) (ENV X)
ko Tkt n¢ DomT) Mo fg(t) CDom(") x¢ Dom(I")
o rn:tko Fx:tko
(Env G) (EnvV X)
Mo G¢DomT) Mo X ¢ DomT)
MNGro MXEko

Structural and Resource Types

(BAsE) (CHANNEL) (T-OWNER)
Mo reti=1,.,n r’-T F+rA GeDomT)
reB ME (T, )Y FEGT | A]
Delivery Policies
(A-VAR) (A-REC)
Xel Tko X Fr A{X}
Mt X I -1 pXA{X}
(A-EMPTY) (A-sTEP)
Mo Gieboml) FT<T Tkt TET Viel
Mkt e M Sia Gt Ti = A

the second, in turn, is crucial for soundness and is enfdogdle type formation rules with the
help of the auxiliary judgments 1 A, that check the delivery constraintsAragainst typdr .

The rules for environments are essentially as in (Cardiedli.e2005). A well-formed environ-
ment contains group names, typing assumptions for vasaiie names, and policy variables.
All names in an environment are untagged, and all group namtbe type of a variable/name
must be declared in the environment.

4.2. Subtyping

The subtyping relation is defined by the rules in Table 4. Ttesve judgments of the form
> 1 <7, whereZis a set of ordering assumptiofis< A’ on policies. Wherx is empty, we write
T < 1and- 1 < tinterchangeably. We overload thkesymbol to denote the subtype relation, the
order on policies as well as the partial order on capalslitieefined as usual to be the reflexive
closure of the relation defined oy < r, rw < w. Subtyping over resource types is defined by the
(t-TypPE/PoLICY) rule, which makes resource-subtyping covariant in the pmmment structural
types and in the ordering relationship over policies.

The ordering on policies constitutes the core of the subgystem. It is reminiscent of the
subtype relation on record types, and indeed, the ratiosalee same: in any context where
we expect a value that has a certain set of enabled flows, afésts receive a value which has
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Table 4 The subtype relation

Structural subtypes

(T-REFLEX)

ET ST

(T-READ) (T-WRITE)

v<r IF1 <1 - ZFT T, v<w ZFTI<1y - ZFT,<T,
TE (T, Tn)Y < (T, T T (T, Tn)Y < (T TH)Y

Resource Subtypes

(t-TYPE/POLICY)
SETLT skAa<A

(t-REFLEX)

Zhist ZHG[T | A < G[T' || &)

Recursive Sub-Policies

(A-REFLEX) (A-ASSUME)

SEFA<ZA S M <Dy TN <D

(A-LEFTUNFOLD) (A-RIGHT UNFOLD)

2, uX.Al{X} <M+ Al{uX.Al{X}} <N 20 < uX.Az{X} FA < Az{HX.Az{X}}
SHuXA1{X} <A SE A <pXD{X}

(Sus-A-1)

SFT<T SFA<A G#any ielul

2+ Gi:Ti— A4 SZGiZTi,—»Ai/
ieltd e

(Sus-A-2)
Dom(A") C Dom(A) SFA<A  any ¢ DomA)U{Giliel
DomA)N{Gitict =0 (EFTa<Ti ZFA<A Viel)

Ih(A+any:Tg—Ag) < (A'+ZGi Ti—4)
e
(SuB-A-3)
DomA) CDom(A)  SFTg<T, SFAq<d, SkAtany:Ty—Ag<d
DomA)N{Glic =0 (EFT<T, SFA <A, Yiel)

SkH(A+any: Ty —>Ad+ZGi (T =0 < (A +any: Ty — AY)
ic

14

additional legal flows. Rule ($8-A-1) captures this idea for policies without the default gntr
any. For policies containing the default entry the details antatler. Rule ($8-A-2) states that
a higher policy may include an entry for a groGpnot occurring in a lower policy, but only
when the lower policy contains the default entry with a cotifgp@policy. On the other hand, if a
policy contains a default entry, then all lower policies teentain a default entry as well. Rule
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(Sue-A-3) handles this case: it generalizes rul@gsA-1) and further requires the policies for
the entries; in the lower policy that do not occur in the higher policy tototathe default entry
of the higher policy. Thus, for instandeny : T™) < (G1: 1" + G2 : 1V) by rule (B-A-2), as
both the entries in the higher policy are safely supportethbydefault entry in the lower policy.
On the other han@Gy : T" + any : ™) £ any : T as the lower policy includes an ent@y with
a higher type than that expected by the higher policy (thésaks the premises of (B-A-3), the
only applicable rule in this case).

The remaining rules in table 4 are largely standard. Thesriderecursive policies are pre-
sented in a co-inductive style and, consequently (Gapeyay, 2002), the presentation does not
include a general transitivity rule for types and policibst(see Section 6.3).

Collectively, the ordering on types and policies yields thea flexible system: notice, to
this regard, that the subtype relation enables the deliwEwmalues at types that may vary non-
monotonically along their delivery chains. This, in turnkea it possible to encode interesting
access policies such as those found in the so-chiteatal DACmodels (Samarati and di Vimer-
cati, 2001; Sandhu and Munawer, 1998). These are based aeatddized authorization struc-
ture by which the owner of an object delegates other usersigheto specify authorizations,
possibly with the ability of further delegating it. In patilar, in the so calledriginator con-
trolled policies (McCollum et al., 1990), the owner retains contnagr its delegates and the way
these grant permissions. An example of such policies isngyethe type below, wher®wner
specifies how a given resource should be distributed to tinzipals,Alice andCarl:

Owner[(T)™ || Alice: (T)" — Carl: (T)™ — Alice: (T)"]

A channel with this type must first be delivered, in read maddlice, who is delegated to re-
transmit it toCarl with the additional write capability; only then Blice allowed to receive the
write capability fromCarl. This delivery policy is imposed by the owner to ensure fRiate will
not write on the new channel until it has been received alsGday

A similar example can be recovered from the literature opigraphic protocols. Consider
the case where two partieslice andBob, wish to establish a private exchange. To accomplish
that, Alice creates a fresh name, sepg, sends it to a trusteSlerver and delegates it to forward
the name tdBob so that the exchange may take place. Here Sdreer should only act as a
forwarder, and not interfere with the exchanges betwidaf andBob. This can be achieved by
the typing

cag : Alice[(data)™ || Server : (data)” — Bob : (data)™]

in which theServer receives the channel in read-only mode to protect the iityegfrthe message
forwarded toBob.

One may wonder how policies such as the ones we just desamiagcbe implemented in
practice, as they require principals to forward capabgithat they do not possess. Indeed, in a
trusted environment, we may rely on the typing system togmtaigainst any misuse of the ca-
pabilities, by typing all principals. In an adversarialtseg, instead, a capability may be realized
as a secret protected by encryption so the intended retiggenaccess it, while the forwarders
can not (cf. (Bugliesi and Giunti, 2007)).
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Table 5 Typing of dynamic processes.

(PROJECY) (SUBSUMPTION)
ra:tko rFa:v Fi<t
MNa:tha:t N-a:t
(DELIVERY)

FEng tG[T A TEM:Gm[Tm || Am] A(Gm) =T1 — A1

M= Nipn G[T1 || A1)

(INPUT)
Me-a:G[(te,...,w)" |A] MyX:tq,...,X%:TkEFA 0<Kk

FEa(Xg:T,... X Tk).A

(OuTPUT)
r-a:G[(t,....,w)" |[A] THFA (THEb:T TlG=1 Viel0.K)

rEab,...,b).A

(NEW G) (NEw n) (PAR) (DEAD) (REPL)
rNGHA rn:tFA r'-A kB Mo r=A
e (vG)A M (vn:1A r'-A|B r=o0 r=1A

4.3. Typing of processes

The typing rules for processes, in Table 5, complete thesptation of the type system. As usual
the system is meant to provide static guarantees of sousdnesce the rules are intended for
(static) processes. On the other hand, our flow-sensitimeastcs yields dynamic processes,
and then, to state and prove subject reduction we must dgyisey rules for processes as well
as dynamic processes. Since the latter include the forneetl{e mapping that erases the flow
annotations) we give just one set of rules, for dynamic sses.

We have three typing rules for namesRrR@IECT) and (SUBSUMPTION) and (DELIVERY).
Collectively, they allow each name 1 (indeed, each instancg of n) to be typed at (any super-
type of) the typet known to the environment, as well as at any of the types meation the
delivery policy associated with. As we remarked earlier on, all names occur untagged in the
environment of the typing judgements. Thus, in th&g¢PecT) rule, whena is a variable, all
occurrences o0& denote the same symbol. Instead, when projecting a nameylthehould be
read as follows:

Mn:tko

Fn:tkEng:t
A name with a composite tag may then be typed by repeatedcapipls of the ([ELIVERY)
rule. This is the way the type system allows a hame to be typaitlits delivery types, a property
which is crucial in the proof of subject reduction. To see wdonsider rule (OTPUT), the core
of the delivery discipline. Letn be emitted on a channel, say G[(1)"], and assume that is
known to the environment at the type= F[T || A]. The conditiort | G = T in rule (QUTPUT)
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verifies thatG is indeed one of the next ‘hops’ iy, and that the type at whicim should be
delivered toG is 1, the type of values carried by Given that the types of the names known to
the environment must be well-formed, the type formatioeswdnsure that the original structural
type ofmis a subtype of the structural componentpthus also a subtype of the type at which
n expects to receive its values: this guaranteesrnhatay safely be received at Further re-
transmissions ofn will undergo the same checks by the @ uT) rule, but now with the types
advertised at the subsequent hopaAirin order to prove subject reduction we therefore need to
be able to typenat all such types.

We show the effect of value propagation in the typing systeith & typed version of the
print spooler example discussed in the introduction (tmeesaffect can be verified on the more
complex example of the on-line editorial system of Sectihri8t

JOB = Client[data || Spooler : data — Printer : data — Client : data]
and consider the following composite process:

(v j:JOB)3(j).ack(x:JOB | Client)....
| Is(x:JOB | Spooler).print(x)
| 'print(x: JOB | Printer).(... | ack(x))

Here, the client creates a new jgbsends it to the printer and waits for notification. If we
assume the typings: Spooler[(JOB | Spooler)™], print : Printer[(JOB | Printer)™], andack:
Client[(JOB | Client)™], it is a routine check to verify that all types involved arelermed
and that the process type-checks. Notice in particular, thevtype ofj must change in order to
match the types that annotate the input variables of ther@iaalong whichj is delivered.

If names were used linearly in the calculus, the effect of (ELIVERY) could be achieved
more directly by changing the typing afin I', in ways similar to what is done in, e.gession
types(Honda et al., 1998). In our system, instead, multiple omnees of the same name may
co-existin a process, and have different types: we emploiettys to keep track of all such types.

We remark, however, that rule @DIVERY) is not needed for the typing of static processes, as
the rule only applies to names with a non-empty tag and thése @nly dynamically as a result
of reduction. In fact, the typing system for static process#n be recovered from the system we
just presented by dropping rule EDIVERY) and interpreting all names and values as untagged
(hence all processes as static processes). We-adtee typing relation for static processes, and
write [ Fs P to note a derivable judgement in this system. For the reasojust discussed we
have:

Lemma4.1.T s P ifand only if I = P for all static processes.
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4.4. Typing of principals and systems

As anticipated, the typing rules for the calculus of prirdgpderive directly from the rules for
static processes we have illustrated. They are reportedvbel

(PRINCIPAL) (CowmpP) (NEWG) (NEW)
G{P} well-formed T g "P™ M-S reg NGrS Mn:"1'+S

I+ G{P} NrN-S || S = (vG)S r=(vn:1)s

We note with™ 1™ the resource type obtained by evaluating each type express| 1 occur-
ring within T as defined earlier in this section. We also note Wi the process obtained by
replacing each typewith "1 in P. Notice in particular that, being a partial operator, so is the
transformationt- . We tacitly assyme that all type expressions are well-ddfine well-typed
system.

A principal is well-typed if so is its body, and in additiohgtbody respects the well-formedness
constraint imposing tha® only creates new names controlled Gyr by any of the local group
names thaP itself creates with a group declaration. In a compositeesyseach principal has
visibility (via I') of all the free group names occurring in all the other pipiats of the composi-
tion. The restriction operator is typed just as in the undeg process calculus.

5. Type safety

We continue the presentation of the type system by elucigés main properties. To state such
properties, we introduce one additional (partial) operatotype environments. Given a type
environment™ and a sequence of naméswe letl [¢] denote the corresponding sequence of
groups obtained from the types tHaassociates with the namesdninductively:

el
Mn: )

The intuition here is thad is the sequence of channels traversed by a name along itsafhalv,
I'[¢] is the corresponding sequence of groups. Thus, given adaggeeny, ' [¢] expresses the
flow of nin terms of the groups of the channelfows through: that information can be used to
assess the safety of these flows against the delivery poblaty tassociates with.

In the rest of this section we state and prove the safety ptiepeof the type system based
on these intuitions. Theorem 5.1 shows that in all well-tydgnamic processes, any access to a
channel is permitted by the type of the channel, and the aegtsrare passed over the channel
at subtypes of the expected types. Theorem 5.2 shows thhtirelatyped dynamic processes
names flow according to the delivery policies expressed bir tigpes. Finally, Theorem 5.3
shows that such properties are preserved by reductione@iokly, these result provide static
guarantees that in any computation spawn from a well-typgstem (hence static process), all
resources are accessed and delivered according to thépalfined by their types (cf. Corol-
lary 5.1).

€
if (F(n)=GIT ||A]andl"[¢] # L) thenG :: T[] else L

> 1>

Another approach that often adopted in the statement amf pfdype safety (see, for in-
stance, (Hennessy and Riely, 2002a)) relies on the definitian explicit notion of error and
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on a proof that well-typed terms do not have error transgtidile chose differently, and stated
our safety properties directly in terms of types. The tworapphes are equivalent, we find ours
technically more elegant and concise.

5.1. Preliminary lemmas

Lemma 5.1. Assumel F N : G1[T1 || A1]. Thenl'(n) = G[T || A] with G1 =G, T < Ty, and
M1 Aq.

Proof. By induction ong. The proof requires the following result which follows bydinction
of the derivation ofA < A':

if T AandA <A, thenl 1 A 1)

We proceed with our inductive proof an

cased = €. The hypothesisib F n: G1[Ty || A1], that must have come by (BSUMPTION) from
I(n)=G[T || 4] < G1[T1 || A1], henceGy = G andT < Ty, thusl -1 Ag by (1).

cased = ¢ - m. The hypothesis must have come by a number o SJMPTION) fromT Nig) -
G1[T{ || &7] with G1[T{ || A]] < G1[T1 || A1), and (DELIVERY) from T - Nig) G1[T" || &),
FEm:F[Te || A, andF : T — A} e A orany : T/ — A} € A'. Froml + Ng) - G1[T || &),
by induction we havé (n) = G[T || A] with G1 =G, T < T’ andrl -t &’. The last judgment,
together withF : T/ — A} € A (orany : T{ — A} € &), givesT < T andr 1 Aj. Now, from
G1[T] || &}] < Ga1[Ty1 || A1] we haveT] < T; andA] < Aq, henceT < T/, and we conclude
[ WAV by (1)

Notice that the statement of the lemma does not explicitigte andA;. However, we have
thatA is the initial delivery policy for the name, whereas); is the policy forny, that is the
residual policy fom after the first delivery steps describeddpy ]

As a corollary of the previous lemma we have:

Lemma5.2. Letbel Fng) : Ga[(t,..., )"t || Ag] andl =Ny : G2[(p1,---,pn)¥2 || A2]. Then
h=kandonehab Fn:G[T || Al with G=G1 =G, T < (11,...,Tk)"t andT < (p1,...,Pn)"2.

We need two further (standard) lemmas in the proof of subgshiction.

Lemma 5.3.

— Subject Congruencédf I' - AandA = B, thenl - B.
— Substitutionlf ,x: p - Aandl - ny, : p, thenl” = A{ "I/, }.

Proof. Subject Congruence has a standard proof: we prove the taerstati) ' - A and
A=B implyl B, and(ii) ' H A and B= Q imply ' - B, by simultaneous induction on the
derivations ofA =B andB = A.

As to Substitution, we must prove the following two statetsen

1 IfF,x:pra:tandlk ng :p, thenl -a{ "/} 1.
2 IfI,x:pkAandrl Fny :p, thenl = A{"¢]/,}.
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Point 1 follows by induction on the derivation 6fx: pF a: T and a case analysis on the last
rule applied. The proof uses the following standard stie@ging property:

Mx:pFa:tandx#athenl -a:T. (2)

(PROJECY) If a= x thenp = 1. The thesis id” F ny; : p which is true from the hypothesis.
Otherwise, ifa # x, then the thesis i6 - a: T which comes from the hypothesis by (2).
(SuBsumPTION) The hypothesis comes fromx: p - a: v andt’ < 1. Then by induction we

havel - a{"¢//4x} : 1" and we conclud€ - a{ "¢/} : T by (SUBSUMPTION).
(DELIVERY) In this case # x, then the thesis iE - a: T, which comes from (2).

Point 2 follows by induction on the derivation bfx : p - A and a case analysis on the last rule
applied. We only show here the interesting cases.

(INPUT) ThenA=a(y1 : T1,..., Yk : Tk).A1 and the hypothesis comes frdmx: p,y1 : T1,...,Yk:
Tk F Ay andl,x: pta: G[(t1,...,Tk)" || 4]. By induction we have ,y1 : T1,...,Y¥k : Tk b
Ar{"0l/x} andl = a{"0l/x} 1 G[(T1,...,T)" || 4], thusl = A{"¢l/x} by the rule (NPUT).

(OutpPuT) ThenA=13a(by,...,bx).A; and the premises afex: pFa: G[(T1,...,T)" || A], T, X:
pEAL M X:pEbi: G[T ||Ai]andG: T — Af € Aj orany : T/ — A € A with Gi[T/ || A <T.
By induction we have™ - a{"®/x} : G[(T1,..., k)" || A], T+ A {"0l/x}, T+ by {01/} :
Gi[Ti || Ai]. And we concludé + A{"%/4} by applying the rule (QTPUT).

(NEw m) ThenA = (vm: 1)A; and the hypothesis comes frdnx: p,m: 1= A; andl", x: pFT.
By induction we havé ,m: T+ A;{ "W/, } and we conclude by (Ew m).

O

5.2. Main Theorems

In the proofs below, in particular in the proof of Theorem,5a2 make explicit appeal to a
transitivity property of the subtype relation. As we notdceur presentation of subtyping does
notinclude a general rule of transitivity: on the other handwasshow in Section 6, the form
of transitivity we rely upon in the proofs of this section daedeed hold for the typing system.
Also, we refer to the following, standard, notion of evaloat(or dynamig, single-hole context:

Ciu=— | (vn:7)C | (VG)C | C|A

and letC[A] note the capture-free substitution of the closed dynantcessA for the hole ~’
inC.

Theorem 5.1 (Access Control).Let A= C[h@(al, ...,a).B] be a closed well-typed dynamic
process. Assume thdt - Tigj(as, ..., a&).B for a suitablel". ThenT = ny, : G[(T1,...,Tk)"]
and for alli = 1,...,k, one had I g : i, 6;|G is defined, and; |G < T;. Similarly, if A=
C[nM (X1:P1,--.,%:p1).B]with T N (X1:P1, - -, X1:P1).B, we have - gy : G[(p1,---,p1)"].

Proof. By an inspection of the typing rules. ]
Theorem 5.2 (Flow Control). Let’ - Awith A closed. Assume, further, th&t- A depends on
the judgment F ny @ T with ¢ # € (i.e.T - njy; 1 T occurs in the derivation that provest- A).
Thenn € Dom(I") andl'[¢] # L. In addition,I (n) = p with p such thap|I'[¢] is defined and
pIr[9] <t
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Proof. By induction on the length a§.
casep =m. Then the hypothesib i~ ni, : T comes by several (88SUMPTION) rules from
I ng 7 andt <1, and an application of (BLIVERY) from I =n: G[Ty || Aq], T+
M: Gm[Tm || Am] @andGm : T" — A" € Ag orany : T — A’ € Ag with U = G[T’ || &]. The
judgmentl - n: G[Ty || A1] must have come by (8BsumpTION) and (RROJECT) from
I(n)=G[T || Al = p andGJT || 4] < G[T1 || A1], which impliesA < A;. Note that the thesis
we want to prove i | Gy < 1. Let us distinguish two cases:

— Gm:T'—= A € Apandt = G[T' || A']. FromA < A; we have two sub-cases:
— Gm:T" = A" e AandG[T” || A”] < 7. In this case | Gm = G[T” || A"], then from
G[T” || A"] <1’ andT’ < T, we conclude by transitivity.

— Gm ¢ Dom(A) andany : T” — A" € A with G[T” || A”] < T'. In this casep | Gm =
G[T” || A"], then fromG[T” || A”] < T andt’ < 1, we conclude by transitivity.
—any: T — A € Ay andT = G[T’ || &']. with G, ¢ Dom(Az). From A < A; we have

any : T — A” € Awith G[T” || A”] < T'. We have two sub-cases:
— Gm:T"—= A" € AThenp | Gn= G[T” || &”], and fromA < A; (rule (SuB-A-3)) we
haveG[T" || A”] < G[T’ — A'] =T'. Then we conclude by transitivity since< t.
— Gm¢ Dom(A). In this case | Gm = G[T” || A"], then fromG[T"” || A”] <1’ andt’ <T,
we conclude by transitivity.
cased = ¢::m. In this case the hypothedis- Nig) : T comes by a number of (BSUMPTION)
from I - ng) : T andt’ <1, and an application of (BLIVERY) from I - ng : G[T1 || Aq],
FEm: Gm[Tm || Am] andGm: T/ — A" € Ay orany : T — A" € Ay with T = G[T' || &]. From
[k ng : G[T1 || A1, by induction, we havé (n) = G[T || A] = p andp | ['[¢] < G[Ty || Aq].
Thenp | I'[$] = G[T* || A*] andA* < A;. Let us distinguish two cases:
— Gm:T'— A" € Ay andt = G[T' || A']. FromA* < A; we have two sub-cases:
— Gm:T" = A" € A* andG[T” || A"] < 1. In this casep | [[$p::m] = G[T" || A], then
from G[T” || A"] <1’ and?’ < 1, we conclude by transitivity.
— Gm¢ Dom(A*) andany : T” — A” € A* with G[T” || A”] <T'. Inthis case | [[¢::m] =
G[T” || A"], then fromG[T” || A”] < T andt’ < T, we conclude by transitivity.
— any: T'— A € A; andT’ = G[T' || &]. with Gy, ¢ Dom(A7). FromA* < A; we have
any : T” — A" € A* with G[T” || A”] < T'. We have two sub-cases:
= Gm:T" = A" € A* Thenp | [[$:m| = G[T” || A”], and fromA* < A; (rule (Sus-
A-3)) we haveG[T” || A”] < G[T' — A'] = T'. Then we conclude by transitivity since
<1
— Gm ¢ Dom(&). In this casep | I'[¢::m] = G[T"” || A”], then fromG[T” || A”] < T’ and
1’ < 1, we conclude by transitivity.
U

Theorem 5.3 (Subject Reduction).If ' - AandA —* B, thenl - B.

Proof. By induction on the derivation ok — B and a case analysis on the last rule applied.
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— A= [q;](ml[q;l],---,ﬁk[cpk])-Al | Ny (X1:T1,...,X: Tk).Ap. Froml' - Awe have

Mg Gty )™ [ A (1)
Ay @
FEmp GTa] i=1.k (3
NG =T =8 G[T|&]=1 (4
Myt G(Ta, .., T)" || A (5)
FoX1iTe,. X Tk A (6)

The equalities in condition (4) correspond to the equiviatemditionsG; [T; || A | G’ =T1]
required in the typing of the output prefix of the process iegjion. From (1) and (5), by
Lemma5.2we havE Fn:G[T ||A], =G, T < (1},...,1)" andT < (11,...,T«)". The
last two judgments imply; < Tj, i = 1,..,k. Now, from (3),[ - n: G[T | A] and (4), by

(DELIVERY) we have - myjy,.., : T{; from this judgement ang < 1;, by (SUBSUMPTION),

we derivel = myjy,.q 1 T, | = 1,.., k. The last judgments, together with (6), by the Substitution

Lemma givel + A2{ Mieizn /, 1, that together with (2) by (&), giveT - B as desired.

— IncaseA= (vni1)A; — B = (vn:1)B; sinceA; — B;. Froml' - Awe havel ,n:TF A
andrl” - 1. By induction we also have,n: T+ B1, and we conclud€ + B by an application
of (NEw n).

— IncaseA = (VG)A1 — B= (vG)B; sinceA; — B1. Froml - Awe havel',G - A;. By
induction we also havE, G i~ B;, and we conclud€ F B by an application of (Ew G).

— IncaseA=A; | A, — B =B | Ay sinceA; — B;. FromTl - A we havel’ - A; and
I" = Ax. By induction we also have - B; and we conclud€ + B by an application of (RR)
fromTl - By andl - As.

— IncaseA= A1, Ay — Bj andB; = B. Froml F A, by Subject Congruence, we have Ag,
then by inductior” - B; and again by Subject Congruerice B as desired.

O

We conclude the proof of type safety by projecting the raspitbved in Theorems 5.1 and 5.2
on static processes, and then on systems.

Corollary 5.1 (Safety). Let Sbe a closed system, and assume Sfor somel". Then, for allA
such thaS—* A, one had” - A and both Theorems 5.1 and 5.2 holdfof

Proof. FromTl” I Sand the format of the typing rule for principals, we know thats [S. By
Lemma Lemma 4.1, this implidst [, and then the proofs follow by Theorem 5.3.

We remark that while the safety theorem is stated for sysfemusvalently, for static processes),
Theorems 5.2 and 5.3 could not be meaningfully stated withppealing to the flow tags at-
tached to names. In particular, it is not true thiat; A impliesl” + |A| for all dynamic processes
A. To see that, note that- A may depend on two tagged nanmgs; andnyy,) being given differ-
ent types (not related by subtyping) by thex{DvERY) rule. On the other hand, if we erase the
tags, we lose the possibility of appealing to the&e(IDvERY) rule, and consequently the judgment
I" - |A| fails. For this very reason, Theorem 5.3 does not hold, ireggnunder the reduction



A Type System for Discretionary Access Control 23

semantics— of (Cardelli et al., 2005). Interestingly, however, we canaver subject reduction
for — provided that we make adequate assumptions on the strugfttire types occurring i
andA. We formalize the relationship with the type system of (@dlrét al., 2005), showing that
our type system is a conservative extension of the type rsystetG.

Given amG type environmenf and anG processP, let [['] and[P] be the type environ-
ment and process that result from applying the encodingpdgyfrom Section 3 (on page 9)
systematically to all types occurring inandP.

Now call a typesimplewhen it is the encoding of &G type; similarly, call a type environment
and a (dynamic) procesimplewhen all the types occurring therein are simple. Then we have

Theorem 5.4 (Relationships withnG). I' - P is derivable innG iff [["] s [P] is derivable in
our type system.

Proof. (Sketch The proof follows by observing that if we restrict to simpiges, then the
type formation rules as well as the (@PuT) rule for processes coincide with the corresponding
rules inTiG. Now, if I and A are simple, it is not difficult to see théitk- A impliesT - |A].
Intuitively, the reason is that simple types are insersitiv flows: this is a consequence of the
delivery type being the same at all hops in a simple type. [

Based on this result, we immediately obtain subject redadtr simple processes.

Theorem 5.5 (Subject Reduction for simple processespssume” g P with I" simple, and?
closed and simple, and IBt—* Q. Thenl" FsQ.

Now the secrecy theorem of (Cardelli et al., 2005) can bestabdished in our system with no
additional effort for simple processes.

6. Decidability of typing and subtyping

As we noted earlier, our presentation of the subtype relataes not include a transitivity rule. In
this section we showi) that this make it possible to prove that the subtype reldiatecidable,
and (ii) that the form of transitivity used in the proof of Theorem &till admissible in the
typing system. By the decidability of subtyping, we thenigethat typing is decidable as well.

We start by introducing the procedu8eb- t ypi ng(p,o) outlined in Table 6, which decides
the subtype relation. The procedure implements a bottorseapch for a derivation rooted at
F p < o: at every step, it first tries to apply the rulesgREX) and A-ASSUME) and in case it
fails, it looks for a possible rule according to the struetof the types or the delivery policies.
In particular, in case of resource typas< T2 and structural type§; < T,, the procedure checks
whether the inequality was already treated, and, in tha,éadoes not analyze the pair further.
In fact, since recursion occurs in delivery policies,< 12 andT; < T, can only appear in the
conclusion of the derivation for 11 < 12 and- Ty < Ty, respectively.

In detail, the procedure builds a triple of pairs of sgtsH'), (I,l") and (J,J'). The sets
(H,H’) keep track of all the pairA; < A, generated and processed respectively, the(bdts
keep track of all the pair§; < Ty, and finally the set§J,J') deal with the pairs; < 1. Collec-
tively, these sets make it possible to control the applbcatif the rules numberedlin Table 6 —
these are the only rules which extend the $&tsandJ — and in particular to ensure that such
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Table 6 Sub-typing Procedure.

Sub-typi ng(p,0)
define J={p<o}and H=H'=I1=1"=J =0
while HUIUJ#0 do

if J#£0 pick 1<t €J and apply one of the fol | owing rules:
1. if 1<t el then J=J\{t1<7};
/* as T<T has been already treated */
2. if =7 then J=J\{1< T}
/* according to (t-REFLEX) */
3. otherwise let T=G[T | A] and U =G/'[T'| A"
if G#G' then return fal se
else J=J\{t1<t}; J=Ju{t<?U};, I=I1U{T<T}, H=HU{A<A'};
/* according to (t-TYPE/PoLICY) */
if 140 pick T<T el and apply one of the following rules:
1. if T<T el then I=I\{T<T'};
/* as T <T has been already treated */
2. if T=T then I=1\{T<T'};
/* according to (T-REFLEX) */
3. otherwise, let T=(11...15)" and T' =(1}...7,)"
if vZ&v' or n#mthen return fal se

!

else  I=I\{T<T} I'=1"u{T<T'}
switch v/ caser: J=Ju{t <Tt}i=1.n
case w:  J=JU{T <Ti}icL.n;
case rw: if ti#T1 for sone i then return fal se;

/* according to the structural rules */

if H#0 pick A<A €H and apply one of the following rules:
1. if AN eH then H=H\{A<A'};
/* according to (A-ASSUME) */
2. if A=A then H=H\{A<A'}
/* according to (A-REFLEX) */
3. otherwise H=H\{A<A}, H=H'u{A<A'} and
a. if A=pXA{X} then H=HU{A {uX.A1{X}} <A}
/* according to (A-LEFT-UNFOLD) */
b, if A= ZiGi (T — 4 and A = pX.A{X}
then H=HU{A <A {pXA{X}}}
/* according to (A-RIGHT-UNFOLD) */
c. otherwise call PolicyExt(A,A H,H 1"
return true

rules process every pair appearingdru | UJ at most once during the computation. If none of
the rules can be applied aktlu | UJ # 0 then the procedure fails, otherwise it succeeds.

6.1. Termination of the subtyping algorithm

To show termination, we have to count the pairs that appeldnin UJ during the computation
and to prove that there are finitely many of them. Basically,nged to show that a type, and a
recursive policy in particular, has a finite number of supressions. As noted in (Gapeyev et al.,
2002), proving this, seemingly obvious, property requaregiite some of work. The difficulty is
that there are two possible ways of defining the set of ‘claaditexpressions’ of a type. One,
the top-downsub-expressiofy, corresponds directly to the sub-expressions generatéeby
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Table 7 Policy-extension Procedure.

Pol i cyExt (A7A’7H,I,H’7I’)

A if A= ZieluJGi ‘T — A and A = Ziel Gi ZT}’—»A{ with any ¢ {Gi}icius
then H=HU{A SAf}ig and | =1U{T STi/}iel;
/* according to (Sus-A-1) */

B. if A=Ajtany:Tqg—24g and &' = ’ﬁZieIGi:TﬁAi
with any ¢ DomA7) U{Gi}ier and Dom(A]) C Dom(A1) and {G;}iei NDomA; = 0
then H=HU{A; <A JU{Ag <AlYier and | =1U{Tq < Ti}izel
/* according to (SuB-A-2) */

C if A=M+any:Tg—Ag+ Y, Gi:Ti— A and N =N +any: T)— Ay
with DomA;) C Dom(A;) and {Gi}ic NDom(A}) =0
then H=H U{A1+any 1 Tg — Ag SA&}U{Ad < Aa}U{Ai < Aij}i:l_.n
and | =1U{Ty STd/}U{Ti STd/}iel;
/* according to (SuB-A-3) */

D. otherwise return fal se
/* as any appears just in A" and not in A */

procedureésub- t ypi ng, and by the rules in Table 4. The other, defibetom-upsub-expression
Cpu, Supports a straightforward proof that the set of closedesydressions of every closed type
is finite. The two relations are defined on the expressans 1| T | A by the following rules:
Common rules:

ecT eCA
TCT TCT ACA eC G[T [|A] eC G[T || 4]
eCT; eCT eCA eCA
— (i=1...n)
eC (11...Tn)" eCG:T—A eCG:T—A eCA+AN
Specific rules:
ey A{pX.A{X}} e{X} Cpu A{X}
el UX.A{X} e{PX.A{X}} Cpy pX.A{X}

The proof of termination proceeds by showing that is a subset of ,, as done in (Brandt and
Henglein, 1998). We start with the proof of some basic priggrFirst the transitivity of- .

Lemma6.1. If &1 Cig & andey Ty €3, theney Cig €3.

Proof. By induction on the derivation e Ciq €3. ]
Moreover, the number of bottom-up sub-expressions is finite
Lemma 6.2. The set{€ : € Cy, €} is finite for eacte.

Proof. Straightforward structural induction a@ using the following observations, that are
consequences of the definitionof,,.
— if e= X, then{€ : € Cpye} = {X};
— if e=uX.01{X}, then{€ : € Coue} = {e}U{€{e} : €{X} Coua{X}};
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— e=G[T || 4] with T = (11,...,Tn)", then{€ : € Cpye} = {e} U{€ : € Cpu Ti}i=1.nU{€ :
¢ Cbu A(G,)}G’eDom(A)- ]

As done in (Gapeyev et al., 2002), to prove that the bottonsutpexpressions of a type in-
clude its top-down sub-expressions, we need the followeéngnha, which relates bottom-up sub-
expressions and substitution, and whose proof followsities lof (Gapeyev et al., 2002).

Lemma 6.3. For every expressioe{ X}, if € Cp, e{A} then eithere’ Cp, A or € = €’'{A} for
somee”’{X} with €'{X} Cp, e{X}.

Proof. Structural induction o, see (Gapeyev et al., 2002). [
We can now relate the two notions of sub-expressions.
Lemma 6.4. If eCyg € thene Ty, €.

Proof. Proceed by induction on the derivationeiZy e, and show that the rules faryy are
sound forCp,. The only interesting case is the rule
el A{pPXA{X}}
el UXA{X}

Assume thae Cp, A{uX.A{X}} then Lemma 6.3 says that eith@) e Cp, pX.A{X} or (ii)
e= & {pX.A{X}} with €'{X} Cp, A{X}. The casdi) gives the conclusion of the rule. In case
(i) concludee Cp, uX.A{X} by applying the rule

e”{X} Ebu A{X}

€' {uX.A{X}} Cpy pX.A{X}
O
Lemma 6.5. The set{e: e Cy T} is finite for eactt.
Proof. Apply Lemma 6.2 and Lemma 6.4. ]

We are ready to prove the termination of the sub-typing ptooe
Theorem 6.1 (Termination). The subtyping procedure stops on every input.

Proof. The procedure may loop only if one of the rules marke®@applies infinitely many
times. Since the procedure first che¢ks |’ andJ’ , rules numbered may be invoked at most
once on every pair that appeardHru | UJ. The only way to extend the setUl UJ is by one of
the rules3. All the pairs generated by these rules are top-down subesgns of the current pair.
AsHUI UJis initialized to the input paifp < o}, the transitivity ofCq (cf. Lemma 6.1) says
that all the elements which may possibly appedfinl UJ are in{e< € : eCy 0 and€ Ty p},
which is a finite set by Lemma 6.5. Then rukemay be applied a finite number of times. Hence
the procedure always stops either with success or failure. ]
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6.2. Soundness and completeness of the subtyping algorithm

We proceed with our analysis by showing the algorithm carfBee soundness part of the proof
is straightforward.

Theorem 6.2 (Soundness)If the call Sub- t ypi ng(p, o) succeeds, then there exists a derivation
for Fp<o.

Proof. The procedur8ub- t ypi ng(p,o) builds a derivation fot- p < o according to the rules
in Table 4: every paiH Ul U J, H' that appears in any iteration can be interpreted as the set of
sub-typing judgment$H’' - e < € : e < € € HUI UJ}; the procedure returrtsr ue when it
reaches the axioms of the calculus. [

The proof of completeness is more elaborate. It draws ongatehds, a corresponding proof
for the system of I/O-types in (Pierce and Sangiorgi, 1986)in that case, an inductive proof
on derivations does not work, given the co-inductive natfréhe presentation of the subtype
relation (cf. the format of the rules for recursive subtypand the presence of th&-ASSUME)
rule). To prove our claim, we therefore introduce a simolatielation over closed types and
show that(i) it contains the subtype relation, afig is decided by thé&ub-t ypi ng algorithm.
The two results are proved in Theorems 6.3 and 6.4, respéctilogether with Theorem 6.2,
this proves that subtyping is decidable.

The definition of the simulation relation extends the cquogsling definition found in (Pierce and
Sangiorgi, 1996) by viewing our resource types as autoroafapcesses, performing transitions
corresponding to the structure of the delivery policieyttepresent. The transitions on delivery
policies are detailed below.

A (N{X},T)
M+ (G:T = N)+0; -2 (N, T)  pXA -3 (AN {pX.ALT)
Two remarks are in order. Firstly, due to the definitiod\pthis transition system is deterministic,
namely the seteach;(A) = {(A,T') : A S, (&', T")} is either a singletod (4',T')} or the
empty set. Secondly, it is easy to verify that the labelladsition system respects type equality,
as stated by the following lemma.

Lemma 6.6. For every group nam@, we havereach; (WX.A{X}) = reachs (A{pX.A{X}}).
In defining the simulation relation, we find it convenientritroduce additional notation.
act(A) £ {G: reach;(A) # 0}

Item 1 of the definition below relates only types with the sgyraup and compatible policies.
Item 2 says that type simulation extends the tree sub-datioe of (Pierce and Sangiorgi, 1996),
which deals only with structural and recursive types. Iteris inspired by the definition of
simulation on labelled transitions systems.

Definition 6.1 (Type Simulation). Let R; a binary relation on types$3, a binary relation on
structural types an®s a binary relation on Delivery policies. The triple = (Ri,Rx,R3) is a
type simulation when:
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for every(G[T || Al,G'[T' || &']) € Ry we haveG =G/, (T,T') e Rz and(A,4) € Rg;
for every((T1,...,tm)", (T, ...,Th)" ) € R we haven=m,v <V’ and forevery = 1,...,m:
(i) if V' =w, then(t;,T}) € Ry; (i) if vV =r, then(t],T;) € Ry; (iii) if vV = rw, thenti = 1.
3 forevery(A,A') € Ry we have:
(@) if A -5 (A1,T) thend -5 (A}, T’) with (A1,A}) € Rs and (T, T’) € Ry, otherwise
A2 (A, T with (A1,4)) € Reand(T,T) € Ry;
(b) if A =, (A1,T) then for every(A1, T') € Ugeacta)\acta) f€achs (&) it holds (Aq, A7) €
Rz and(T,T') € Re.
We say that the type simulates the type, symbolicallyo < p, if there exists a simulation

R = (R1,R2, Rs) such thato,p) € Ry. Likewise, we say that the polic simulates the policy
A, symbolicallyA < A, if there exists a simulatio® = (Ry, Ry, Rs) such tha{A,A') € Rs.

Lemma 6.7. The relation< on types and delivery policies is reflexive and transitive.

Proof. For reflexivity, consider the identity relationsld= {(t,T) : T is a resource typé,
ldr ={(T,T):Tisastructural typé and Iy = {(A,A) : Ais a delivery policy}. Thenld =
(Id¢,1d7,1da) is a simulation. For transitivity show that(R}, R,, R;) and(R{, R}, R;) are simu-
lations then the triple of relation®y, Rz, Rs), defined age,€’) € R, iff there existse such that
(€,e) e R and(e€’) e R fori=1,2,3, is a simulation as well. O

Type simulation is well defined as it respects type equdlityact, it is straightforward to see
that it is preserved by renaming of bound variables and petion of delivery constraints in-
side delivery policies. Moreover the following lemma shdwat also the unfolding of recursive
policies preserves type simulation.
Lemma 6.8. For every structural typ&, groupG, delivery policyA and typet it holds:
1 pXA{X} <A ifand only if A{uX.G[T || A{X}]} S &,
2 N SA{pX.G[T || A{X}]} ifand only if A" < pX.A{X}.

Proof. For the forward direction of item 1, assurgX.A{X},4’) € Rs, where(R1, Ry, Rs3)

is a simulation, and observe that by extendRgJU { (A{pX.G[T || A{X}]},A")} we obtain a
simulation thanks to Lemma 6.6. The backward direction éemd 2 are analogous. ]

The next theorem shows that the subtyping relation oveuresaypes is included irg, in the
following sense.

Theorem 6.3 (Sub-typing and Simulation).If + p < o is derivable, thew < p.

Proof. LetI1 be a derivation for- 0 < p and define

R £ {(t,1):ZFt1<7isajudgmentirl}
RI & {(T'.T):ZFT<T isajudgmentirl}
R} £ {(&,0):Z+A<Aisajudgmentifl}

We prove thatR" = (RT,R},RY)Uld is a type simulation. Picke’,e) € R and check that
the requirements of Definition 6.1 are met. We reason by casdbe last rule applied in the
sub-derivation of1 which is rooted aE - e < €.
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(REFLEX) Thene = €, hence Definition 6.1 is satisfied B C K.

(t-TypPE/PoOLICY), (T-READ), (T-WRITE) and (T-READ/WRITE) Then Definition 6.1 is sat-
isfied thanks to the premises of the rules.

(SuB-A-i) Again, Definition 6.1 is satisfied thanks to the premisesefrules.

(A-AssuME) The lastjudgmenti& - A <A’ andA < A’ C 5. Note that the root of the derivation
M exhibits an empty sub-policy environment, hence the apfitio of A-ASSUME) must
appear as a leaf of a sub-derivation roote@’at A < A, with A < A’ ¢ 5’| that ends with
one or two applications of the (WoLD) rules, depending on the structure dfand 4’
Moreover, those rules must be applied just after an instah@e (SuB-A) rule. Now, the
premises of (88-A) rules, along with Lemma 6.6, say that Definition 6.1 is digtikalso in
this case.

(A-LeErTUNFOLD) Consider the rule applied iRl just above this one: it must be either an in-
stance of one among\M{REFLEX), (A-ASSUME), (SuB-A) or an instance of the ruleA¢
RIGTHUNFOLD) that follows the application of-REFLEX) or (A-ASSUME) or (SuB-A).

In any case apply again one of the previous cases and Lemma 6.6

(A-RIGTHUNFOLD) Analogous to the previous case. [

Another important property is that the subtyping procedwreceeds on inputs that are in the
simulation relation, as shown in the following theorem.

Theorem 6.4 (Simulation Success)If o < p, thenSub- t ypi ng(p,0) succeeds.

Proof. Assumea < p and run the procedurgub- t ypi ng(p,o). Theorem 6.1 says that the
procedure stops. Moreover< p implies thate < € for every paire’ < eincluded inHUJUI.
Hence the checks at the poitalways fail. Thus the procedure stops withue. ]

Now, by merging the results of Theorems 6.3, 6.4 and 6.2, veimthe following equivalences.

Theorem 6.5 (Subtyping, Simulation and Procedure) For every typep ando, the following
statements are equivalent:

1 Thejudgment- p < o is derivable.

2 psimulatess, namelyo < p.

3 The callSub- t ypi ng(p, o) returnst r ue.

Corollary 6.1 (Decidability). The subtyping relation is decidable.

Proof. Theorem 6.1 says that the c&lib- t ypi ng(p,0) stops independently of input, and
Theorem 6.5 says th8tb-t ypi ng(p,o) returnst rue ifand only if Fp < 0. ]

6.3. Transitivity of Subtyping

As a corollary of the decidability proof, we also obtain aqirthat the subtype relation is transi-
tive. In particular, we show that the axiomatization of syiig admits a weak, but still useful in
our proofs, form of transitivity that only applies to subgjudgments with empty environment.
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Corollary 6.2 (Transitivity). The rule
T1<T2 T2<T3

is sound in the sub-typing system.

Proof. Theorem 6.5 says that, when the environment is emgtis equivalent to<, and
Lemma 6.7 says th&f is transitive. 0

The result does not generalize to arbitrary judgments.liistiate, letting: = A1 < Ay, Ay < Ag,

we can derivex - A; < Ay andZ F Ay < Az by (A-AssuME). On the other hand, we clearly
cannot derive - A; < Az directly, unless we have additional information on thetite of the
policies involved. This is in fact an instance of a generabpem for coinductive systems that are
known to not interact well with transitivity rules (Gapeyewal., 2002). Nevertheless, the rule of
transitivity of Corollary 6.2 is still useful for our proofas the use of subtype judgments in the
typing system is only on judgments with empty environment.

6.4. Algorithmic Typing

A further consequence of the decidability proof for subiygpiis that type checking itself is
decidable. The proof follows the standard pattern, namelgiwe an algorithmic (and decidable)
version of the typing system, that dispenses with theg@mPTION) rule, and show that the
algorithmic system is sound and complete.

Given that we are interested in static typing, it is enougklé€ine the algorithmic version
for the static typing systers. That is good news, because in the static system we can safely
disregard the tagged names, and hence the algorithmiasysteasily derived from the static
typing system, by dropping the (8sumMPTION) rule and by replacing the rulesNpuT) and
(OuTPUT) with the two rules below.

(INPUT-A)
M-a:G(ty,..., )" |A] X :Ty,..., % :TkFP v<r, 0<k

MEalxg:t,..., % Tk).P

(OUTPUT-A)
r-a:G[(ty,..., )V [[A,v<w TFP TFb:T T/G<T Vie[0.K

I+a(by,...,b).P

Let -4 denote the typing relation in the algorithmic typing system
Theorem 6.6. The typing relation-4 is decidable.

Proof. If we measure the size of a typing judgement (of the threekinga P, T Fa a: T,
I'a F ¢) in terms of the sizes of the component types and processesgdsily seen that for each
typing rule in the algorithmic system, all the typing judgemts in the premises have strictly
smaller sizes than the judgementin the conclusion. Alssepie that the typing rules are syntax-
directed, and that the absence of the subsumption ruleesthat” -5 a: Tiff a: teT. Hence.
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for each rule of the algorithmic system all the types thatuodo the typing and subtyping
premises are determined by the types occurring in the csioeiueither in the environment
or in the subject of the judgement). From this, the theorelos directly by the proof that
subtyping is decidable. ]

Based the previous theorem, to show that static typing igddbte it is enough to show that
algorithmic typing is sound and complete. The soundnessobdne proof follows directly by
induction: we just have to observe tHgt(INPUT-A) is a special case of {liPuT), and thatii)
whenever an algorithmic derivation usesyf»uT-A), a corresponding non-algorithmic deriva-
tion exists that uses (@rpPuUT) and (WYBSUMPTION): the use of subsumption may be required
to promote the typels; so as to ensure that the polidysatisfies the constraints | G = T;.

Theorem 6.7 (Algorithmic typing is sound). I' -4 P implies I g P.

For the opposite direction (completeness), the proof isenetatborate, but still standard. We
need two lemmas: the first is a weakening lemma about typeadiems; the second relates the
typing of names in the static and algorithmic systems. Lethteight of a derivation be defined
as follows: the height of a derivation rooted at a subtypirdgement or at a typing judgement
of the forml" o or I - a: T is zero. The height of a derivation ending up with a rule whose
conclusion is the judgemeiitt- P is 1 + the maximal height of the derivations rooted at the
premises of the rule.

Lemma 6.9. Let ', x: T FsJ be a derivable judgement, whelds any ofa: t,¢ or P. Then,
for all T such that- U <t andrl s/, the judgemenk,x : T s J is derivable as well, with a
derivation of the same height.

Proof. The hypothesi§ s’ is needed for the environment formation rules, in partic tita
(ENV Xx), asT’ might introduce group names notlin The proof is by induction on the derivation
of the judgementt, x : T s J, and follows directly by the induction hypothesis. Notitepartic-
ular, that the uses of subsumption that may be required t@leaethe derivation of ,x: T g J
do not increase the height of the derivation (because of efimiton of height). [

Lemma6.10.If s a:1,thenl 5 a: T with 1/ <.

Proof. By induction on the derivation of the judgement in the hygsil. There are only two
cases, in fact: when the derivation ends up with rule@®ec?) and (UBSUMPTION). In the
first caser’ = 1, whereas the second case follows directly by the inductigothesis. For the
(PROJECT case, observe thétks o iff I Fa ¢ as the type and environment formation rules in
the two systems are the same. ]

Theorem 6.8 (Algorithmic typing is complete). I Fs P implies I -4 P.

Proof. By induction on the height of the derivation bf-s P, and a case analysis of the last
rule in the derivation. The cases €W G), (NEw n), (PAR), and (RepL) follow directly by the
induction hypothesis, while (BaD) follows by the observation théitk-s o impliesl Fa ©.

In case (NPuUT), the judgemenf s P must be of the fornf s a(xq : T1,...,% : Tn).P,
derived froml Fs a: G[(T1,...,Tn)" || A] and T, X1 : T1,..., %X, : Tn Fs P: let h be the height
of the derivation rooted at this last judgement. By Lemmaéyve know that” Fa a: T with
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T < G[(T1,...,Tn)" || A]. This, in turn, implies that = G[(t/, ..., T,)" || A'] with v < r andTt] <T;.

By Lemma 6.9, it follows thalf,x; : T}, ..., X : T Fs P is derivable with a derivation of height
Then, by the induction hypothedisx; : T}, ..., X : T, Fa P and the desired judgement is derived
by an application of (iPUT-A).

In case (WTPUT), the judgement must be of the forl-s a(by, ..., by).P, derived from the
judgementgi) I Fs P, (i) ks a: G[(T1,...,T)™ || A] and(iii) T Fs bi : Gi[Ti || Ai], under the
additional constraints tha (G) = T; — A andG;i[T; || Ai] =T for alli € [0..K].

From (i), by the induction hypothesis we know that- P. From (ii), by Lemma 6.10 it
follows thatl" Fa a: G[(th,...,T0)" || A% with v < w, - A* <A andt; < T Similarly, from
(i), again by Lemma 6.10 it follows théit-a bi : Gi[TA || AA], with TA < T; andi- A” < A;.
Letting AA(G) = T/ — &, to conclude we need to show th&{T, || A] < TA. This, in turn
follows from G;[T; || Ai] = ti andt; < T becausé? < A impIiesTiA <T; andZiA <A, O

7. Conclusion

We have developed a type theory for the specification andt#tie sinalysis of access control
policies in the pi-calculus. Our approach extends and cemghts previous work on the subject
by introducing a new class of types so defined as to contradiyimamic flow of values among
system components. We have shown the flexibility of our systwith several examples, and
proved that it provides strong safety guarantees for all-typked processes.

Our present results are proved for systems that only inchedletyped components. However,
we believe it is possible to capture a stronger results, asahose known asbust safetythat
guarantee safety in the presence of an untyped opponeetdndie do not see any fundamental
impediment in adapting existing approaches to the probtgne(g, (Gordon and Jeffrey, 2004;
Fournet et al., 2007), and (Cardelli et al., 2005) for thattera As the secrecy resultin (Cardelli
et al., 2005), robust safety in our system would be a consemuef the typing rules for the
opponent, and the scoping rules underlying groups.

Other desirable extensions for the system include thetabiliexpress the revocation of capa-
bilities, to change the ownership on resources, and to agwatate some form of structure (e.g.
partial order) in the domain of principals. For instancepur example of the on-line editorial
system, one could envisage a notion of substitutivity, st ¢hsingle rdle, sagtaff, could be
used to represent bollournal andEditor in all situations in which this may be useful.
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