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Abstract. Recent mainstream programming languages such as Erlang or Scala
have renewed the interest on the Actor model of concurrency.However, the lit-
erature on the static analysis of actor systems is still lacking of mature formal
methods. In this paper we present a minimal actor calculus that takes as primitive
the basic constructs of Scala’s Actors API. More precisely,actors can send asyn-
chronous messages, process received messages according toa pattern matching
mechanism, and dynamically create new actors, whose scope can be extruded by
passing actor names as message parameters. Drawing inspiration from the linear
types and session type theories developed for process calculi, we put forward a
behavioural type system that addresses the key issues of an actor calculus. We
then study a safety property dealing with the determinism offinite actor com-
munication. More precisely, we show that well typed andbalancedactor systems
are (i) deadlock-free and (ii ) any message will eventually be handled by the target
actor, and dually no actor will indefinitely wait for an expected message.

1 Introduction

Recent mainstream programming languages such as Erlang or Scala have renewed the
interest on the Actor model ([10,3]) of concurrent and distributed systems. In the Ac-
tor model a program is an ensemble of autonomous computing entities communicat-
ing through asynchronous message passing. Compared to shared-state concurrent pro-
cesses, the Actor model more easily avoids concurrency hazards such as data races and
deadlocks, possibly at the cost of augmenting the communication overhead. On the
other hand, compared to the channel-based communication ofprocess calculi such as
the π-calculus or the Join-calculus, the actor abstraction better fits the object oriented
paradigm found in mainstream programming languages.

Actors can send asynchronous messages, process received messages according to a
pattern matching mechanism and dynamically create new actors, whose scope can be
extruded by passing actor names as message parameters. The Actor model and the asyn-
chronous process calculi then share similarities such as (bound) name passing, but they
have also many differences: actors have an identity (a name), they are single threaded
and they communicate by sending messages to the mailbox of other actors rather than
using channels. Despite their similarities, while a rich literature on type-based formal
methods has been developed for the static analysis of process calculi, few works deal
with the Actor model (see Section 4 for a discussion of the related work). In this paper
we study a minimal actor calculus, AC, with the aim of bringing in the context of Actors
the successful techniques developed for process calculi.

More precisely, drawing inspiration from the linear types and session type theo-
ries developed for process calculi ([16,11,13,8]), we put forward a type system that
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addresses the key issues of an actor calculus. Programming an actor system entails the
design of a communication protocol that involves a (dynamic) set of actors; we then
study a behavioural type system for AC where actor types encode the intended com-
munication protocol, and the type checking phase statically guarantees that runtime
computation correctly implements that protocol. Moreover, we study a safety property
dealing with the determinism of actor communication, so that in well typed andbal-
ancedactor systems any message will eventually be processed by the target actor, and
viceversa, no actor will indefinitely wait for an expected message. Dealing only with
finite computation, we devise a simple technique to let typesalso prevent deadlocks.

Even if AC only considers actors with finite computation, which is clearly a strong
limitation, proving that a finite system complies with the intended communication pro-
tocol is not trivial, since nondeterminism, fresh actor name passing and the asynchronous
semantics of the underlying model complicate the picture. As we said, our behavioural
type system is reminiscent of the type discipline of linear and session types. However,
even if the actor calculus shares with session types the ideaof conceiving the computa-
tion as the implementation of a specified communication protocol, there are a number of
key differences between the two models (see Section 4). In [14] session types are added
to a Erlang-style core actor calculus. However, in that paper session types appears an
orthogonal feature of the actor language, while we aim at showing in this paper that
the reasoning underlying session types is in some sense inherent to the Actor model.
As a general comment that can guide the reader through the technical part of the paper,
one can think that session types describe the flow of communications withing a single
conversation session. Instead, an actor’s behavioural type takes the point of view of an
entity that might concurrently participate to different (interleaved) conversations with
different parties.

2 The Actor Calculus

We assume a countable set of actor names and a countable set ofvariables, ranged over
bya,b,candx,y respectively. Identifiers, denoted withu, rage over names and variables.
We reserve the letterm to range over a distinct set of message labels. The syntax of the
Actor calculus AC comes from the basic constructs of Scala’sActors API [15,9]:

Expressions e::= 0
¯
| u! m(ũ);e | react{mi(x̃i)⇒ ei}i∈I | vala= actor{e};e

The expressionu1 ! m(ũ2);e sends to the actoru1 the messagem with the tuple of ac-
tual parameters ˜u2, and then continues ase. According to the Actor model, sending a
message is an asynchronous action that just adds the messagem(ũ2) into the mailbox
associated to the actoru1. Message handling is carried over by thereact expression,
that suspends the execution of the actor until it receives a messagemj ∈ {mi}i∈I . When
a matching message is found in the actor mailbox, the execution is resumed and the
corresponding continuation is activated.

New actors are dynamically created with expressionvala= actor{e1};e2, that cor-
responds to the inline Scala primitive for actor creation. It defines and starts a new actor
with namea and bodye1 and then continues ase2. The actor definition introduces a
new, bound, namea whose scope is both the new actor’s codee1 and the continuation



e2. In order to have a uniform semantics, we assume that aprogram is a top level se-
quence of actor definitions, while input and output expressions can only occur inside an
actor body. This is not restrictive since it would be sufficient to assume an implicit main
actor containing the top level sequence of expressions. Anyway, observe that besides
the top level definitions, new actors can still be dynamically spawned by other actors
anytime during the computation.

The execution of a program spawns a bunch of concurrent actors that interact by
message passing. Therefore programs are represented runtime by configurations:

Configurations F::= 0
¯
| [a 7→ M]a{e} | F|F | (νa)F | e

(νa)F is a configuration wherea is a private actor name. While each actor is single
threaded, a configuration is a parallel composition of a number of active actors and an
expressione containing the residual sequence of top level actor definitions. Anactive
actor a is represented runtime by[a 7→ M]a{e}, wheree is the residual body of the
actor and[a 7→ M] is its associated mailbox. Mailboxes are lists of received messages
of the form[a 7→ m1(b̃1) · . . . ·mk(b̃k)]. Message parameters are values (i.e. actor names)
since, according to Scala semantics, message parameters are called by value as they are
implemented as parameters of an Actor object’s method invocation ([15]).

Definition 1 (Free Names and Well Formed Configurations).In input expressions
formal parameters are bound variables, and actor definitions act as name binders. We
work with well formed configurations where any bound name andvariable is assumed to
be distinct (Barendregt’s convention), and where in any input branchingreact{mi(xi)⇒
ei}i∈I the labels mi are pairwise distinct.

The operational semantics is given in Figure 1. Most of the rules come directly from
theπ-calculus. The rule (ENDED) states that a terminated actora with no pending mes-
sage in its mailbox can be garbage collected. The rules (TOP SPAWN) and (SPAWN) are
used to spawn a new actor respectively from the top level mainthread and from another
actor. In both cases the new actor is activated by extending the configuration with a
new empty mailbox and an additional thread running the body of the new actor. The
rules (SEND) and (RECEIVE) implement the Actor communication model: an output
expression adds a message to the mailbox of the target actor,while an input expression
scans the mailbox for a matching message. Notice that the mailbox is not handled as
an ordered queue of messages, hence for instance, the configuration (where we omit
message parameters)

[b 7→∅] a{b! m1;b! m2;0
¯
} | | [b 7→∅] b{ react {m1 ⇒ react{m2 ⇒ e},

m2 ⇒ react{m1 ⇒ e′}}}

nondeterministically reduces either to[b 7→∅]b{e} or to [b 7→∅]b{e′}. In other words,
besides being asynchronous, in the Actor model the orderingof outputs is not guaran-
teed to be mirrored by the ordering of input handlers, which is instead the case of, e.g.,
asynchronous session types with buffered channels [8,6].

Example 2.The following program defines two actors that meet in a three-way hand-
shake. The actorb starts by sending apingmessage toa, then waits for apongmessage



(PAR)

F1 −→ F ′
1

F1 | F2 −→ F ′
1 | F2

(RES)

F −→ F ′

(νa)F −→ (νa)F ′

(ENDED)

[a 7→∅]a{0
¯
} −→ 0

¯

(STRUCT)

F ≡ F ′ −→ F ′′ ≡ F ′′′

F −→ F ′′′

(νa)(νb)F ≡ (νb)(νa)F
(νa)(F | F ′)≡ F | (νa)F ′ a /∈ fn(F)

F | 0
¯
≡ F F | F ′ ≡ F ′ | F

(F1 | F2) | F3 ≡ F1 | (F2 | F3) (νa)0
¯
≡ 0

¯

(TOP SPAWN)

vala= actor{e};e′ −→ (νa)([a 7→∅]a{e}} | e′))

(SPAWN)

[b 7→ M]b{vala= actor{e};e′} −→ (νa)([b 7→ M]b{e′} | [a 7→∅]a{e}))
a /∈ fn(M)

(SEND)

[a 7→ M]a{e} | [b 7→ M′]b{a! m(c̃);e′} −→ [a 7→ M ·m(c̃)]a{e} | [b 7→ M′]b{e′}

(RECEIVE)

[a 7→ M·mj (c̃)·M′] a{react{mi(x̃i)⇒ ei}i∈I} −→ [a 7→ M·M′] a{ej{
c̃/x̃ j }}

j ∈ I

Fig. 1. Operational semantics

that carries the name of the actor to which it sends the finalpangmessage. The actora
performs the dual sequence of actions.

Pr = vala= actor{react{ping(x)⇒ x! pong(a); react{pang()⇒ 0
¯
}}} ;

valb= actor{a! ping(b); react{pong(y)⇒ y! pang();0
¯
}} ; 0

¯
Now consider the case where the actorAlice starts two sessions of this protocol to
interact both withBobandCarl (Figure 2). In order to prevent interferences between
the two sessions, a couple of private sub-actors are established for each protocol session.
This is similar to private sessions in theπ-calculus.

Alice{ valab= actor{react{dest(y)⇒ P(y)}} ; Bob! new(ab) ;

valac= actor{react{dest(y)⇒ P(y)}} ; Carl ! new(ac) ; 0
¯
} |

Bob{ react{new(z)⇒ valba= actor{Q(z)};z! dest(ba);0
¯
} } |

Carl { react{new(z)⇒ valca= actor{Q(z)};z! dest(ca);0
¯
} }

whereP(y) = y! ping.react{pong⇒ y! pang;0
¯
} and

Q(z) = react{ping⇒ z! pong.react{pang⇒ 0
¯
}}.
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Fig. 2. Examples

Example 3.We can rephrase in the actor calculus a simple example of multiparty com-
munication protocol that captures the interactions in a purchase system (Figure 2):

Buyer{Seller! buy(Buyer, item); react{price(z)⇒ react{details(w)⇒ ...}}} |

Seller{ react{buy(x,y)⇒ x! price( f (y));

valShipper= actor{react{ship(x,y)⇒ x! details( f ′(y)); ...}};

Shipper! ship(x,y); ...};

A Buyer actor sends to theSeller actor its name together with the item he wants to
buy, and waits for the price and the shipping details. Dually, theSellerhandles thebuy
message by sending to theBuyer the price f (item) of the selected item and spawns a
newShipperactor that directly interacts with theBuyerto finalize the shipping. Observe
that theBuyeractor needs not to be aware that he is actually interacting not only with
theSellerbut also with a (restricted)Shipper. This is a further difference with the case
of multiparty session types, where each interacting party is identified by its endpoint of
the session channel.

3 The Type System

We assign behavioural types to actor names so that a type describes the sequence of
inputs and outputs performed by the actor body. Moreover, inputs are handled as linear
resources, so that to guarantee that for each expected inputthere is exactly one matching
output. We use the following syntax for the types associatedto actor names, where
NoMark(S) means thatSdoes not contain any marking:

Types T::= [S] S::= end | !m(T̃).S | & i∈I{?mi(T̃i).Si}

| & •
i∈I{

•?m(T̃).S, ?mi(T̃i).Si} with NoMark(Si) ∀i ∈ I

TypesT are finite sequences of input and output actions. Output action !m(T̃) is the
type of an output expression that sends the messagemwith a tuple of parameters of type



T̃. Dually, the input action &i∈I{?mi(T̃i).Si} offers the choice of receiving one of the
messagesmi and continuing with the sequenceSi . Differently from session types, we do
not consider output choices. Indeed our aim is not to providean expressive calculus for
protocol specification, but to put forward a type based technique to statically verify the
protocol conformance of actors. On the other hand, it would not be difficult to extend the
type system with output selection⊕i∈I{ ! mi(T̃i).Si} along the lines of input branches.

The type system then makes use of linear type assumptions to guarantee that each in-
put is eventually matched by exactly one output in the system. Linear type assumptions
are handled by means of markings. The marked action &•

i∈I{
•?m(T̃).S, ?mi(T̃i).Si}

pinpoints an input that is “consumed” by one output expression. To illustrate, the actor
a{b! m(c)} is well typed assuminga:[ ! m(T).Sa], b:[•?m(T).Sb] sincea consumesb’s
input. On the other hand the actorb{react{m(x)⇒ e}} is well typed assuming the non
marked typeb : [?m(T).Sb], sinceb offers an input without consuming it. Moreover,
to deal with branching inputs we have to ensure that all the messages eventually re-
ceived by an actor belong to the same branch of computation. For instance, consider
the actora : [&{?m1.?m2, ?m3.?m4}] (where we omit message parameters), then the
actorb{a! m1;a! m4} is incorrect since it sends toa two messages belonging to alter-
native execution paths. Indeed, the typing ofb would require fora the type assumption
a : [& •{•?m1.?m2, ?m3.

•?m4}], which is prohibited by our syntax of types since it con-
tains two markings in two different branches.

Another key point is the parallel composition of type assumptions, that must be
defined so that to ensure the linear usage of marked inputs. Toillustrate, given the type
of the actora above, the parallel compositionb{a! m1} | c{a! m3} must be prohibited
since only one of the two messages will be handled bya while the other one will stay
pending ina’s mailbox. In other terms, the two outputs compete for the same “input
resource”. Notice that the typing ofb, resp.c, would require the assumptiona : T1

a =
[& •{•?m1.?m2, ?m3.?m4}], resp.a : T2

a = [& •{?m1.?m2,
•?m3.?m4}]. The fact that the

same input choice is marked both inT1
a andT2

a indicates thatb andc consume the same
input choice, hence they cannot be composed in parallel.

More formally, we define amerge-markfunction that is used to linearly compose
type assumptions. More precisely, parallel threads must assume the same type assump-
tions but with disjoint markings.

Definition 4 (Merge-Mark). Let S,S′ be two sequences that are equal but for the mark-
ings. Then[S]⊎ [S′]=[S⊎S′] where the partial function⊎ is defined by

end⊎ end= end ! m(T̃).S⊎ ! m(T̃).S′ = ! m(T̃).(S⊎S′)

& i∈I{?mi(T̃i).Si}⊎& i∈I{?mi(T̃i).S′i}= & i∈I{?mi(T̃i).(Si ⊎S′i)}

& i∈I{?m(T̃).S,?mi(T̃i).Si}⊎& •
i∈I{

•?m(T̃).S′,?mi(T̃i).Si} =

= & •
i∈I{

•?m(T̃).(S⊎S′),?mi(T̃i).Si}

The main clause is the last one, together with the symmetric one that we omit. A marked
input can only be merged with a corresponding non marked input, and merging recur-
sively applies only to the marked branch. In this way we ensure that the same input
choice is consumed by exactly one output, and that further outputs only consume inputs
belonging to the same branch of computation.



A type environmentΓ is a partial function assigning types to names and variables.
We use forΓ the list notation. Let beΓ1,Γ2 two type environments such thatDom(Γ1)=
Dom(Γ2), then we denote byΓ1 ⊎Γ2 the type environment obtained by merging the
markings contained in the two environments, i.e.,Γ1 ⊎Γ2 = {u : Γ1(u)⊎Γ2(u) | u ∈
Dom(Γ1) = Dom(Γ2)}. We use the notationΓ;a : T for environment update, that is
Γ\ {a : Γ(a)}∪{a : T}.

So far so good, however this is not enough since the scope extrusion mechanism
obtained by passing fresh actor names as message parametersraises additional is-
sues. Consider the actora{react{ f oo(x) ⇒ x! m(a)}}, a consumes them input of-
fered by some actor which will be dynamically substituted for the bound variablex.
In order to statically collect the resources consumed bya, the typing ofa must as-
sume forx the marked type[•?m(T).end]. A similar situation applies when new ac-
tors are spawned. For instance, consider the previous actora in parallel withc{valb=
actor{react{m(y) ⇒ e}};a! f oo(b)}. The parameterx of the f oo message is substi-
tuted with the fresh actor nameb. Hence in order to check that every input in the
system is consumed, besides the type ofx, we must record the type of the fresh ac-
tor b : [?m(T).end] and devise a way of matching the input “consumed” inx with that
“offered” by b.

We then rely on type judgements of the formΓ ⊢ F ⊲ ∆, whereΓ collects the type
assumptions about free names and variables ofF , while ∆ collects type assumptions
on bound names and bound variables ofF . Observe that working under Barendregt’s
convention on bound names/variables, we avoid name conflicts. We call∆ theescape
environment, and we let it preserve the branching structure of the computation where
alternative continuations can be activated when an input choice is resolved.

Definition 5 (Escape Envirnoment).The escape environment∆ is a choice between
alternative type environments defined by∆ ::= & i∈I Γi | & i∈I ∆i , where Dom(Γi) ∩
Dom(Γ j) =∅ and Dom(∆i)∩Dom(∆ j) =∅ for i, j ∈ I.

We use the following notation for escape environment extension: (& i∈I ∆i), u : T
△
=

& i∈I (∆i ,u:T), and(& j∈J∆ j) , (& i∈I ∆i)
△
= & j∈J& i∈I (∆ j ,∆i).

3.1 Typing Rules

The main judgement of the type system isΓ ⊢ F ⊲ ∆. It means that the actors inF
execute the sequence of actions described by their type and the marked input actions in
Γ and∆ areexactlythose that are consumed by the actors inF. Moreover,Dom(Γ)∩
Dom(∆) = ∅ and fn(F) ⊆ Dom(Γ) while bn(F) ⊆ Dom(∆). We also use additional
judgements:Γ ⊢ ⋄ states thatΓ is well formed (according to standard rules given in
Figure 3),Γ ⊢ a : T states that the actora has typeT in Γ, andΓ ⊢ [a 7→ M] states that
the mailbox only contains messages that are well typed according to the type thatΓ
assigns toa. Finally,Γ ⊢a e⊲∆ states thate is well typed as the body of the actora.

Type rules for actors.The rule (TYPE SPAWN) applies when the actora spawns a new
actorb. The type assumptions are split between those used by the continuation ofa’s
bodye2, and those used by the body of the new actore1. The same holds for escape



(TYPE IDENTIF)
Γ,u : T ⊢ ⋄

Γ,u : T ⊢ u : T

(CTX EMPTY)

∅ ⊢ ⋄

(CTX IDENTIF)

Γ ⊢ ⋄ u /∈ Dom(Γ)

Γ,u : T ⊢ ⋄

(TYPE SPAWN)

Γ1,b : [S1] ⊢b e1⊲ ∆1 Γ2,b : [S2] ⊢a e2 ⊲ ∆2 b /∈ Dom(∆1,∆2)

Γ1⊎Γ2 ⊢a valb= actor{e1};e2 ⊲ ∆1,∆2,{b : [S1⊎S2]}

(TYPE SEND)

Γ ⊢ a : [ ! m(T̃).Sa] Γ ⊢ u : [Su .&•
i∈I{

•?m(T̃).S, ?mi(T̃i).Si}]

T̃ << Γ(ũ′)⌊m Γ ; u : [Su.& i∈I{?m(T̃).S, ?mi(T̃i).Si}] ; a : [Sa] ⊢a e⊲ ∆

Γ ⊢a u! m(ũ′);e⊲ ∆

(TYPE RECEIVE)

Γ ⊢ a : [& i∈I{?mi(T̃i).Si}] Γ ; a : [Si ], x̃i : T̃i ⊢a ei ⊲ ∆i i ∈ I

Γ ⊢a react{mi(x̃i)⇒ ei}i∈I ⊲ & i∈I (∆i ,{x̃i : Ti})

(TYPE END)

Γ ⊢ a : [end] NoMark(Γ)

Γ ⊢a 0
¯
⊲ ∅

Fig. 3. Type Rules for Actors

assumptions, which collect the resources offered and consumed by bound names and
variables ine1 ande2. The nameb of the new actor must be fresh, and a type forb
must be guessed. Since the scope ofb includes bothe1 ande2, both expressions are
typed under a suitable assumption forb. S1 must correctly describe the sequences of
actions performed byb’s bodye1. Moreover,S1 must contain marked input actions that
correspond to the input offered byb and locally consumed by messages sent byb’s body
to b itself. On the other hand, the marked inputs inS2 must correspond to the messages
sent tob in e2. In the conclusion of the rule the escape environment globally collects
the type assumptions locally used forb, henceS1⊎S2 must be defined, that isS1 andS2

must be the same sequence of actions with disjoint markings.
Accordingly to (TYPE SEND), whena sends the messagem(u′) to the actoru:

1. the first action in the type ofa is the output ofm;
2. the type ofu contains the input ofm as a marked input. The matching input needs

not to be the first action in the type ofu. This allows for instance that even ifu
accepts afoo message beforem, the actora is free to first outputu! m and then
u! foo, according to the semantics of AC.

3. The continuatione is typed in an updated environment where the marking of the
matching input has disappeared from the type ofu to record the fact that the re-
source has been already consumed. Moreover the type ofa is updated to the con-
tinuation type[Sa] to record that the output action has been already performed.
Observe that this implies that the behavioural type assumedfor an actor changes
(decreases) as long as the actor advances in its computation.



As far as the typing of the message parameters are concerned,let first introduce some
notation: given two sequencesSandS′, we writeS<< S′ whenS is a suffix ofS′ inde-
pendently of the markings (see Appendix A for the formal definition). Given the output
u! m(ũ′), it might not be the case that the actual parameters ˜u′ have the types of the for-
mal parameters̃T. Since the type of an actor decreases as long as the actor computes,
in the asynchronous semantics the type of an actual parameter u′ at sending time can
be different from (longer than) the typeu′ has whenu processes the message. Then
the type of a formal parameterT is in general a suffix of the typeΓ(u′). Moreover, the
marked inputs contained inΓ(u′) are those that are consumed by the body ofa, while the
markings contained inT correspond to the inputs offered by the formal parameter and
consumed by the actor that receives the message, that in general is nota. Summing up,
the rule (TYPE SEND) requires (each type in the tuple)T̃ to be a suffix ofΓ(ũ′) (com-
ponentwise), independently of the marked actions. A stronger requirement is needed
when a parameter of the message coincides with the sendera, resp. the receiveru. In
these cases the type of that formal parameter must be a suffix of the residual type ofa
after the output, resp. the residual type ofu after the input. The rule uses the following
predicate (componentwise extended to tuples of types), where we callΓ(u′)⌊m the type
of u′ “after m”:

T << Γ(u′)⌊m
△
= if u′ = a thenT << [Sa]

else ifu′ = u thenT << [S] elseT << Γ(u′)

To type an input expression the rule (TYPE RECEIVE) requires the type ofa to indi-
cate that the next action is a non marked matching input action, and every continuation
ei to be well typed in the type environment where the type ofa has advanced to[Si] and
the formal parameters ˜xi have been added. Observe that if the input action were marked
in the type ofa, it would mean that the input is consumed by the continuationei , which
would result in a deadlock, as in, e.g.,a{react{m⇒ a! m}}. Finally, the names and the
types of the formal parameters are recorded in the escape environment of the conclusion
of the rule, preserving the branching structure of the computation.

According to the rule (TYPE END), the expression 0
¯

is well typed assuming that
the type ofa contains no more actions. Moreover,Γ must contain no marked input: a
judgement likeΓ,b : [•?m(T).S] ⊢a 0

¯
⊲ ∅ would mean that the typing of the body ofa

has assumed to consume the input ofb, but it is not the case since the body is terminated
but the action ?m of b is still marked.

Type rules for Configurations.Rule (TYPE RES CONF) shows that when a new name
is introduced, a corresponding type must be guessed. The newname is local to the
configurationF, but it is globally collected in the escape environment. Therule requires
a to be fresh in∆, but the derivability of the judgement in hypothesis implies thatΓ,a : T
is well formed, hencea /∈ Dom(Γ).

In order to type an active actor, the rule (TYPE ACTOR) requires the (residual) actor
bodyeto comply with the (residual) sequence of actions inΓ(a). Moreover, the mailbox
[a 7→ M] contains the list of messagesM that have been received but not handled yet
by the actora. A message inM will be processed by the actor only if the typeΓ(a)
contains a matching input action. The rule (TYPE MAILBOX ) does not require that



(TYPE RES CONF)

Γ,a : T ⊢ F ⊲ ∆ a /∈ Dom(∆)

Γ ⊢ (νa)F ⊲ ∆,a : T

(TYPE ACTOR)

Γ ⊢ [a 7→ M] Γ ⊢a e⊲ ∆

Γ ⊢ [a 7→ M] a{e}⊲ ∆

(TYPE NOMAIL )
Γ ⊢ ⋄

Γ ⊢ [a 7→∅]

(TYPE MAILBOX )

Γ ⊢ [a 7→ M] Γ ⊢ a : [Sa] ?m(T̃).S∈ Inputs([Sa])⇒ T̃ << Γ(b̃)⌊m

Γ ⊢ [a 7→ M ·m(b̃)]

(TYPE PARA)

Γ1 ⊢ F1⊲ ∆1 Γ2 ⊢ F2⊲ ∆2 actors(F1)∩actors(F2) =∅

Γ1,F1⊙Γ2,F2 ⊢ F1 | F2⊲ ∆1,∆2

(TYPE DEAD)

Γ ⊢ ⋄ NoMark(Γ)

Γ ⊢ 0
¯
⊲ ∅

(TYPE TOP SPAWN)

Γ1,b : [S1] ⊢b e1 ⊲ ∆1 Γ2,b : [S2] ⊢ e2 ⊲ ∆2 b /∈ Dom(∆1,∆2)

Γ1⊎Γ2 ⊢ valb= actor{e1};e2 ⊲ ∆1,∆2,b : [S1⊎S2]

Fig. 4. Type Rules for Configurations

every message has a corresponding handler inΓ(a). However, we show in the following
that in well typed systems mailboxes only contain messages that will eventually be
handled by the receiving actor. LetInputs([S]) be the set of top level input actions
contained inS. Then the rule (TYPE MAILBOX ) states that if a message in the mailbox
corresponds to one of the receivable inputs, then the type ofthe formal parameter is
a suffix of the type thatΓ assigns to the actual parameter. The notationT << Γ(v)⌊m

means that ifv= a thenT << SelseT << Γ(v), and it is extended to tuples of types as
expected.

The rules (TYPE DEAD) and (TYPE TOP SPAWN) are similar to the corresponding
rules for actors, hence we reserve a final discussion for the rule (TYPE PARA) for par-
allel composition. The rule (TYPE PARA) splits the type environment and the escape
environment so that to ensure that the resources consumed byF1 | F2 are consumed
either byF1 or byF2. To illustrate, consider

a : Ta,b : Tb, ... ⊢ [a 7→ M]a{e} ⊲ ∆ a : T ′
a,b : T ′

b, ... ⊢ [b 7→ M′]b{e′} ⊲ ∆′

In order to correctly compose the two actors in parallel, themarked actions inTa, resp
Tb, must be disjoint form those inT ′

a, resp.T ′
b. Moreover, since in the typing of an active

actor the behavioural type of the actor can be a suffix of the initial type of that actor, we
have thatTa << T ′

a andT ′
b << Tb. Hence the merge-mark function⊎ must be extended

so to compose a sequence with a subsequence of actions. LetS′ D Sbe a partial function
defined asS′⊎Splus the following two cases, that apply whenS′ is a proper suffix ofS:

S′ D ! m(T̃).S= ! m(T̃).(S′ D S) if S′ << S

S′ D & i∈I{?mi(T̃i).Si} = & i∈I\{ j}{?mi(T̃i).Si , ?mj(T̃j).(S′ D Sj)} if S′ << Sj



In particular we let be undefined the caseS′ D & •
i∈I{

•?m(T̃).S,?mi(T̃i).Si}. Indeed, if
Ta = [S′] and T ′

a = [& •
i∈I{

•?m(T).S,?mi(Ti).Si}], it means that the actorb sends the
messagem to a but the corresponding input handler is not in the body ofa anymore.
Hence, a type with a marked action must be composed with a typecontaining the same
non-marked action, so that to ensure that the input “consumed” by a thread is actually
“offered” by a parallel thread. The type environment composition is defined as follows:

(Γ1,F1⊙Γ2,F2)(u)
△
=















Γ2(u)⊎Γ1(u) if u /∈ actors(F1)∪actors(F2)

Γ1(u) D Γ2(u) if u∈ actors(F1)

Γ2(u) D Γ1(u) if u∈ actors(F2)

whereactors(F) collects the free names of active actors inF (see Appendix A).

Example 6.Consider the programPr in Example 2. We have that∅ ⊢ Pr ⊲ {a : T1
a ⊎

T2
a , b : Tb, x : Tx, y : Ty}, which comes from the following two judgements whereea,

resp.eb, is the body of the actora, resp.b:

a : T1
a ⊢a ea⊲ {x : Tx} a : T2

a , b : Tb ⊢b eb⊲ {y : Ty}

T1
a = [?ping(Tx). ! pong(Ty).?pang.end] Tx = [•?pong(Ty). ! pang.end]

T2
a = [•?ping(Tx). ! pong(Ty).?pang.end] Ty = [•?pang.end]

Tb = [ ! ping(Tx).?pong(Ty). ! pang.end]

Preventing deadlocks.The type system described so far is enough to prove that actor
implementations comply with the prescribed protocol, however program execution may
stuck in a deadlock state, as for the programP= vala= actor{valb= actor{react{n⇒
a! m}} ; react{m⇒ b! n}} which is so that

P−→ [a 7→∅]a{react{m⇒ b! n}} | [b 7→∅]b{react{n⇒ a! m}} 6−→

In order to prevent deadlocks we propose a simple technique that nicely copes with fi-
nite actor computation. We add more structure to types: we modify the syntax of types
so to have output actions of the formT ! m(T̃).S, where the additional componentT de-
scribes the sequence of actions performed by the target actor after processing the mes-
sage m. For instance,a : [[Sb] ! m(T).end] is the type of an actora that sends the message
m to an actor that eventually reads the messagem and then continues as described by
Sb. Let b be the target of such a message, and let beb : [S.?m(T).Sb]. In asynchronous
communication, whena delivers the message tob, it cannot know whenb will process
such a message, but it can safely assume that after the input of m, b will continue asSb.
Adding such a piece of information into types is enough to disallow deadlocks. Indeed,
the typing of the programP above requires (overlooking the markings) the assumptions
a : [?m.T ′ ! n.end],b : [?n.T ′′ ! m.end], that are not well defined sinceT ′ andT ′′ can only
be mutual recursively defined:T ′ = [T ′′ ! m.end] andT ′′ = [T ′ ! n.end]. In other terms,
there are no (finite) types so thatP is well typed.

It turns out that the refinement of types leaves unchanged most of the type rules pre-
sented above. We only have to do a couple of modifications. First, the type assumption
for the actora in the rule (TYPE SEND) must beΓ ⊢ a[[S′] ! m(T̃).Sa], with S′ equal toS



but for the markings. That is we add to the output action the sequenceS indicated in the
type of the target actoru as the continuation after the input ofm. Then we have to adapt
the relations between types that we introduced:⊎, resp.D, are obtained by adapting the
clauses dealing with output actions, i.e.,T ! m(T̃).S⊎T ! m(T̃).S′ = T ! m(T̃).(S⊎S′),
resp.S′ D T ! m(T̃).S= T ! m(T̃).(S′ D S).

3.2 Properties of the Type System

We show that the type system respects the semantics of AC, i.e., well typed config-
urations reduce to well typed configurations. However, since actor types decrease as
long as the computation proceeds, the subject reduction theorem relies on the following
notion of environment consumption.

Definition 7 (Environment Consumption).

– We writeΓ′ <<Γ when Dom(Γ) =Dom(Γ′) and∀u∈Dom(Γ), Γ′(u) = [S′],Γ(u) =
[S] such that S′ << S.

– ∆′ <<∆ when∆=& i∈I Γi , ∆′ =& j∈JΓ′
j with J⊆ I, Γ′

j ⊆Γ j and∀u∈Dom(Γ′
j),∀ j ∈

J. Γ′
j(u)<< Γ j(u).

The substitution lemma allows a nameb to be substituted for a variablex. In the
lemma the type ofx is assumed to be a suffix of the type ofb, and whenx is unified with
b, the markings assumed forb must be updated so that they also contain those assumed
for x. With an abuse of notation, whenS′ <<Swe letS′⊎Sbe defined asS′ D Splus the
clauseS′⊎& •

i∈I{
•?m(T).S,?mi(Ti).Si}= & •

i∈I{
•?m(T).(S′⊎S),?mi(Ti).Si ,}, that were

forbidden in the composition of parallel threads. Such a clause here is not a problem
since the substitution lemma applies within a single thread, i.e. within the body of an
actor at the moment of receiving an input, where it is safe to merge local assumptions.

Lemma 8 (Substitution).Let beΓ,x : T ⊢a e⊲ ∆

– let c be an actor name s.t. a6= c and T<< Γ(c), thenΓ;c : T ⊎Γ(c) ⊢a e{c/x}⊲ ∆;
– let be?m(T).S∈ Input(Γ(a)) such that T<< [S], thenΓ;a : T⊎Γ(a) ⊢a e{a/x}⊲ ∆.

Theorem 9 (Subject Reduction). If Γ ⊢ F ⊲ ∆ and F−→ F ′, then there existΓ′ such
thatΓ′ ⊢ F ′ ⊲ ∆′, with Γ′ << Γ and∆′ << ∆.

Let F be a well typed closed system, i.e.∅ ⊢ F ⊲ ∆. We have that any input action
that is marked in∆ exactly corresponds to one output expression inF that eventually
consumes that input. We say that a well typed actor system isbalancedwheneverevery
input in the system appears marked in the escape environment. As a consequence, in
balanced systems every input has a matching output and viceversa. Then (finite) bal-
anced systems eventually terminate in the empty configuration, correctly implementing
the communication protocol defined by the typing.

The definition of balanced environment checks that every actor has a fully marked
type, possibly with the contribution of the markings contained in the types of a number
of variables. Indeed, since actor names are passed as parameters, the inputs offered
by an actora can be consumed by outputs directed to variables that are dynamically



substituted witha, as inb{react{ f oo(x)⇒ x! m}} | a{b! f oo(a); react{m⇒ e}}. Let
be fullmrk([S]) = [S′] whereS′ andSare the same sequence of actions, but inS′ every
top level input is marked.

Definition 10 (Balanced environment).We writebalanced(∆) when

– if ∆ = {x1 : T1, . . . ,xn : Tn} thenNoMark(T1), . . .NoMark(Tn);
– if ∆ = {u1 : T1, . . . ,un : Tn}, then for any name a∈ Dom(∆)

1. ∃ x1, ...,xk ∈ Dom(∆) such that∆(a) = T, ∆(xi) = Ti with Ti << T and((T ⊎
T1)⊎ . . .⊎Tk) = fullmrk(T)

2. balanced(∆\ {a : T,x1 : T1, ...,xk : Tk});

– if ∆ = & i∈I Γi , thenbalanced(Γi) for any i∈ I.

Observe that the escape environment in Example 6 is balanced. Indeed we have that∆=
{a:T1

a ⊎T2
a , b:Tb, x:Tx, y:Ty}, ∆(y)<<∆(a) and∆(y)⊎∆(a) = fullmrk(∆(a)). Similarly,

∆(x)<< ∆(b) and∆(x)⊎∆(b) = fullmrk(∆(b)).
Let−→∗ be the transitive closure of−→. A final lemma shows that during the com-

putation of well typed actor systems mailboxes only containmessages that are eventu-
ally handled by the receiving actor.

Lemma 11. If ∅ ⊢ Pr⊲ ∆ and Pr−→∗ (νa1, ..,ak)([a 7→M]a{e} | F), then there exists
Γ such thatΓ ⊢ [a 7→M]a{e} and for any m(v)∈M, there exists a matching input action
?m(T).S that belongs to Inputs(Γ(a)).

Theorem 12 (Safety).If ∅ ⊢ Pr ⊲ ∆ with balanced(∆). If Pr −→∗ F then either F= 0
¯or F −→ F ′ for some F′.

Example 13.Consider the program̂Pr:

vala= actor{react{ping(x)⇒ x! pong(self); react{pang()⇒ 0
¯
}}} ;

valb= actor{a! ping(self); react{pong(y)⇒ 0
¯
}} ; 0

¯

It is easy to see that̂Pr −→∗ [a 7→ ∅] a{react{pang() ⇒ 0
¯
}} | 0

¯
6−→ since there is

no actor sending the message thata is waiting for. Nevertheless, the program can be
typed, but with an escape environment that is not balanced. Indeed,∅ ⊢ P̂r ⊲ ∆ is
derivable with∆ = {a : [•?ping(Tx).T∗], b : [T∗ ! ping(Tx).?pong([?pang.end]).end], x :
Tx=[•?pong([?pang.end]).end], y : [?pang.end] }whereT∗ = [[end] ! pong([?pang.end]).?pang.end].
Then the communications are well typed but the fact that in∆ there is no mark for the
input ?pang shows that the program does not consume that resource, as indeed the
operational semantics above has shown.

Example 14.As a final example observe that the deadlock program discussed above,
that isP = vala = actor{valb = actor{react{n ⇒ a! m}} ; react{m⇒ b! n}}, is bal-
anced sincea’s input is matched byb’s output and viceversa. However, the program
stucks in a deadlock and indeed it is not well typed, according to the safety theorem.



4 Conclusions and Related Work

We presented AC, a core actor calculus designed around the basic primitives of the
Scala’s Actors API, together with a behavioural type systemand a safety property deal-
ing with the determinism of finite actor communications. We think that this work sheds
light on how formal methods developed in the context of linear types and session types
for theπ-calculus can be profitably reused for the analysis of actor systems.

As we pointed out in the Introduction, our type system draws inspiration from the
formal methods developed in the contexts of linear types andsession types for pro-
cess algebras ([16,11,13,8]). Indeed, the Actor programming model shares with session
types the idea of conceiving the computation as the implementation of a specified com-
munication protocol. However, there are a number of key differences between the two
models. First, in asynchronous session types ([8,6]) two sequential outputs are (asyn-
chronously) processed according to the sending order, while if an actora sends two
messages to the actorb, i.e. a{b! m1;b! m2}, thenb is free to read/process the second
message before reading/processing the first one, i.e.b{react{m2 ⇒ react{m1 ⇒ ...}}}.
This means that in the Actor model we have to deal with looser assumptions, in that
we cannot look at the order of input, resp. output, actions toinfer something about the
order of the dual output, resp. input actions. More importantly, in multiparty session
types ([12,7]) the set of interacting parties (or the set of interacting roles) in a given ses-
sion is known from the beginning, while an actor system is a dynamic set of interacting
parties. In particular, since new actors can be created and actor names can be passed
as parameters, the communication capabilities of actors dynamically increase, in a way
similar to the scope extrusion phenomenon of theπ-calculus.

Intuitively, session types describe the flow of communications withing a single con-
versation session. An actor’s behavioural type instead takes the point of view of an
entity that concurrently participates to different (interleaved) conversations with differ-
ent parties. In this sense the Actor model share some similarities with the Conversation
Calculus [17,4] CC, where processes concurrently participate to multiparty conversa-
tions and conversation context identities can be passed around to allow participants
to dynamically join conversations. The Conversation Calculus is designed to model
service-oriented computation, and it is centered around the notion of conversation con-
text, which is a medium where related interactions take place. The main difference with
the Actor model is that in CC named entities are the conversation contexts, while named
actors are the conversant parties. Hence the powerful type system in [4] associates types
to conversations rather than to actors.

To he best of our knowledge, there are few works dealing with type systems for Ac-
tor calculi. In [2] the Actor model is encodes in a typed variant of theπ-calculus, where
types are used to ensure uniqueness of actor names and freshness of names of newly
created actors. The work in [5] study a type system for a primitive actor calculus, called
CAP, which is essentially a calculus of concurrent objects `a la Abadi and Cardelli [1]
where actors are objects that dynamically, that is in response to method invocation,
change the set of available methods. Such a dynamic behaviour may lead to so called
“orphan messages” which may not be handled by the the target actor in some execution
path. In order to avoid such orphan messages, a type system isproposed so to provide a
safe abstraction of the execution branches. Finally, In [14] a concurrent fragment of the



Erlang language is enriched with sessions and session types. The safety property guar-
anteed by the typing is that all within-session messages have a chance of being received
and sending and receiving follows the patterns prescribed by types. In our work we fol-
lowed a different approach: instead of adding sessions to anactor calculus, we reused
session type techniques to deal with the communication model distinctive of Actors.

As for future work we plan to extend the AC calculus to deal with recursive actors.
Infinite computation requires a different formulation of the safety property, since com-
pliance with the intended protocol does not reduces anymoreto the termination of all
actors with empty mailboxes. Moreover, deadlock freedom requires more sophisticated
techniques, such as those in [6,4] that are based on a proof system that identifies cyclic
dependencies between actions.

Acknowledgements.The author is indebted to Mariangiola Dezani-Ciancaglini and
Luca Padovani for insightful discussions about session type theories.
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A Notation and Useful Definitions

Let &◦
i∈I{?mi(Ti).Si} stands for an input action, either marked or not.

Definition 15 (Suffix).Let S and S′ be two sequences of actions, we write S<<S′ when
S is a suffix of S′ according to the following rules:

end<< S S<< S
S<< S′

S<< T ! m(T ′).S′
S<< Si ∃i ∈ I

S<< & ◦
i∈I{?mi(Ti).Si}

Definition 16 (Inputs). The set of top level inputs contained in a type T , written Inputs(T),
is defined as follows:

Inputs([T ! m(T ′).S]) = Inputs([S])

Inputs([& ◦
i∈I{

◦?mi(Ti).Si}]) =
⋃

i∈I{?mi(Ti).Si}∪ Inputs([Si])

Inputs([end]) =∅

Definition 17 (Free active actors).The setactors(F) of free active actors in the con-
figuration F is defined as follows:

actors(0
¯
) = actors(e) =∅ actors([a 7→ M]a{e}) = {a}

actors(F1 | F2) = actors(F1)∪actors(F2) actors((νa)F) = actors(F)\ {a}

B Proof Sketches

Substitution Lemma Let beΓ,x : T ⊢a e⊲ ∆ with x 6= a,

– let c be an actor name s.t.a 6= c andT << Γ(c), thenΓ;c : T ⊎Γ(c) ⊢a e{c/x} ⊲ ∆;
– let be ?m(T).S∈ Input(Γ(a)) such thatT << [S], thenΓ;a : T⊎Γ(a) ⊢a e{a/x}⊲ ∆.

Proof. The proof is by induction on the derivation of the judgementΓ,x : T ⊢a e⊲ ∆.
The base case is whene= 0

¯
. In this case the hypothesis isΓ,x : T ⊢a 0

¯
⊲ ∅, Γ,x :

T ⊢ a : [end] andNoMark(Γ,x : T), and the thesis isΓ;c : T ⊎Γ(c) ⊢a 0
¯
⊲ ∅. Hence

it is sufficient to show thatΓ;c : T ⊎Γ(c) ⊢ a : [end], which is immediate ifa 6= c. On
the other hand, ifa= c then from the first hypothesis we haveΓ(a) = [end] and from
the second one we haveT << [end], henceT = [end] = T ⊎ [end] as desired. For the
inductive cases we proceed by a case analysis on the last rulethat has been used to
deriveΓ,x : T ⊢a e⊲ ∆:

(TYPE SPAWN) In this case the hypothesis areΓ1,x : T1⊎Γ2,x : T2⊢a valb= actor{e1};e2⊲
∆1,∆2,{b : [S1⊎S2]} andT = T1⊎T2 << (Γ1⊎Γ2)(c). The first judgement comes
from Γ1,x : T1,b : [S1] ⊢c e1 ⊲ ∆1 andΓ2,x : T2,b : [S2] ⊢a e2 ⊲ ∆2. Observe that
b is fresh, thenb 6= c, then by induction we haveΓ1;c : T1 ⊎ Γ1(c),b : [S1] ⊢b

e1{
c/x}⊲ ∆1 andΓ2;c : T2⊎Γ2(c),b : [S2]⊢a e2{

c/x}⊲ ∆2. Then by (TYPE SPAWN)
we haveΓ′ ⊢a valb= actor{e1{

c/x}};e2{
c/x}⊲ ∆1,∆2,{b : [S1⊎S2]}, whereΓ′ =

Γ1;c : T1 ⊎Γ1(c) ⊎ Γ2;c : T2 ⊎Γ2(c). Now observe thatΓ′ = (Γ1 ⊎Γ2);c : (T1 ⊎
Γ1(c))⊎ (T2⊎Γ2(c)) = (Γ1⊎Γ2);c : (T ⊎ (Γ1⊎Γ2)(c)) as desired.



(TYPE SEND) For simplicity let assume a single message parameter. In this case the
hypothesis isΓ,x : T ⊢a u! m(u′);e⊲ ∆, which come from
1. Γ,x : T ⊢ a : [[S] ! m(T ′).Sa];
2. Γ,x : T ⊢ u : [Su .& •

i∈I{
•?m(T ′).S, ?mi(T̃i).Si}];

3. T ′ << (Γ,x : T)(u′)⌊m, that is if u′ = a then T ′ << [Sa] else if u′ = u then
T ′ << [S] elseT ′ << Γ,x : T(u′) and

4. Γ,x : T ; u : [Su.& i∈I{?m(T ′).S, ?mi(T̃i).Si}] ; a : [Sa]⊢a e⊲ ∆. Notice thatx 6= a,
then we have two subcases:
(a) x 6= u, thenΓ; u : [Su.& i∈I{?m(T ′).S, ?mi(T̃i).Si}] ; a : [Sa],x : T ⊢a e⊲ ∆
(b) x = u and u 6= a, thenΓ; a : [Sa],x : [Su.& i∈I{?m(T ′).S, ?mi(T̃i).Si}] ⊢a

e⊲ ∆.
Now, sincex 6= a, but it might be the case thatx= u and/orx= u′. Then we have
to prove thatΓ;c : T ⊎Γ(c) ⊢a u{c/x} ! m(u′{c/x});e{c/x} ⊲ ∆, which comes from
the following judgements, implied by the enumeration above:

– Γ ⊢ a : [[S] ! m(T ′).Sa], sincex 6= a, henceΓ;c : T ⊎Γ(c) ⊢ a : Ta, where
• if a 6= c thenTa = [[S] ! m(T ′).Sa]
• if a= c, thenTa =T⊎ [[S] ! m(T ′).Sa] together with the hypothesisT << [S]

– Γ;c : T ⊎Γ(c) ⊢ u{c/x} : Tu, where
• if u 6= c,x, i.e.u{c/x}= u, thenTu = [Su .& •

i∈I{
•?m(T ′).S, ?mi(T̃i).Si}]

• if u= coru= x, i.e.,u{c/x}= c, thenTu =T⊎[Su .& •
i∈I{

•?m(T ′).S, ?mi(T̃i).Si}],
together with the hypothesisT << Γ(c) andT << [S] for c= a;

– by induction we have
• in the case 4.(a), i.e.x 6= u,a, (Γ;u : T ′

u;a : [Sa]);c : T⊎(Γ;u : T ′
u;a : [Sa])(c)⊢a

e{c/x} ⊲ ∆ whereT ′
u = [Su.& i∈I{?m(T ′).S, ?mi(T̃i).Si}].

• in the case 4.(b), i.e.x = u 6= a, (Γ;a : [Sa]);c : T ⊎ (Γ;a : [Sa])(c) ⊢a

e{c/x} ⊲ ∆ with T = [Su.& i∈I{?m(T ′).S, ?mi(T̃i).Si}]

In both cases the environment is equal to
(Γ;c : T ⊎Γ(c));u : [Su.& i∈I{?m(T ′).S, ?mi(T̃i).Si}];a : [Sa]

– let prove thatT ′ << (Γ;c : T ⊎Γ(c))(u′{c/x})⌊m:
• if u′{c/x} = a then eitheru′ = a, then T ′ << [Sa] by the hypothesis 3.

above, oru′ = x anda= c, and in this case the hypothesis 3. above gives
T ′ <<Γ,x : T(u′), that isT ′ <<T. Moreover, from the hypothesisT << [S]
and the fact thatS<< Sa, we haveT ′ << [Sa].

• if u′{c/x}= u{c/x} then eitheru′ = u, thenT ′ << [S] by the hypothesis 3.
above, oru′{c/x} = u{c/x} = c and as in the previous itemT ′ << T and
by hypothesisT << [S], henceT ′ << [S].

• otherwise we have to show thatT ′ << (Γ;c : T ⊎Γ(c))(u′{c/x}), that is
eitherT ′ << (Γ;c : T ⊎Γ(c))(c) or T ′ << (Γ;c : T ⊎Γ(c))(u′). The first
case come from the fact that by hypothesis 3. above we haveT ′ << T, that
together withT << Γ(c) gives what desired. The sencond case come from
the fact that by hypothesis 3. above we haveT ′ << Γ(u′), which is what
desired since in this caseu′ 6= c.

(TYPE RECEIVE) In this case the hypothesis isΓ,x : T ⊢a react{mi(ỹi) ⇒ ei}i∈I ⊲
& i∈I (∆i ,{ỹi : Ti}), which comes from(i) Γ,x : T ⊢ a : [& i∈I{?mi(T̃i).Si}] and(ii) Γ,x :
T ; a : [Si ], ỹi : T̃i ⊢a ei ⊲ ∆i for i ∈ I . We can assume thatx 6= ỹi , hence from the



last judgement we haveΓ;a : [Si ], ỹi : T̃i ,x : T ⊢a ei ⊲ ∆i , which gives by induc-
tive hypothesisΓ;a : [Si ], ỹi : T̃i ;c : T ⊎ (Γ;a : [Si ])(c) ⊢a ei{

c/x} ⊲ ∆i , that isΓ;c :
T⊎(Γ)(c);a : [S′i ], ỹi :T̃i ⊢a ei{

c/x}⊲ ∆i whereS′i =Si ⊎T if c= a, otherwiseS′i =Si .
Now, from(i) and the hypothesisT << [Si ] of the lemma, we haveΓ;c : T⊎(Γ)(c)⊢
a : [& i∈I{?mi(T̃i).S′i}],hence we concludeΓ;c : T⊎(Γ)(c)⊢a react{mi(ỹi)⇒ ei{

c/x}}i∈I ⊲
& i∈I (∆i ,{ỹi : Ti}) by (TYPE RECEIVE).

Lemma 18. Let beΓ = Γ1,F1⊙Γ2,F2 ⊢ F1 | F2⊲ ∆1,∆2 a derivable judgement. Then

– For all u /∈ actors(F1)∪ actors(F2), Γ(u) = Γ1(u)⊎Γ2(u), henceΓ1(u) << Γ2(u)
andΓ1(u)<< Γ2(u), i.e. the type of u has the same length inΓ1 andΓ2

– For all u ∈ actors(F1), it holdsΓ1(u)<< Γ2(u)
– For all u ∈ actors(F2), it holdsΓ2(u)<< Γ1(u)

Subject Reduction TheoremIf Γ ⊢ F ⊲ ∆ andF −→ F ′, then there existΓ′ such that
Γ′ ⊢ F ′ ⊲ ∆′, with Γ′ << Γ and∆′ << ∆.

Proof. The proof is by induction on the derivation ofF −→ F ′. We start with the base
cases:

(ENDED) in this case the hypothesis areΓ ⊢ [a 7→∅]a{0
¯
}⊲ ∆ and[a 7→∅]a{0

¯
}−→ 0

¯
.

From the first hypothesis we have thatΓ ⊢ [a 7→ ∅] andΓ ⊢a 0
¯
⊲ ∆, hence∆ = ∅,

Γ ⊢ a : [end] andNoMark(Γ). ThenΓ ⊢ ⋄ is also derivable, and by (TYPE DEAD)
we concludeΓ ⊢ 0

¯
⊲ ∆ as desired.

(TOP SPAWN) In this case the hypothesis arevala= actor{e};e′−→ (νa)([a 7→∅]a{e}} | e′))
andΓ ⊢ vala = actor{e};e′ ⊲ ∆, which comes formΓ = Γ1 ⊎Γ2, ∆ = ∆1,∆2,a :
[S1⊎S2], Γ1,a : [S1] ⊢a e⊲ ∆1 andΓ2,a : [S2] ⊢ e′ ⊲ ∆2. Then we also haveΓ1,a :
[S1] ⊢ [a 7→ ∅]a{e} ⊲ ∆1, and by (TYPE PARA), Γ′ ⊢ [a 7→ ∅]a{e} | e′ ⊲ ∆1,∆2

whereΓ′ = Γ1,a : [S1]⊙Γ2,a : [S2] = Γ1 ⊎Γ2,a : [S1 ⊎S2]. Then by (TYPE RES

CONF) we concludeΓ ⊢ (νa)([a 7→∅]a{e} | e′)⊲ ∆.
(SPAWN) in this case the hypothesis are[b 7→M]b{vala= actor{e};e′}−→ (νa)([b 7→

M]b{e′} | [a 7→∅]a{e}) andΓ ⊢ [b 7→ M]b{vala= actor{e};e′}⊲ ∆, which comes
form Γ ⊢ [b 7→ M] andΓ ⊢b vala= actor{e};e′ ⊲ ∆. Then the proof is similar to the
previous case.

(SEND) In this case the hypothesis are[a 7→ M]a{e} | [b 7→ M′]b{a! m(c̃);e′} −→
[a 7→M ·m(c̃)]a{e} | [b 7→M′]b{e′} andΓ⊢ [a 7→M]a{e} | [b 7→M′]b{a! m(c̃);e′}⊲
∆, which comes fromΓ = Γ1,F1⊙Γ2,F2, ∆ = ∆1,∆2, Γ1 ⊢ [a 7→ M]a{e} ⊲ ∆1 and
Γ2 ⊢ [b 7→ M′]b{a! m(c̃);e′} ⊲ ∆2. The last two judgements must have been de-
rived from (i) Γ1 ⊢ [a 7→ M] and(ii) Γ1 ⊢a e⊲ ∆1, resp.(iii ) Γ2 ⊢ [b 7→ M′] and
(iv) Γ2 ⊢b a! m(c̃);e′ ⊲ ∆2.
From(iv) he know thatΓ2⊢ b : [[S] ! m(T̃).Sb], Γ2 ⊢ a : [Su .& •

i∈I{
•?m(T̃).S, ?mi(T̃i).Si}],

(∗) T̃ << Γ2(c̃)⌊m andΓ′
2 ⊢b e′ ⊲ ∆2, then alsoΓ′

2 ⊢ b{e′}⊲ ∆2, whereΓ′
2 = Γ2 ; a :

[Su.& i∈I{?m(T̃).S, ?mi(T̃i).Si}] ; b : [Sb]. Notice thatΓ′
2 <<Γ2. Moreover, from(iii )

we also haveΓ′
2 ⊢ [b 7→ M′] sinceInputs(Γ′

2(b)) = Inputs(Γ2(b)). Then by (TYPE

ACTOR) we haveΓ′
2 ⊢ [b 7→ M′]b{e′} ⊲ ∆2.



Let show that from(i) we also haveΓ1 ⊢ [a 7→ M ·m(c̃)] by (TYPE MAILBOX ).
FromΓ2 ⊢ a : [Su .& •

i∈I{
•?m(T̃).S, ?mi(T̃i).Si}] we have ?m(T̃).S∈ Inputs(Γ2(a)),

then by Lemma 18 ?m(T̃).S∈ Inputs(Γ1(a)). It is then sufficient to show that̃T <
< Γ1(c̃)⌊m, that is ifc= a thenT << SelseT << Γ1(c). From(∗) above we know
that if c= b thenT << Γ2(b), if c= a thenT <<SelseT << Γ2(c). By Lemma 18
Γ2(c)<< Γ1(c) andΓ2(b)<< Γ1(b) hence we havẽT << Γ1(c̃)⌊m as desired.
So we haveΓ1 ⊢ [a 7→M ·m(c̃)], that together with(ii) givesΓ1 ⊢ [a 7→M ·m(c̃)]a{e}⊲
∆1. Then by (TYPE PARA) we haveΓ′ ⊢ [a 7→ M ·m(c̃)]a{e} | [b 7→ M′]b{e′} ⊲
∆1,∆2 whereΓ′ = Γ1⊙Γ′

2, i.e.Γ′ << Γ as desired.
(RECEIVE) In this case the hypothesis are[a 7→M·mj(c̃)·M′] a{react{mi(x̃i)⇒ ei}i∈I}−→

[a 7→ M·M′] a{ej{
c̃/x̃j }} with j ∈ I andΓ ⊢ [a 7→ M·mj(c̃)·M′] a{react{mi(x̃i)⇒

ei}i∈I}⊲ ∆, which comes form(i) Γ⊢ [a 7→M·mj(c̃)·M′] and(ii) Γ⊢a react{mi(x̃i)⇒
ei}i∈I ⊲ ∆, where∆ = & i∈I (∆i ,{x̃i : Ti}). From (ii) and j ∈ I we haveΓ ⊢ a :
[& i∈I{?mi(T̃i).Si}] andΓ ; a : [Sj ], x̃ j : T̃j ⊢a ej ⊲ ∆ j . Now, from(i) and ?mj(T̃j).Sj ∈
Input(Γ(a)) we haveT̃ << Γ(c̃)⌊m, that is ifc= a thenT << Sj elseT << Γ(c).
Let beΓ′ = Γ;a : [Sj ], then we also havẽT << Γ′(c̃)⌊m. FromΓ′, x̃ j : T̃j ⊢a ej ⊲ ∆ j

andT̃ << Γ′(c̃)⌊m, by Substitution Lemma we haveΓ′; c̃ : T̃j ⊎Γ′(c̃) ⊢a ej{
c̃/x̃} ⊲

∆ j . Let beΓ∗ = Γ′; c̃ : T̃j ⊎Γ′(c̃). Note thatΓ∗ << Γ and from(i) we also haveΓ∗ ⊢
[a 7→M ·M′], than by (TYPE ACTOR) we concludeΓ∗ ⊢ [a 7→M ·M′]⊢a{ej{

c̃/x̃}}⊲
∆ j , with ∆ j << ∆.

For the inductive cases we proceed by a case analysis on the last rule tha has been
applied:

(PAR) In this case the hypothesis isF1 | F2 −→F ′
1 | F2 sinceF1 −→F ′

1, andΓ ⊢ F1 | F2⊲
∆. Hence∆ = ∆1,∆2, Γ = Γ1,F1⊙Γ2,F2, Γ1 ⊢ F1 ⊲ ∆1 andΓ2 ⊢ F2 ⊲ ∆2. Then by
inductive hypothesis we haveΓ′

1 ⊢ F ′
1 ⊲ ∆′

1 with Γ′
1 << Γ1 and∆′

1 << ∆1. Then by
(TYPE PARA) we haveΓ′ ⊢ F ′

1 | F2 ⊲ ∆′ with ∆′ = ∆′
1,∆2 andΓ′ = Γ′

1,F
′
1⊙Γ2,F2

(note that we can guarantee thatactors(F ′
1)∩actors(F2) =∅ since we assumed that

dynamically spawned actors have fresh names). Then observethat∆′ << ∆, hence
it is sufficient to show thatΓ′ << Γ, which comes oberving thatΓ′

1(u) = Γ1(u) for
all u /∈ actors(F1) while Γ′

1(u)<< Γ1(u) for all u∈ actors(F1)∩actors(F ′
1).

(RES) In this case the hypothesis is(νa)F −→ (νa)F ′ sinceF −→ F ′, andΓ ⊢ (νa)F ⊲
∆,a : T. The last judgement comes fromΓ,a : T ⊢ F ⊲ ∆, which gives, by inductive
hypothesis,Γ′,a : T ′ ⊢ F ′ ⊲ ∆′ with Γ′,a : T ′ << Γ,a : T and ∆′ << ∆, and we
concludeΓ ⊢ (νa)F ′ ⊲ ∆,a : T ′ by (TYPE RES CONF).

(STRUCT) In this case the hypothesis isF −→ F ′ sinceF ≡ F ′, F ′ −→ F ′′ andF ′′ ≡
F ′′′. This case comes by the fact that structural congruence preservs the typing.

Lemma 11 If ∅ ⊢ Pr ⊲ ∆ and Pr −→∗ (νã)([a 7→ M]a{e} | F), then there existsΓ
such thatΓ ⊢ [a 7→ M]a{e} and for anym(v) ∈ M, there exists a matching input action
?m(T).S that belongs toInputs(Γ(a)).

Proof. (Sketch) Since actor initially have an empty mailbox, ifm(v) ∈ M, then it must
bePr −→∗ (νã′)([b 7→ N]b{a! m(v)eb} | [a 7→ M′]a{e′})−→∗ (νã)([a 7→ M]a{e} | F).
By Subject Reduction we know that the actorb{a! m(v);eb} is well typed, that isΓb ⊢a :
[Sa.& •{?m(T).S, ..}], hence ?m(T).S∈ Inputs(Γb(a)). Now, if ?m(T).S/∈ Inputs(Γ(a)),



it means that the input handler ina has been consumed by another output that would
also require the typea : [Sa.& •{?m(T).S, ..}], which is not possible since marking is
linear.

Lemma 19.
Let be∅ ⊢ Pr ⊲ ∆ with balanced(∆) and Pr−→∗ (νã)([a1 7→ M1]a1{e1} | . . . | [ak 7→
Mk]ak{ek}) 6−→. Then it is not possible that every actor body ei is a (stuck) input ex-
pression.

Proof. (Sketch) By Subject Reduction there exists∆′ such that
∅ ⊢ (νã)([a1 7→ M1]a1{e1} | . . . | [ak 7→ Mk]ak{ek}) ⊲ ∆′, hence there existΓ1, ...,Γk

such thatΓ1⊙ . . .⊙Γk ⊆ ∆′ andΓi ⊢ [ai 7→ Mi ]ai{ei} ⊲ ∆i for i = 1, ..,k. By contradic-
tion, assume that every actor bodyei is a (stuck) input expression. Then we have that for
all i = 1, ..,k, Γi ⊢ ai : [&{?mi

ℓ(x
i
ℓ).S

i
ℓ}]. Moreover, since the initial system is balanced

and since by hypothesis no matching message is already in themailbox, for any actor
ai there must be an actora j whose body sends a matching message, i.e.ej must contain
the sub-expressionai ! mi

ℓ(c) for some messagemℓ. However, this is not possible since
the typing of (the output action of)a j depends on the (continuation of the input) type of
ai and so on yielding a cyclic dependence between a set of actorswhich would require
recursive typing.

Safety TheoremLet be∅ ⊢ Pr ⊲ ∆ with balanced(∆). If Pr −→∗ F then eitherF = 0
¯or F −→ F ′ for someF ′.

Proof. (Sketch) Let prove it by contradiction: assume that there exists a configuration
F∗ 6= 0

¯
such thatF∗ 6−→. We can assumeF∗ ≡ (νã)([a1 7→ M1]a1{e1} | . . . | [ak 7→

Mk]ak{ek}) with {a1, ...,ak} ⊆ ã. Then by Subject Reduction there exists∆′ such that
∅⊢F∗⊲ ∆′, with ∆′ <<∆ andbalanced(∆′). Then we also have that there existΓ1, ...,Γk

such thatΓ1⊙ . . .⊙Γk ⊆ ∆′ andΓi ⊢ [ai 7→ Mi ]ai{ei} ⊲ ∆i for i = 1, ..,k. We have one
of the following cases:

– for all i ∈{1, ..,k}, if ei = a j ! m(c̃);ethen we have thatΓi ⊢ a j : [Su.& •{?•m(T̃).S, ..}]
and by definition of⊙ we have thatΓ j(a) = [S′u.&{?m(T̃).S, ..}] for someS′u <<Su,
that is the input handler of the messagem is still in the body of the actora j , i.e.
ej 6= 0

¯
, that isa j ∈ {a1, ...,ak} andF∗ −→ contradicting the assumption.

– for all i ∈ {1, ..,k}, if ei = 0
¯

we have two cases: ifMi = ∅ then the (ENDED)
reduction rule applies, giving a contradiction. On the other hand, let beMi 6= ∅,
from ei = 0

¯
and the typing we haveΓi ⊢ ai : [end], but by Lemma 11 andMi 6= ∅

we haveΓ 6⊢ ai : [end], giving the desired contradiction.
– If an actor body starts with the spawning of a new actor, then trivially F∗ −→,

giving the contradiction.
– Finally, we have the case where every actor bodyei starts with an input expression,

which is not possible by Lemma 19.
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